1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
// ---------------------------------------------------------------------------------------------------------------------------------
// Copyright 2000, Paul Nettle. All rights reserved.
//
// You are free to use this source code in any commercial or non-commercial product.
//
// mmgr.cpp - Memory manager & tracking software
//
// The most recent version of this software can be found at: ftp://ftp.GraphicsPapers.com/pub/ProgrammingTools/MemoryManagers/
//
// [NOTE: Best when viewed with 8-character tabs]
//
// ---------------------------------------------------------------------------------------------------------------------------------
//
// !!IMPORTANT!!
//
// This software is self-documented with periodic comments. Before you start using this software, perform a search for the string
// "-DOC-" to locate pertinent information about how to use this software.
//
// You are also encouraged to read the comment blocks throughout this source file. They will help you understand how this memory
// tracking software works, so you can better utilize it within your applications.
//
// NOTES:
//
// 1. This code purposely uses no external routines that allocate RAM (other than the raw allocation routines, such as malloc). We
// do this because we want this to be as self-contained as possible. As an example, we don't use assert, because when running
// under WIN32, the assert brings up a dialog box, which allocates RAM. Doing this in the middle of an allocation would be bad.
//
// 2. When trying to override new/delete under MFC (which has its own version of global new/delete) the linker will complain. In
// order to fix this error, use the compiler option: /FORCE, which will force it to build an executable even with linker errors.
// Be sure to check those errors each time you compile, otherwise, you may miss a valid linker error.
//
// 3. If you see something that looks odd to you or seems like a strange way of going about doing something, then consider that this
// code was carefully thought out. If something looks odd, then just assume I've got a good reason for doing it that way (an
// example is the use of the class MemStaticTimeTracker.)
//
// 4. With MFC applications, you will need to comment out any occurance of "#define new DEBUG_NEW" from all source files.
//
// 5. Include file dependencies are _very_important_ for getting the MMGR to integrate nicely into your application. Be careful if
// you're including standard includes from within your own project inclues; that will break this very specific dependency order.
// It should look like this:
//
// #include <stdio.h> // Standard includes MUST come first
// #include <stdlib.h> //
// #include <streamio> //
//
// #include "System/mmgr.h" // mmgr.h MUST come next
//
// #include "myfile1.h" // Project includes MUST come last
// #include "myfile2.h" //
// #include "myfile3.h" //
//
// ---------------------------------------------------------------------------------------------------------------------------------
#ifdef USE_MMGR
#include <boost/thread/recursive_mutex.hpp>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <time.h>
#include <stdarg.h>
#include <new>
using std::new_handler;
#ifndef WIN32
#include <unistd.h>
#endif
#ifdef __linux__
// for backtrace/backtrace_symbols/backtrace_symbols_fd
#include <execinfo.h>
#endif
#include "System/mmgr.h"
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- If you're like me, it's hard to gain trust in foreign code. This memory manager will try to INDUCE your code to crash (for
// very good reasons... like making bugs obvious as early as possible.) Some people may be inclined to remove this memory tracking
// software if it causes crashes that didn't exist previously. In reality, these new crashes are the BEST reason for using this
// software!
//
// Whether this software causes your application to crash, or if it reports errors, you need to be able to TRUST this software. To
// this end, you are given some very simple debugging tools.
//
// The quickest way to locate problems is to enable the STRESS_TEST macro (below.) This should catch 95% of the crashes before they
// occur by validating every allocation each time this memory manager performs an allocation function. If that doesn't work, keep
// reading...
//
// If you enable the TEST_MEMORY_MANAGER #define (below), this memory manager will log an entry in the memory.log file each time it
// enters and exits one of its primary allocation handling routines. Each call that succeeds should place an "ENTER" and an "EXIT"
// into the log. If the program crashes within the memory manager, it will log an "ENTER", but not an "EXIT". The log will also
// report the name of the routine.
//
// Just because this memory manager crashes does not mean that there is a bug here! First, an application could inadvertantly damage
// the heap, causing malloc(), realloc() or free() to crash. Also, an application could inadvertantly damage some of the memory used
// by this memory tracking software, causing it to crash in much the same way that a damaged heap would affect the standard
// allocation routines.
//
// In the event of a crash within this code, the first thing you'll want to do is to locate the actual line of code that is
// crashing. You can do this by adding log() entries throughout the routine that crashes, repeating this process until you narrow
// in on the offending line of code. If the crash happens in a standard C allocation routine (i.e. malloc, realloc or free) don't
// bother contacting me, your application has damaged the heap. You can help find the culprit in your code by enabling the
// STRESS_TEST macro (below.)
//
// If you truely suspect a bug in this memory manager (and you had better be sure about it! :) you can contact me at
// midnight@GraphicsPapers.com. Before you do, however, check for a newer version at:
//
// ftp://ftp.GraphicsPapers.com/pub/ProgrammingTools/MemoryManagers/
//
// When using this debugging aid, make sure that you are NOT setting the alwaysLogAll variable on, otherwise the log could be
// cluttered and hard to read.
// ---------------------------------------------------------------------------------------------------------------------------------
//#define TEST_MEMORY_MANAGER
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you really want to stress-test your app's memory usage, or to help find hard-to-find bugs
// ---------------------------------------------------------------------------------------------------------------------------------
//#define STRESS_TEST
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you want to stress-test your app's error-handling. Set RANDOM_FAIL to the percentage of failures you
// want to test with (0 = none, >100 = all failures).
// ---------------------------------------------------------------------------------------------------------------------------------
//#define RANDOM_FAILURE 100.0
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Locals -- modify these flags to suit your needs
// ---------------------------------------------------------------------------------------------------------------------------------
#ifdef STRESS_TEST
static const unsigned int hashBits = 16;
static __thread bool randomWipe = true;
static __thread bool alwaysValidateAll = true;
static __thread bool alwaysLogAll = true;
static __thread bool alwaysWipeAll = true;
static bool cleanupLogOnFirstRun = true;
static const unsigned int paddingSize = 1024; // An extra 8K per allocation!
#else
static const unsigned int hashBits = 16;
static __thread bool randomWipe = true;
static __thread bool alwaysValidateAll = false;
static __thread bool alwaysLogAll = false;
static __thread bool alwaysWipeAll = true;
static bool cleanupLogOnFirstRun = true;
static const unsigned int paddingSize = 32;
#endif
// ---------------------------------------------------------------------------------------------------------------------------------
// We define our own assert, because we don't want to bring up an assertion dialog, since that allocates RAM. Our new assert
// simply declares a forced breakpoint.
// ---------------------------------------------------------------------------------------------------------------------------------
#ifdef _MSC_VER
#ifdef _DEBUG
#define m_assert(x) if ((x) == false) __asm { int 3 }
#else
#define m_assert(x) {}
#endif
#else // Linux uses assert, which we can use safely, since it doesn't bring up a dialog within the program.
// Except that assert sends a SIGABRT, which is not continuable AFAIK --tvo
//#define m_assert assert
#ifdef _DEBUG
#define m_assert(x) if ((x) == false) asm volatile ("int3")
#else
#define m_assert(x) {}
#endif
#endif
// ---------------------------------------------------------------------------------------------------------------------------------
// Here, we turn off our macros because any place in this source file where the word 'new' or the word 'delete' (etc.)
// appear will be expanded by the macro. So to avoid problems using them within this source file, we'll just #undef them.
// ---------------------------------------------------------------------------------------------------------------------------------
#undef new
#undef delete
#undef malloc
#undef calloc
#undef realloc
#undef free
// ---------------------------------------------------------------------------------------------------------------------------------
// Defaults for the constants & statics in the MemoryManager class
// ---------------------------------------------------------------------------------------------------------------------------------
const unsigned int m_alloc_unknown = 0;
const unsigned int m_alloc_new = 1;
const unsigned int m_alloc_new_array = 2;
const unsigned int m_alloc_malloc = 3;
const unsigned int m_alloc_calloc = 4;
const unsigned int m_alloc_realloc = 5;
const unsigned int m_alloc_delete = 6;
const unsigned int m_alloc_delete_array = 7;
const unsigned int m_alloc_free = 8;
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Get to know these values. They represent the values that will be used to fill unused and deallocated RAM.
// ---------------------------------------------------------------------------------------------------------------------------------
static const unsigned int prefixPattern = 0xbaadf00d; // Fill pattern for bytes preceeding allocated blocks
static const unsigned int postfixPattern = 0xdeadc0de; // Fill pattern for bytes following allocated blocks
static const unsigned int unusedPattern = 0xfeedface; // Fill pattern for freshly allocated blocks
static const unsigned int releasedPattern = 0xdeadbeef; // Fill pattern for deallocated blocks
// ---------------------------------------------------------------------------------------------------------------------------------
// Other locals
// ---------------------------------------------------------------------------------------------------------------------------------
static const unsigned int hashSize = 1 << hashBits;
static const char *const allocationTypes[] = {"Unknown",
"new", "new[]", "malloc", "calloc",
"realloc", "delete", "delete[]", "free"};
static sAllocUnit *hashTable[hashSize];
static sAllocUnit *reservoir;
static unsigned int currentAllocationCount = 0;
static unsigned int breakOnAllocationCount = 0;
static sMStats stats;
static __thread const char *sourceFile = "??";
static __thread const char *sourceFunc = "??";
static __thread unsigned int sourceLine = 0;
static bool staticDeinitTime = false;
static sAllocUnit **reservoirBuffer = NULL;
static unsigned int reservoirBufferSize = 0;
// this guarantees the mutex object is initialized before the first use
// (during static initialization)
static boost::recursive_mutex& get_mutex()
{
static boost::recursive_mutex mutex;
return mutex;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Local functions only
// ---------------------------------------------------------------------------------------------------------------------------------
static void doCleanupLogOnFirstRun()
{
if (cleanupLogOnFirstRun)
{
remove("memory.log");
cleanupLogOnFirstRun = false;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *sourceFileStripper(const char *sourceFile)
{
const char *ptr = strrchr(sourceFile, '\\');
if (ptr) return ptr + 1;
ptr = strrchr(sourceFile, '/');
if (ptr) return ptr + 1;
return sourceFile;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *ownerString(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc)
{
static char str[90];
memset(str, 0, sizeof(str));
sprintf(str, "%s(%05d)::%s", sourceFileStripper(sourceFile), sourceLine, sourceFunc);
return str;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *insertCommas(unsigned int value)
{
static char str[30];
memset(str, 0, sizeof(str));
sprintf(str, "%u", value);
if (strlen(str) > 3)
{
memmove(&str[strlen(str)-3], &str[strlen(str)-4], 4);
str[strlen(str) - 4] = ',';
}
if (strlen(str) > 7)
{
memmove(&str[strlen(str)-7], &str[strlen(str)-8], 8);
str[strlen(str) - 8] = ',';
}
if (strlen(str) > 11)
{
memmove(&str[strlen(str)-11], &str[strlen(str)-12], 12);
str[strlen(str) - 12] = ',';
}
return str;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *memorySizeString(unsigned long size)
{
static char str[90];
if (size > (1024*1024)) sprintf(str, "%10s (%7.2fM)", insertCommas(size), (float) size / (1024.0f * 1024.0f));
else if (size > 1024) sprintf(str, "%10s (%7.2fK)", insertCommas(size), (float) size / 1024.0f);
else sprintf(str, "%10s bytes ", insertCommas(size));
return str;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static sAllocUnit *findAllocUnit(const void *reportedAddress)
{
// Just in case...
m_assert(reportedAddress != NULL);
// Use the address to locate the hash index. Note that we shift off the lower four bits. This is because most allocated
// addresses will be on four-, eight- or even sixteen-byte boundaries. If we didn't do this, the hash index would not have
// very good coverage.
unsigned long hashIndex = ((unsigned long) reportedAddress >> 4) & (hashSize - 1);
sAllocUnit *ptr = hashTable[hashIndex];
while(ptr)
{
if (ptr->reportedAddress == reportedAddress) return ptr;
ptr = ptr->next;
}
return NULL;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static size_t calculateActualSize(const size_t reportedSize)
{
// We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
// being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
// 8 bytes, which means an int can actually be larger than a long.)
// Not true. sizeof(int) == 4, sizeof(long) == sizeof(void*) == 8 on AMD64 w/ GCC 4.0.2 --tvo
return reportedSize + paddingSize * sizeof(int) * 2;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static size_t calculateReportedSize(const size_t actualSize)
{
// We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
// being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
// 8 bytes, which means an int can actually be larger than a long.)
return actualSize - paddingSize * sizeof(int) * 2;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void *calculateReportedAddress(const void *actualAddress)
{
// We allow this...
if (!actualAddress) return NULL;
// JUst account for the padding
return (void *) ((char *) actualAddress + sizeof(int) * paddingSize);
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void wipeWithPattern(sAllocUnit *allocUnit, unsigned int pattern, const unsigned int originalReportedSize = 0)
{
// For a serious test run, we use wipes of random a random value. However, if this causes a crash, we don't want it to
// crash in a differnt place each time, so we specifically DO NOT call srand. If, by chance your program calls srand(),
// you may wish to disable that when running with a random wipe test. This will make any crashes more consistent so they
// can be tracked down easier.
if (randomWipe)
{
pattern = ((rand() & 0xff) << 24) | ((rand() & 0xff) << 16) | ((rand() & 0xff) << 8) | (rand() & 0xff);
}
// -DOC- We should wipe with 0's if we're not in debug mode, so we can help hide bugs if possible when we release the
// product. So uncomment the following line for releases.
//
// Note that the "alwaysWipeAll" should be turned on for this to have effect, otherwise it won't do much good. But we'll
// leave it this way (as an option) because this does slow things down.
// pattern = 0;
// This part of the operation is optional
if (alwaysWipeAll && allocUnit->reportedSize > originalReportedSize)
{
// Fill the bulk
unsigned int *lptr = (unsigned int *) ((char *)allocUnit->reportedAddress + originalReportedSize);
int length = allocUnit->reportedSize - originalReportedSize;
int i;
for (i = 0; i < (length >> 2); i++, lptr++)
{
*lptr = pattern;
}
// Fill the remainder
unsigned int shiftCount = 0;
char *cptr = (char *) lptr;
for (i = 0; i < (length & 0x3); i++, cptr++, shiftCount += 8)
{
*cptr = (pattern & (0xff << shiftCount)) >> shiftCount;
}
}
// Write in the prefix/postfix bytes
unsigned int *pre = (unsigned int *) allocUnit->actualAddress;
unsigned int *post = (unsigned int *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(int));
for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
{
*pre = prefixPattern;
*post = postfixPattern;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void resetGlobals()
{
sourceFile = "??";
sourceLine = 0;
sourceFunc = "??";
}
void m_resetGlobals() { resetGlobals(); }
// ---------------------------------------------------------------------------------------------------------------------------------
static FILE *fp_log;
static void log(const char *format, ...)
{
// Build the buffer
static char buffer[2048];
va_list ap;
va_start(ap, format);
vsprintf(buffer, format, ap);
va_end(ap);
// Cleanup the log?
if (cleanupLogOnFirstRun) doCleanupLogOnFirstRun();
// Open the log file
if (!fp_log)
fp_log = fopen("memory.log", "a");
// If you hit this assert, then the memory logger is unable to log information to a file (can't open the file for some
// reason.) You can interrogate the variable 'buffer' to see what was supposed to be logged (but won't be.)
m_assert(fp_log);
if (!fp_log) return;
// Spit out the data to the log
fprintf(fp_log, "%s\n", buffer);
fflush(fp_log);
//fclose(fp_log);
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void dumpAllocations(FILE *fp)
{
fprintf(fp, "Alloc. Addr Size Addr Size BreakOn BreakOn \n");
fprintf(fp, "Number Reported Reported Actual Actual Unused Method Dealloc Realloc Allocated by \n");
fprintf(fp, "------ ---------- ---------- ---------- ---------- ---------- -------- ------- ------- --------------------------------------------------- \n");
for (unsigned int i = 0; i < hashSize; i++)
{
sAllocUnit *ptr = hashTable[i];
while(ptr)
{
fprintf(fp, "%06d 0x%08lX 0x%08X 0x%08lX 0x%08X 0x%08X %-8s %c %c %s",
ptr->allocationNumber,
(unsigned long) ptr->reportedAddress, ptr->reportedSize,
(unsigned long) ptr->actualAddress, ptr->actualSize,
m_calcUnused(ptr),
allocationTypes[ptr->allocationType],
ptr->breakOnDealloc ? 'Y':'N',
ptr->breakOnRealloc ? 'Y':'N',
ownerString(ptr->sourceFile, ptr->sourceLine, ptr->sourceFunc));
# ifdef HAVE_BACKTRACE
fprintf(fp, "\t");
for (int j = 0; j<ptr->backtraceSize; ++j) {
#ifdef WIN32
fprintf(fp, " %08x", (unsigned)ptr->backtrace[j]);
#else
fprintf(fp, " %p", ptr->backtrace[j]);
#endif
}
# endif
fprintf(fp, "\n");
ptr = ptr->next;
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void dumpLeakReport()
{
// Open the report file
FILE *fp = fopen("memleaks.log", "w+b");
// If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
// some reason.)
m_assert(fp);
if (!fp) return;
// Any leaks?
// Header
static char timeString[25];
memset(timeString, 0, sizeof(timeString));
time_t t = time(NULL);
struct tm *tme = localtime(&t);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, "| Memory leak report for: %02d/%02d/%04d %02d:%02d:%02d |\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, "\n");
fprintf(fp, "\n");
if (stats.totalAllocUnitCount)
{
fprintf(fp, "%d memory leak%s found:\n", stats.totalAllocUnitCount, stats.totalAllocUnitCount == 1 ? "":"s");
}
else
{
fprintf(fp, "Congratulations! No memory leaks found!\n");
// We can finally free up our own memory allocations
if (reservoirBuffer)
{
for (unsigned int i = 0; i < reservoirBufferSize; i++)
{
free(reservoirBuffer[i]);
}
free(reservoirBuffer);
reservoirBuffer = 0;
reservoirBufferSize = 0;
reservoir = NULL;
}
}
fprintf(fp, "\n");
if (stats.totalAllocUnitCount)
{
dumpAllocations(fp);
}
fclose(fp);
}
// ---------------------------------------------------------------------------------------------------------------------------------
// We use a static class to let us know when we're in the midst of static deinitialization
// ---------------------------------------------------------------------------------------------------------------------------------
class MemStaticTimeTracker
{
public:
MemStaticTimeTracker() {doCleanupLogOnFirstRun();}
~MemStaticTimeTracker() {staticDeinitTime = true; dumpLeakReport();}
};
static MemStaticTimeTracker mstt;
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Flags & options -- Call these routines to enable/disable the following options
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_alwaysValidateAll()
{
// Force a validation of all allocation units each time we enter this software
return alwaysValidateAll;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_alwaysLogAll()
{
// Force a log of every allocation & deallocation into memory.log
return alwaysLogAll;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_alwaysWipeAll()
{
// Force this software to always wipe memory with a pattern when it is being allocated/dallocated
return alwaysWipeAll;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_randomeWipe()
{
// Force this software to use a random pattern when wiping memory -- good for stress testing
return randomWipe;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// reallocated.
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_breakOnRealloc(void *reportedAddress)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
// Locate the existing allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to set a breakpoint on reallocation for an address that doesn't exist. Interrogate the
// stack frame or the variable 'au' to see which allocation this is.
m_assert(au != NULL);
// If you hit this assert, you tried to set a breakpoint on reallocation for an address that wasn't allocated in a way that
// is compatible with reallocation.
m_assert(au->allocationType == m_alloc_malloc ||
au->allocationType == m_alloc_calloc ||
au->allocationType == m_alloc_realloc);
return au->breakOnRealloc;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// deallocated.
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_breakOnDealloc(void *reportedAddress)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
// Locate the existing allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to set a breakpoint on deallocation for an address that doesn't exist. Interrogate the
// stack frame or the variable 'au' to see which allocation this is.
m_assert(au != NULL);
return au->breakOnDealloc;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- When tracking down a difficult bug, use this routine to force a breakpoint on a specific allocation count
// ---------------------------------------------------------------------------------------------------------------------------------
void m_breakOnAllocation(unsigned int count)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
breakOnAllocationCount = count;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Used by the macros
// ---------------------------------------------------------------------------------------------------------------------------------
void m_setOwner(const char *file, const unsigned int line, const char *func)
{
// thread local storage -> no lock
sourceFile = file;
sourceLine = line;
sourceFunc = func;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Global new/new[]
//
// These are the standard new/new[] operators. They are merely interface functions that operate like normal new/new[], but use our
// memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new[](size_t reportedSize)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
#ifdef TEST_MEMORY_MANAGER
log("ENTER: new[]");
#endif
// The ANSI standard says that allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(sourceFile, sourceLine, sourceFunc, m_alloc_new_array, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new[]");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
new_handler nh = std::set_new_handler(0);
std::set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new[]");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Other global new/new[]
//
// These are the standard new/new[] operators as used by Microsoft's memory tracker. We don't want them interfering with our memory
// tracking efforts. Like the previous versions, these are merely interface functions that operate like normal new/new[], but use
// our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new(size_t reportedSize, const char *sourceFile = "??", int sourceLine = -1)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
#ifdef TEST_MEMORY_MANAGER
log("ENTER: new");
#endif
// The ANSI standard says that allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
new_handler nh = std::set_new_handler(0);
std::set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new[](size_t reportedSize, const char *sourceFile, int sourceLine)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
#ifdef TEST_MEMORY_MANAGER
log("ENTER: new[]");
#endif
// The ANSI standard says that allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new_array, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new[]");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
new_handler nh = std::set_new_handler(0);
std::set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new[]");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Global delete/delete[]
//
// These are the standard delete/delete[] operators. They are merely interface functions that operate like normal delete/delete[],
// but use our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------
void operator delete(void *reportedAddress)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
#ifdef TEST_MEMORY_MANAGER
log("ENTER: delete");
#endif
// ANSI says: delete & delete[] allow NULL pointers (they do nothing)
if (!reportedAddress) return;
m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete, reportedAddress);
#ifdef TEST_MEMORY_MANAGER
log("EXIT : delete");
#endif
}
// ---------------------------------------------------------------------------------------------------------------------------------
void operator delete[](void *reportedAddress)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
#ifdef TEST_MEMORY_MANAGER
log("ENTER: delete[]");
#endif
// ANSI says: delete & delete[] allow NULL pointers (they do nothing)
if (!reportedAddress) return;
m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete_array, reportedAddress);
#ifdef TEST_MEMORY_MANAGER
log("EXIT : delete[]");
#endif
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Allocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------
void *m_allocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int allocationType, const size_t reportedSize)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
try
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: m_allocator()");
#endif
// Increase our allocation count
currentAllocationCount++;
// Log the request
if (alwaysLogAll) {
log("%05d %-40s %8s : %s", currentAllocationCount, ownerString(sourceFile, sourceLine, sourceFunc), allocationTypes[allocationType], memorySizeString(reportedSize));
#if defined(__linux__) || defined(HAVE_BACKTRACE)
if (fp_log) {
void* buffer[10];
int size = backtrace(buffer, sizeof(buffer) / sizeof(buffer[0]));
for (int i = 0; i < size; ++i)
fprintf(fp_log, " %p", buffer[i]);
fputc('\n', fp_log);
fflush(fp_log);
}
#endif
}
// If you hit this assert, you requested a breakpoint on a specific allocation count
m_assert(currentAllocationCount != breakOnAllocationCount);
// If necessary, grow the reservoir of unused allocation units
if (!reservoir)
{
// Allocate 256 reservoir elements
reservoir = (sAllocUnit *) malloc(sizeof(sAllocUnit) * 256);
// If you hit this assert, then the memory manager failed to allocate internal memory for tracking the
// allocations
m_assert(reservoir != NULL);
// Danger Will Robinson!
if (reservoir == NULL) throw "Unable to allocate RAM for internal memory tracking data";
// Build a linked-list of the elements in our reservoir
memset(reservoir, 0, sizeof(sAllocUnit) * 256);
for (unsigned int i = 0; i < 256 - 1; i++)
{
reservoir[i].next = &reservoir[i+1];
}
// Add this address to our reservoirBuffer so we can free it later
sAllocUnit **temp = (sAllocUnit **) realloc(reservoirBuffer, (reservoirBufferSize + 1) * sizeof(sAllocUnit *));
m_assert(temp);
if (temp)
{
reservoirBuffer = temp;
reservoirBuffer[reservoirBufferSize++] = reservoir;
}
}
// Logical flow says this should never happen...
m_assert(reservoir != NULL);
// Grab a new allocaton unit from the front of the reservoir
sAllocUnit *au = reservoir;
reservoir = au->next;
// Populate it with some real data
memset(au, 0, sizeof(sAllocUnit));
au->actualSize = calculateActualSize(reportedSize);
#ifdef RANDOM_FAILURE
float a = rand();
float b = RAND_MAX / 100.0 * RANDOM_FAILURE;
if (a > b)
{
au->actualAddress = malloc(au->actualSize);
}
else
{
log("!Random faiure!");
au->actualAddress = NULL;
}
#else
au->actualAddress = malloc(au->actualSize);
#endif
au->reportedSize = reportedSize;
au->reportedAddress = calculateReportedAddress(au->actualAddress);
au->allocationType = allocationType;
au->sourceLine = sourceLine;
au->allocationNumber = currentAllocationCount;
if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
else strcpy (au->sourceFile, "??");
if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
else strcpy (au->sourceFunc, "??");
#ifdef HAVE_BACKTRACE
// skip some useless frames
const int frameskip = 2;
void *tmp[MMGR_MAX_STACK + frameskip];
au->backtraceSize = backtrace(tmp, MMGR_MAX_STACK + frameskip);
if (au->backtraceSize > frameskip) {
au->backtraceSize -= frameskip;
memcpy(au->backtrace, tmp + frameskip, sizeof(void*) * au->backtraceSize);
}
#endif
// We don't want to assert with random failures, because we want the application to deal with them.
#ifndef RANDOM_FAILURE
// If you hit this assert, then the requested allocation simply failed (you're out of memory.) Interrogate the
// variable 'au' or the stack frame to see what you were trying to do.
m_assert(au->actualAddress != NULL);
#endif
if (au->actualAddress == NULL)
{
throw "Request for allocation failed. Out of memory.";
}
// If you hit this assert, then this allocation was made from a source that isn't setup to use this memory tracking
// software, use the stack frame to locate the source and include our H file.
m_assert(allocationType != m_alloc_unknown);
// Insert the new allocation into the hash table
unsigned long hashIndex = ((unsigned long) au->reportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
au->next = hashTable[hashIndex];
au->prev = NULL;
hashTable[hashIndex] = au;
// Account for the new allocatin unit in our stats
stats.totalReportedMemory += au->reportedSize;
stats.totalActualMemory += au->actualSize;
stats.totalAllocUnitCount++;
if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory;
if (stats.totalAllocUnitCount > stats.peakAllocUnitCount) stats.peakAllocUnitCount = stats.totalAllocUnitCount;
stats.accumulatedReportedMemory += au->reportedSize;
stats.accumulatedActualMemory += au->actualSize;
stats.accumulatedAllocUnitCount++;
// Prepare the allocation unit for use (wipe it with recognizable garbage)
wipeWithPattern(au, unusedPattern);
// calloc() expects the reported memory address range to be filled with 0's
if (allocationType == m_alloc_calloc)
{
memset(au->reportedAddress, 0, au->reportedSize);
}
// Validate every single allocated unit in memory
if (alwaysValidateAll) m_validateAllAllocUnits();
// Log the result
if (alwaysLogAll) log(" OK: %010p (hash: %d)", au->reportedAddress, hashIndex);
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
// Return the (reported) address of the new allocation unit
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_allocator()");
#endif
return au->reportedAddress;
}
catch(const char *err)
{
// Deal with the errors
log(err);
resetGlobals();
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_allocator()");
#endif
return NULL;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Reallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------
void *m_reallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int reallocationType, const size_t reportedSize, void *reportedAddress)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
try
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: m_reallocator()");
#endif
// Calling realloc with a NULL should force same operations as a malloc
if (!reportedAddress)
{
return m_allocator(sourceFile, sourceLine, sourceFunc, reallocationType, reportedSize);
}
// Increase our allocation count
currentAllocationCount++;
// If you hit this assert, you requested a breakpoint on a specific allocation count
m_assert(currentAllocationCount != breakOnAllocationCount);
// Log the request
if (alwaysLogAll) log("%05d %-40s %8s(%010p): %s", currentAllocationCount, ownerString(sourceFile, sourceLine, sourceFunc), allocationTypes[reallocationType], reportedAddress, memorySizeString(reportedSize));
// Locate the existing allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to reallocate RAM that wasn't allocated by this memory manager.
m_assert(au != NULL);
if (au == NULL) throw "Request to reallocate RAM that was never allocated";
// If you hit this assert, then the allocation unit that is about to be reallocated is damaged. But you probably
// already know that from a previous assert you should have seen in validateAllocUnit() :)
m_assert(m_validateAllocUnit(au));
// If you hit this assert, then this reallocation was made from a source that isn't setup to use this memory
// tracking software, use the stack frame to locate the source and include our H file.
m_assert(reallocationType != m_alloc_unknown);
// If you hit this assert, you were trying to reallocate RAM that was not allocated in a way that is compatible with
// realloc. In other words, you have a allocation/reallocation mismatch.
m_assert(au->allocationType == m_alloc_malloc ||
au->allocationType == m_alloc_calloc ||
au->allocationType == m_alloc_realloc);
// If you hit this assert, then the "break on realloc" flag for this allocation unit is set (and will continue to be
// set until you specifically shut it off. Interrogate the 'au' variable to determine information about this
// allocation unit.
m_assert(au->breakOnRealloc == false);
// Keep track of the original size
unsigned int originalReportedSize = au->reportedSize;
// Do the reallocation
void *oldReportedAddress = reportedAddress;
size_t newActualSize = calculateActualSize(reportedSize);
void *newActualAddress = NULL;
#ifdef RANDOM_FAILURE
float a = rand();
float b = RAND_MAX / 100.0 * RANDOM_FAILURE;
if (a > b)
{
newActualAddress = realloc(au->actualAddress, newActualSize);
}
else
{
log("!Random faiure!");
}
#else
newActualAddress = realloc(au->actualAddress, newActualSize);
#endif
// We don't want to assert with random failures, because we want the application to deal with them.
#ifndef RANDOM_FAILURE
// If you hit this assert, then the requested allocation simply failed (you're out of memory) Interrogate the
// variable 'au' to see the original allocation. You can also query 'newActualSize' to see the amount of memory
// trying to be allocated. Finally, you can query 'reportedSize' to see how much memory was requested by the caller.
m_assert(newActualAddress);
#endif
if (!newActualAddress) throw "Request for reallocation failed. Out of memory.";
// Remove this allocation from our stats (we'll add the new reallocation again later)
stats.totalReportedMemory -= au->reportedSize;
stats.totalActualMemory -= au->actualSize;
// Update the allocation with the new information
au->actualSize = newActualSize;
au->actualAddress = newActualAddress;
au->reportedSize = calculateReportedSize(newActualSize);
au->reportedAddress = calculateReportedAddress(newActualAddress);
au->allocationType = reallocationType;
au->sourceLine = sourceLine;
au->allocationNumber = currentAllocationCount;
if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
else strcpy (au->sourceFile, "??");
if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
else strcpy (au->sourceFunc, "??");
#ifdef HAVE_BACKTRACE
// skip some useless frames
const int frameskip = 2;
void *tmp[MMGR_MAX_STACK + frameskip];
au->backtraceSize = backtrace(tmp, MMGR_MAX_STACK + frameskip);
if (au->backtraceSize > frameskip) {
au->backtraceSize -= frameskip;
memcpy(au->backtrace, tmp + frameskip, sizeof(void*) * au->backtraceSize);
}
#endif
// The reallocation may cause the address to change, so we should relocate our allocation unit within the hash table
unsigned long hashIndex = (unsigned long) -1;
if (oldReportedAddress != au->reportedAddress)
{
// Remove this allocation unit from the hash table
{
unsigned long hashIndex = ((unsigned long) oldReportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex] == au)
{
hashTable[hashIndex] = hashTable[hashIndex]->next;
}
else
{
if (au->prev) au->prev->next = au->next;
if (au->next) au->next->prev = au->prev;
}
}
// Re-insert it back into the hash table
hashIndex = ((unsigned long) au->reportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
au->next = hashTable[hashIndex];
au->prev = NULL;
hashTable[hashIndex] = au;
}
// Account for the new allocatin unit in our stats
stats.totalReportedMemory += au->reportedSize;
stats.totalActualMemory += au->actualSize;
if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory;
int deltaReportedSize = reportedSize - originalReportedSize;
if (deltaReportedSize > 0)
{
stats.accumulatedReportedMemory += deltaReportedSize;
stats.accumulatedActualMemory += deltaReportedSize;
}
// Prepare the allocation unit for use (wipe it with recognizable garbage)
wipeWithPattern(au, unusedPattern, originalReportedSize);
// If you hit this assert, then something went wrong, because the allocation unit was properly validated PRIOR to
// the reallocation. This should not happen.
m_assert(m_validateAllocUnit(au));
// Validate every single allocated unit in memory
if (alwaysValidateAll) m_validateAllAllocUnits();
// Log the result
if (alwaysLogAll) log(" OK: %010p (hash: %d)", au->reportedAddress, hashIndex);
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
// Return the (reported) address of the new allocation unit
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_reallocator()");
#endif
return au->reportedAddress;
}
catch(const char *err)
{
// Deal with the errors
log(err);
resetGlobals();
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_reallocator()");
#endif
return NULL;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Deallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------
void m_deallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int deallocationType, const void *reportedAddress)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
try
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: m_deallocator()");
#endif
// Log the request
if (alwaysLogAll) log(" %-40s %8s(%010p)", ownerString(sourceFile, sourceLine, sourceFunc), allocationTypes[deallocationType], reportedAddress);
// Go get the allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to deallocate RAM that wasn't allocated by this memory manager.
m_assert(au != NULL);
if (au == NULL) throw "Request to deallocate RAM that was never allocated";
// If you hit this assert, then the allocation unit that is about to be deallocated is damaged. But you probably
// already know that from a previous assert you should have seen in validateAllocUnit() :)
m_assert(m_validateAllocUnit(au));
// If you hit this assert, then this deallocation was made from a source that isn't setup to use this memory
// tracking software, use the stack frame to locate the source and include our H file.
m_assert(deallocationType != m_alloc_unknown);
// If you hit this assert, you were trying to deallocate RAM that was not allocated in a way that is compatible with
// the deallocation method requested. In other words, you have a allocation/deallocation mismatch.
m_assert((deallocationType == m_alloc_delete && au->allocationType == m_alloc_new ) ||
(deallocationType == m_alloc_delete_array && au->allocationType == m_alloc_new_array) ||
(deallocationType == m_alloc_free && au->allocationType == m_alloc_malloc ) ||
(deallocationType == m_alloc_free && au->allocationType == m_alloc_calloc ) ||
(deallocationType == m_alloc_free && au->allocationType == m_alloc_realloc ) ||
(deallocationType == m_alloc_unknown ) );
// If you hit this assert, then the "break on dealloc" flag for this allocation unit is set. Interrogate the 'au'
// variable to determine information about this allocation unit.
m_assert(au->breakOnDealloc == false);
// Wipe the deallocated RAM with a new pattern. This doen't actually do us much good in debug mode under WIN32,
// because Microsoft's memory debugging & tracking utilities will wipe it right after we do. Oh well.
wipeWithPattern(au, releasedPattern);
// Do the deallocation
free(au->actualAddress);
// Remove this allocation unit from the hash table
unsigned long hashIndex = ((unsigned long) au->reportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex] == au)
{
hashTable[hashIndex] = au->next;
}
else
{
if (au->prev) au->prev->next = au->next;
if (au->next) au->next->prev = au->prev;
}
// Remove this allocation from our stats
stats.totalReportedMemory -= au->reportedSize;
stats.totalActualMemory -= au->actualSize;
stats.totalAllocUnitCount--;
// Add this allocation unit to the front of our reservoir of unused allocation units
memset(au, 0, sizeof(sAllocUnit));
au->next = reservoir;
reservoir = au;
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
// Validate every single allocated unit in memory
if (alwaysValidateAll) m_validateAllAllocUnits();
// If we're in the midst of static deinitialization time, track any pending memory leaks
if (staticDeinitTime) dumpLeakReport();
}
catch(const char *err)
{
// Deal with errors
log(err);
resetGlobals();
}
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_deallocator()");
#endif
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following utilitarian allow you to become proactive in tracking your own memory, or help you narrow in on those tough
// bugs.
// ---------------------------------------------------------------------------------------------------------------------------------
bool m_validateAddress(const void *reportedAddress)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
// Just see if the address exists in our allocation routines
return findAllocUnit(reportedAddress) != NULL;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool m_validateAllocUnit(const sAllocUnit *allocUnit)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
// Make sure the padding is untouched
unsigned int *pre = (unsigned int *) allocUnit->actualAddress;
unsigned int *post = (unsigned int *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(int));
bool errorFlag = false;
for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
{
if (*pre != prefixPattern)
{
log("A memory allocation unit was corrupt because of an underrun:");
m_dumpAllocUnit(allocUnit, " ");
errorFlag = true;
}
// If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
// owner?) has underrun the allocation unit (modified a few bytes prior to the start). You can interrogate the
// variable 'allocUnit' to see statistics and information about this damaged allocation unit.
m_assert(*pre == prefixPattern);
if (*post != postfixPattern)
{
log("A memory allocation unit was corrupt because of an overrun:");
m_dumpAllocUnit(allocUnit, " ");
errorFlag = true;
}
// If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
// owner?) has overrun the allocation unit (modified a few bytes after the end). You can interrogate the variable
// 'allocUnit' to see statistics and information about this damaged allocation unit.
m_assert(*post == postfixPattern);
}
// Return the error status (we invert it, because a return of 'false' means error)
return !errorFlag;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool m_validateAllAllocUnits()
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
// Just go through each allocation unit in the hash table and count the ones that have errors
unsigned int errors = 0;
unsigned int allocCount = 0;
for (unsigned int i = 0; i < hashSize; i++)
{
sAllocUnit *ptr = hashTable[i];
while(ptr)
{
allocCount++;
if (!m_validateAllocUnit(ptr)) errors++;
ptr = ptr->next;
}
}
// Test for hash-table correctness
if (allocCount != stats.totalAllocUnitCount)
{
log("Memory tracking hash table corrupt!");
errors++;
}
// If you hit this assert, then the internal memory (hash table) used by this memory tracking software is damaged! The
// best way to track this down is to use the alwaysLogAll flag in conjunction with STRESS_TEST macro to narrow in on the
// offending code. After running the application with these settings (and hitting this assert again), interrogate the
// memory.log file to find the previous successful operation. The corruption will have occurred between that point and this
// assertion.
m_assert(allocCount == stats.totalAllocUnitCount);
// If you hit this assert, then you've probably already been notified that there was a problem with a allocation unit in a
// prior call to validateAllocUnit(), but this assert is here just to make sure you know about it. :)
m_assert(errors == 0);
// Log any errors
if (errors) log("While validting all allocation units, %d allocation unit(s) were found to have problems", errors);
// Return the error status
return errors != 0;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Unused RAM calculation routines. Use these to determine how much of your RAM is unused (in bytes)
// ---------------------------------------------------------------------------------------------------------------------------------
unsigned int m_calcUnused(const sAllocUnit *allocUnit)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
const unsigned int *ptr = (const unsigned int *) allocUnit->reportedAddress;
unsigned int count = 0;
for (unsigned int i = 0; i < allocUnit->reportedSize; i += sizeof(int), ptr++)
{
if (*ptr == unusedPattern) count += sizeof(int);
}
return count;
}
// ---------------------------------------------------------------------------------------------------------------------------------
unsigned int m_calcAllUnused()
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
// Just go through each allocation unit in the hash table and count the unused RAM
unsigned int total = 0;
for (unsigned int i = 0; i < hashSize; i++)
{
sAllocUnit *ptr = hashTable[i];
while(ptr)
{
total += m_calcUnused(ptr);
ptr = ptr->next;
}
}
return total;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following functions are for logging and statistics reporting.
// ---------------------------------------------------------------------------------------------------------------------------------
void m_dumpAllocUnit(const sAllocUnit *allocUnit, const char *prefix)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
log("%sAddress (reported): %010p", prefix, allocUnit->reportedAddress);
log("%sAddress (actual) : %010p", prefix, allocUnit->actualAddress);
log("%sSize (reported) : 0x%08X (%s)", prefix, allocUnit->reportedSize, memorySizeString(allocUnit->reportedSize));
log("%sSize (actual) : 0x%08X (%s)", prefix, allocUnit->actualSize, memorySizeString(allocUnit->actualSize));
log("%sOwner : %s(%d)::%s", prefix, allocUnit->sourceFile, allocUnit->sourceLine, allocUnit->sourceFunc);
log("%sAllocation type : %s", prefix, allocationTypes[allocUnit->allocationType]);
log("%sAllocation number : %d", prefix, allocUnit->allocationNumber);
}
// ---------------------------------------------------------------------------------------------------------------------------------
void m_dumpMemoryReport(const char *filename, const bool overwrite)
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
// Open the report file
FILE *fp = NULL;
if (overwrite) fp = fopen(filename, "w+b");
else fp = fopen(filename, "ab");
// If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
// some reason.)
m_assert(fp);
if (!fp) return;
// Header
static char timeString[25];
memset(timeString, 0, sizeof(timeString));
time_t t = time(NULL);
struct tm *tme = localtime(&t);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, "| Memory report for: %02d/%02d/%04d %02d:%02d:%02d |\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, "\n");
fprintf(fp, "\n");
// Report summary
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, "| T O T A L S |\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, " Allocation unit count: %10s\n", insertCommas(stats.totalAllocUnitCount));
fprintf(fp, " Reported to application: %s\n", memorySizeString(stats.totalReportedMemory));
fprintf(fp, " Actual total memory in use: %s\n", memorySizeString(stats.totalActualMemory));
fprintf(fp, " Memory tracking overhead: %s\n", memorySizeString(stats.totalActualMemory - stats.totalReportedMemory));
fprintf(fp, "\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, "| P E A K S |\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, " Allocation unit count: %10s\n", insertCommas(stats.peakAllocUnitCount));
fprintf(fp, " Reported to application: %s\n", memorySizeString(stats.peakReportedMemory));
fprintf(fp, " Actual: %s\n", memorySizeString(stats.peakActualMemory));
fprintf(fp, " Memory tracking overhead: %s\n", memorySizeString(stats.peakActualMemory - stats.peakReportedMemory));
fprintf(fp, "\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, "| A C C U M U L A T E D |\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, " Allocation unit count: %s\n", memorySizeString(stats.accumulatedAllocUnitCount));
fprintf(fp, " Reported to application: %s\n", memorySizeString(stats.accumulatedReportedMemory));
fprintf(fp, " Actual: %s\n", memorySizeString(stats.accumulatedActualMemory));
fprintf(fp, "\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, "| U N U S E D |\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \n");
fprintf(fp, " Memory allocated but not in use: %s\n", memorySizeString(m_calcAllUnused()));
fprintf(fp, "\n");
dumpAllocations(fp);
fclose(fp);
}
// ---------------------------------------------------------------------------------------------------------------------------------
sMStats m_getMemoryStatistics()
{
boost::recursive_mutex::scoped_lock scoped_lock(get_mutex());
return stats;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// mmgr.cpp - End of file
// ---------------------------------------------------------------------------------------------------------------------------------
#endif // USE_MMGR
|