File: GroundMoveType.cpp

package info (click to toggle)
spring 88.0%2Bdfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 41,524 kB
  • sloc: cpp: 343,114; ansic: 38,414; python: 12,257; java: 12,203; awk: 5,748; sh: 1,204; xml: 997; perl: 405; objc: 192; makefile: 181; php: 134; sed: 2
file content (2237 lines) | stat: -rwxr-xr-x 70,488 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */

#include "System/mmgr.h"

#include "GroundMoveType.h"
#include "ExternalAI/EngineOutHandler.h"
#include "Game/Camera.h"
#include "Game/GameHelper.h"
#include "Game/GlobalUnsynced.h"
#include "Game/Player.h"
#include "Game/SelectedUnits.h"
#include "Map/Ground.h"
#include "Map/MapInfo.h"
#include "Map/ReadMap.h"
#include "MoveMath/MoveMath.h"
#include "Sim/Features/Feature.h"
#include "Sim/Features/FeatureHandler.h"
#include "Sim/Misc/GeometricObjects.h"
#include "Sim/Misc/ModInfo.h"
#include "Sim/Misc/QuadField.h"
#include "Sim/Misc/TeamHandler.h"
#include "Sim/Path/IPathManager.h"
#include "Sim/Units/Scripts/CobInstance.h"
#include "Sim/Units/CommandAI/CommandAI.h"
#include "Sim/Units/UnitDef.h"
#include "Sim/Units/UnitHandler.h"
#include "Sim/Weapons/WeaponDefHandler.h"
#include "Sim/Weapons/Weapon.h"
#include "System/EventHandler.h"
#include "System/Log/ILog.h"
#include "System/FastMath.h"
#include "System/myMath.h"
#include "System/Vec2.h"
#include "System/Sound/SoundChannels.h"
#include "System/Sync/SyncTracer.h"


#define LOG_SECTION_GMT "GroundMoveType"
LOG_REGISTER_SECTION_GLOBAL(LOG_SECTION_GMT)

// use the specific section for all LOG*() calls in this source file
#ifdef LOG_SECTION_CURRENT
	#undef LOG_SECTION_CURRENT
#endif
#define LOG_SECTION_CURRENT LOG_SECTION_GMT

// speeds near (MAX_UNIT_SPEED * 1e1) elmos / frame can be caused by explosion impulses
// CUnitHandler removes units with speeds > MAX_UNIT_SPEED as soon as they exit the map,
// so the assertion can be less strict
#define ASSERT_SANE_OWNER_SPEED(v) assert(v.SqLength() < (MAX_UNIT_SPEED * MAX_UNIT_SPEED * 1e2));

#define RAD2DEG (180.0f / PI)
#define MIN_WAYPOINT_DISTANCE SQUARE_SIZE
#define MAX_IDLING_SLOWUPDATES 16
#define DEBUG_OUTPUT 0
#define WAIT_FOR_PATH 1
#define IGNORE_OBSTACLES 0
#define PLAY_SOUNDS 1

#define OWNER_CMD_QUE owner->commandAI->commandQue
#define OWNER_MOVE_CMD() (OWNER_CMD_QUE.empty() || OWNER_CMD_QUE[0].GetID() == CMD_MOVE)

#define FOOTPRINT_RADIUS(xs, zs, s) ((math::sqrt((xs * xs + zs * zs)) * 0.5f * SQUARE_SIZE) * s)



CR_BIND_DERIVED(CGroundMoveType, AMoveType, (NULL));

CR_REG_METADATA(CGroundMoveType, (
	CR_MEMBER(turnRate),
	CR_MEMBER(accRate),
	CR_MEMBER(decRate),

	CR_MEMBER(maxReverseSpeed),
	CR_MEMBER(wantedSpeed),
	CR_MEMBER(currentSpeed),
	CR_MEMBER(requestedSpeed),
	CR_MEMBER(deltaSpeed),

	CR_MEMBER(pathId),
	CR_MEMBER(goalRadius),

	CR_MEMBER(currWayPoint),
	CR_MEMBER(nextWayPoint),
	CR_MEMBER(atGoal),
	CR_MEMBER(haveFinalWaypoint),

	CR_MEMBER(currWayPointDist),
	CR_MEMBER(prevWayPointDist),

	CR_MEMBER(pathRequestDelay),

	CR_MEMBER(numIdlingUpdates),
	CR_MEMBER(numIdlingSlowUpdates),
	CR_MEMBER(wantedHeading),

	CR_MEMBER(moveSquareX),
	CR_MEMBER(moveSquareY),

	CR_MEMBER(nextObstacleAvoidanceUpdate),

	CR_MEMBER(skidding),
	CR_MEMBER(flying),
	CR_MEMBER(reversing),
	CR_MEMBER(idling),
	CR_MEMBER(canReverse),
	CR_MEMBER(useMainHeading),

	CR_MEMBER(waypointDir),
	CR_MEMBER(flatFrontDir),
	CR_MEMBER(lastAvoidanceDir),
	CR_MEMBER(mainHeadingPos),

	CR_MEMBER(skidRotVector),
	CR_MEMBER(skidRotSpeed),
	CR_MEMBER(skidRotAccel),
	CR_ENUM_MEMBER(oldPhysState),

	CR_RESERVED(64),
	CR_POSTLOAD(PostLoad)
));



std::vector<int2> CGroundMoveType::lineTable[LINETABLE_SIZE][LINETABLE_SIZE];

CGroundMoveType::CGroundMoveType(CUnit* owner):
	AMoveType(owner),

	turnRate(0.1f),
	accRate(0.01f),
	decRate(0.01f),
	maxReverseSpeed(0.0f),
	wantedSpeed(0.0f),
	currentSpeed(0.0f),
	requestedSpeed(0.0f),
	deltaSpeed(0.0f),

	pathId(0),
	goalRadius(0),

	currWayPoint(ZeroVector),
	nextWayPoint(ZeroVector),
	atGoal(false),
	haveFinalWaypoint(false),

	currWayPointDist(0.0f),
	prevWayPointDist(0.0f),

	skidding(false),
	flying(false),
	reversing(false),
	idling(false),
	canReverse(owner->unitDef->rSpeed > 0.0f),
	useMainHeading(false),

	skidRotVector(UpVector),
	skidRotSpeed(0.0f),
	skidRotAccel(0.0f),

	oldPhysState(CSolidObject::OnGround),

	flatFrontDir(0.0f, 0.0, 1.0f),
	lastAvoidanceDir(ZeroVector),
	mainHeadingPos(ZeroVector),

	nextObstacleAvoidanceUpdate(0),
	pathRequestDelay(0),

	numIdlingUpdates(0),
	numIdlingSlowUpdates(0),

	wantedHeading(0)
{
	assert(owner != NULL);
	assert(owner->unitDef != NULL);

	moveSquareX = owner->pos.x / MIN_WAYPOINT_DISTANCE;
	moveSquareY = owner->pos.z / MIN_WAYPOINT_DISTANCE;

	maxReverseSpeed = owner->unitDef->rSpeed / GAME_SPEED;

	turnRate = owner->unitDef->turnRate;
	accRate = std::max(0.01f, owner->unitDef->maxAcc);
	decRate = std::max(0.01f, owner->unitDef->maxDec);
}

CGroundMoveType::~CGroundMoveType()
{
	if (pathId != 0) {
		pathManager->DeletePath(pathId);
	}
}

void CGroundMoveType::PostLoad()
{
	// HACK: re-initialize path after load
	if (pathId != 0) {
		pathId = pathManager->RequestPath(owner->mobility, owner->pos, goalPos, goalRadius, owner);
	}
}

bool CGroundMoveType::Update()
{
	ASSERT_SYNCED(owner->pos);

	if (owner->GetTransporter() != NULL) {
		return false;
	}

	if (OnSlope(1.0f)) {
		skidding = true;
	}
	if (skidding) {
		UpdateSkid();
		HandleObjectCollisions();
		return false;
	}

	ASSERT_SYNCED(owner->pos);

	// set drop height when we start to drop
	if (owner->falling) {
		UpdateControlledDrop();
		return false;
	}

	ASSERT_SYNCED(owner->pos);

	bool hasMoved = false;
	bool wantReverse = false;

	const short heading = owner->heading;

	if (owner->stunned || owner->beingBuilt) {
		owner->script->StopMoving();
		SetDeltaSpeed(0.0f, false);
	} else {
		if (owner->fpsControlPlayer != NULL) {
			wantReverse = UpdateDirectControl();
		} else {
			wantReverse = FollowPath();
		}
	}

	// these must be executed even when stunned (so
	// units do not get buried by restoring terrain)
	UpdateOwnerPos(wantReverse);
	AdjustPosToWaterLine();
	HandleObjectCollisions();

	ASSERT_SANE_OWNER_SPEED(owner->speed);

	// <dif> is normally equal to owner->speed (if no collisions)
	// we need more precision (less tolerance) in the y-dimension
	// for all-terrain units that are slowed down a lot on cliffs
	const float3 posDif = owner->pos - oldPos;
	const float3 cmpEps = float3(float3::CMP_EPS, float3::CMP_EPS * 1e-2f, float3::CMP_EPS);

	if (posDif.equals(ZeroVector, cmpEps)) {
		// note: the float3::== test is not exact, so even if this
		// evaluates to true the unit might still have an epsilon
		// speed vector --> nullify it to prevent apparent visual
		// micro-stuttering (speed is used to extrapolate drawPos)
		owner->speed = ZeroVector;

		// negative y-coordinates indicate temporary waypoints that
		// only exist while we are still waiting for the pathfinder
		// (so we want to avoid being considered "idle", since that
		// will cause our path to be re-requested and again give us
		// a temporary waypoint, etc.)
		// NOTE: this is only relevant for QTPFS
		// if the unit is just turning in-place over several frames
		// (eg. to maneuver around an obstacle), do not consider it
		// as "idling"
		idling = (currWayPoint.y != -1.0f && nextWayPoint.y != -1.0f);
		idling &= (std::abs(owner->heading - heading) < turnRate);
		hasMoved = false;
	} else {
		TestNewTerrainSquare();

		// note: HandleObjectCollisions() may have negated the position set
		// by UpdateOwnerPos() (so that owner->pos is again equal to oldPos)
		oldPos = owner->pos;

		// too many false negatives: speed is unreliable if stuck behind an obstacle
		//   idling = (owner->speed.SqLength() < (accRate * accRate));
		// too many false positives: waypoint-distance delta and speed vary too much
		//   idling = (Square(currWayPointDist - prevWayPointDist) < owner->speed.SqLength());
		// too many false positives: many slow units cannot even manage 1 elmo/frame
		//   idling = (Square(currWayPointDist - prevWayPointDist) < 1.0f);

		idling = true;
		idling &= (math::fabs(posDif.y) < math::fabs(cmpEps.y * owner->pos.y));
		idling &= (Square(currWayPointDist - prevWayPointDist) <= (posDif.SqLength() * 0.5f));
		hasMoved = true;
	}

	return hasMoved;
}

void CGroundMoveType::SlowUpdate()
{
	if (owner->GetTransporter() != NULL) {
		if (progressState == Active)
			StopEngine();
		return;
	}

	if (progressState == Active) {
		if (pathId != 0) {
			if (idling) {
				numIdlingSlowUpdates = std::min(MAX_IDLING_SLOWUPDATES, int(numIdlingSlowUpdates + 1));
			} else {
				numIdlingSlowUpdates = std::max(0, int(numIdlingSlowUpdates - 1));
			}

			if (numIdlingUpdates > (SHORTINT_MAXVALUE / turnRate)) {
				// case A: we have a path but are not moving
				LOG_L(L_DEBUG,
						"SlowUpdate: unit %i has pathID %i but %i ETA failures",
						owner->id, pathId, numIdlingUpdates);

				if (numIdlingSlowUpdates < MAX_IDLING_SLOWUPDATES) {
					StopEngine();
					StartEngine();
				} else {
					// unit probably ended up on a non-traversable
					// square, or got stuck in a non-moving crowd
					Fail();
				}
			}
		} else {
			if (gs->frameNum > pathRequestDelay) {
				// case B: we want to be moving but don't have a path
				LOG_L(L_DEBUG, "SlowUpdate: unit %i has no path", owner->id);

				StopEngine();
				StartEngine();
			}
		}
	}

	if (!flying) {
		// move us into the map, and update <oldPos>
		// to prevent any extreme changes in <speed>
		if (!owner->pos.IsInBounds()) {
			owner->pos.ClampInBounds();
			oldPos = owner->pos;
		}
	}

	AMoveType::SlowUpdate();
}


/*
Sets unit to start moving against given position with max speed.
*/
void CGroundMoveType::StartMoving(float3 pos, float goalRadius) {
	StartMoving(pos, goalRadius, (reversing? maxReverseSpeed: maxSpeed));
}


/*
Sets owner unit to start moving against given position with requested speed.
*/
void CGroundMoveType::StartMoving(float3 moveGoalPos, float _goalRadius, float speed)
{
#ifdef TRACE_SYNC
	tracefile << "[" << __FUNCTION__ << "] ";
	tracefile << owner->pos.x << " " << owner->pos.y << " " << owner->pos.z << " " << owner->id << "\n";
#endif

	if (progressState == Active) {
		StopEngine();
	}

	// set the new goal
	goalPos.x = moveGoalPos.x;
	goalPos.z = moveGoalPos.z;
	goalPos.y = 0.0f;
	goalRadius = _goalRadius;
	requestedSpeed = speed;
	atGoal = false;

	useMainHeading = false;
	progressState = Active;

	numIdlingUpdates = 0;
	numIdlingSlowUpdates = 0;

	currWayPointDist = 0.0f;
	prevWayPointDist = 0.0f;

	LOG_L(L_DEBUG, "StartMoving: starting engine for unit %i", owner->id);

	StartEngine();

	#if (PLAY_SOUNDS == 1)
	if (owner->team == gu->myTeam) {
		Channels::General.PlayRandomSample(owner->unitDef->sounds.activate, owner);
	}
	#endif
}

void CGroundMoveType::StopMoving() {
#ifdef TRACE_SYNC
	tracefile << "[" << __FUNCTION__ << "] ";
	tracefile << owner->pos.x << " " << owner->pos.y << " " << owner->pos.z << " " << owner->id << "\n";
#endif

	LOG_L(L_DEBUG, "StopMoving: stopping engine for unit %i", owner->id);

	StopEngine();

	useMainHeading = false;
	progressState = Done;
}



bool CGroundMoveType::FollowPath()
{
	bool wantReverse = false;

	if (pathId == 0) {
		SetDeltaSpeed(0.0f, false);
		SetMainHeading();
	} else {
		ASSERT_SYNCED(currWayPoint);
		ASSERT_SYNCED(nextWayPoint);
		ASSERT_SYNCED(owner->pos);

		prevWayPointDist = currWayPointDist;
		currWayPointDist = owner->pos.distance2D(currWayPoint);

		{
			// NOTE:
			//     uses owner->pos instead of currWayPoint (ie. not the same as haveFinalWaypoint)
			//
			//     if our first command is a build-order, then goalRadius is set to our build-range
			//     and we cannot increase tolerance safely (otherwise the unit might stop when still
			//     outside its range and fail to start construction)
			const float curGoalDistSq = (owner->pos - goalPos).SqLength2D();
			const float minGoalDistSq = (OWNER_MOVE_CMD())?
				Square(goalRadius * (numIdlingSlowUpdates + 1)):
				Square(goalRadius                             );

			atGoal |= (curGoalDistSq < minGoalDistSq);
		}

		if (!atGoal) {
			if (!idling) {
				numIdlingUpdates = std::max(0, int(numIdlingUpdates - 1));
			} else {
				numIdlingUpdates = std::min(SHORTINT_MAXVALUE, int(numIdlingUpdates + 1));
			}
		}

		if (!haveFinalWaypoint) {
			GetNextWayPoint();
		} else {
			if (atGoal) {
				Arrived();
			}
		}

		// set direction to waypoint AFTER requesting it
		waypointDir.x = currWayPoint.x - owner->pos.x;
		waypointDir.z = currWayPoint.z - owner->pos.z;
		waypointDir.y = 0.0f;
		waypointDir.SafeNormalize();

		ASSERT_SYNCED(waypointDir);

		const float3 wpDirInv = -waypointDir;
	//	const float3 wpPosTmp = owner->pos.xz + wpDirInv;
		const bool   wpBehind = (waypointDir.dot(flatFrontDir) < 0.0f);

		if (wpBehind) {
			wantReverse = WantReverse(waypointDir);
		}

		// apply obstacle avoidance (steering)
		const float3 avoidVec = ObstacleAvoidance(waypointDir);

		ASSERT_SYNCED(avoidVec);

		if (avoidVec != ZeroVector) {
			if (wantReverse) {
				ChangeHeading(GetHeadingFromVector(wpDirInv.x, wpDirInv.z));
			} else {
				// should be waypointDir + avoidanceDir
				ChangeHeading(GetHeadingFromVector(avoidVec.x, avoidVec.z));
			}
		} else {
			SetMainHeading();
		}

		SetDeltaSpeed(requestedSpeed, wantReverse);
	}

	pathManager->UpdatePath(owner, pathId);
	return wantReverse;
}

void CGroundMoveType::SetDeltaSpeed(float newWantedSpeed, bool wantReverse, bool fpsMode)
{
	wantedSpeed = newWantedSpeed;

	// round low speeds to zero
	if (wantedSpeed == 0.0f && currentSpeed < 0.01f) {
		currentSpeed = 0.0f;
		deltaSpeed = 0.0f;
		return;
	}

	// wanted speed and acceleration
	float targetSpeed = wantReverse? maxReverseSpeed: maxSpeed;

	#if (WAIT_FOR_PATH == 1)
	// don't move until we have an actual path, trying to hide queuing
	// lag is too dangerous since units can blindly drive into objects,
	// cliffs, etc. (requires the QTPFS idle-check in Update)
	if (currWayPoint.y == -1.0f && nextWayPoint.y == -1.0f) {
		targetSpeed = 0.0f;
	} else
	#endif
	{
		if (wantedSpeed > 0.0f) {
			const UnitDef* ud = owner->unitDef;
			const float groundMod = ud->movedata->moveMath->GetPosSpeedMod(*ud->movedata, owner->pos, flatFrontDir);
			const float curGoalDistSq = (owner->pos - goalPos).SqLength2D();
			const float minGoalDistSq = Square(BreakingDistance(currentSpeed));

			const float3& goalDifFwd = waypointDir;
			const float3  goalDifRev = -goalDifFwd;

			const float3 goalDif = reversing? goalDifRev: goalDifFwd;
			const short turnDeltaHeading = owner->heading - GetHeadingFromVector(goalDif.x, goalDif.z);

			// NOTE: <= 2 because every CMD_MOVE has a trailing CMD_SET_WANTED_MAX_SPEED
			const bool startBreaking = (OWNER_CMD_QUE.size() <= 2 && curGoalDistSq <= minGoalDistSq);

			if (!fpsMode && turnDeltaHeading != 0) {
				// only auto-adjust speed for turns when not in FPS mode
				const float reqTurnAngle = math::fabs(180.0f * (owner->heading - wantedHeading) / SHORTINT_MAXVALUE);
				const float maxTurnAngle = (turnRate / SPRING_CIRCLE_DIVS) * 360.0f;

				float reducedSpeed = (reversing)? maxReverseSpeed: maxSpeed;

				if (reqTurnAngle != 0.0f) {
					reducedSpeed *= (maxTurnAngle / reqTurnAngle);
				}

				if (haveFinalWaypoint && !atGoal) {
					// at this point, Update() will no longer call GetNextWayPoint()
					// and we must slow down to prevent entering an infinite circle
					targetSpeed = fastmath::apxsqrt(currWayPointDist * (reversing? accRate: decRate));
				}

				if (waypointDir.SqLength() > 0.1f) {
					if (!ud->turnInPlace) {
						targetSpeed = std::max(ud->turnInPlaceSpeedLimit, reducedSpeed);
					} else {
						if (reqTurnAngle > ud->turnInPlaceAngleLimit) {
							targetSpeed = reducedSpeed;
						}
					}
				}
			}

			targetSpeed *= groundMod;
			targetSpeed *= ((startBreaking)? 0.0f: 1.0f);
			targetSpeed = std::min(targetSpeed, wantedSpeed);
		} else {
			targetSpeed = 0.0f;
		}
	}

	const int targetSpeedSign = int(!wantReverse) * 2 - 1;
	const int currentSpeedSign = int(!reversing) * 2 - 1;

	const float rawSpeedDiff = (targetSpeed * targetSpeedSign) - (currentSpeed * currentSpeedSign);
	const float absSpeedDiff = math::fabs(rawSpeedDiff);
	// need to clamp, game-supplied values can be much larger than |speedDiff|
	const float modAccRate = std::min(absSpeedDiff, accRate);
	const float modDecRate = std::min(absSpeedDiff, decRate);

	if (reversing) {
		// speed-sign in UpdateOwnerPos is negative
		//   --> to go faster in reverse gear, we need to add +decRate
		//   --> to go slower in reverse gear, we need to add -accRate
		deltaSpeed = (rawSpeedDiff < 0.0f)?  modDecRate: -modAccRate;
	} else {
		// speed-sign in UpdateOwnerPos is positive
		//   --> to go faster in forward gear, we need to add +accRate
		//   --> to go slower in forward gear, we need to add -decRate
		deltaSpeed = (rawSpeedDiff < 0.0f)? -modDecRate:  modAccRate;
	}
}

/*
 * Changes the heading of the owner.
 * FIXME near-duplicate of HoverAirMoveType::UpdateHeading
 */
void CGroundMoveType::ChangeHeading(short newHeading) {
	if (flying) return;
	if (owner->GetTransporter() != NULL) return;

	wantedHeading = newHeading;
	SyncedSshort& heading = owner->heading;
	const short deltaHeading = wantedHeading - heading;

	ASSERT_SYNCED(deltaHeading);
	ASSERT_SYNCED(turnRate);

	if (deltaHeading > 0) {
		heading += std::min(deltaHeading, short(turnRate));
	} else {
		heading += std::max(deltaHeading, short(-turnRate));
	}

	owner->UpdateDirVectors(!owner->upright && maxSpeed > 0.0f);
	owner->UpdateMidPos();

	flatFrontDir = owner->frontdir;
	flatFrontDir.y = 0.0f;
	flatFrontDir.Normalize();
}




void CGroundMoveType::ImpulseAdded(const float3&)
{
	// NOTE: ships must be able to receive impulse too (for collision handling)
	if (owner->beingBuilt)
		return;

	float3& impulse = owner->residualImpulse;
	float3& speed = owner->speed;

	if (skidding) {
		speed += impulse;
		impulse = ZeroVector;
	}

	const float3& groundNormal = ground->GetNormal(owner->pos.x, owner->pos.z);
	const float groundImpulseScale = impulse.dot(groundNormal);

	if (groundImpulseScale < 0.0f)
		impulse -= (groundNormal * groundImpulseScale);

	if (impulse.SqLength() <= 9.0f && groundImpulseScale <= 0.3f)
		return;

	skidding = true;
	useHeading = false;

	speed += impulse;
	impulse = ZeroVector;

	skidRotSpeed = 0.0f;
	skidRotAccel = 0.0f;

	float3 skidDir = owner->frontdir;

	if (speed.SqLength2D() >= 0.01f) {
		skidDir = speed;
		skidDir.y = 0.0f;
		skidDir.Normalize();
	}

	skidRotVector = skidDir.cross(UpVector);

	oldPhysState = owner->physicalState;
	owner->physicalState = CSolidObject::Flying;

	if (speed.dot(groundNormal) > 0.2f) {
		skidRotAccel = (gs->randFloat() - 0.5f) * 0.04f;
		flying = true;
	}

	ASSERT_SANE_OWNER_SPEED(speed);
}

void CGroundMoveType::UpdateSkid()
{
	ASSERT_SYNCED(owner->midPos);

	const float3& pos = owner->pos;
	      float3& speed  = owner->speed;

	const UnitDef* ud = owner->unitDef;
	const float groundHeight = GetGroundHeight(pos);

	if (flying) {
		// water drag
		if (pos.y < 0.0f)
			speed *= 0.95f;

		const float impactSpeed = pos.IsInBounds()?
			-speed.dot(ground->GetNormal(pos.x, pos.z)):
			-speed.dot(UpVector);
		const float impactDamageMult = impactSpeed * owner->mass * 0.02f;
		const bool doColliderDamage = (modInfo.allowUnitCollisionDamage && impactSpeed > ud->minCollisionSpeed && ud->minCollisionSpeed >= 0.0f);

		if (groundHeight > pos.y) {
			// ground impact, stop flying
			flying = false;

			owner->Move1D(groundHeight, 1, false);

			// deal ground impact damage
			// TODO:
			//     bouncing behaves too much like a rubber-ball,
			//     most impact energy needs to go into the ground
			if (doColliderDamage) {
				owner->DoDamage(DamageArray(impactDamageMult), ZeroVector, NULL, -CSolidObject::DAMAGE_COLLISION_GROUND);
			}

			skidRotSpeed = 0.0f;
			// skidRotAccel = 0.0f;
		} else {
			speed.y += mapInfo->map.gravity;
		}
	} else {
		float speedf = speed.Length();
		float skidRotSpd = 0.0f;

		const bool onSlope = OnSlope(-1.0f);
		const float speedReduction = 0.35f;

		if (speedf < speedReduction && !onSlope) {
			// stop skidding
			speed = ZeroVector;

			skidding = false;
			useHeading = true;

			owner->physicalState = oldPhysState;

			skidRotSpd = math::floor(skidRotSpeed + skidRotAccel + 0.5f);
			skidRotAccel = (skidRotSpd - skidRotSpeed) * 0.5f;
			skidRotAccel *= (PI / 180.0f);

			ChangeHeading(owner->heading);
		} else {
			if (onSlope) {
				const float3 normal = ground->GetNormal(pos.x, pos.z);
				const float3 normalForce = normal * normal.dot(UpVector * mapInfo->map.gravity);
				const float3 newForce = UpVector * mapInfo->map.gravity - normalForce;

				speed += newForce;
				speedf = speed.Length();
				speed *= (1.0f - (0.1f * normal.y));
			} else {
				speed *= (1.0f - std::min(1.0f, speedReduction / speedf)); // clamped 0..1
			}

			// number of frames until rotational speed would drop to 0
			const float remTime = std::max(1.0f, speedf / speedReduction);

			skidRotSpd = math::floor(skidRotSpeed + skidRotAccel * (remTime - 1.0f) + 0.5f);
			skidRotAccel = (skidRotSpd - skidRotSpeed) / remTime;
			skidRotAccel *= (PI / 180.0f);

			if (math::floor(skidRotSpeed) != math::floor(skidRotSpeed + skidRotAccel)) {
				skidRotSpeed = 0.0f;
				skidRotAccel = 0.0f;
			}
		}

		if ((groundHeight - pos.y) < (speed.y + mapInfo->map.gravity)) {
			speed.y += mapInfo->map.gravity;

			flying = true;
			skidding = true; // flying requires skidding
			useHeading = false; // and relies on CalcSkidRot
		} else if ((groundHeight - pos.y) > speed.y) {
			const float3& normal = (pos.IsInBounds())? ground->GetNormal(pos.x, pos.z): UpVector;
			const float dot = speed.dot(normal);

			if (dot > 0.0f) {
				speed *= 0.95f;
			} else {
				speed += (normal * (math::fabs(speed.dot(normal)) + 0.1f)) * 1.9f;
				speed *= 0.8f;
			}
		}
	}

	// translate before rotate
	owner->Move3D(speed, true);

	// NOTE: only needed to match terrain normal
	if ((pos.y - groundHeight) <= SQUARE_SIZE)
		owner->UpdateDirVectors(true);

	if (skidding) {
		CalcSkidRot();
		CheckCollisionSkid();
	}

	// always update <oldPos> here so that <speed> does not make
	// extreme jumps when the unit transitions from skidding back
	// to non-skidding
	oldPos = owner->pos;

	ASSERT_SANE_OWNER_SPEED(speed);
	ASSERT_SYNCED(owner->midPos);
}

void CGroundMoveType::UpdateControlledDrop()
{
	if (!owner->falling)
		return;

	const float3& pos = owner->pos;
	      float3& speed = owner->speed;

	speed.y += (mapInfo->map.gravity * owner->fallSpeed);
	speed.y = std::min(speed.y, 0.0f);

	owner->Move3D(speed, true);

	// water drag
	if (pos.y < 0.0f)
		speed *= 0.90;

	const float wh = GetGroundHeight(pos);

	if (wh > pos.y) {
		// ground impact
		owner->falling = false;
		owner->Move1D(wh, 1, false);
		owner->script->Landed(); //stop parachute animation
	}
}

void CGroundMoveType::CheckCollisionSkid()
{
	CUnit* collider = owner;

	// NOTE:
	//     the QuadField::Get* functions check o->midPos,
	//     but the quad(s) that objects are stored in are
	//     derived from o->pos (!)
	const float3& pos = collider->pos;
	const UnitDef* colliderUD = collider->unitDef;
	const vector<CUnit*>& nearUnits = qf->GetUnitsExact(pos, collider->radius);
	const vector<CFeature*>& nearFeatures = qf->GetFeaturesExact(pos, collider->radius);

	// magic number to reduce damage taken from collisions
	// between a very heavy and a very light CSolidObject
	static const float MASS_MULT = 0.02f;

	vector<CUnit*>::const_iterator ui;
	vector<CFeature*>::const_iterator fi;

	for (ui = nearUnits.begin(); ui != nearUnits.end(); ++ui) {
		CUnit* collidee = *ui;
		const UnitDef* collideeUD = collider->unitDef;

		const float sqDist = (pos - collidee->pos).SqLength();
		const float totRad = collider->radius + collidee->radius;

		if ((sqDist >= totRad * totRad) || (sqDist <= 0.01f)) {
			continue;
		}

		// stop units from reaching escape velocity
		const float3 dif = (pos - collidee->pos).SafeNormalize();

		if (collidee->mobility == NULL) {
			const float impactSpeed = -collider->speed.dot(dif);
			const float impactDamageMult = std::min(impactSpeed * collider->mass * MASS_MULT, MAX_UNIT_SPEED);

			const bool doColliderDamage = (modInfo.allowUnitCollisionDamage && impactSpeed > colliderUD->minCollisionSpeed && colliderUD->minCollisionSpeed >= 0.0f);
			const bool doCollideeDamage = (modInfo.allowUnitCollisionDamage && impactSpeed > collideeUD->minCollisionSpeed && collideeUD->minCollisionSpeed >= 0.0f);

			if (impactSpeed <= 0.0f)
				continue;

			collider->Move3D(dif * impactSpeed, true);
			collider->speed += ((dif * impactSpeed) * 1.8f);

			// damage the collider, no added impulse
			if (doColliderDamage) {
				collider->DoDamage(DamageArray(impactDamageMult), ZeroVector, NULL, -CSolidObject::DAMAGE_COLLISION_OBJECT);
			}
			// damage the (static) collidee based on collider's mass, no added impulse
			if (doCollideeDamage) {
				collidee->DoDamage(DamageArray(impactDamageMult), ZeroVector, NULL, -CSolidObject::DAMAGE_COLLISION_OBJECT);
			}
		} else {
			// don't conserve momentum
			assert(collider->mass > 0.0f && collidee->mass > 0.0f);

			const float impactSpeed = (collidee->speed - collider->speed).dot(dif) * 0.5f;
			const float colliderRelMass = (collider->mass / (collider->mass + collidee->mass));
			const float colliderRelImpactSpeed = impactSpeed * (1.0f - colliderRelMass);
			const float collideeRelImpactSpeed = impactSpeed * (       colliderRelMass); 

			const float colliderImpactDmgMult  = std::min(colliderRelImpactSpeed * collider->mass * MASS_MULT, MAX_UNIT_SPEED);
			const float collideeImpactDmgMult  = std::min(collideeRelImpactSpeed * collider->mass * MASS_MULT, MAX_UNIT_SPEED);
			const float3 colliderImpactImpulse = dif * colliderRelImpactSpeed;
			const float3 collideeImpactImpulse = dif * collideeRelImpactSpeed;

			const bool doColliderDamage = (modInfo.allowUnitCollisionDamage && impactSpeed > colliderUD->minCollisionSpeed && colliderUD->minCollisionSpeed >= 0.0f);
			const bool doCollideeDamage = (modInfo.allowUnitCollisionDamage && impactSpeed > collideeUD->minCollisionSpeed && collideeUD->minCollisionSpeed >= 0.0f);

			if (impactSpeed <= 0.0f)
				continue;

			collider->Move3D(colliderImpactImpulse, true);
			collidee->Move3D(-collideeImpactImpulse, true);

			// damage the collider
			if (doColliderDamage) {
				collider->DoDamage(DamageArray(colliderImpactDmgMult), dif * colliderImpactDmgMult, NULL, -CSolidObject::DAMAGE_COLLISION_OBJECT);
			}
			// damage the collidee
			if (doCollideeDamage) {
				collidee->DoDamage(DamageArray(collideeImpactDmgMult), dif * -collideeImpactDmgMult, NULL, -CSolidObject::DAMAGE_COLLISION_OBJECT);
			}

			collider->speed += colliderImpactImpulse;
			collider->speed *= 0.9f;
			collidee->speed -= collideeImpactImpulse;
			collidee->speed *= 0.9f;
		}
	}

	for (fi = nearFeatures.begin(); fi != nearFeatures.end(); ++fi) {
		CFeature* f = *fi;

		if (!f->blocking)
			continue;

		const float sqDist = (pos - f->pos).SqLength();
		const float totRad = collider->radius + f->radius;

		if ((sqDist >= totRad * totRad) || (sqDist <= 0.01f))
			continue;

		const float3 dif = (pos - f->pos).SafeNormalize();
		const float impactSpeed = -collider->speed.dot(dif);
		const float impactDamageMult = std::min(impactSpeed * collider->mass * MASS_MULT, MAX_UNIT_SPEED);
		const float3 impactImpulse = dif * impactSpeed;
		const bool doColliderDamage = (modInfo.allowUnitCollisionDamage && impactSpeed > colliderUD->minCollisionSpeed && colliderUD->minCollisionSpeed >= 0.0f);

		if (impactSpeed <= 0.0f)
			continue;

		collider->Move3D(impactImpulse, true);
		collider->speed += (impactImpulse * 1.8f);

		// damage the collider, no added impulse (!) 
		if (doColliderDamage) {
			collider->DoDamage(DamageArray(impactDamageMult), ZeroVector, NULL, -CSolidObject::DAMAGE_COLLISION_OBJECT);
		}

		// damage the collidee feature based on collider's mass
		f->DoDamage(DamageArray(impactDamageMult), -impactImpulse, NULL, -CSolidObject::DAMAGE_COLLISION_OBJECT);
	}

	ASSERT_SANE_OWNER_SPEED(collider->speed);
}

void CGroundMoveType::CalcSkidRot()
{
	skidRotSpeed += skidRotAccel;
	skidRotSpeed *= 0.999f;
	skidRotAccel *= 0.95f;

	const float angle = (skidRotSpeed / GAME_SPEED) * (PI * 2.0f);
	const float cosp = math::cos(angle);
	const float sinp = math::sin(angle);

	float3 f1 = skidRotVector * skidRotVector.dot(owner->frontdir);
	float3 f2 = owner->frontdir - f1;

	float3 r1 = skidRotVector * skidRotVector.dot(owner->rightdir);
	float3 r2 = owner->rightdir - r1;

	float3 u1 = skidRotVector * skidRotVector.dot(owner->updir);
	float3 u2 = owner->updir - u1;

	f2 = f2 * cosp + f2.cross(skidRotVector) * sinp;
	r2 = r2 * cosp + r2.cross(skidRotVector) * sinp;
	u2 = u2 * cosp + u2.cross(skidRotVector) * sinp;

	owner->frontdir = f1 + f2;
	owner->rightdir = r1 + r2;
	owner->updir    = u1 + u2;

	owner->UpdateMidPos();
}




/*
 * Dynamic obstacle avoidance, helps the unit to
 * follow the path even when it's not perfect.
 */
float3 CGroundMoveType::ObstacleAvoidance(const float3& desiredDir) {
	#if (IGNORE_OBSTACLES == 1)
	return desiredDir;
	#endif

	// multiplier for how strongly an object should be avoided
	static const float AVOIDANCE_STRENGTH = 8000.0f;

	// Obstacle-avoidance-system only needs to be run if the unit wants to move
	if (pathId == 0)
		return ZeroVector;

	float3 avoidanceVec = ZeroVector;
	float3 avoidanceDir = desiredDir;

	// Speed-optimizer. Reduces the times this system is run.
	if (gs->frameNum < nextObstacleAvoidanceUpdate)
		return lastAvoidanceDir;

	lastAvoidanceDir = desiredDir;
	nextObstacleAvoidanceUpdate = gs->frameNum + 4;

	CUnit* avoider = owner;
	MoveData* avoiderMD = avoider->mobility;
	CMoveMath* avoiderMM = avoiderMD->moveMath;

	avoiderMD->tempOwner = avoider;


	// now we do the obstacle avoidance proper
	// avoider always uses its never-rotated MoveDef footprint
	const float avoidanceRadius = std::max(currentSpeed, 1.0f) * (avoider->radius * 2.0f);
	const float avoiderRadius = FOOTPRINT_RADIUS(avoiderMD->xsize, avoiderMD->zsize, 1.0f);
	const float3 rightOfPath = desiredDir.cross(UpVector);

	float avoidLeft = 0.0f;
	float avoidRight = 0.0f;

	const vector<CSolidObject*>& nearbyObjects = qf->GetSolidsExact(avoider->pos, avoidanceRadius);

	for (vector<CSolidObject*>::const_iterator oi = nearbyObjects.begin(); oi != nearbyObjects.end(); ++oi) {
		CSolidObject* avoidee = *oi;
		MoveData* avoideeMD = avoidee->mobility;

		// cases in which there is no need to avoid this obstacle
		if (avoidee == owner)
			continue;
		if (avoiderMM->IsNonBlocking(*avoiderMD, avoidee))
			continue;
		if (!avoiderMM->CrushResistant(*avoiderMD, avoidee))
			continue;
		// ignore objects that are slightly behind us
		if ((desiredDir.dot(avoidee->pos - avoider->pos) + 0.25f) <= 0.0f)
			continue;

		const bool avoideeMobile = (avoideeMD != NULL);

		const float3 avoideeVector = (avoider->pos - avoidee->pos - avoidee->speed * GAME_SPEED);
		const float avoideeDistSq = avoideeVector.SqLength();

		// use the avoidee's MoveDef footprint if it is mobile
		// use the avoidee's Unit (not UnitDef) footprint otherwise
		const float avoideeRadius = avoideeMobile?
			FOOTPRINT_RADIUS(avoideeMD->xsize, avoideeMD->zsize, 1.0f):
			FOOTPRINT_RADIUS(avoidee  ->xsize, avoidee  ->zsize, 1.0f);
		const float avoidanceRadiusSum = avoiderRadius + avoideeRadius;
		const float avoidanceMassSum = avoider->mass + avoidee->mass;
		const float avoideeMassScale = (avoideeMobile)? (avoidee->mass / avoidanceMassSum): 1.0f;

		if (avoideeMobile && !avoiderMD->avoidMobilesOnPath)
			continue;

		if (avoideeDistSq >= Square(currentSpeed * GAME_SPEED + avoidanceRadiusSum))
			continue;
		if (avoideeDistSq >= avoider->pos.SqDistance2D(goalPos))
			continue;

		// note: positive angle cosines mean object is to our right
		const float avoideeDistToAvoidDirCenter = avoideeVector.dot(rightOfPath);

		if (avoideeVector.dot(avoidanceDir) >= avoidanceRadiusSum)
			continue;
		if (math::fabs(avoideeDistToAvoidDirCenter) >= avoidanceRadiusSum)
			continue;

		// do not bother steering around idling objects
		// (collision handling will push them aside, or
		// us in case of "allied" features)
		if (!avoidee->isMoving && avoidee->allyteam == avoider->allyteam)
			continue;

		// if object and unit in relative motion are closing in on one another
		// (or not yet fully apart), then the object is on the path of the unit
		// and they are not collided
		if (avoideeMobile || (Distance2D(owner, avoidee, SQUARE_SIZE) >= 0.0f)) {
			#if (DEBUG_OUTPUT == 1)
			{
				GML_RECMUTEX_LOCK(sel); // ObstacleAvoidance

				if (selectedUnits.selectedUnits.find(owner) != selectedUnits.selectedUnits.end()) {
					geometricObjects->AddLine(avoider->pos + UpVector * 20, object->pos + UpVector * 20, 3, 1, 4);
				}
			}
			#endif

			const float iSqrtDist = (avoideeDistSq <= 1e-4f)? 1e-2f: math::isqrt2(avoideeDistSq);
			const float avoidScale = (AVOIDANCE_STRENGTH * iSqrtDist * iSqrtDist * iSqrtDist) * avoideeMassScale;

			// avoid collision by turning either left or right
			// using the direction thats needs most adjustment
			if (avoideeDistToAvoidDirCenter > 0.0f) {
				avoidRight += ((avoidanceRadiusSum - avoideeDistToAvoidDirCenter) * avoidScale);
			} else {
				avoidLeft += ((avoidanceRadiusSum + avoideeDistToAvoidDirCenter) * avoidScale);
			}
		}
	}

	avoiderMD->tempOwner = NULL;


	// Sum up avoidance.
	avoidanceVec = (desiredDir.cross(UpVector) * (avoidRight - avoidLeft));

	#if (DEBUG_OUTPUT == 1)
	{
		GML_RECMUTEX_LOCK(sel); // ObstacleAvoidance

		if (selectedUnits.selectedUnits.find(owner) != selectedUnits.selectedUnits.end()) {
			int a = geometricObjects->AddLine(avoider->pos + UpVector * 20, avoider->pos + UpVector * 20 + avoidanceVec * 40, 7, 1, 4);
			geometricObjects->SetColor(a, 1, 0.3f, 0.3f, 0.6f);

			a = geometricObjects->AddLine(avoider->pos + UpVector * 20, avoider->pos + UpVector * 20 + desiredDir * 40, 7, 1, 4);
			geometricObjects->SetColor(a, 0.3f, 0.3f, 1, 0.6f);
		}
	}
	#endif


	// Return the resulting recommended velocity.
	avoidanceDir = (desiredDir + avoidanceVec).SafeNormalize();

#ifdef TRACE_SYNC
	tracefile << "[" << __FUNCTION__ << "] ";
	tracefile << "avoidanceVec = <" << avoidanceVec.x << " " << avoidanceVec.y << " " << avoidanceVec.z << ">\n";
#endif

	return (lastAvoidanceDir = avoidanceDir);
}



// Calculates an aproximation of the physical 2D-distance between given two objects.
float CGroundMoveType::Distance2D(CSolidObject* object1, CSolidObject* object2, float marginal)
{
	// calculate the distance in (x,z) depending
	// on the shape of the object footprints
	float dist2D;
	if (object1->xsize == object1->zsize || object2->xsize == object2->zsize) {
		// use xsize as a cylindrical radius.
		float3 distVec = (object1->midPos - object2->midPos);
		dist2D = distVec.Length2D() - (object1->xsize + object2->xsize) * SQUARE_SIZE / 2 + 2 * marginal;
	} else {
		// Pytagorean sum of the x and z distance.
		float3 distVec;
		const float xdiff = math::fabs(object1->midPos.x - object2->midPos.x);
		const float zdiff = math::fabs(object1->midPos.z - object2->midPos.z);

		distVec.x = xdiff - (object1->xsize + object2->xsize) * SQUARE_SIZE / 2 + 2 * marginal;
		distVec.z = zdiff - (object1->zsize + object2->zsize) * SQUARE_SIZE / 2 + 2 * marginal;

		if (distVec.x > 0.0f && distVec.z > 0.0f) {
			dist2D = distVec.Length2D();
		} else if (distVec.x < 0.0f && distVec.z < 0.0f) {
			dist2D = -distVec.Length2D();
		} else if (distVec.x > 0.0f) {
			dist2D = distVec.x;
		} else {
			dist2D = distVec.z;
		}
	}

	return dist2D;
}

// Creates a path to the goal.
void CGroundMoveType::GetNewPath()
{
	assert(pathId == 0);
	pathId = pathManager->RequestPath(owner->mobility, owner->pos, goalPos, goalRadius, owner);

	// if new path received, can't be at waypoint
	if (pathId != 0) {
		atGoal = false;
		haveFinalWaypoint = false;

		currWayPoint = pathManager->NextWayPoint(pathId, owner->pos, 1.25f * SQUARE_SIZE, 0, owner->id);
		nextWayPoint = pathManager->NextWayPoint(pathId, currWayPoint, 1.25f * SQUARE_SIZE, 0, owner->id);
	} else {
		Fail();
	}

	// limit frequency of (case B) path-requests from SlowUpdate's
	pathRequestDelay = gs->frameNum + (UNIT_SLOWUPDATE_RATE << 1);
}


/*
Sets waypoint to next in path.
*/
void CGroundMoveType::GetNextWayPoint()
{
	if (pathId == 0) {
		return;
	}

	if (currWayPoint.y != -1.0f && nextWayPoint.y != -1.0f) {
		#if (DEBUG_OUTPUT == 1)
		// plot the vectors to {curr, next}WayPoint
		const float3& pos = owner->pos;
		const float3& cwp = currWayPoint;
		const float3& nwp = nextWayPoint;

		const int cwpFigGroupID = geometricObjects->AddLine(pos + (UpVector * 20.0f), cwp + (UpVector * (pos.y + 20.0f)), 8.0f, 1, 4);
		const int nwpFigGroupID = geometricObjects->AddLine(pos + (UpVector * 20.0f), nwp + (UpVector * (pos.y + 20.0f)), 8.0f, 1, 4);

		geometricObjects->SetColor(cwpFigGroupID, 1, 0.3f, 0.3f, 0.6f);
		geometricObjects->SetColor(nwpFigGroupID, 1, 0.3f, 0.3f, 0.6f);
		#endif

		// perform a turn-radius check: if the waypoint
		// lies outside our turning circle, don't skip
		// it (since we can steer toward this waypoint
		// and pass it without slowing down)
		// note that we take the DIAMETER of the circle
		// to prevent sine-like "snaking" trajectories
		const float turnFrames = SPRING_CIRCLE_DIVS / turnRate;
		const float turnRadius = (owner->speed.Length() * turnFrames) / (PI + PI);
		const int dirSign = int(!reversing) * 2 - 1;

		if (currWayPointDist > (turnRadius * 2.0f)) {
			return;
		}
		if (currWayPointDist > MIN_WAYPOINT_DISTANCE && waypointDir.dot(flatFrontDir * dirSign) >= 0.995f) {
			return;
		}

		{
			const float curGoalDistSq = (currWayPoint - goalPos).SqLength2D();
			const float minGoalDistSq = (OWNER_MOVE_CMD())?
				Square(goalRadius * (numIdlingSlowUpdates + 1)):
				Square(goalRadius                             );

			// trigger Arrived on the next Update (but
			// only if we have non-temporary waypoints)
			haveFinalWaypoint |= (curGoalDistSq < minGoalDistSq);
		}

		if (haveFinalWaypoint) {
			currWayPoint = goalPos;
			nextWayPoint = goalPos;
			return;
		}
	}

	// TODO-QTPFS:
	//     regularly check if a terrain-change modified our path by comparing
	//     NextWayPoint(pathId, owner->pos, 1.25f * SQUARE_SIZE, 0, owner->id)
	//     and waypoint, eg. every 15 frames
	//     if we do not and a terrain-change area happened to contain <waypoint>
	//     (the immediate next destination), then the unit will keep heading for
	//     it and might possibly get stuck
	//
	if ((nextWayPoint - currWayPoint).SqLength2D() > 0.01f) {
		currWayPoint = nextWayPoint;
		nextWayPoint = pathManager->NextWayPoint(pathId, currWayPoint, 1.25f * SQUARE_SIZE, 0, owner->id);

		if (nextWayPoint.x == -1.0f && nextWayPoint.z == -1.0f) {
			Fail();
		}
	}
}




/*
The distance the unit will move at max breaking before stopping,
starting from given speed.
*/
float CGroundMoveType::BreakingDistance(float speed) const
{
	const float rate = reversing? accRate: decRate;
	const float time = speed / std::max(rate, 0.001f);
	const float dist = 0.5f * rate * time * time;
	return dist;
}

/*
Gives the position this unit will end up at with full breaking
from current velocity.
*/
float3 CGroundMoveType::Here()
{
	const float dist = BreakingDistance(currentSpeed);
	const int   sign = int(!reversing) * 2 - 1;

	const float3 pos2D = float3(owner->pos.x, 0.0f, owner->pos.z);
	const float3 dir2D = flatFrontDir * dist * sign;

	return (pos2D + dir2D);
}






void CGroundMoveType::StartEngine() {
	// ran only if the unit has no path and is not already at goal
	if (pathId == 0 && !atGoal) {
		GetNewPath();

		// activate "engine" only if a path was found
		if (pathId != 0) {
			pathManager->UpdatePath(owner, pathId);

			owner->isMoving = true;
			owner->script->StartMoving();
		}
	}

	nextObstacleAvoidanceUpdate = gs->frameNum;
}

void CGroundMoveType::StopEngine() {
	if (pathId != 0) {
		pathManager->DeletePath(pathId);
		pathId = 0;

		if (!atGoal) {
			currWayPoint = Here();
		}

		// Stop animation.
		owner->script->StopMoving();

		LOG_L(L_DEBUG, "StopEngine: engine stopped for unit %i", owner->id);
	}

	owner->isMoving = false;
	wantedSpeed = 0.0f;
}



/* Called when the unit arrives at its goal. */
void CGroundMoveType::Arrived()
{
	// can only "arrive" if the engine is active
	if (progressState == Active) {
		// we have reached our goal
		StopEngine();

		#if (PLAY_SOUNDS == 1)
		if (owner->team == gu->myTeam) {
			Channels::General.PlayRandomSample(owner->unitDef->sounds.arrived, owner);
		}
		#endif

		// and the action is done
		progressState = Done;
		owner->commandAI->SlowUpdate();

		LOG_L(L_DEBUG, "Arrived: unit %i arrived", owner->id);
	}
}

/*
Makes the unit fail this action.
No more trials will be done before a new goal is given.
*/
void CGroundMoveType::Fail()
{
	LOG_L(L_DEBUG, "Fail: unit %i failed", owner->id);

	StopEngine();

	// failure of finding a path means that
	// this action has failed to reach its goal.
	progressState = Failed;

	eventHandler.UnitMoveFailed(owner);
	eoh->UnitMoveFailed(*owner);
}




void CGroundMoveType::HandleObjectCollisions()
{
	static const float3 sepDirMask = float3(1.0f, 0.0f, 1.0f);

	CUnit* collider = owner;
	collider->mobility->tempOwner = collider;

	{
		const UnitDef*   colliderUD = collider->unitDef;
		const MoveData*  colliderMD = collider->mobility;
		const CMoveMath* colliderMM = colliderMD->moveMath;

		// collider always uses its never-rotated MoveDef footprint
		//
		// allow some degree of inter-penetration (1 - 0.75)
		// between objects to avoid sudden extreme responses
		const float colliderSpeed = collider->speed.Length();
		const float colliderRadius = FOOTPRINT_RADIUS(colliderMD->xsize, colliderMD->zsize, 0.75f);

		HandleUnitCollisions(collider, colliderSpeed, colliderRadius, sepDirMask, colliderUD, colliderMD, colliderMM);
		HandleFeatureCollisions(collider, colliderSpeed, colliderRadius, sepDirMask, colliderUD, colliderMD, colliderMM);
	}

	collider->mobility->tempOwner = NULL;
	collider->Block();
}

void CGroundMoveType::HandleUnitCollisions(
	CUnit* collider,
	const float colliderSpeed,
	const float colliderRadius,
	const float3& sepDirMask,
	const UnitDef* colliderUD,
	const MoveData* colliderMD,
	const CMoveMath* colliderMM
) {
	const float searchRadius = std::max(colliderSpeed, 1.0f) * (colliderRadius * 2.0f);

	const std::vector<CUnit*>& nearUnits = qf->GetUnitsExact(collider->pos, searchRadius);
	      std::vector<CUnit*>::const_iterator uit;

	// NOTE: probably too large for most units (eg. causes tree falling animations to be skipped)
	const int dirSign = int(!reversing) * 2 - 1;
	const float3 crushImpulse = collider->speed * collider->mass * dirSign;

	for (uit = nearUnits.begin(); uit != nearUnits.end(); ++uit) {
		CUnit* collidee = const_cast<CUnit*>(*uit);

		if (collidee == collider) { continue; }
		if (collidee->moveType->IsSkidding()) { continue; }
		if (collidee->moveType->IsFlying()) { continue; }

		const bool colliderMobile = (collider->mobility != NULL);
		const bool collideeMobile = (collidee->mobility != NULL);

		const UnitDef*   collideeUD = collidee->unitDef;
		const MoveData*  collideeMD = collidee->mobility;
		const CMoveMath* collideeMM = (collideeMobile)? collideeMD->moveMath: NULL;

		// use the collidee's MoveDef footprint if it is mobile
		// use the collidee's Unit (not UnitDef) footprint otherwise
		const float collideeSpeed = collidee->speed.Length();
		const float collideeRadius = collideeMobile?
			FOOTPRINT_RADIUS(collideeMD->xsize, collideeMD->zsize, 0.75f):
			FOOTPRINT_RADIUS(collidee  ->xsize, collidee  ->zsize, 0.75f);

		const float3 separationVector   = collider->pos - collidee->pos;
		const float separationMinDistSq = (colliderRadius + collideeRadius) * (colliderRadius + collideeRadius);

		if ((separationVector.SqLength() - separationMinDistSq) > 0.01f)
			continue;

		// NOTE:
		//    we exclude aircraft (which have NULL mobility) landed
		//    on the ground, since they would just stack when pushed
		bool pushCollider = colliderMobile;
		bool pushCollidee = collideeMobile;
		bool crushCollidee = false;

		// if not an allied collision, neither party is allowed to be pushed (bi-directional) and both stop
		// if an allied collision, only the collidee is allowed to be crushed (uni-directional) and neither stop
		//
		// first rule can be ignored at will by either party (only through Lua) such that it is not stopped
		// however neither party can override its pushResistant gene: the party that has it set will ignore
		// pushing contributions from the other WITHOUT being forcibly stopped, unless *both* happen to be
		// push-resistant (then both are stopped)
		const bool alliedCollision =
			teamHandler->Ally(collider->allyteam, collidee->allyteam) &&
			teamHandler->Ally(collidee->allyteam, collider->allyteam);
		const bool collideeYields = (collider->isMoving && !collidee->isMoving);
		const bool ignoreCollidee = ((collideeYields && alliedCollision) || colliderUD->pushResistant);
		const bool disablePushing =
			(colliderUD->pushResistant && !collider->beingBuilt) &&
			(collideeUD->pushResistant && !collidee->beingBuilt);

		pushCollider &= (alliedCollision || modInfo.allowPushingEnemyUnits || !collider->blockEnemyPushing);
		pushCollidee &= (alliedCollision || modInfo.allowPushingEnemyUnits || !collidee->blockEnemyPushing);
		pushCollider &= (!disablePushing && !collidee->usingScriptMoveType);
		pushCollidee &= (!disablePushing && !collider->usingScriptMoveType);

		crushCollidee |= (!alliedCollision || modInfo.allowCrushingAlliedUnits);
		crushCollidee &= (collider->speed != ZeroVector);

		// don't push/crush either party if the collidee does not block the collider
		if (colliderMM->IsNonBlocking(*colliderMD, collidee)) { continue; }
		if (crushCollidee && !colliderMM->CrushResistant(*colliderMD, collidee)) { collidee->Kill(crushImpulse, true); }

		eventHandler.UnitUnitCollision(collider, collidee);

		const float colliderRelRadius = colliderRadius / (colliderRadius + collideeRadius);
		const float collideeRelRadius = collideeRadius / (colliderRadius + collideeRadius);
		const float collisionRadiusSum = (colliderRadius * colliderRelRadius + collideeRadius * collideeRelRadius);

		const float  sepDistance    = separationVector.Length() + 0.01f;
		const float  penDistance    = std::max(collisionRadiusSum - sepDistance, 1.0f);
		const float  sepResponse    = std::min(SQUARE_SIZE * 2.0f, penDistance * 0.5f);

		const float3 sepDirection   = (separationVector / sepDistance);
		const float3 colResponseVec = sepDirection * sepDirMask * sepResponse;

		const float
			m1 = collider->mass,
			m2 = collidee->mass,
			v1 = std::max(1.0f, colliderSpeed), // TODO: precalculate
			v2 = std::max(1.0f, collideeSpeed), // TODO: precalculate
			c1 = 1.0f + (1.0f - math::fabs(collider->frontdir.dot(-sepDirection))) * 5.0f,
			c2 = 1.0f + (1.0f - math::fabs(collidee->frontdir.dot( sepDirection))) * 5.0f,
			s1 = m1 * v1 * c1,
			s2 = m2 * v2 * c2,
 			r1 = s1 / (s1 + s2 + 1.0f),
 			r2 = s2 / (s1 + s2 + 1.0f);

		// far from a realistic treatment, but works
		float colliderMassScale = std::max(0.01f, std::min(0.99f, 1.0f - r1));
		float collideeMassScale = std::max(0.01f, std::min(0.99f, 1.0f - r2));

		if (collider->isMoving && collidee->isMoving) {
			#define SIGN(v) ((int(v >= 0.0f) * 2) - 1)
			// push collider and collidee laterally in opposite directions
			const int colliderSign = SIGN( separationVector.dot(collider->rightdir));
			const int collideeSign = SIGN(-separationVector.dot(collidee->rightdir));
			const float3 colliderSlideVec = collider->rightdir * colliderSign * (1.0f / penDistance);
			const float3 collideeSlideVec = collidee->rightdir * collideeSign * (1.0f / penDistance);
 
			if (pushCollider) { collider->Move3D(colliderSlideVec * r2, true); }
			if (pushCollidee) { collidee->Move3D(collideeSlideVec * r1, true); }
			#undef SIGN
		}

		if (!collideeMobile) {
			CMoveMath::BlockType posBits;

			if (collider->speed == ZeroVector)
				continue;

			posBits = colliderMM->IsBlocked(*colliderMD, collider->pos);

			if ((posBits & CMoveMath::BLOCK_STRUCTURE) == 0)
				continue;

			posBits = colliderMM->IsBlocked(*colliderMD, collider->pos + collider->speed);

			if ((posBits & CMoveMath::BLOCK_STRUCTURE) != 0) {
				// applied every frame objects are colliding, so be careful
				collider->AddImpulse(sepDirection * sepDirMask);

				currentSpeed = 0.0f;
				deltaSpeed = 0.0f;

				if ((gs->frameNum > pathRequestDelay) && ((-sepDirection).dot(owner->frontdir * dirSign) >= 0.5f)) {
					// repath iff obstacle is within 60-degree cone; we do this
					// because the GNWP lookahead (for non-TIP units) can cause
					// corners to be cut across statically blocked squares
					//
					// NOTE:
					//   we want an initial speed of 0 to avoid ramming into the
					//   obstacle again right after the push, but if our leading
					//   command is not a CMD_MOVE then SetMaxSpeed will not get
					//   called later and 0 will immobilize us
					//
					if (OWNER_MOVE_CMD()) {
						StartMoving(goalPos, goalRadius, 0.0f);
					} else {
						StartMoving(goalPos, goalRadius);
					}
				}
			}
		}

		const float3 colliderPushPos = collider->pos + (colResponseVec * colliderMassScale);
		const float3 collideePushPos = collidee->pos - (colResponseVec * collideeMassScale);

		const bool cancelColliderPush =
			((colliderMM->IsBlocked(*colliderMD, colliderPushPos) & CMoveMath::BLOCK_STRUCTURE) != 0) ||
			((colliderMM->GetPosSpeedMod(*colliderMD, colliderPushPos) <= 0.01f));
		const bool cancelCollideePush =
			(collideeMobile && (collideeMM->IsBlocked(*collideeMD, collideePushPos) & CMoveMath::BLOCK_STRUCTURE) != 0) ||
			(collideeMobile && (collideeMM->GetPosSpeedMod(*collideeMD, collideePushPos) <= 0.01f));

		// try to prevent both parties from being pushed onto non-traversable
		// squares (without stopping them dead in their tracks, which is worse)
		if (cancelColliderPush) { colliderMassScale = 0.0f; }
		if (cancelCollideePush) { collideeMassScale = 0.0f; }

		// ignore pushing contributions from idling friendly collidee's
		// (or if we are resistant to them) without stopping; this will
		// ONLY take effect if pushCollider is still true
		if (ignoreCollidee) {
			colliderMassScale *= ((collideeMobile)? 0.0f: 1.0f);
		}

		// either both parties are pushed, or only one party is pushed and the other is stopped, or both are stopped
		     if (  pushCollider) { collider->Move3D( colResponseVec * colliderMassScale, true); }
		else if (colliderMobile) { collider->Move3D(collider->moveType->oldPos, false); }
		     if (  pushCollidee) { collidee->Move3D(-colResponseVec * collideeMassScale, true); }
		else if (collideeMobile) { collidee->Move3D(collidee->moveType->oldPos, false); }

		#if 0
		if (!((gs->frameNum + collider->id) & 31) && !colliderCAI->unimportantMove) {
			// if we do not have an internal move order, tell units around us to bugger off
			// note: this causes too much chaos among the ranks when groups get large
			helper->BuggerOff(collider->pos + collider->frontdir * colliderRadius, colliderRadius, true, false, collider->team, collider);
		}
		#endif
	}
}

void CGroundMoveType::HandleFeatureCollisions(
	CUnit* collider,
	const float colliderSpeed,
	const float colliderRadius,
	const float3& sepDirMask,
	const UnitDef* colliderUD,
	const MoveData* colliderMD,
	const CMoveMath* colliderMM
) {
	const float searchRadius = std::max(colliderSpeed, 1.0f) * (colliderRadius * 2.0f);

	const std::vector<CFeature*>& nearFeatures = qf->GetFeaturesExact(collider->pos, searchRadius);
	      std::vector<CFeature*>::const_iterator fit;

	const int dirSign = int(!reversing) * 2 - 1;
	const float3 crushImpulse = collider->speed * collider->mass * dirSign;

	for (fit = nearFeatures.begin(); fit != nearFeatures.end(); ++fit) {
		CFeature* collidee = const_cast<CFeature*>(*fit);
		// const FeatureDef* collideeFD = collidee->def;

		// use the collidee's Feature (not FeatureDef) footprint
		// const float collideeRadius = FOOTPRINT_RADIUS(collideeFD->xsize, collideeFD->zsize, 0.75f);
		const float collideeRadius = FOOTPRINT_RADIUS(collidee->xsize, collidee->zsize, 0.75f);

		const float3 separationVector   = collider->pos - collidee->pos;
		const float separationMinDistSq = (colliderRadius + collideeRadius) * (colliderRadius + collideeRadius);

		if ((separationVector.SqLength() - separationMinDistSq) > 0.01f)
			continue;

		if (colliderMM->IsNonBlocking(*colliderMD, collidee)) { continue; }
		if (!colliderMM->CrushResistant(*colliderMD, collidee)) { collidee->Kill(crushImpulse, true); }

		eventHandler.UnitFeatureCollision(collider, collidee);

		const float  sepDistance    = separationVector.Length() + 0.01f;
		const float  penDistance    = std::max((colliderRadius + collideeRadius) - sepDistance, 1.0f);
		const float  sepResponse    = std::min(SQUARE_SIZE * 2.0f, penDistance * 0.5f);

		const float3 sepDirection   = (separationVector / sepDistance);
		const float3 colResponseVec = sepDirection * sepDirMask * sepResponse;

		// multiply the collider's mass by a large constant (so that heavy
		// features do not bounce light units away like jittering pinballs;
		// collideeMassScale ~= 0.01 suppresses large responses)
		const float
			m1 = collider->mass,
			m2 = collidee->mass * 10000.0f,
			v1 = std::max(1.0f, colliderSpeed),
			v2 = 1.0f,
			c1 = (1.0f - math::fabs( collider->frontdir.dot(-sepDirection))) * 5.0f,
			c2 = (1.0f - math::fabs(-collider->frontdir.dot( sepDirection))) * 5.0f,
			s1 = m1 * v1 * c1,
			s2 = m2 * v2 * c2,
 			r1 = s1 / (s1 + s2 + 1.0f),
 			r2 = s2 / (s1 + s2 + 1.0f);

		const float colliderMassScale = std::max(0.01f, std::min(0.99f, 1.0f - r1));
	//	const float collideeMassScale = std::max(0.01f, std::min(0.99f, 1.0f - r2));

		if (collidee->reachedFinalPos) {
			CMoveMath::BlockType posBits;

			if (collider->speed == ZeroVector)
				continue;

			posBits = colliderMM->IsBlocked(*colliderMD, collider->pos);

			if ((posBits & CMoveMath::BLOCK_STRUCTURE) == 0)
				continue;

			posBits = colliderMM->IsBlocked(*colliderMD, collider->pos + collider->speed);

			if ((posBits & CMoveMath::BLOCK_STRUCTURE) != 0) {
				// applied every frame objects are colliding, so be careful
				collider->AddImpulse(sepDirection * sepDirMask);

				currentSpeed = 0.0f;
				deltaSpeed = 0.0f;

				if ((gs->frameNum > pathRequestDelay) && ((-sepDirection).dot(owner->frontdir * dirSign) >= 0.5f)) {
					if (OWNER_MOVE_CMD()) {
						StartMoving(goalPos, goalRadius, 0.0f);
					} else {
						StartMoving(goalPos, goalRadius);
					}
				}
			}
		}

		collider->Move3D(colResponseVec * colliderMassScale, true);
	}
}




void CGroundMoveType::CreateLineTable()
{
	// for every <xt, zt> pair, computes a set of regularly spaced
	// grid sample-points (int2 offsets) along the line from <start>
	// to <to>; <to> ranges from [x=-4.5, z=-4.5] to [x=+5.5, z=+5.5]
	//
	// TestNewTerrainSquare() and ObstacleAvoidance() check whether
	// squares are blocked at these offsets to get a fast estimate
	// of terrain passability
	for (int yt = 0; yt < LINETABLE_SIZE; ++yt) {
		for (int xt = 0; xt < LINETABLE_SIZE; ++xt) {
			// center-point of grid-center cell
			const float3 start(0.5f, 0.0f, 0.5f);
			// center-point of target cell
			const float3 to((xt - (LINETABLE_SIZE / 2)) + 0.5f, 0.0f, (yt - (LINETABLE_SIZE / 2)) + 0.5f);

			const float dx = to.x - start.x;
			const float dz = to.z - start.z;
			float xp = start.x;
			float zp = start.z;

			if (floor(start.x) == floor(to.x)) {
				if (dz > 0.0f) {
					for (int a = 1; a <= floor(to.z); ++a)
						lineTable[yt][xt].push_back(int2(0, a));
				} else {
					for (int a = -1; a >= floor(to.z); --a)
						lineTable[yt][xt].push_back(int2(0, a));
				}
			} else if (floor(start.z) == floor(to.z)) {
				if (dx > 0.0f) {
					for (int a = 1; a <= floor(to.x); ++a)
						lineTable[yt][xt].push_back(int2(a, 0));
				} else {
					for (int a = -1; a >= floor(to.x); --a)
						lineTable[yt][xt].push_back(int2(a, 0));
				}
			} else {
				float xn, zn;
				bool keepgoing = true;

				while (keepgoing) {
					if (dx > 0.0f) {
						xn = (floor(xp) + 1.0f - xp) / dx;
					} else {
						xn = (floor(xp)        - xp) / dx;
					}
					if (dz > 0.0f) {
						zn = (floor(zp) + 1.0f - zp) / dz;
					} else {
						zn = (floor(zp)        - zp) / dz;
					}

					if (xn < zn) {
						xp += (xn + 0.0001f) * dx;
						zp += (xn + 0.0001f) * dz;
					} else {
						xp += (zn + 0.0001f) * dx;
						zp += (zn + 0.0001f) * dz;
					}

					keepgoing =
						math::fabs(xp - start.x) <= math::fabs(to.x - start.x) &&
						math::fabs(zp - start.z) <= math::fabs(to.z - start.z);
					int2 pt(int(floor(xp)), int(floor(zp)));

					static const int MIN_IDX = -int(LINETABLE_SIZE / 2);
					static const int MAX_IDX = -MIN_IDX;

					if (MIN_IDX > pt.x || pt.x > MAX_IDX) continue;
					if (MIN_IDX > pt.y || pt.y > MAX_IDX) continue;

					lineTable[yt][xt].push_back(pt);
				}
			}
		}
	}
}

void CGroundMoveType::DeleteLineTable()
{
	for (int yt = 0; yt < LINETABLE_SIZE; ++yt) {
		for (int xt = 0; xt < LINETABLE_SIZE; ++xt) {
			lineTable[yt][xt].clear();
		}
	}
}

void CGroundMoveType::TestNewTerrainSquare()
{
	// first make sure we don't go into any terrain we cant get out of
	int newMoveSquareX = owner->pos.x / (MIN_WAYPOINT_DISTANCE);
	int newMoveSquareY = owner->pos.z / (MIN_WAYPOINT_DISTANCE);

	float3 newpos = owner->pos;

	if (newMoveSquareX != moveSquareX || newMoveSquareY != moveSquareY) {
		const CMoveMath* movemath = owner->unitDef->movedata->moveMath;
		const MoveData& md = *(owner->unitDef->movedata);
		const float cmod = movemath->GetPosSpeedMod(md, moveSquareX, moveSquareY);

		if (math::fabs(owner->frontdir.x) < math::fabs(owner->frontdir.z)) {
			if (newMoveSquareX > moveSquareX) {
				const float nmod = movemath->GetPosSpeedMod(md, newMoveSquareX, newMoveSquareY);
				if (cmod > 0.01f && nmod <= 0.01f) {
					newpos.x = moveSquareX * MIN_WAYPOINT_DISTANCE + (MIN_WAYPOINT_DISTANCE - 0.01f);
					newMoveSquareX = moveSquareX;
				}
			} else if (newMoveSquareX < moveSquareX) {
				const float nmod = movemath->GetPosSpeedMod(md, newMoveSquareX, newMoveSquareY);
				if (cmod > 0.01f && nmod <= 0.01f) {
					newpos.x = moveSquareX * MIN_WAYPOINT_DISTANCE + 0.01f;
					newMoveSquareX = moveSquareX;
				}
			}
			if (newMoveSquareY > moveSquareY) {
				const float nmod = movemath->GetPosSpeedMod(md, newMoveSquareX, newMoveSquareY);
				if (cmod > 0.01f && nmod <= 0.01f) {
					newpos.z = moveSquareY * MIN_WAYPOINT_DISTANCE + (MIN_WAYPOINT_DISTANCE - 0.01f);
					newMoveSquareY = moveSquareY;
				}
			} else if (newMoveSquareY < moveSquareY) {
				const float nmod = movemath->GetPosSpeedMod(md, newMoveSquareX, newMoveSquareY);
				if (cmod > 0.01f && nmod <= 0.01f) {
					newpos.z = moveSquareY * MIN_WAYPOINT_DISTANCE + 0.01f;
					newMoveSquareY = moveSquareY;
				}
			}
		} else {
			if (newMoveSquareY > moveSquareY) {
				const float nmod = movemath->GetPosSpeedMod(md, newMoveSquareX, newMoveSquareY);
				if (cmod > 0.01f && nmod <= 0.01f) {
					newpos.z = moveSquareY * MIN_WAYPOINT_DISTANCE + (MIN_WAYPOINT_DISTANCE - 0.01f);
					newMoveSquareY = moveSquareY;
				}
			} else if (newMoveSquareY < moveSquareY) {
				const float nmod = movemath->GetPosSpeedMod(md, newMoveSquareX, newMoveSquareY);
				if (cmod > 0.01f && nmod <= 0.01f) {
					newpos.z = moveSquareY * MIN_WAYPOINT_DISTANCE + 0.01f;
					newMoveSquareY = moveSquareY;
				}
			}

			if (newMoveSquareX > moveSquareX) {
				const float nmod = movemath->GetPosSpeedMod(md, newMoveSquareX, newMoveSquareY);
				if (cmod > 0.01f && nmod <= 0.01f) {
					newpos.x = moveSquareX * MIN_WAYPOINT_DISTANCE + (MIN_WAYPOINT_DISTANCE - 0.01f);
					newMoveSquareX = moveSquareX;
				}
			} else if (newMoveSquareX < moveSquareX) {
				const float nmod = movemath->GetPosSpeedMod(md, newMoveSquareX, newMoveSquareY);
				if (cmod > 0.01f && nmod <= 0.01f) {
					newpos.x = moveSquareX * MIN_WAYPOINT_DISTANCE + 0.01f;
					newMoveSquareX = moveSquareX;
				}
			}
		}
		// do not teleport units. if the unit is too far away from old position,
		// reset the pathfinder instead of teleporting it.
		if (newpos.SqDistance2D(owner->pos) > (MIN_WAYPOINT_DISTANCE * MIN_WAYPOINT_DISTANCE)) {
			newMoveSquareX = (int) owner->pos.x / (MIN_WAYPOINT_DISTANCE);
			newMoveSquareY = (int) owner->pos.z / (MIN_WAYPOINT_DISTANCE);
		} else {
			owner->Move3D(newpos, false);
		}

		if (newMoveSquareX != moveSquareX || newMoveSquareY != moveSquareY) {
			moveSquareX = newMoveSquareX;
			moveSquareY = newMoveSquareY;

			// if we have moved, check if we can get to the next waypoint
			int nwsx = (int) nextWayPoint.x / (MIN_WAYPOINT_DISTANCE) - moveSquareX;
			int nwsy = (int) nextWayPoint.z / (MIN_WAYPOINT_DISTANCE) - moveSquareY;
			int numIter = 0;

			static const unsigned int blockBits =
				CMoveMath::BLOCK_STRUCTURE |
				CMoveMath::BLOCK_MOBILE |
				CMoveMath::BLOCK_MOBILE_BUSY;

			while ((nwsx * nwsx + nwsy * nwsy) < LINETABLE_SIZE && !haveFinalWaypoint && pathId != 0) {
				const int ltx = nwsx + LINETABLE_SIZE / 2;
				const int lty = nwsy + LINETABLE_SIZE / 2;
				bool wpOk = true;

				if (ltx >= 0 && ltx < LINETABLE_SIZE && lty >= 0 && lty < LINETABLE_SIZE) {
					for (std::vector<int2>::iterator li = lineTable[lty][ltx].begin(); li != lineTable[lty][ltx].end(); ++li) {
						const int x = (moveSquareX + li->x);
						const int y = (moveSquareY + li->y);

						if ((movemath->IsBlocked(md, x, y) & blockBits) ||
							movemath->GetPosSpeedMod(md, x, y) <= 0.01f) {
							wpOk = false;
							break;
						}
					}
				}

				if (!wpOk || numIter > 6) {
					break;
				}

				GetNextWayPoint();

				nwsx = (int) nextWayPoint.x / (MIN_WAYPOINT_DISTANCE) - moveSquareX;
				nwsy = (int) nextWayPoint.z / (MIN_WAYPOINT_DISTANCE) - moveSquareY;
				++numIter;
			}
		}
	}
}

void CGroundMoveType::LeaveTransport()
{
	oldPos = owner->pos + UpVector * 0.001f;
}



void CGroundMoveType::KeepPointingTo(float3 pos, float distance, bool aggressive) {
	mainHeadingPos = pos;
	useMainHeading = aggressive;

	if (!useMainHeading) return;
	if (owner->weapons.empty()) return;

	CWeapon* frontWeapon = owner->weapons.front();

	if (!frontWeapon->weaponDef->waterweapon && mainHeadingPos.y <= 1.0f) {
		mainHeadingPos.y = 1.0f;
	}

	float3 dir1 = frontWeapon->mainDir;
	float3 dir2 = mainHeadingPos - owner->pos;

	dir1.y = 0.0f;
	dir1.Normalize();
	dir2.y = 0.0f;
	dir2.SafeNormalize();

	if (dir2 == ZeroVector)
		return;

	short heading =
		GetHeadingFromVector(dir2.x, dir2.z) -
		GetHeadingFromVector(dir1.x, dir1.z);

	if (owner->heading == heading)
		return;

	if (!frontWeapon->TryTarget(mainHeadingPos, true, 0)) {
		progressState = Active;
	}
}

void CGroundMoveType::KeepPointingTo(CUnit* unit, float distance, bool aggressive) {
	//! wrapper
	KeepPointingTo(unit->pos, distance, aggressive);
}

/**
* @brief Orients owner so that weapon[0]'s arc includes mainHeadingPos
*/
void CGroundMoveType::SetMainHeading() {
	if (!useMainHeading) return;
	if (owner->weapons.empty()) return;

	CWeapon* frontWeapon = owner->weapons.front();

	float3 dir1 = frontWeapon->mainDir;
	float3 dir2 = mainHeadingPos - owner->pos;

	dir1.y = 0.0f;
	dir1.Normalize();
	dir2.y = 0.0f;
	dir2.SafeNormalize();

	ASSERT_SYNCED(dir1);
	ASSERT_SYNCED(dir2);

	if (dir2 == ZeroVector)
		return;

	short heading =
		GetHeadingFromVector(dir2.x, dir2.z) -
		GetHeadingFromVector(dir1.x, dir1.z);

	ASSERT_SYNCED(heading);

	if (progressState == Active) {
		if (owner->heading == heading) {
			// stop turning
			owner->script->StopMoving();
			progressState = Done;
		} else {
			ChangeHeading(heading);
		}
	} else {
		if (owner->heading != heading) {
			if (!frontWeapon->TryTarget(mainHeadingPos, true, 0)) {
				// start moving
				progressState = Active;
				owner->script->StartMoving();
				ChangeHeading(heading);
			}
		}
	}
}

void CGroundMoveType::SetMaxSpeed(float speed)
{
	maxSpeed        = std::min(speed, maxSpeedDef);
	maxReverseSpeed = std::min(speed, maxReverseSpeed);

	requestedSpeed = speed;
}

bool CGroundMoveType::OnSlope(float minSlideTolerance) {
	const UnitDef* ud = owner->unitDef;
	const float3& pos = owner->pos;

	if (ud->slideTolerance < minSlideTolerance) { return false; }
	if (owner->unitDef->floatOnWater && owner->inWater) { return false; }
	if (!pos.IsInBounds()) { return false; }

	// if minSlideTolerance is zero, do not multiply maxSlope by ud->slideTolerance
	// (otherwise the unit could stop on an invalid path location, and be teleported
	// back)
	const float gSlope = ground->GetSlope(pos.x, pos.z);
	const float uSlope = ud->movedata->maxSlope * ((minSlideTolerance <= 0.0f)? 1.0f: ud->slideTolerance);

	return (gSlope > uSlope);
}



float CGroundMoveType::GetGroundHeight(const float3& p) const
{
	float h = 0.0f;

	if (owner->unitDef->floatOnWater) {
		// in [0, maxHeight]
		h = ground->GetHeightAboveWater(p.x, p.z);
	} else {
		// in [minHeight, maxHeight]
		h = ground->GetHeightReal(p.x, p.z);
	}

	return h;
}

void CGroundMoveType::AdjustPosToWaterLine()
{
	if (!(owner->falling || flying)) {
		float groundHeight = GetGroundHeight(owner->pos);

		if (owner->unitDef->floatOnWater && owner->inWater && groundHeight <= 0.0f) {
			groundHeight = -owner->unitDef->waterline;
		}

		owner->Move1D(groundHeight, 1, false);

		/*
		const UnitDef* ud = owner->unitDef;
		const MoveData* md = ud->movedata;
		const CMoveMath* mm = md->moveMath;

		y = mm->yLevel(owner->pos.x, owner->pos.z);

		if (owner->unitDef->floatOnWater && owner->inWater) {
			y -= owner->unitDef->waterline;
		}

		owner->Move1D(y, 1, false);
		*/
	}
}

bool CGroundMoveType::UpdateDirectControl()
{
	const CPlayer* myPlayer = gu->GetMyPlayer();
	const FPSUnitController& selfCon = myPlayer->fpsController;
	const FPSUnitController& unitCon = owner->fpsControlPlayer->fpsController;
	const bool wantReverse = (unitCon.back && !unitCon.forward);
	float turnSign = 0.0f;

	currWayPoint.x = owner->pos.x + owner->frontdir.x * (wantReverse)? -100.0f: 100.0f;
	currWayPoint.z = owner->pos.z + owner->frontdir.z * (wantReverse)? -100.0f: 100.0f;
	currWayPoint.ClampInBounds();

	if (unitCon.forward) {
		SetDeltaSpeed(maxSpeed, wantReverse, true);

		owner->isMoving = true;
		owner->script->StartMoving();
	} else if (unitCon.back) {
		SetDeltaSpeed(maxReverseSpeed, wantReverse, true);

		owner->isMoving = true;
		owner->script->StartMoving();
	} else {
		// not moving forward or backward, stop
		SetDeltaSpeed(0.0f, false, true);

		owner->isMoving = false;
		owner->script->StopMoving();
	}

	if (unitCon.left ) { ChangeHeading(owner->heading + turnRate); turnSign =  1.0f; }
	if (unitCon.right) { ChangeHeading(owner->heading - turnRate); turnSign = -1.0f; }

	if (selfCon.GetControllee() == owner) {
		camera->rot.y += (turnRate * turnSign * TAANG2RAD);
	}

	return wantReverse;
}

void CGroundMoveType::UpdateOwnerPos(bool wantReverse)
{
	if (wantedSpeed > 0.0f || currentSpeed != 0.0f) {
		if (wantReverse) {
			if (!reversing) {
				reversing = (currentSpeed <= accRate);
			}
		} else {
			if (reversing) {
				reversing = (currentSpeed > accRate);
			}
		}

		const UnitDef* ud = owner->unitDef;
		const MoveData* md = ud->movedata;
		const CMoveMath* mm = md->moveMath;

		const int    speedSign = int(!reversing) * 2 - 1;
		const float  speedScale = std::min(currentSpeed + deltaSpeed, (reversing? maxReverseSpeed: maxSpeed));
		const float3 speedVector = owner->frontdir * speedScale * speedSign;

		owner->speed = speedVector;

		if (mm->GetPosSpeedMod(*md, owner->pos + owner->speed) <= 0.01f) {
			// never move onto an impassable square (units
			// can still tunnel across them at high enough
			// speeds however)
			owner->speed = ZeroVector;
		} else {
			// use the simplest possible Euler integration
			owner->Move3D(owner->speed, true);
		}

		currentSpeed = (owner->speed != ZeroVector)? speedScale: 0.0f;
		deltaSpeed = 0.0f;

		assert(math::fabs(currentSpeed) < 1e6f);
	}

	if (!wantReverse && currentSpeed == 0.0f) {
		reversing = false;
	}
}

bool CGroundMoveType::WantReverse(const float3& waypointDir2D) const
{
	if (!canReverse)
		return false;

	// these values are normally non-0, but LuaMoveCtrl
	// can override them and we do not want any div0's
	if (maxReverseSpeed <= 0.0f) return false;
	if (maxSpeed <= 0.0f) return true;

	if (accRate <= 0.0f) return false;
	if (decRate <= 0.0f) return false;
	if (turnRate <= 0.0f) return false;

	const float3 waypointDif  = float3(goalPos.x - owner->pos.x, 0.0f, goalPos.z - owner->pos.z); // use final WP for ETA
	const float waypointDist  = waypointDif.Length();                                             // in elmos
	const float waypointFETA  = (waypointDist / maxSpeed);                                        // in frames (simplistic)
	const float waypointRETA  = (waypointDist / maxReverseSpeed);                                 // in frames (simplistic)
	const float waypointDirDP = waypointDir2D.dot(owner->frontdir);
	const float waypointAngle = Clamp(waypointDirDP, -1.0f, 1.0f);                                // prevent NaN's
	const float turnAngleDeg  = math::acosf(waypointAngle) * RAD2DEG;                             // in degrees
	const float turnAngleSpr  = (turnAngleDeg / 360.0f) * SPRING_CIRCLE_DIVS;                     // in "headings"
	const float revAngleSpr   = SHORTINT_MAXVALUE - turnAngleSpr;                                 // 180 deg - angle

	// units start accelerating before finishing the turn, so subtract something
	const float turnTimeMod   = 5.0f;
	const float turnAngleTime = std::max(0.0f, (turnAngleSpr / turnRate) - turnTimeMod); // in frames
	const float revAngleTime  = std::max(0.0f, (revAngleSpr  / turnRate) - turnTimeMod);

	const float apxSpeedAfterTurn  = std::max(0.f, currentSpeed - 0.125f * (turnAngleTime * decRate));
	const float apxRevSpdAfterTurn = std::max(0.f, currentSpeed - 0.125f * (revAngleTime  * decRate));
	const float decTime       = ( reversing * apxSpeedAfterTurn)  / decRate;
	const float revDecTime    = (!reversing * apxRevSpdAfterTurn) / decRate;
	const float accTime       = (maxSpeed        - !reversing * apxSpeedAfterTurn)  / accRate;
	const float revAccTime    = (maxReverseSpeed -  reversing * apxRevSpdAfterTurn) / accRate;
	const float revAccDecTime = revDecTime + revAccTime;

	const float fwdETA = waypointFETA + turnAngleTime + accTime + decTime;
	const float revETA = waypointRETA + revAngleTime + revAccDecTime;

	return (fwdETA > revETA);
}