File: wolff.c

package info (click to toggle)
sprng 2.0a-19
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 3,308 kB
  • sloc: ansic: 30,353; fortran: 1,618; makefile: 576; cpp: 58; sh: 5
file content (353 lines) | stat: -rw-r--r-- 8,895 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*********************************************************************
 *								     *
 *			  isingwolff.c				     *
 *								     *
 *********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "sprng.h"

/*#define PARALLEL*/

int lattice_size, *spin, *stack, nsites;
int **genptr;			/* array of random number generators */
int exponent, mask; /* Used for efficiency purposes */
double prob;
double Energy[10][10], Cv[10][10], J=0.4406868;
double exact_energy=-1.4530649029, exact_Cv=1.4987048885; /***** This is correct ONLY for a 16x16 lattice!!****** */

int RNG()	 /* Random number generator used for initializations alone */
{
  static int seed=17;
  seed=16807*(seed%127773)-(seed/127773)*2836;
  if(seed<0) 
    seed+=2147483647;
  else if(seed > 2147483647)
  {
    seed--;
    seed -= 2147483647;
  }
  
  return seed;
}


void Single_Cluster_Update(void) /* update lattice spins: a single sweep */
{
  static int nSite[4], Ipt=-1;
  int i, j, nnJ, ix, iy;
  double ff;
  
  i = RNG()>>(31-(exponent<<1)); 
  if(i<0) 
    i += nsites; 
  spin[i] = -spin[i];  
  
  while(i >= 0) 
  {
    /* ix=I/size; iy=I%size; */
    ix =i>>exponent; iy=i&mask;
    /* printf("ix=%d, iy=%d) ", ix, iy); */
    if(iy==0) nSite[0]=(ix<<exponent)+mask; /* nSite[0]=ix*size+size-1; */
    else nSite[0]=i-1;
    
    if(iy==lattice_size-1) nSite[2]=ix<<exponent; /* nSite[2]=ix*size; */
    else nSite[2]=i+1;
    
    if(ix==0) nSite[1]=(mask<<exponent)+iy; /* nSite[1]=(size-1)*size+iy; */
    else nSite[1]=i-lattice_size;
    
    if(ix==lattice_size-1) nSite[3]=iy;
    else nSite[3]=i+lattice_size;
    
    for(j=0; j<4; j++)
      {
	nnJ=nSite[j];
	if(spin[i]==spin[nnJ]) 
	  continue;
	/* notice prog should be scaled to MAXIMUM if necessary */
	if(sprng(genptr[i])>prob) 
	  continue;
	spin[nnJ]=-spin[nnJ];
	stack[++Ipt]=nnJ;
      }
    
    if(Ipt>=0)
      {
	i=stack[Ipt];
	Ipt--;
      }
    else i=-1;
  }
}


int System_Energy()		/* Compute energy of lattice */
{
  int E =0;
  int i, j, s, aa;

  for(i=0, s=0;  i<lattice_size-1;  i++, s+=lattice_size)
    for(j=s; j<s+lattice_size; j++)
      if(spin[j]==spin[lattice_size+j])
	E-=1; 
      else
	E+=1;  
  
  for(i=0, s=0; i<lattice_size; i++, s+=lattice_size)
    for(j=s; j<s+lattice_size-1; j++)
      if(spin[j]==spin[j+1])
	E-=1; 
      else
	E+=1; 

  s=lattice_size*(lattice_size-1);
  for(i=0; i<lattice_size; i++)
    if(spin[i]==spin[s+i])
	E-=1;
    else
	E+=1;

  for(i=0, s=0; i<lattice_size; i++, s+=lattice_size)
    if(spin[s]==spin[s+lattice_size-1])
	E-=1;
    else
	E+=1;
  
  return E;
}



void compute(int i)		/* print results */
{
  int j;
  double average_energy, average_Cv, energy_error, Cv_error;

  average_energy = average_Cv = energy_error = Cv_error = 0.0;
  
  for(j=0; j<10; j++)
  {
    Cv[i][j] = J*J*(Cv[i][j] - Energy[i][j]*Energy[i][j]
		    *nsites*nsites)/nsites;
    average_Cv += Cv[i][j];
    Cv_error += Cv[i][j]*Cv[i][j];
    average_energy += Energy[i][j];
    energy_error += Energy[i][j]*Energy[i][j];
  }
 
  energy_error = sqrt((energy_error/10.0-Energy[i+1][0]*Energy[i+1][0])/9.0);
  average_Cv /= 10.0;
  Cv_error = sqrt((Cv_error/10.0 - average_Cv*average_Cv)/9.0);

  printf("%9d.\t%.7f\t%.7f\t%.7f\t%.7f\t%.7f\t%.7f\n",
	 i, Energy[i+1][0], fabs(Energy[i+1][0]-exact_energy), 
	 energy_error, average_Cv, fabs(average_Cv-exact_Cv), Cv_error);
}




void wolff(int block_size, int use_blocks)
{
  int i, j, k, row, col, old_row, energy, divisor;
  double average_E, average_Cv;
 
  printf("         \tEnergy\t\tEnergy_error\tSigma_Energy\tCv\t\tCv_error\tSigma_Cv\n");

  for(i=old_row=row=0,divisor=1; i<use_blocks; i++)
  {
    for(j=average_E=average_Cv=0; j<block_size; j++)
    {
      Single_Cluster_Update();	/* update lattice spins */
      energy = System_Energy(); 
      average_E += energy;
      average_Cv += energy*energy; 
    }

    average_E /= (double) block_size*nsites; /*compute average of quantities */
    average_Cv /= (double) block_size; 

    if(i>=10*divisor)	/* make scale logarithmic for printing results */
    {
      divisor *= 10;
      row++;
    }
    
    col = i/divisor;
    average_E /= divisor;
    average_Cv /= divisor;
    Energy[row][col] += average_E;
    Cv[row][col] += average_Cv;

    for(k=row+1; k<10; k++)
    {
      average_E /= 10;
      average_Cv /= 10;
      Energy[k][0] += average_E;
      Cv[k][0] += average_Cv;
    }
    
    if(old_row != row)
    {
      compute(old_row);
      old_row = row;
    }
  }
      compute(old_row);
}

/*--- in order not to duplicate with initialize ---*/
/*--- change from initialize() to minitialize() ---*/
void minitialize(int rng_type, int seed, int param, int use_blocks)
{
  int i, j, temp;
  
  nsites = lattice_size*lattice_size;
  prob = 1 - exp(-2.0*J);

  for(i=0; i<10; i++)
    for(j=0; j<10; j++)
      Energy[i][j] = Cv[i][j] = 0.0;
  

  spin = malloc(nsites*sizeof(int));
  stack = malloc(nsites*sizeof(int));
  if(!spin || !stack)
  {
    printf("\n\tMemory allocation failure, program exits!\n");
    exit(-1);
  }

  
  for(i=0; i<nsites; i++)   /* randomly initialize system */
    spin[i]=(RNG()>prob)?1:-1;

  /* here assume that expo is integer exponent of 2 */
  temp = mask=lattice_size-1;
  exponent = 0;			/* expo = log_2(lattice_size) */
  while(temp)
  {
    exponent++;
    temp >>= 1;
  }
  
  /* initialize generator */
  genptr = (int **) malloc(nsites*sizeof(int *));
  genptr[0] = init_sprng(rng_type,0,nsites,seed,param); /*--- add rng_type ---*/
  print_sprng(genptr[0]);
  for(i=1; i<nsites; i++)
#ifdef PARALLEL
    genptr[i]=init_sprng(rng_type,i,nsites,seed,param); /*--- add rng_type ---*/
#else
    genptr[i]=genptr[0]; 
#endif
}


void check_arguments(int lattice_size, int block_size, int discard_blocks, 
		     int use_blocks)
{
  if(lattice_size<=0)
  {
    printf("ERROR: lattice_size %d should be > 0\n", lattice_size);
    exit(-1);
  }
  if(block_size<=0)
  {
    printf("ERROR: Block_size %d should be > 0\n", block_size);
    exit(-1);
  }
  if(discard_blocks<=0)
  {
    printf("ERROR: discard_blocks %d should be > 0\n", discard_blocks);
    exit(-1);
  }
  if(use_blocks<=0)
  {
    printf("ERROR: use_blocks %d should be > 0\n", use_blocks);
    exit(-1);
  }
  if((lattice_size&(lattice_size-1)) != 0) /* check if lattice_size = 2^n */
  {
    printf("ERROR: lattice_size %d should be a positive power of 2\n", 
	   lattice_size);
    exit(-1);
  }
  if(lattice_size!=16)
  {
    printf("WARNING: The current code gives error values correctly only for a 16x16 lattice.\n\t... The Energy_error and Cv_error columns are incorrect.\n\t... Please use the Energy and Cv values and compute error from the exact solution.\n");
  }
  while(use_blocks)		/* check if use_blocks is a power of 10 */
  {
    if(use_blocks%10 != 0 && use_blocks!=1)
    {
      printf("ERROR: use_blocks %d should be a power of 10\n", use_blocks);
      exit(-1);
    }
    use_blocks /= 10;
  }
}



  /************** 'Thermalize' system so that results are not influenced
    by the initial onditions                              *************/
void thermalize(int block_size, int discard_blocks)
{
  int i, j;
  
  for(i=0; i<discard_blocks; i++)
    for(j=0; j<block_size; j++)
      Single_Cluster_Update();
}




/* block_size*use_blocks sweeps through a lattice of size 
   lattice_size*lattice_size using the Wolff algorithm for the Ising model */

void main(int argc, char **argv)
{
  /*--- Add rng_type as the argument to the new interface ---*/
  int rng_type;
  int seed, param, block_size, discard_blocks, use_blocks;
  
  /****************** Read and check Arguments ********************/
  if(argc==8 ) /*--- increase argc by 1 ---*/
  {
    argv++;
    rng_type = atoi(*argv++); /*--- get rng_type ---*/
    seed = atoi(*argv++);
    param = atoi(*argv++);
    lattice_size = atoi(*argv++);
    block_size = atoi(*argv++);
    discard_blocks = atoi(*argv++);
    use_blocks = atoi(*argv++);
    check_arguments(lattice_size, block_size, discard_blocks, use_blocks);
#ifdef PARALLEL
    printf("Wolff Algorithm with Parallel RNG\n");
#else
    printf("Wolff Algorithm with Serial RNG\n");
#endif
    printf("lattice_size = %d, block_size = %d, discard_blocks = %d, use_blocks = %d\n", lattice_size, block_size, discard_blocks, use_blocks);
  }
  else
  {
    printf("USAGE: %s rng_type seed param lattice_size block_size discard_blocks use_blocks\n", argv[0]);
    exit(-1);
  }


  minitialize(rng_type, seed, param, use_blocks); /* initalize data  */
  

  /************** 'Thermalize' system so that results are not influenced
    by the initial onditions                              *************/
  thermalize(block_size, discard_blocks);
  
  /********** Perform the actual Wolff algorithm calculations *********/
  wolff(block_size, use_blocks);
}