1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include "System/myMath.h"
#include "System/OpenMP_cond.h"
#include "System/Sync/FPUCheck.h"
#include "System/Util.h"
#include "System/Log/ILog.h"
#include "System/Platform/errorhandler.h"
#include "Sim/Units/Scripts/CobInstance.h" // for TAANG2RAD (ugh)
float2 CMyMath::headingToVectorTable[NUM_HEADINGS];
void CMyMath::Init()
{
const unsigned int sseBits = proc::GetProcSSEBits();
LOG("[CMyMath::Init] CPU SSE mask: %u, flags:", sseBits);
LOG("\tSSE 1.0: %d, SSE 2.0: %d", (sseBits >> 5) & 1, (sseBits >> 4) & 1);
LOG("\tSSE 3.0: %d, SSSE 3.0: %d", (sseBits >> 3) & 1, (sseBits >> 2) & 1);
LOG("\tSSE 4.1: %d, SSE 4.2: %d", (sseBits >> 1) & 1, (sseBits >> 0) & 1);
LOG("\tSSE 4.0A: %d, SSE 5.0A: %d", (sseBits >> 8) & 1, (sseBits >> 7) & 1);
#ifdef STREFLOP_H
// SSE 1.0 is mandatory in synced context
if (((sseBits >> 5) & 1) == 0) {
#ifdef STREFLOP_SSE
handleerror(0, "CPU is missing SSE instruction support", "Sync Error", 0);
#elif STREFLOP_X87
LOG_L(L_WARNING, "\tStreflop floating-point math is not SSE-enabled");
LOG_L(L_WARNING, "\tThis may cause desyncs during multi-player games");
LOG_L(L_WARNING, "\tThis CPU is not SSE-capable; it can only use X87 mode");
#else
handleerror(0, "streflop FP-math mode must be either SSE or X87", "Sync Error", 0);
#endif
} else {
#ifdef STREFLOP_SSE
LOG("\tusing streflop SSE FP-math mode, CPU supports SSE instructions");
#elif STREFLOP_X87
LOG_L(L_WARNING, "\tStreflop floating-point math is set to X87 mode");
LOG_L(L_WARNING, "\tThis may cause desyncs during multi-player games");
LOG_L(L_WARNING, "\tThis CPU is SSE-capable; consider recompiling");
#else
handleerror(0, "streflop FP-math mode must be either SSE or X87", "Sync Error", 0);
#endif
}
// Set single precision floating point math.
streflop_init<streflop::Simple>();
#if defined(__SUPPORT_SNAN__) && !defined(USE_GML)
streflop::feraiseexcept(streflop::FPU_Exceptions(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW));
#endif
// Initialize FPU in all OpenMP threads, too
// Note: Tested on Linux it seems it's not needed to do this.
// Either OMP threads copy the FPU state of the mainthread
// or the FPU state per-process on Linux.
// Still it hurts nobody to call these functions ;-)
#ifdef _OPENMP
#pragma omp parallel
{
//good_fpu_control_registers("OMP-Init");
streflop_init<streflop::Simple>();
#if defined(__SUPPORT_SNAN__) && !defined(USE_GML)
streflop::feraiseexcept(streflop::FPU_Exceptions(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW));
#endif
}
#endif
#else
// probably should check if SSE was enabled during
// compilation and issue a warning about illegal
// instructions if so (or just die with an error)
LOG_L(L_WARNING, "Floating-point math is not controlled by streflop");
LOG_L(L_WARNING, "This makes keeping multi-player sync 99% impossible");
#endif
for (int a = 0; a < NUM_HEADINGS; ++a) {
float ang = (a - (NUM_HEADINGS / 2)) * 2 * PI / NUM_HEADINGS;
float2 v;
v.x = sin(ang);
v.y = cos(ang);
headingToVectorTable[a] = v;
}
unsigned checksum = 0;
for (int a = 0; a < NUM_HEADINGS; ++a) {
checksum = 33 * checksum + *(unsigned*) &headingToVectorTable[a].x;
checksum *= 33;
checksum = 33 * checksum + *(unsigned*) &headingToVectorTable[a].y;
}
#ifdef STREFLOP_H
if (checksum != HEADING_CHECKSUM) {
handleerror(0,
"Invalid headingToVectorTable checksum. Most likely"
" your streflop library was not compiled with the correct"
" options, or you are not using streflop at all.",
"Sync Error", 0);
}
#endif
}
float3 GetVectorFromHAndPExact(short int heading, short int pitch)
{
float3 ret;
float h = heading * TAANG2RAD;
float p = pitch * TAANG2RAD;
ret.x = sin(h) * cos(p);
ret.y = sin(p);
ret.z = cos(h) * cos(p);
return ret;
}
float LinePointDist(const float3& l1, const float3& l2, const float3& p)
{
float3 dir(l2 - l1);
float length = dir.Length();
if (length == 0)
length = 0.1f;
dir /= length;
float a = (p - l1).dot(dir);
if (a < 0) a = 0;
if (a > length) a = length;
float3 p2 = p - dir * a;
return p2.distance(l1);
}
/**
* @brief calculate closest point on linepiece from l1 to l2
* Note, this clamps the returned point to a position between l1 and l2.
*/
float3 ClosestPointOnLine(const float3& l1, const float3& l2, const float3& p)
{
float3 dir(l2-l1);
float3 pdir(p-l1);
float length = dir.Length();
if (fabs(length) < 1e-4f)
return l1;
float c = dir.dot(pdir) / length;
if (c < 0) c = 0;
if (c > length) c = length;
return l1 + dir * (c / length);
}
/**
* How does it works?
* We calculate the two intersection points ON the
* ray as multiple of `dir` starting from `start`.
* So we get 2 scalars, whereupon `near` defines the
* new startpoint and `far` defines the new endpoint.
*
* credits:
* http://ompf.org/ray/ray_box.html
*/
std::pair<float, float> GetMapBoundaryIntersectionPoints(const float3& start, const float3& dir)
{
const float rcpdirx = (dir.x != 0.0f)? (1.0f / dir.x): 10000.0f;
const float rcpdirz = (dir.z != 0.0f)? (1.0f / dir.z): 10000.0f;
float l1, l2, far, near;
const float& mapwidth = float3::maxxpos + 1;
const float& mapheight = float3::maxzpos + 1;
//! x component
l1 = ( 0.0f - start.x) * rcpdirx;
l2 = (mapwidth - start.x) * rcpdirx;
near = std::min(l1, l2);
far = std::max(l1, l2);
//! z component
l1 = ( 0.0f - start.z) * rcpdirz;
l2 = (mapheight - start.z) * rcpdirz;
near = std::max(std::min(l1, l2), near);
far = std::min(std::max(l1, l2), far);
if (far < 0.0f || far < near) {
//! outside of boundary
near = -1.0f;
far = -1.0f;
}
return std::pair<float, float>(near, far);
}
bool ClampLineInMap(float3& start, float3& end)
{
const float3 dir = end - start;
const std::pair<float, float>& interp = GetMapBoundaryIntersectionPoints(start, dir);
const float& near = interp.first;
const float& far = interp.second;
if (far < 0.0f) {
//! outside of map!
start = float3(-1.0f, -1.0f, -1.0f);
end = float3(-1.0f, -1.0f, -1.0f);
return true;
}
if (far < 1.0f || near > 0.0f) {
end = start + dir * std::min(far, 1.0f);
start = start + dir * std::max(near, 0.0f);
//! precision of near,far are limited, so better clamp it afterwards
end.ClampInMap();
start.ClampInMap();
return true;
}
return false;
}
bool ClampRayInMap(const float3& start, float3& end)
{
const float3 dir = end - start;
std::pair<float, float> interp = GetMapBoundaryIntersectionPoints(start, dir);
const float& near = interp.first;
const float& far = interp.second;
if (far < 0.0f) {
//! outside of map!
end = start;
return true;
}
if (far < 1.0f || near > 0.0f) {
end = start + dir * std::min(far, 1.0f);
//! precision of near,far are limited, so better clamp it afterwards
end.ClampInMap();
return true;
}
return false;
}
float smoothstep(const float edge0, const float edge1, const float value)
{
if (value<=edge0) return 0.0f;
if (value>=edge1) return 1.0f;
float t = (value - edge0) / (edge1 - edge0);
t = std::min(1.0f,std::max(0.0f, t ));
return t * t * (3.0f - 2.0f * t);
}
float3 smoothstep(const float edge0, const float edge1, float3 vec)
{
vec.x = smoothstep(edge0, edge1, vec.x);
vec.y = smoothstep(edge0, edge1, vec.y);
vec.z = smoothstep(edge0, edge1, vec.z);
return vec;
}
float3 hs2rgb(float h, float s)
{
// FIXME? ignores saturation completely
s = 1.0f;
const float invSat = 1.0f - s;
if (h > 0.5f) { h += 0.1f; }
if (h > 1.0f) { h -= 1.0f; }
float3 col(invSat / 2.0f, invSat / 2.0f, invSat / 2.0f);
if (h < (1.0f / 6.0f)) {
col.x += s;
col.y += s * (h * 6.0f);
} else if (h < (1.0f / 3.0f)) {
col.y += s;
col.x += s * ((1.0f / 3.0f - h) * 6.0f);
} else if (h < (1.0f / 2.0f)) {
col.y += s;
col.z += s * ((h - (1.0f / 3.0f)) * 6.0f);
} else if (h < (2.0f / 3.0f)) {
col.z += s;
col.y += s * ((2.0f / 3.0f - h) * 6.0f);
} else if (h < (5.0f / 6.0f)) {
col.z += s;
col.x += s * ((h - (2.0f / 3.0f)) * 6.0f);
} else {
col.x += s;
col.z += s * ((3.0f / 3.0f - h) * 6.0f);
}
return col;
}
|