File: basic.h

package info (click to toggle)
sprng 2.0a-19
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,308 kB
  • sloc: ansic: 30,353; fortran: 1,618; makefile: 576; cpp: 58; sh: 5
file content (448 lines) | stat: -rw-r--r-- 11,001 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "info.h"

#define LINEAR_SEARCH_LIMIT 5000
#define MOST 18

typedef struct DATATYPE1 {
  long power;
  MP_INT *valid;
  struct MP_ARRAY_TYPE denom;
  struct MP_ARRAY_TYPE the_primes;
  struct MP_ARRAY_TYPE kill_us;
  MP_INT *prim;
  MP_RAT *magic;
} REL_PRIME_TABLE;


void free_mp_array(struct MP_ARRAY_TYPE *array)
{
  long i;
  
  for(i=0; i<array->size; i++)
    mpz_clear(&(array->list[i]));
  
  free(array->list);
  
  return;
}


/* This function merges two arrays */
extern struct MP_ARRAY_TYPE join(first, second)
     struct MP_ARRAY_TYPE first, second;
{
  struct MP_ARRAY_TYPE result;
  long count1 = 0; 
  long count2 = 0;
  MP_INT absfirst, abssecond;

  mpz_init(&absfirst);
  mpz_init(&abssecond);
  result.size = first.size + second.size;
  result.list = malloc(result.size * sizeof(MP_INT));
  if ((count1 < first.size) && (count2 < second.size)) {
    mpz_abs(&absfirst, &(first.list[count1]));
    mpz_abs(&abssecond, &(second.list[count2]));
  }
  while ((count1 < first.size) && (count2 < second.size)) {
    if (mpz_cmp(&absfirst, &abssecond) > 0) {
      mpz_init_set(&(result.list[count1+count2]),&(second.list[count2]));
      ++count2;
      if (count2 < second.size) 
	mpz_abs(&abssecond, &(second.list[count2]));
    }
    else {
      mpz_init_set(&(result.list[count1+count2]),&(first.list[count1]));
      ++count1;
      if (count1 < first.size)
	mpz_abs(&absfirst, &(first.list[count1]));
    }
  }
  mpz_clear(&absfirst);
  mpz_clear(&abssecond);
  for (;count1<first.size;count1++) 
    mpz_init_set(&(result.list[count1+count2]),&(first.list[count1]));
  for (;count2<second.size;count2++) 
    mpz_init_set(&(result.list[count1+count2]),&(second.list[count2]));
  return(result);
}

/* This function multiplies all elements by -1 */
extern struct MP_ARRAY_TYPE minus(list, size)
     MP_INT *list;
     long size;
{
  long count;
  struct MP_ARRAY_TYPE result;

  result.size = size;
  result.list = malloc(size * sizeof(MP_INT));
  for (count=0;count<size;count++) {
    mpz_init(&(result.list[count]));
    mpz_neg(&(result.list[count]), &(list[count]));
  }
  return(result);
}

/* This function multiplies and reduces an array */
extern struct MP_ARRAY_TYPE mult_reduce(number, set, limit)
     MP_INT *number, *limit;
     struct MP_ARRAY_TYPE set;
{
  struct MP_ARRAY_TYPE result;
  long count, count2;
  MP_INT plussed/*, temp*/;
  
#if 0
  mpz_neg(number,number);	/* multiply by -number, except with 1 */
  mpz_init(&temp);
  mpz_abs(&temp,number);
#endif
  mpz_init(&plussed);
  
  result.list = malloc(set.size * sizeof(MP_INT));
  count2 = 0;
  if (set.size > 0) {
    mpz_init(&(result.list[count2]));
    for (count=0;count<set.size;count++) 
    {
      /*if(mpz_cmp_ui(&(set.list[count]),1U) != 0)*/
	mpz_mul(&(result.list[count2]), &(set.list[count]), number);
	/*else
	mpz_mul(&(result.list[count2]), &(set.list[count]), &temp);*/
      
      mpz_abs(&plussed, &(result.list[count2]));
      if (mpz_cmp(&plussed, limit) < 0) {
	++count2;
	if (count2<set.size)
	  mpz_init(&(result.list[count2]));
      }
    }
  }
  result.size = count2;
  mpz_clear(&plussed);
  /*mpz_clear(&temp);*/
  return(result);
}

/* This makes a list of denominators out of a list of primes */
extern struct MP_ARRAY_TYPE find_denom(the_primes, maxsize, limit)
     MP_INT *the_primes, *limit;
     long maxsize;

{
  struct MP_ARRAY_TYPE newones, oldones, answer;
  int count;

  if (maxsize > 1)
    oldones = find_denom(&(the_primes[1]), maxsize-1, limit);
  else {
    oldones.size = 1;
    oldones.list = malloc(sizeof(MP_INT));
    mpz_init_set_str(oldones.list, "1", 10);
  }
  newones = mult_reduce(the_primes, oldones, limit);
  answer = join(oldones, newones);
    
  free_mp_array(&newones);
  free_mp_array(&oldones);
  
  return(answer);
}

/* Evaluates Mu function, given denominators */
extern void mu_eval(result, x, denominators)
     MP_INT *result;
     MP_INT *x;
     struct MP_ARRAY_TYPE denominators;
{
  MP_INT val;
  long count = 0;

  mpz_set_str(result, "0", 10);
  mpz_init_set_str(&val, "1", 10);
  while ((count < denominators.size) && (mpz_cmp_ui(&val, 0) != 0)) {
    mpz_div(&val, x, &(denominators.list[count]));
    mpz_add(result, result, &val);
    count++;
  }
  mpz_clear(&val);
}

/* Checks if x == 0 mod y, returns true if so */
extern short divisible(x, y)
     MP_INT *x, *y;
{
  MP_INT temp;
  int sign;

  mpz_init(&temp);
  mpz_mod(&temp, x, y);
  sign = mpz_cmp_si(&temp, 0);
  mpz_clear(&temp);
  if (sign == 0) {
    return(1);
  }
  else {
    return(0);
  }
}

/* Checks if any primes divide a number */
extern short any_divide(number, the_primes, no_of_primes)
     MP_INT *number, *the_primes; 
     long no_of_primes;
{
  if (no_of_primes == 1) {
    return(divisible(number, &(the_primes[0])));
  }
  else {
    if (divisible(number, &(the_primes[no_of_primes-1]))) {
      return(1);
    }
    else {
      return(any_divide(number, the_primes, no_of_primes - 1));
    }
  }
}

extern void incr(x, num)
     MP_INT *x;
     long num;
{
  mpz_add_ui(x, x, num);
}

extern void decr(x, num)
     MP_INT *x;
     long num;
{
  mpz_sub_ui(x, x, num);
}

/* Uses a linear search to find inverse value given guess, mu(guess) */
extern MP_INT linear_find(y, current_mu, guess, the_primes)
     MP_INT *y, *current_mu, *guess; 
     struct MP_ARRAY_TYPE the_primes; 
{  
  while (mpz_cmp(current_mu, y) < 0) {
    incr(guess, 1L);
    if (any_divide(guess, the_primes.list, the_primes.size)) {
    }
    else 
      incr(current_mu, 1L);
  }
  while (mpz_cmp(current_mu, y) > 0) {
    if (any_divide(guess, the_primes.list, the_primes.size))
      decr(guess, 1L);
    else {
      decr(guess, 1L);
      decr(current_mu, 1L);
    }
  }

  while (any_divide(guess, the_primes.list, the_primes.size)) 
    decr(guess, 1L);

  return(*guess);  
}

/* This guesses at mu_inverse */
extern MP_INT guess_mu_inverse(y, magic)
     MP_INT *y;
     MP_RAT *magic;
{
  MP_INT temp, guess;
  mpz_init(&temp);
  mpz_init(&guess);

  mpq_get_num(&temp, magic);
  mpz_mul(&guess, y, &temp);
  mpq_get_den(&temp, magic);
  mpz_div(&guess, &guess, &temp);
  mpz_clear(&temp);
  
  return(guess);
}   


/* Efficient caluculation of mu */
extern void Mu(result, x, left_to_kill, the_final_denom)
     MP_INT *x, *result;
     struct MP_ARRAY_TYPE left_to_kill, the_final_denom;
{
  MP_INT subout, first, second;
  struct MP_ARRAY_TYPE new_kill;

  if (left_to_kill.size <= 0) {
    mu_eval(result, x, the_final_denom);
  }
  else {
    mpz_init(&subout);
    mpz_init(&first);
    mpz_init(&second); 
    mpz_div(&subout, x, &(left_to_kill.list[0]));
    new_kill.size = left_to_kill.size - 1;
    new_kill.list = &(left_to_kill.list[1]);
    Mu(&first, x, new_kill, the_final_denom);
    Mu(&second, &subout, new_kill, the_final_denom);
    mpz_sub(result, &first, &second);
    mpz_clear(&first);
    mpz_clear(&second);
    mpz_clear(&subout);
  }
}

/* finds the desired result, given y, the primes to be killed, the denominators,
   the full set of initial primes, and the density of relative primes */
extern MP_INT find_M(guess, y, left_to_kill, denom, initial_primes, magic)
     MP_INT *guess, *y;
     struct MP_ARRAY_TYPE denom, initial_primes, left_to_kill;
     MP_RAT *magic;
{
  MP_INT temp, temp2, current_mu;

  mpz_init(&temp);
  mpz_init(&temp2);
  mpz_init(&current_mu);
#if 0
  Mu(&current_mu, guess, left_to_kill, denom); 

  mpz_sub(&temp, y, &current_mu);
  mpz_abs(&temp2, &temp);

  while (mpz_cmp_ui(&temp2, LINEAR_SEARCH_LIMIT) > 0) {
    temp2 = guess_mu_inverse(&temp, magic);
    mpz_add(guess, guess, &temp2);

    Mu(&current_mu, guess, left_to_kill, denom);

    mpz_sub(&temp, y, &current_mu);
    mpz_abs(&temp2, &temp);
  }
  mpz_clear(&temp);
  mpz_clear(&temp2);
#else
  mpz_set_str(guess, "17", 10);
  mpz_set_str(&current_mu, "1", 10);
#endif
  return(linear_find(y, &current_mu, guess, initial_primes));
} 

/* setup. Note: 'int param' must be another argument if modulii other than 2^61-1 will be used */
extern void init_rel_prime(data, maxval)
REL_PRIME_TABLE *data;
MP_INT *maxval;
{
/* modified by cmdavis */
  MP_INT limit, num, denom;
  struct MP_ARRAY_TYPE the_primes;
	
  /* initialize 'data.power' */ 
  (*data).power = POWER_N;

  /* initialize 'data.valid' */
  (*data).valid = malloc(sizeof(MP_INT));
  mpz_init_set((*data).valid, maxval);

  /* initialize 'data.prim'  */
  (*data).prim = malloc(sizeof(MP_INT));
  mpz_init_set_ui((*data).prim, PRIM);

  /* initialize 'data.magic' (density of relative primes) */
  (*data).magic = malloc(sizeof(MP_RAT)); mpq_init((*data).magic);
  mpz_init_set_str(&num,MAGIC_NUM,10);
  mpz_init_set_str(&denom,MAGIC_DEN,10);
  mpq_set_num((*data).magic,&num); mpq_set_den((*data).magic,&denom);

  /* initialize 'data.the_primes[]' */
  (*data).the_primes = init_factors();

  /* initialize 'data.kill_us[]' */	
  (*data).kill_us.size = (*data).the_primes.size - MOST;
  if ((*data).kill_us.size < 0)           
    (*data).kill_us.size = 0;
  (*data).kill_us.list = (*data).the_primes.list;
 
  /* initialize 'data.denom[]' */ 
  the_primes = minus(&((*data).the_primes.list[(*data).kill_us.size]),
		     (*data).the_primes.size - (*data).kill_us.size); 
  /* define maximum value for which setup is valid */
  mpz_init(&limit);
  limit = guess_mu_inverse(maxval, (*data).magic);
  mpz_mul_ui(&limit, &limit, 2);
  (*data).denom = find_denom(the_primes.list, the_primes.size, &limit);

  mpz_clear(&limit);
  mpz_clear(&num);
  mpz_clear(&denom);
  free_mp_array(&the_primes);
}



void free_rel_prime(REL_PRIME_TABLE *data)
{
  mpz_clear(data->valid);
  mpz_clear(data->prim);
  free(data->magic);
  free_mp_array(&(data->the_primes));
  free_mp_array(&(data->denom));
}



/* find nth number relatively prime, given data */
extern int rel_prime(result, number, data)
     MP_INT *result, *number;
     REL_PRIME_TABLE data;
{
  MP_INT guess;
  int i;
  REL_PRIME_TABLE newdata;
  mpz_init(result); 
  mpz_init(&guess);

  if (mpz_cmp(data.valid, number) >= 0) {
    mpq_get_num(&guess, data.magic);
    guess = guess_mu_inverse(number, data.magic);
    *result = find_M(&guess, number, 
		     data.kill_us, data.denom, 
		     data.the_primes, data.magic);
  }
  else {
    init_rel_prime(&newdata, number);
    rel_prime(result, number, newdata);
    free_rel_prime(&newdata);
  }

  /* Do NOT clear guess, since result uses its component array */
  
  return 0;
}

/* find nth primitive element, given data */
extern void prim_elt(result, number, data)
     MP_INT *result, *number;
     REL_PRIME_TABLE data;
{
  MP_INT x, pow,temp;
  mpz_init_set_str(&x, "2", 10);
  mpz_pow_ui(&x, &x, data.power);
  mpz_sub_ui(&x, &x, 1);

  mpz_init_set(&temp,number);
  mpz_add_ui(&temp,&temp,5UL); /* first few streams are bad; so offset by 5 streams */
  
  
  rel_prime(&pow, &temp, data);
  
  mpz_powm(result, data.prim, &pow, &x);

  mpz_clear(&pow);
  mpz_clear(&temp);
}