1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "info.h"
#define LINEAR_SEARCH_LIMIT 5000
#define MOST 18
typedef struct DATATYPE1 {
long power;
MP_INT *valid;
struct MP_ARRAY_TYPE denom;
struct MP_ARRAY_TYPE the_primes;
struct MP_ARRAY_TYPE kill_us;
MP_INT *prim;
MP_RAT *magic;
} REL_PRIME_TABLE;
void free_mp_array(struct MP_ARRAY_TYPE *array)
{
long i;
for(i=0; i<array->size; i++)
mpz_clear(&(array->list[i]));
free(array->list);
return;
}
/* This function merges two arrays */
extern struct MP_ARRAY_TYPE join(first, second)
struct MP_ARRAY_TYPE first, second;
{
struct MP_ARRAY_TYPE result;
long count1 = 0;
long count2 = 0;
MP_INT absfirst, abssecond;
mpz_init(&absfirst);
mpz_init(&abssecond);
result.size = first.size + second.size;
result.list = malloc(result.size * sizeof(MP_INT));
if ((count1 < first.size) && (count2 < second.size)) {
mpz_abs(&absfirst, &(first.list[count1]));
mpz_abs(&abssecond, &(second.list[count2]));
}
while ((count1 < first.size) && (count2 < second.size)) {
if (mpz_cmp(&absfirst, &abssecond) > 0) {
mpz_init_set(&(result.list[count1+count2]),&(second.list[count2]));
++count2;
if (count2 < second.size)
mpz_abs(&abssecond, &(second.list[count2]));
}
else {
mpz_init_set(&(result.list[count1+count2]),&(first.list[count1]));
++count1;
if (count1 < first.size)
mpz_abs(&absfirst, &(first.list[count1]));
}
}
mpz_clear(&absfirst);
mpz_clear(&abssecond);
for (;count1<first.size;count1++)
mpz_init_set(&(result.list[count1+count2]),&(first.list[count1]));
for (;count2<second.size;count2++)
mpz_init_set(&(result.list[count1+count2]),&(second.list[count2]));
return(result);
}
/* This function multiplies all elements by -1 */
extern struct MP_ARRAY_TYPE minus(list, size)
MP_INT *list;
long size;
{
long count;
struct MP_ARRAY_TYPE result;
result.size = size;
result.list = malloc(size * sizeof(MP_INT));
for (count=0;count<size;count++) {
mpz_init(&(result.list[count]));
mpz_neg(&(result.list[count]), &(list[count]));
}
return(result);
}
/* This function multiplies and reduces an array */
extern struct MP_ARRAY_TYPE mult_reduce(number, set, limit)
MP_INT *number, *limit;
struct MP_ARRAY_TYPE set;
{
struct MP_ARRAY_TYPE result;
long count, count2;
MP_INT plussed/*, temp*/;
#if 0
mpz_neg(number,number); /* multiply by -number, except with 1 */
mpz_init(&temp);
mpz_abs(&temp,number);
#endif
mpz_init(&plussed);
result.list = malloc(set.size * sizeof(MP_INT));
count2 = 0;
if (set.size > 0) {
mpz_init(&(result.list[count2]));
for (count=0;count<set.size;count++)
{
/*if(mpz_cmp_ui(&(set.list[count]),1U) != 0)*/
mpz_mul(&(result.list[count2]), &(set.list[count]), number);
/*else
mpz_mul(&(result.list[count2]), &(set.list[count]), &temp);*/
mpz_abs(&plussed, &(result.list[count2]));
if (mpz_cmp(&plussed, limit) < 0) {
++count2;
if (count2<set.size)
mpz_init(&(result.list[count2]));
}
}
}
result.size = count2;
mpz_clear(&plussed);
/*mpz_clear(&temp);*/
return(result);
}
/* This makes a list of denominators out of a list of primes */
extern struct MP_ARRAY_TYPE find_denom(the_primes, maxsize, limit)
MP_INT *the_primes, *limit;
long maxsize;
{
struct MP_ARRAY_TYPE newones, oldones, answer;
int count;
if (maxsize > 1)
oldones = find_denom(&(the_primes[1]), maxsize-1, limit);
else {
oldones.size = 1;
oldones.list = malloc(sizeof(MP_INT));
mpz_init_set_str(oldones.list, "1", 10);
}
newones = mult_reduce(the_primes, oldones, limit);
answer = join(oldones, newones);
free_mp_array(&newones);
free_mp_array(&oldones);
return(answer);
}
/* Evaluates Mu function, given denominators */
extern void mu_eval(result, x, denominators)
MP_INT *result;
MP_INT *x;
struct MP_ARRAY_TYPE denominators;
{
MP_INT val;
long count = 0;
mpz_set_str(result, "0", 10);
mpz_init_set_str(&val, "1", 10);
while ((count < denominators.size) && (mpz_cmp_ui(&val, 0) != 0)) {
mpz_div(&val, x, &(denominators.list[count]));
mpz_add(result, result, &val);
count++;
}
mpz_clear(&val);
}
/* Checks if x == 0 mod y, returns true if so */
extern short divisible(x, y)
MP_INT *x, *y;
{
MP_INT temp;
int sign;
mpz_init(&temp);
mpz_mod(&temp, x, y);
sign = mpz_cmp_si(&temp, 0);
mpz_clear(&temp);
if (sign == 0) {
return(1);
}
else {
return(0);
}
}
/* Checks if any primes divide a number */
extern short any_divide(number, the_primes, no_of_primes)
MP_INT *number, *the_primes;
long no_of_primes;
{
if (no_of_primes == 1) {
return(divisible(number, &(the_primes[0])));
}
else {
if (divisible(number, &(the_primes[no_of_primes-1]))) {
return(1);
}
else {
return(any_divide(number, the_primes, no_of_primes - 1));
}
}
}
extern void incr(x, num)
MP_INT *x;
long num;
{
mpz_add_ui(x, x, num);
}
extern void decr(x, num)
MP_INT *x;
long num;
{
mpz_sub_ui(x, x, num);
}
/* Uses a linear search to find inverse value given guess, mu(guess) */
extern MP_INT linear_find(y, current_mu, guess, the_primes)
MP_INT *y, *current_mu, *guess;
struct MP_ARRAY_TYPE the_primes;
{
while (mpz_cmp(current_mu, y) < 0) {
incr(guess, 1L);
if (any_divide(guess, the_primes.list, the_primes.size)) {
}
else
incr(current_mu, 1L);
}
while (mpz_cmp(current_mu, y) > 0) {
if (any_divide(guess, the_primes.list, the_primes.size))
decr(guess, 1L);
else {
decr(guess, 1L);
decr(current_mu, 1L);
}
}
while (any_divide(guess, the_primes.list, the_primes.size))
decr(guess, 1L);
return(*guess);
}
/* This guesses at mu_inverse */
extern MP_INT guess_mu_inverse(y, magic)
MP_INT *y;
MP_RAT *magic;
{
MP_INT temp, guess;
mpz_init(&temp);
mpz_init(&guess);
mpq_get_num(&temp, magic);
mpz_mul(&guess, y, &temp);
mpq_get_den(&temp, magic);
mpz_div(&guess, &guess, &temp);
mpz_clear(&temp);
return(guess);
}
/* Efficient caluculation of mu */
extern void Mu(result, x, left_to_kill, the_final_denom)
MP_INT *x, *result;
struct MP_ARRAY_TYPE left_to_kill, the_final_denom;
{
MP_INT subout, first, second;
struct MP_ARRAY_TYPE new_kill;
if (left_to_kill.size <= 0) {
mu_eval(result, x, the_final_denom);
}
else {
mpz_init(&subout);
mpz_init(&first);
mpz_init(&second);
mpz_div(&subout, x, &(left_to_kill.list[0]));
new_kill.size = left_to_kill.size - 1;
new_kill.list = &(left_to_kill.list[1]);
Mu(&first, x, new_kill, the_final_denom);
Mu(&second, &subout, new_kill, the_final_denom);
mpz_sub(result, &first, &second);
mpz_clear(&first);
mpz_clear(&second);
mpz_clear(&subout);
}
}
/* finds the desired result, given y, the primes to be killed, the denominators,
the full set of initial primes, and the density of relative primes */
extern MP_INT find_M(guess, y, left_to_kill, denom, initial_primes, magic)
MP_INT *guess, *y;
struct MP_ARRAY_TYPE denom, initial_primes, left_to_kill;
MP_RAT *magic;
{
MP_INT temp, temp2, current_mu;
mpz_init(&temp);
mpz_init(&temp2);
mpz_init(¤t_mu);
#if 0
Mu(¤t_mu, guess, left_to_kill, denom);
mpz_sub(&temp, y, ¤t_mu);
mpz_abs(&temp2, &temp);
while (mpz_cmp_ui(&temp2, LINEAR_SEARCH_LIMIT) > 0) {
temp2 = guess_mu_inverse(&temp, magic);
mpz_add(guess, guess, &temp2);
Mu(¤t_mu, guess, left_to_kill, denom);
mpz_sub(&temp, y, ¤t_mu);
mpz_abs(&temp2, &temp);
}
mpz_clear(&temp);
mpz_clear(&temp2);
#else
mpz_set_str(guess, "17", 10);
mpz_set_str(¤t_mu, "1", 10);
#endif
return(linear_find(y, ¤t_mu, guess, initial_primes));
}
/* setup. Note: 'int param' must be another argument if modulii other than 2^61-1 will be used */
extern void init_rel_prime(data, maxval)
REL_PRIME_TABLE *data;
MP_INT *maxval;
{
/* modified by cmdavis */
MP_INT limit, num, denom;
struct MP_ARRAY_TYPE the_primes;
/* initialize 'data.power' */
(*data).power = POWER_N;
/* initialize 'data.valid' */
(*data).valid = malloc(sizeof(MP_INT));
mpz_init_set((*data).valid, maxval);
/* initialize 'data.prim' */
(*data).prim = malloc(sizeof(MP_INT));
mpz_init_set_ui((*data).prim, PRIM);
/* initialize 'data.magic' (density of relative primes) */
(*data).magic = malloc(sizeof(MP_RAT)); mpq_init((*data).magic);
mpz_init_set_str(&num,MAGIC_NUM,10);
mpz_init_set_str(&denom,MAGIC_DEN,10);
mpq_set_num((*data).magic,&num); mpq_set_den((*data).magic,&denom);
/* initialize 'data.the_primes[]' */
(*data).the_primes = init_factors();
/* initialize 'data.kill_us[]' */
(*data).kill_us.size = (*data).the_primes.size - MOST;
if ((*data).kill_us.size < 0)
(*data).kill_us.size = 0;
(*data).kill_us.list = (*data).the_primes.list;
/* initialize 'data.denom[]' */
the_primes = minus(&((*data).the_primes.list[(*data).kill_us.size]),
(*data).the_primes.size - (*data).kill_us.size);
/* define maximum value for which setup is valid */
mpz_init(&limit);
limit = guess_mu_inverse(maxval, (*data).magic);
mpz_mul_ui(&limit, &limit, 2);
(*data).denom = find_denom(the_primes.list, the_primes.size, &limit);
mpz_clear(&limit);
mpz_clear(&num);
mpz_clear(&denom);
free_mp_array(&the_primes);
}
void free_rel_prime(REL_PRIME_TABLE *data)
{
mpz_clear(data->valid);
mpz_clear(data->prim);
free(data->magic);
free_mp_array(&(data->the_primes));
free_mp_array(&(data->denom));
}
/* find nth number relatively prime, given data */
extern int rel_prime(result, number, data)
MP_INT *result, *number;
REL_PRIME_TABLE data;
{
MP_INT guess;
int i;
REL_PRIME_TABLE newdata;
mpz_init(result);
mpz_init(&guess);
if (mpz_cmp(data.valid, number) >= 0) {
mpq_get_num(&guess, data.magic);
guess = guess_mu_inverse(number, data.magic);
*result = find_M(&guess, number,
data.kill_us, data.denom,
data.the_primes, data.magic);
}
else {
init_rel_prime(&newdata, number);
rel_prime(result, number, newdata);
free_rel_prime(&newdata);
}
/* Do NOT clear guess, since result uses its component array */
return 0;
}
/* find nth primitive element, given data */
extern void prim_elt(result, number, data)
MP_INT *result, *number;
REL_PRIME_TABLE data;
{
MP_INT x, pow,temp;
mpz_init_set_str(&x, "2", 10);
mpz_pow_ui(&x, &x, data.power);
mpz_sub_ui(&x, &x, 1);
mpz_init_set(&temp,number);
mpz_add_ui(&temp,&temp,5UL); /* first few streams are bad; so offset by 5 streams */
rel_prime(&pow, &temp, data);
mpz_powm(result, data.prim, &pow, &x);
mpz_clear(&pow);
mpz_clear(&temp);
}
|