1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <cassert>
#include <list>
#include <limits>
#include "PathSearch.hpp"
#include "Path.hpp"
#include "PathCache.hpp"
#include "NodeLayer.hpp"
#include "Sim/Misc/GlobalConstants.h"
#ifdef QTPFS_TRACE_PATH_SEARCHES
#include "Sim/Misc/GlobalSynced.h"
#endif
QTPFS::binary_heap<QTPFS::INode*> QTPFS::PathSearch::openNodes;
void QTPFS::PathSearch::Initialize(
NodeLayer* layer,
PathCache* cache,
const float3& sourcePoint,
const float3& targetPoint,
const SRectangle& searchArea
) {
srcPoint = sourcePoint; srcPoint.ClampInBounds();
tgtPoint = targetPoint; tgtPoint.ClampInBounds();
curPoint = srcPoint;
nxtPoint = tgtPoint;
nodeLayer = layer;
pathCache = cache;
searchRect = searchArea;
searchExec = NULL;
srcNode = nodeLayer->GetNode(srcPoint.x / SQUARE_SIZE, srcPoint.z / SQUARE_SIZE);
tgtNode = nodeLayer->GetNode(tgtPoint.x / SQUARE_SIZE, tgtPoint.z / SQUARE_SIZE);
curNode = NULL;
nxtNode = NULL;
minNode = srcNode;
}
bool QTPFS::PathSearch::Execute(
unsigned int searchStateOffset,
unsigned int searchMagicNumber
) {
searchState = searchStateOffset;
searchMagic = searchMagicNumber;
haveFullPath = (srcNode == tgtNode);
havePartPath = false;
// early-out
if (haveFullPath)
return true;
const bool srcBlocked = (srcNode->GetMoveCost() == QTPFS_POSITIVE_INFINITY);
std::vector<INode*>& allNodes = nodeLayer->GetNodes();
std::vector<INode*> ngbNodes;
#ifdef QTPFS_TRACE_PATH_SEARCHES
searchExec = new PathSearchTrace::Execution(gs->frameNum);
#endif
switch (searchType) {
case PATH_SEARCH_ASTAR: { hCostMult = 1.0f; } break;
case PATH_SEARCH_DIJKSTRA: { hCostMult = 0.0f; } break;
default: { assert(false); } break;
}
// allow the search to start from an impassable node (because single
// nodes can represent many terrain squares, some of which can still
// be passable and allow a unit to move within a node)
// NOTE: we need to make sure such paths do not have infinite cost!
if (srcBlocked) {
srcNode->SetMoveCost(0.0f);
}
{
openNodes.reset();
openNodes.push(srcNode);
UpdateNode(srcNode, NULL, 0.0f, (tgtPoint - srcPoint).Length() * hCostMult, srcNode->GetMoveCost());
}
while (!openNodes.empty()) {
IterateSearch(allNodes, ngbNodes);
#ifdef QTPFS_TRACE_PATH_SEARCHES
searchExec->AddIteration(searchIter);
searchIter.Clear();
#endif
haveFullPath = (curNode == tgtNode);
havePartPath = (minNode != srcNode);
if (haveFullPath) {
openNodes.reset();
}
}
if (srcBlocked) {
srcNode->SetMoveCost(QTPFS_POSITIVE_INFINITY);
}
#ifdef QTPFS_SUPPORT_PARTIAL_SEARCHES
// adjust the target-point if we only got a partial result
if (!haveFullPath && havePartPath) {
tgtNode = minNode;
tgtPoint.x = minNode->xmid() * SQUARE_SIZE;
tgtPoint.z = minNode->zmid() * SQUARE_SIZE;
}
#endif
return (haveFullPath || havePartPath);
}
void QTPFS::PathSearch::UpdateNode(
INode* nxt,
INode* cur,
float gCost,
float hCost,
float mCost
) {
// NOTE:
// the heuristic must never over-estimate the distance,
// but this is *impossible* to achieve on a non-regular
// grid on which any node only has an average move-cost
// associated with it (and these costs can even be less
// than 1) --> paths will not be optimal, but they could
// not be anyway
nxt->SetSearchState(searchState | NODE_STATE_OPEN);
nxt->SetPrevNode(cur);
nxt->SetPathCost(NODE_PATH_COST_G, gCost);
nxt->SetPathCost(NODE_PATH_COST_H, hCost * hCostMult);
nxt->SetPathCost(NODE_PATH_COST_F, gCost + (hCost * hCostMult));
nxt->SetPathCost(NODE_PATH_COST_M, mCost);
#ifdef QTPFS_WEIGHTED_HEURISTIC_COST
nxt->SetNumPrevNodes((cur != NULL)? (cur->GetNumPrevNodes() + 1): 0);
#endif
}
void QTPFS::PathSearch::IterateSearch(
const std::vector<INode*>& allNodes,
std::vector<INode*>& ngbNodes
) {
curNode = openNodes.top();
curNode->SetSearchState(searchState | NODE_STATE_CLOSED);
curNode->SetMagicNumber(searchMagic);
openNodes.pop();
#ifdef QTPFS_DEBUG_QUEUE
openNodes.check_heap_property(0);
#endif
#ifdef QTPFS_TRACE_PATH_SEARCHES
searchIter.SetPoppedNodeIdx(curNode->zmin() * gs->mapx + curNode->xmin());
#endif
if (curNode == tgtNode)
return;
if (curNode != srcNode)
curPoint = curNode->GetNeighborEdgeTransitionPoint(curNode->GetPrevNode(), curPoint);
if (curNode->GetMoveCost() == QTPFS_POSITIVE_INFINITY)
return;
if (curNode->xmid() < searchRect.x1) return;
if (curNode->zmid() < searchRect.z1) return;
if (curNode->xmid() > searchRect.x2) return;
if (curNode->zmid() > searchRect.z2) return;
#ifdef QTPFS_SUPPORT_PARTIAL_SEARCHES
// remember the node with lowest h-cost in case the search fails to reach tgtNode
if (curNode->GetPathCost(NODE_PATH_COST_H) < minNode->GetPathCost(NODE_PATH_COST_H))
minNode = curNode;
#endif
#ifdef QTPFS_WEIGHTED_HEURISTIC_COST
const float hWeight = math::sqrtf(curNode->GetPathCost(NODE_PATH_COST_M) / (curNode->GetNumPrevNodes() + 1));
#else
const float hWeight = 2.0f;
#endif
#ifdef QTPFS_COPY_NEIGHBOR_NODES
const unsigned int numNgbs = curNode->GetNeighbors(allNodes, ngbNodes);
#else
// cannot assign to <ngbNodes> because that would still make a copy
const std::vector<INode*>& nxtNodes = curNode->GetNeighbors(allNodes);
const unsigned int numNgbs = nxtNodes.size();
#endif
for (unsigned int i = 0; i < numNgbs; i++) {
// NOTE:
// this uses the actual distance that edges of the final path will cover,
// from <curPoint> (initialized to sourcePoint) to the middle of the edge
// shared between <curNode> and <nxtNode>
// (each individual path-segment is weighted by the average move-cost of
// the node it crosses; the heuristic is weighted by the average move-cost
// of all nodes encountered along partial path thus far)
// NOTE:
// heading for the MIDDLE of the shared edge is not always the best option
// we deal with this sub-optimality later (in SmoothPath if it is enabled)
// NOTE:
// short paths that should have 3 points (2 nodes) can contain 4 (3 nodes);
// this happens when a path takes a "detour" through a corner neighbor of
// srcNode if the shared corner vertex is closer to the goal position than
// the mid-point on the edge between srcNode and tgtNode
// NOTE:
// H needs to be of the same order as G, otherwise the search reduces to
// Dijkstra (if G dominates H) or becomes inadmissable (if H dominates G)
// in the first case we would explore many more nodes than necessary (CPU
// nightmare), while in the second we would get low-quality paths (player
// nightmare)
#ifdef QTPFS_COPY_NEIGHBOR_NODES
nxtNode = ngbNodes[i];
nxtPoint = (nxtNode == tgtNode)? tgtPoint: curNode->GetNeighborEdgeTransitionPoint(nxtNode, curPoint);
#else
nxtNode = nxtNodes[i];
nxtPoint = (nxtNode == tgtNode)? tgtPoint: curNode->GetNeighborEdgeTransitionPoint(nxtNode, curPoint);
#endif
#ifndef QTPFS_ORTHOPROJECTED_EDGE_TRANSITIONS
assert(curNode->GetNeighborEdgeTransitionPoint(nxtNode, ZeroVector) == nxtNode->GetNeighborEdgeTransitionPoint(curNode, ZeroVector));
#endif
const bool isCurrent = (nxtNode->GetSearchState() >= searchState);
const bool isClosed = ((nxtNode->GetSearchState() & 1) == NODE_STATE_CLOSED);
const float mCost = curNode->GetPathCost(NODE_PATH_COST_M) + curNode->GetMoveCost();
const float gCost = curNode->GetPathCost(NODE_PATH_COST_G) + curNode->GetMoveCost() * (nxtPoint - curPoint).Length();
const float hCost = (tgtPoint - nxtPoint).Length() * hWeight;
if (!isCurrent) {
// at this point, we know that <nxtNode> is either
// not from the current search (!current) or (if it
// is) already placed in the open queue
UpdateNode(nxtNode, curNode, gCost, hCost, mCost);
#ifdef QTPFS_TRACE_PATH_SEARCHES
searchIter.AddPushedNodeIdx(nxtNode->zmin() * gs->mapx + nxtNode->xmin());
#endif
openNodes.push(nxtNode);
#ifdef QTPFS_DEBUG_QUEUE
openNodes.check_heap_property(0);
#endif
continue;
}
if (isClosed)
continue;
if (gCost >= nxtNode->GetPathCost(NODE_PATH_COST_G))
continue;
UpdateNode(nxtNode, curNode, gCost, hCost, mCost);
// nxtNode was already marked open, restore ordering
// (changing the f-cost of an OPEN node messes up the
// queue's internal consistency; a pushed node remains
// OPEN until it gets popped)
openNodes.resort(nxtNode);
}
#ifdef QTPFS_DEBUG_QUEUE
openNodes.check_heap_property(0);
#endif
}
void QTPFS::PathSearch::Finalize(IPath* path) {
TracePath(path);
path->SetSourcePoint(srcPoint);
path->SetTargetPoint(tgtPoint);
#ifdef QTPFS_SMOOTH_PATHS
SmoothPath(path);
#endif
path->SetBoundingBox();
// path remains in live-cache until DeletePath is called
pathCache->AddLivePath(path);
}
void QTPFS::PathSearch::TracePath(IPath* path) {
std::list<float3> points;
std::list<float3>::const_iterator pointsIt;
if (srcNode != tgtNode) {
INode* tmpNode = tgtNode;
INode* oldNode = tmpNode->GetPrevNode();
float3 oldPoint = tgtPoint;
while ((oldNode != NULL) && (tmpNode != srcNode)) {
const float3& tmpPoint = tmpNode->GetNeighborEdgeTransitionPoint(oldNode, oldPoint);
assert(!math::isinf(tmpPoint.x) && !math::isinf(tmpPoint.z));
assert(!math::isnan(tmpPoint.x) && !math::isnan(tmpPoint.z));
points.push_front(tmpPoint);
#ifndef QTPFS_SMOOTH_PATHS
// make sure these can never become dangling
// (if we smooth, we do this in SmoothPath())
tmpNode->SetPrevNode(NULL);
#endif
oldPoint = tmpPoint;
tmpNode = oldNode;
oldNode = tmpNode->GetPrevNode();
}
}
// if source equals target, we need only two points
if (!points.empty()) {
path->AllocPoints(points.size() + 2);
} else {
assert(path->NumPoints() == 2);
return;
}
// set waypoints with indices [1, N - 2]; the first (0)
// and last (N - 1) waypoint are not set until after we
// return
while (!points.empty()) {
path->SetPoint((path->NumPoints() - points.size()) - 1, points.front());
points.pop_front();
}
}
void QTPFS::PathSearch::SmoothPath(IPath* path) {
if (path->NumPoints() == 2)
return;
INode* n0 = tgtNode;
INode* n1 = tgtNode;
assert(srcNode->GetPrevNode() == NULL);
// smooth in reverse order (target to source)
unsigned int ni = path->NumPoints();
while (n1 != srcNode) {
n0 = n1;
n1 = n0->GetPrevNode();
n0->SetPrevNode(NULL);
ni -= 1;
assert(n1->GetNeighborRelation(n0) != 0);
assert(n0->GetNeighborRelation(n1) != 0);
assert(ni < path->NumPoints());
const unsigned int ngbRel = n0->GetNeighborRelation(n1);
const float3& p0 = path->GetPoint(ni );
float3 p1 = path->GetPoint(ni - 1);
const float3& p2 = path->GetPoint(ni - 2);
// check if we can reduce the angle between segments
// p0-p1 and p1-p2 (ideally to zero degrees, making
// p0-p2 a straight line) without causing either of
// the segments to cross into other nodes
//
// p1 always lies on the node to the right and/or to
// the bottom of the shared edge between p0 and p2,
// and we move it along the edge-dimension (x or z)
// between [xmin, xmax] or [zmin, zmax]
const float3 p1p0 = (p1 - p0).SafeNormalize();
const float3 p2p1 = (p2 - p1).SafeNormalize();
const float3 p2p0 = (p2 - p0).SafeNormalize();
const float dot = p1p0.dot(p2p1);
// if segments are already nearly parallel, skip
if (dot >= 0.995f)
continue;
// figure out if p1 is on a horizontal or a vertical edge
// (if both of these are true, it is in fact in a corner)
const bool hEdge = (((ngbRel & REL_NGB_EDGE_T) != 0) || ((ngbRel & REL_NGB_EDGE_B) != 0));
const bool vEdge = (((ngbRel & REL_NGB_EDGE_L) != 0) || ((ngbRel & REL_NGB_EDGE_R) != 0));
assert(hEdge || vEdge);
// establish the x- and z-range within which p1 can be moved
const unsigned int xmin = std::max(n1->xmin(), n0->xmin());
const unsigned int zmin = std::max(n1->zmin(), n0->zmin());
const unsigned int xmax = std::min(n1->xmax(), n0->xmax());
const unsigned int zmax = std::min(n1->zmax(), n0->zmax());
{
// calculate intersection point between ray (p2 - p0) and edge
// if pi lies between bounds, use that and move to next triplet
//
// cases:
// A) p0-p1-p2 (p2p0.xz >= 0 -- p0 in n0, p2 in n1)
// B) p2-p1-p0 (p2p0.xz <= 0 -- p2 in n1, p0 in n0)
float3 pi = ZeroVector;
// x- and z-distances to edge between n0 and n1
const float dfx = (p2p0.x > 0.0f)?
((n0->xmax() * SQUARE_SIZE) - p0.x): // A(x)
((n0->xmin() * SQUARE_SIZE) - p0.x); // B(x)
const float dfz = (p2p0.z > 0.0f)?
((n0->zmax() * SQUARE_SIZE) - p0.z): // A(z)
((n0->zmin() * SQUARE_SIZE) - p0.z); // B(z)
const float dx = (math::fabs(p2p0.x) > 0.001f)? p2p0.x: 0.001f;
const float dz = (math::fabs(p2p0.z) > 0.001f)? p2p0.z: 0.001f;
const float tx = dfx / dx;
const float tz = dfz / dz;
bool ok = true;
if (hEdge) {
pi.x = p0.x + p2p0.x * tz;
pi.z = p1.z;
}
if (vEdge) {
pi.x = p1.x;
pi.z = p0.z + p2p0.z * tx;
}
ok = ok && (pi.x >= (xmin * SQUARE_SIZE) && pi.x <= (xmax * SQUARE_SIZE));
ok = ok && (pi.z >= (zmin * SQUARE_SIZE) && pi.z <= (zmax * SQUARE_SIZE));
if (ok) {
assert(!math::isinf(pi.x) && !math::isinf(pi.z));
assert(!math::isnan(pi.x) && !math::isnan(pi.z));
path->SetPoint(ni - 1, pi);
continue;
}
}
if (hEdge != vEdge) {
// get the edge end-points
float3 e0 = p1;
float3 e1 = p1;
if (hEdge) {
e0.x = xmin * SQUARE_SIZE;
e1.x = xmax * SQUARE_SIZE;
}
if (vEdge) {
e0.z = zmin * SQUARE_SIZE;
e1.z = zmax * SQUARE_SIZE;
}
// figure out what the angle between p0-p1 and p1-p2
// would be after substituting the edge-ends for p1
// (we want dot-products as close to 1 as possible)
//
// p0-e0-p2
const float3 e0p0 = (e0 - p0).SafeNormalize();
const float3 p2e0 = (p2 - e0).SafeNormalize();
const float dot0 = e0p0.dot(p2e0);
// p0-e1-p2
const float3 e1p0 = (e1 - p0).SafeNormalize();
const float3 p2e1 = (p2 - e1).SafeNormalize();
const float dot1 = e1p0.dot(p2e1);
// if neither end-point is an improvement, skip
if (dot > std::max(dot0, dot1))
continue;
if (dot0 > std::max(dot1, dot)) { p1 = e0; }
if (dot1 > std::max(dot0, dot)) { p1 = e1; }
assert(!math::isinf(p1.x) && !math::isinf(p1.z));
assert(!math::isnan(p1.x) && !math::isnan(p1.z));
path->SetPoint(ni - 1, p1);
}
}
}
void QTPFS::PathSearch::SharedFinalize(const IPath* srcPath, IPath* dstPath) {
assert(dstPath->GetID() != 0);
assert(dstPath->GetID() != srcPath->GetID());
assert(dstPath->NumPoints() == 2);
// copy <srcPath> to <dstPath>
dstPath->CopyPoints(*srcPath);
dstPath->SetSourcePoint(srcPoint);
dstPath->SetTargetPoint(tgtPoint);
dstPath->SetBoundingBox();
pathCache->AddLivePath(dstPath);
}
const boost::uint64_t QTPFS::PathSearch::GetHash(unsigned int N, unsigned int k) const {
return (srcNode->GetNodeNumber() + (tgtNode->GetNodeNumber() * N) + (k * N * N));
}
|