1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <cstring>
#include <ostream>
#include <deque>
#include "PathFinder.h"
#include "PathFinderDef.h"
#include "PathFlowMap.hpp"
#include "PathHeatMap.hpp"
#include "PathLog.h"
#include "Map/Ground.h"
#include "Map/ReadMap.h"
#include "Sim/MoveTypes/MoveDefHandler.h"
#include "Sim/Misc/ModInfo.h"
#include "Sim/Misc/GeometricObjects.h"
#define PATHDEBUG 0
using namespace Bitwise;
const CMoveMath::BlockType squareMobileBlockBits = (CMoveMath::BLOCK_MOBILE | CMoveMath::BLOCK_MOVING | CMoveMath::BLOCK_MOBILE_BUSY);
// indexed by PATHOPT* bitmasks
static float3 PF_DIRECTION_VECTORS_3D[PATH_DIRECTIONS << 1];
static float PF_DIRECTION_COSTS[PATH_DIRECTIONS << 1];
CPathFinder::CPathFinder()
: IPathFinder(1)
{
}
void CPathFinder::InitDirectionVectorsTable() {
for (int i = 0; i < (PATH_DIRECTIONS << 1); ++i) {
PF_DIRECTION_VECTORS_3D[i].x = PF_DIRECTION_VECTORS_2D[i].x;
PF_DIRECTION_VECTORS_3D[i].z = PF_DIRECTION_VECTORS_2D[i].y;
PF_DIRECTION_VECTORS_3D[i].Normalize();
}
}
void CPathFinder::InitDirectionCostsTable() {
// note: PATH_NODE_SPACING should not affect these
PF_DIRECTION_COSTS[PATHOPT_LEFT ] = 1.0f;
PF_DIRECTION_COSTS[PATHOPT_RIGHT ] = 1.0f;
PF_DIRECTION_COSTS[PATHOPT_UP ] = 1.0f;
PF_DIRECTION_COSTS[PATHOPT_DOWN ] = 1.0f;
PF_DIRECTION_COSTS[PATHOPT_LEFT | PATHOPT_UP ] = 1.4142f;
PF_DIRECTION_COSTS[PATHOPT_RIGHT | PATHOPT_UP ] = 1.4142f;
PF_DIRECTION_COSTS[PATHOPT_RIGHT | PATHOPT_DOWN] = 1.4142f;
PF_DIRECTION_COSTS[PATHOPT_LEFT | PATHOPT_DOWN] = 1.4142f;
}
const int2* CPathFinder::GetDirectionVectorsTable2D() { return (&PF_DIRECTION_VECTORS_2D[0]); }
const float3* CPathFinder::GetDirectionVectorsTable3D() { return (&PF_DIRECTION_VECTORS_3D[0]); }
IPath::SearchResult CPathFinder::DoSearch(
const MoveDef& moveDef,
const CPathFinderDef& pfDef,
const CSolidObject* owner
) {
bool foundGoal = false;
while (!openBlocks.empty() && (openBlockBuffer.GetSize() < maxBlocksToBeSearched)) {
// Get the open square with lowest expected path-cost.
PathNode* openSquare = const_cast<PathNode*>(openBlocks.top());
openBlocks.pop();
// check if this PathNode has become obsolete
if (blockStates.fCost[openSquare->nodeNum] != openSquare->fCost)
continue;
// Check if the goal is reached.
if (pfDef.IsGoal(openSquare->nodePos.x, openSquare->nodePos.y)) {
mGoalBlockIdx = openSquare->nodeNum;
mGoalHeuristic = 0.0f;
foundGoal = true;
break;
}
TestNeighborSquares(moveDef, pfDef, openSquare, owner);
}
if (foundGoal)
return IPath::Ok;
// could not reach goal within <maxBlocksToBeSearched> exploration limit
if (openBlockBuffer.GetSize() >= maxBlocksToBeSearched)
return IPath::GoalOutOfRange;
// could not reach goal from this starting position if nothing to left to explore
if (openBlocks.empty())
return IPath::GoalOutOfRange;
// should be unreachable
return IPath::Error;
}
void CPathFinder::TestNeighborSquares(
const MoveDef& moveDef,
const CPathFinderDef& pfDef,
const PathNode* square,
const CSolidObject* owner
) {
unsigned int ngbBlockedState[PATH_DIRECTIONS];
bool ngbInSearchRadius[PATH_DIRECTIONS];
float ngbPosSpeedMod[PATH_DIRECTIONS];
float ngbSpeedMod[PATH_DIRECTIONS];
// precompute structure-blocked and within-constraint states for all neighbors
for (unsigned int dir = 0; dir < PATH_DIRECTIONS; dir++) {
const int2 ngbSquareCoors = square->nodePos + PF_DIRECTION_VECTORS_2D[ PathDir2PathOpt(dir) ];
ngbBlockedState[dir] = CMoveMath::IsBlockedNoSpeedModCheck(moveDef, ngbSquareCoors.x, ngbSquareCoors.y, owner);
ngbInSearchRadius[dir] = pfDef.WithinConstraints(ngbSquareCoors.x, ngbSquareCoors.y);
// use the minimum of positional and directional speed-modifiers
// because this agrees more with current assumptions in movetype
// code and the estimators have no directional information
const float posSpeedMod = CMoveMath::GetPosSpeedMod(moveDef, ngbSquareCoors.x, ngbSquareCoors.y);
const float dirSpeedMod = CMoveMath::GetPosSpeedMod(moveDef, ngbSquareCoors.x, ngbSquareCoors.y, PF_DIRECTION_VECTORS_3D[ PathDir2PathOpt(dir) ]);
ngbPosSpeedMod[dir] = posSpeedMod;
// hint: use posSpeedMod for PE! cause it assumes path costs are bidirectional and so it only saves one `cost` for left & right movement
ngbSpeedMod[dir] = (pfDef.dirIndependent) ? posSpeedMod : std::min(posSpeedMod, dirSpeedMod);
}
// first test squares along the cardinal directions
for (unsigned int dir: PATHDIR_CARDINALS) {
const unsigned int opt = PathDir2PathOpt(dir);
if ((ngbBlockedState[dir] & CMoveMath::BLOCK_STRUCTURE) != 0)
continue;
if (!ngbInSearchRadius[dir])
continue;
TestBlock(moveDef, pfDef, square, owner, opt, ngbBlockedState[dir], ngbSpeedMod[dir], ngbInSearchRadius[dir]);
}
// next test the diagonal squares
//
// don't search diagonally if there is a blocking object
// (or blocking terrain!) in one of the two side squares
// e.g. do not consider the edge (p, q) passable if X is
// impassable in this situation:
// +---+---+
// | X | q |
// +---+---+
// | p | X |
// +---+---+
//
// if either side-square is merely outside the constrained
// area but the diagonal square is not, we do consider the
// edge passable since we still need to be able to jump to
// diagonally adjacent PE-blocks
//
#define CAN_TEST_SQUARE(dir) ((ngbBlockedState[dir] & CMoveMath::BLOCK_STRUCTURE) == 0 && ngbPosSpeedMod[dir] != 0.0f)
#define TEST_DIAG_SQUARE(BASE_DIR_X, BASE_DIR_Y, BASE_DIR_XY) \
if (CAN_TEST_SQUARE(BASE_DIR_X) && CAN_TEST_SQUARE(BASE_DIR_Y) && CAN_TEST_SQUARE(BASE_DIR_XY)) { \
if ((ngbInSearchRadius[BASE_DIR_X] && ngbInSearchRadius[BASE_DIR_Y]) || ngbInSearchRadius[BASE_DIR_XY]) { \
const unsigned int ngbOpt = PathDir2PathOpt(BASE_DIR_XY); \
const unsigned int ngbBlk = ngbBlockedState[BASE_DIR_XY]; \
const unsigned int ngbVis = ngbInSearchRadius[BASE_DIR_XY]; \
\
TestBlock(moveDef, pfDef, square, owner, ngbOpt, ngbBlk, ngbSpeedMod[BASE_DIR_XY], ngbVis); \
} \
}
TEST_DIAG_SQUARE(PATHDIR_LEFT, PATHDIR_UP, PATHDIR_LEFT_UP )
TEST_DIAG_SQUARE(PATHDIR_RIGHT, PATHDIR_UP, PATHDIR_RIGHT_UP )
TEST_DIAG_SQUARE(PATHDIR_LEFT, PATHDIR_DOWN, PATHDIR_LEFT_DOWN )
TEST_DIAG_SQUARE(PATHDIR_RIGHT, PATHDIR_DOWN, PATHDIR_RIGHT_DOWN)
#undef TEST_DIAG_SQUARE
#undef CAN_TEST_SQUARE
// mark this square as closed
blockStates.nodeMask[square->nodeNum] |= PATHOPT_CLOSED;
}
bool CPathFinder::TestBlock(
const MoveDef& moveDef,
const CPathFinderDef& pfDef,
const PathNode* parentSquare,
const CSolidObject* owner,
const unsigned int pathOptDir,
const unsigned int blockStatus,
float speedMod,
bool withinConstraints
) {
testedBlocks++;
// initial calculations of the new block
const int2 square = parentSquare->nodePos + PF_DIRECTION_VECTORS_2D[pathOptDir];
const unsigned int sqrIdx = BlockPosToIdx(square);
// bounds-check
if ((unsigned)square.x >= nbrOfBlocks.x) return false;
if ((unsigned)square.y >= nbrOfBlocks.y) return false;
// check if the square is inaccessable
if (blockStates.nodeMask[sqrIdx] & (PATHOPT_CLOSED | PATHOPT_BLOCKED))
return false;
// caller has already tested for this
assert((blockStatus & CMoveMath::BLOCK_STRUCTURE) == 0);
// check if square is outside search-constraint
// (this has already been done for open squares)
if ((blockStates.nodeMask[sqrIdx] & PATHOPT_OPEN) == 0 && !withinConstraints) {
blockStates.nodeMask[sqrIdx] |= PATHOPT_BLOCKED;
dirtyBlocks.push_back(sqrIdx);
return false;
}
// evaluate this square
//
if (speedMod == 0.0f) {
blockStates.nodeMask[sqrIdx] |= PATHOPT_BLOCKED;
dirtyBlocks.push_back(sqrIdx);
return false;
}
if (pfDef.testMobile && moveDef.avoidMobilesOnPath && (blockStatus & squareMobileBlockBits)) {
if (blockStatus & CMoveMath::BLOCK_MOBILE_BUSY) {
speedMod *= moveDef.speedModMults[MoveDef::SPEEDMOD_MOBILE_BUSY_MULT];
} else if (blockStatus & CMoveMath::BLOCK_MOBILE) {
speedMod *= moveDef.speedModMults[MoveDef::SPEEDMOD_MOBILE_IDLE_MULT];
} else { // (blockStatus & CMoveMath::BLOCK_MOVING)
speedMod *= moveDef.speedModMults[MoveDef::SPEEDMOD_MOBILE_MOVE_MULT];
}
}
const float heatCost = (pfDef.testMobile) ? (PathHeatMap::GetInstance())->GetHeatCost(square.x, square.y, moveDef, ((owner != NULL)? owner->id: -1U)) : 0.0f;
const float flowCost = (pfDef.testMobile) ? (PathFlowMap::GetInstance())->GetFlowCost(square.x, square.y, moveDef, pathOptDir) : 0.0f;
const float extraCost = blockStates.GetNodeExtraCost(square.x, square.y, pfDef.synced);
const float dirMoveCost = (1.0f + heatCost + flowCost) * PF_DIRECTION_COSTS[pathOptDir];
const float nodeCost = (dirMoveCost / speedMod) + extraCost;
const float gCost = parentSquare->gCost + nodeCost; // g
const float hCost = pfDef.Heuristic(square.x, square.y); // h
const float fCost = gCost + hCost; // f
if (blockStates.nodeMask[sqrIdx] & PATHOPT_OPEN) {
// already in the open set, look for a cost-improvement
if (blockStates.fCost[sqrIdx] <= fCost)
return true;
blockStates.nodeMask[sqrIdx] &= ~PATHOPT_CARDINALS;
}
// if heuristic says this node is closer to goal than previous h-estimate, keep it
if (!pfDef.exactPath && hCost < mGoalHeuristic) {
mGoalBlockIdx = sqrIdx;
mGoalHeuristic = hCost;
}
// store and mark this square as open (expanded, but not yet pulled from pqueue)
openBlockBuffer.SetSize(openBlockBuffer.GetSize() + 1);
assert(openBlockBuffer.GetSize() < MAX_SEARCHED_NODES_PF);
PathNode* os = openBlockBuffer.GetNode(openBlockBuffer.GetSize());
os->fCost = fCost;
os->gCost = gCost;
os->nodePos = square;
os->nodeNum = sqrIdx;
openBlocks.push(os);
blockStates.SetMaxCost(NODE_COST_F, std::max(blockStates.GetMaxCost(NODE_COST_F), fCost));
blockStates.SetMaxCost(NODE_COST_G, std::max(blockStates.GetMaxCost(NODE_COST_G), gCost));
blockStates.fCost[sqrIdx] = os->fCost;
blockStates.gCost[sqrIdx] = os->gCost;
blockStates.nodeMask[sqrIdx] |= (PATHOPT_OPEN | pathOptDir);
dirtyBlocks.push_back(sqrIdx);
return true;
}
IPath::SearchResult CPathFinder::FinishSearch(const MoveDef& moveDef, const CPathFinderDef& pfDef, IPath::Path& foundPath) const
{
// backtrack
if (pfDef.needPath) {
int2 square = BlockIdxToPos(mGoalBlockIdx);
unsigned int blockIdx = mGoalBlockIdx;
// for path adjustment (cutting corners)
std::deque<int2> previous;
// make sure we don't match anything
previous.push_back(square);
previous.push_back(square);
while (true) {
float3 pos(square.x * SQUARE_SIZE, 0.0f, square.y * SQUARE_SIZE);
pos.y = CMoveMath::yLevel(moveDef, square.x, square.y);
// try to cut corners
AdjustFoundPath(moveDef, foundPath, pos, previous, square);
foundPath.path.push_back(pos);
foundPath.squares.push_back(square);
previous.pop_front();
previous.push_back(square);
if (blockIdx == mStartBlockIdx)
break;
square -= PF_DIRECTION_VECTORS_2D[blockStates.nodeMask[blockIdx] & PATHOPT_CARDINALS];
blockIdx = BlockPosToIdx(square);
}
if (!foundPath.path.empty()) {
foundPath.pathGoal = foundPath.path.front();
}
}
// Adds the cost of the path.
foundPath.pathCost = blockStates.fCost[mGoalBlockIdx];
return IPath::Ok;
}
/** Helper function for AdjustFoundPath */
static inline void FixupPath3Pts(const MoveDef& moveDef, const float3 p1, float3& p2, const float3 p3)
{
#if PATHDEBUG
float3 old = p2;
#endif
p2.x = 0.5f * (p1.x + p3.x);
p2.z = 0.5f * (p1.z + p3.z);
p2.y = CMoveMath::yLevel(moveDef, p2);
#if PATHDEBUG
geometricObjects->AddLine(old + float3(0, 10, 0), p2 + float3(0, 10, 0), 5, 10, 600, 0);
#endif
}
void CPathFinder::SmoothMidWaypoint(const int2 testsqr, const int2 prevsqr, const MoveDef& moveDef, IPath::Path& foundPath, const float3 nextPoint) const
{
static const float COSTMOD = 1.39f; // (math::sqrt(2) + 1) / math::sqrt(3)
const int tstsqr = BlockPosToIdx(testsqr);
const int prvsqr = BlockPosToIdx(prevsqr);
if (
((blockStates.nodeMask[tstsqr] & PATHOPT_BLOCKED) == 0)
&& (blockStates.fCost[tstsqr] <= COSTMOD * blockStates.fCost[prvsqr])
) {
const float3& p2 = foundPath.path[foundPath.path.size() - 2];
float3& p1 = foundPath.path.back();
const float3& p0 = nextPoint;
FixupPath3Pts(moveDef, p0, p1, p2);
}
}
/*
* This function takes the current & the last 2 waypoints and detects when they form
* a "soft" curve. And if so, it takes the mid waypoint of those 3 and smooths it
* between the one before and the current waypoint (so the soft curve gets even smoother).
* Hint: hard curves (e.g. `move North then West`) can't and will not smoothed. Only soft ones
* like `move North then North-West` can.
*/
void CPathFinder::AdjustFoundPath(const MoveDef& moveDef, IPath::Path& foundPath, const float3 nextPoint,
std::deque<int2>& previous, int2 curquare) const
{
assert(previous.size() == 2);
const int2& p1 = previous[0]; // two before curquare
const int2& p2 = previous[1]; // one before curquare
int2 dirNow = (p2 - curquare);
int2 dirPrv = (p1 - curquare) - dirNow;
assert(dirNow.x % PATH_NODE_SPACING == 0);
assert(dirNow.y % PATH_NODE_SPACING == 0);
assert(dirPrv.x % PATH_NODE_SPACING == 0);
assert(dirPrv.y % PATH_NODE_SPACING == 0);
dirNow /= PATH_NODE_SPACING;
dirPrv /= PATH_NODE_SPACING;
for (unsigned pathDir = PATHDIR_LEFT; pathDir < PATH_DIRECTIONS; ++pathDir) {
// find the pathDir
if (dirNow != PE_DIRECTION_VECTORS[pathDir])
continue;
// only smooth "soft" curves (e.g. `move North-East then North`)
if (
(dirPrv == PE_DIRECTION_VECTORS[(pathDir-1) % PATH_DIRECTIONS])
|| (dirPrv == PE_DIRECTION_VECTORS[(pathDir+1) % PATH_DIRECTIONS])
) {
SmoothMidWaypoint(curquare + (dirPrv * PATH_NODE_SPACING), p2, moveDef, foundPath, nextPoint);
}
break;
}
}
|