1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2012, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file IFCUtil.cpp
* @brief Implementation of conversion routines for some common Ifc helper entities.
*/
#include "AssimpPCH.h"
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
#include "IFCUtil.h"
#include "ProcessHelper.h"
#include "System/FastMath.h"
namespace Assimp {
namespace IFC {
// ------------------------------------------------------------------------------------------------
void TempOpening::Transform(const IfcMatrix4& mat)
{
if(profileMesh) {
profileMesh->Transform(mat);
}
extrusionDir *= IfcMatrix3(mat);
}
// ------------------------------------------------------------------------------------------------
aiMesh* TempMesh::ToMesh()
{
ai_assert(verts.size() == std::accumulate(vertcnt.begin(),vertcnt.end(),size_t(0)));
if (verts.empty()) {
return NULL;
}
std::auto_ptr<aiMesh> mesh(new aiMesh());
// copy vertices
mesh->mNumVertices = static_cast<unsigned int>(verts.size());
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
std::copy(verts.begin(),verts.end(),mesh->mVertices);
// and build up faces
mesh->mNumFaces = static_cast<unsigned int>(vertcnt.size());
mesh->mFaces = new aiFace[mesh->mNumFaces];
for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
aiFace& f = mesh->mFaces[i];
if (!vertcnt[n]) {
--mesh->mNumFaces;
continue;
}
f.mNumIndices = vertcnt[n];
f.mIndices = new unsigned int[f.mNumIndices];
for(unsigned int a = 0; a < f.mNumIndices; ++a) {
f.mIndices[a] = acc++;
}
++i;
}
return mesh.release();
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Clear()
{
verts.clear();
vertcnt.clear();
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Transform(const IfcMatrix4& mat)
{
BOOST_FOREACH(IfcVector3& v, verts) {
v *= mat;
}
}
// ------------------------------------------------------------------------------
IfcVector3 TempMesh::Center() const
{
return std::accumulate(verts.begin(),verts.end(),IfcVector3()) / static_cast<IfcFloat>(verts.size());
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Append(const TempMesh& other)
{
verts.insert(verts.end(),other.verts.begin(),other.verts.end());
vertcnt.insert(vertcnt.end(),other.vertcnt.begin(),other.vertcnt.end());
}
// ------------------------------------------------------------------------------------------------
void TempMesh::RemoveAdjacentDuplicates()
{
bool drop = false;
std::vector<IfcVector3>::iterator base = verts.begin();
BOOST_FOREACH(unsigned int& cnt, vertcnt) {
if (cnt < 2){
base += cnt;
continue;
}
IfcVector3 vmin,vmax;
ArrayBounds(&*base, cnt ,vmin,vmax);
const IfcFloat epsilon = (vmax-vmin).SquareLength() / static_cast<IfcFloat>(1e9);
//const IfcFloat dotepsilon = 1e-9;
//// look for vertices that lie directly on the line between their predecessor and their
//// successor and replace them with either of them.
//for(size_t i = 0; i < cnt; ++i) {
// IfcVector3& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
// const IfcVector3& d0 = (v1-v0), &d1 = (v2-v1);
// const IfcFloat l0 = d0.SquareLength(), l1 = d1.SquareLength();
// if (!l0 || !l1) {
// continue;
// }
// const IfcFloat d = (d0/math::sqrt(l0))*(d1/math::sqrt(l1));
// if ( d >= 1.f-dotepsilon ) {
// v1 = v0;
// }
// else if ( d < -1.f+dotepsilon ) {
// v2 = v1;
// continue;
// }
//}
// drop any identical, adjacent vertices. this pass will collect the dropouts
// of the previous pass as a side-effect.
FuzzyVectorCompare fz(epsilon);
std::vector<IfcVector3>::iterator end = base+cnt, e = std::unique( base, end, fz );
if (e != end) {
cnt -= static_cast<unsigned int>(std::distance(e, end));
verts.erase(e,end);
drop = true;
}
// check front and back vertices for this polygon
if (cnt > 1 && fz(*base,*(base+cnt-1))) {
verts.erase(base+ --cnt);
drop = true;
}
// removing adjacent duplicates shouldn't erase everything :-)
ai_assert(cnt>0);
base += cnt;
}
if(drop) {
IFCImporter::LogDebug("removed duplicate vertices");
}
}
// ------------------------------------------------------------------------------------------------
bool IsTrue(const EXPRESS::BOOLEAN& in)
{
return (std::string)in == "TRUE" || (std::string)in == "T";
}
// ------------------------------------------------------------------------------------------------
IfcFloat ConvertSIPrefix(const std::string& prefix)
{
if (prefix == "EXA") {
return 1e18f;
}
else if (prefix == "PETA") {
return 1e15f;
}
else if (prefix == "TERA") {
return 1e12f;
}
else if (prefix == "GIGA") {
return 1e9f;
}
else if (prefix == "MEGA") {
return 1e6f;
}
else if (prefix == "KILO") {
return 1e3f;
}
else if (prefix == "HECTO") {
return 1e2f;
}
else if (prefix == "DECA") {
return 1e-0f;
}
else if (prefix == "DECI") {
return 1e-1f;
}
else if (prefix == "CENTI") {
return 1e-2f;
}
else if (prefix == "MILLI") {
return 1e-3f;
}
else if (prefix == "MICRO") {
return 1e-6f;
}
else if (prefix == "NANO") {
return 1e-9f;
}
else if (prefix == "PICO") {
return 1e-12f;
}
else if (prefix == "FEMTO") {
return 1e-15f;
}
else if (prefix == "ATTO") {
return 1e-18f;
}
else {
IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
return 1;
}
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const IfcColourRgb& in)
{
out.r = static_cast<float>( in.Red );
out.g = static_cast<float>( in.Green );
out.b = static_cast<float>( in.Blue );
out.a = static_cast<float>( 1.f );
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base)
{
if (const EXPRESS::REAL* const r = in.ToPtr<EXPRESS::REAL>()) {
out.r = out.g = out.b = static_cast<float>(*r);
if(base) {
out.r *= static_cast<float>( base->r );
out.g *= static_cast<float>( base->g );
out.b *= static_cast<float>( base->b );
out.a = static_cast<float>( base->a );
}
else out.a = 1.0;
}
else if (const IfcColourRgb* const rgb = in.ResolveSelectPtr<IfcColourRgb>(conv.db)) {
ConvertColor(out,*rgb);
}
else {
IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
}
}
// ------------------------------------------------------------------------------------------------
void ConvertCartesianPoint(IfcVector3& out, const IfcCartesianPoint& in)
{
out = IfcVector3();
for(size_t i = 0; i < in.Coordinates.size(); ++i) {
out[i] = in.Coordinates[i];
}
}
// ------------------------------------------------------------------------------------------------
void ConvertVector(IfcVector3& out, const IfcVector& in)
{
ConvertDirection(out,in.Orientation);
out *= in.Magnitude;
}
// ------------------------------------------------------------------------------------------------
void ConvertDirection(IfcVector3& out, const IfcDirection& in)
{
out = IfcVector3();
for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
out[i] = in.DirectionRatios[i];
}
const IfcFloat len = out.Length();
if (len<1e-6) {
IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
return;
}
out /= len;
}
// ------------------------------------------------------------------------------------------------
void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z)
{
out.a1 = x.x;
out.b1 = x.y;
out.c1 = x.z;
out.a2 = y.x;
out.b2 = y.y;
out.c2 = y.z;
out.a3 = z.x;
out.b3 = z.y;
out.c3 = z.z;
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement3D& in)
{
IfcVector3 loc;
ConvertCartesianPoint(loc,in.Location);
IfcVector3 z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;
if (in.Axis) {
ConvertDirection(z,*in.Axis.Get());
}
if (in.RefDirection) {
ConvertDirection(r,*in.RefDirection.Get());
}
IfcVector3 v = r.Normalize();
IfcVector3 tmpx = z * (v*z);
x = (v-tmpx).Normalize();
IfcVector3 y = (z^x);
IfcMatrix4::Translation(loc,out);
AssignMatrixAxes(out,x,y,z);
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement2D& in)
{
IfcVector3 loc;
ConvertCartesianPoint(loc,in.Location);
IfcVector3 x(1.f,0.f,0.f);
if (in.RefDirection) {
ConvertDirection(x,*in.RefDirection.Get());
}
const IfcVector3 y = IfcVector3(x.y,-x.x,0.f);
IfcMatrix4::Translation(loc,out);
AssignMatrixAxes(out,x,y,IfcVector3(0.f,0.f,1.f));
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const IfcAxis1Placement& in)
{
ConvertCartesianPoint(pos,in.Location);
if (in.Axis) {
ConvertDirection(axis,in.Axis.Get());
}
else {
axis = IfcVector3(0.f,0.f,1.f);
}
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement& in, ConversionData& conv)
{
if(const IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<IfcAxis2Placement3D>(conv.db)) {
ConvertAxisPlacement(out,*pl3);
}
else if(const IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<IfcAxis2Placement2D>(conv.db)) {
ConvertAxisPlacement(out,*pl2);
}
else {
IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
}
}
// ------------------------------------------------------------------------------------------------
void ConvertTransformOperator(IfcMatrix4& out, const IfcCartesianTransformationOperator& op)
{
IfcVector3 loc;
ConvertCartesianPoint(loc,op.LocalOrigin);
IfcVector3 x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
if (op.Axis1) {
ConvertDirection(x,*op.Axis1.Get());
}
if (op.Axis2) {
ConvertDirection(y,*op.Axis2.Get());
}
if (const IfcCartesianTransformationOperator3D* op2 = op.ToPtr<IfcCartesianTransformationOperator3D>()) {
if(op2->Axis3) {
ConvertDirection(z,*op2->Axis3.Get());
}
}
IfcMatrix4 locm;
IfcMatrix4::Translation(loc,locm);
AssignMatrixAxes(out,x,y,z);
IfcVector3 vscale;
if (const IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<IfcCartesianTransformationOperator3DnonUniform>()) {
vscale.x = nuni->Scale?op.Scale.Get():1.f;
vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
}
else {
const IfcFloat sc = op.Scale?op.Scale.Get():1.f;
vscale = IfcVector3(sc,sc,sc);
}
IfcMatrix4 s;
IfcMatrix4::Scaling(vscale,s);
out = locm * out * s;
}
} // ! IFC
} // ! Assimp
#endif
|