File: optimized_al.py

package info (click to toggle)
sqlalchemy 0.6.3-3%2Bsqueeze1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 10,744 kB
  • ctags: 15,132
  • sloc: python: 93,431; ansic: 787; makefile: 137; xml: 17
file content (213 lines) | stat: -rw-r--r-- 8,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""This script duplicates adjacency_list.py, but optimizes the loading
of XML nodes to be based on a "flattened" datamodel. Any number of XML documents, 
each of arbitrary complexity, can be loaded in their entirety via a single query 
which joins on only three tables.

"""

################################# PART I - Imports/Configuration ###########################################
from sqlalchemy import (MetaData, Table, Column, Integer, String, ForeignKey,
    Unicode, and_)
from sqlalchemy.orm import mapper, relationship, create_session, lazyload

import sys, os, StringIO, re

from xml.etree import ElementTree

meta = MetaData()
meta.bind = 'sqlite://'

################################# PART II - Table Metadata ###########################################
    
# stores a top level record of an XML document.  
documents = Table('documents', meta,
    Column('document_id', Integer, primary_key=True),
    Column('filename', String(30), unique=True),
)

# stores XML nodes in an adjacency list model.  This corresponds to 
# Element and SubElement objects.
elements = Table('elements', meta,
    Column('element_id', Integer, primary_key=True),
    Column('parent_id', Integer, ForeignKey('elements.element_id')),
    Column('document_id', Integer, ForeignKey('documents.document_id')),
    Column('tag', Unicode(30), nullable=False),
    Column('text', Unicode),
    Column('tail', Unicode)
    )

# stores attributes.  This corresponds to the dictionary of attributes
# stored by an Element or SubElement.
attributes = Table('attributes', meta,
    Column('element_id', Integer, ForeignKey('elements.element_id'), primary_key=True),
    Column('name', Unicode(100), nullable=False, primary_key=True),
    Column('value', Unicode(255)))

meta.create_all()

#################################### PART III - Model #############################################

# our document class.  contains a string name,
# and the ElementTree root element.  
class Document(object):
    def __init__(self, name, element):
        self.filename = name
        self.element = element
        
    def __str__(self):
        buf = StringIO.StringIO()
        self.element.write(buf)
        return buf.getvalue()

#################################### PART IV - Persistence Mapping ###################################

# Node class.  a non-public class which will represent 
# the DB-persisted Element/SubElement object.  We cannot create mappers for
# ElementTree elements directly because they are at the very least not new-style 
# classes, and also may be backed by native implementations.
# so here we construct an adapter.
class _Node(object):
    pass

# Attribute class.  also internal, this will represent the key/value attributes stored for 
# a particular Node.
class _Attribute(object):
    def __init__(self, name, value):
        self.name = name
        self.value = value

# setup mappers.  Document will eagerly load a list of _Node objects.
# they will be ordered in primary key/insert order, so that we can reconstruct
# an ElementTree structure from the list.
mapper(Document, documents, properties={
    '_nodes':relationship(_Node, lazy='joined', cascade="all, delete-orphan")
})

# the _Node objects change the way they load so that a list of _Nodes will organize
# themselves hierarchically using the ElementTreeMarshal.  this depends on the ordering of
# nodes being hierarchical as well; relationship() always applies at least ROWID/primary key
# ordering to rows which will suffice.
mapper(_Node, elements, properties={
    'children':relationship(_Node, lazy=None),  # doesnt load; used only for the save relationship
    'attributes':relationship(_Attribute, lazy='joined', cascade="all, delete-orphan"), # eagerly load attributes
})

mapper(_Attribute, attributes)

# define marshalling functions that convert from _Node/_Attribute to/from ElementTree objects.
# this will set the ElementTree element as "document._element", and append the root _Node
# object to the "_nodes" mapped collection.
class ElementTreeMarshal(object):
    def __get__(self, document, owner):
        if document is None:
            return self
            
        if hasattr(document, '_element'):
            return document._element
        
        nodes = {}
        root = None
        for node in document._nodes:
            if node.parent_id is not None:
                parent = nodes[node.parent_id]
                elem = ElementTree.SubElement(parent, node.tag)
                nodes[node.element_id] = elem
            else:
                parent = None
                elem = root = ElementTree.Element(node.tag)
                nodes[node.element_id] = root
            for attr in node.attributes:
                elem.attrib[attr.name] = attr.value
            elem.text = node.text
            elem.tail = node.tail
            
        document._element = ElementTree.ElementTree(root)
        return document._element
    
    def __set__(self, document, element):
        def traverse(node):
            n = _Node()
            n.tag = unicode(node.tag)
            n.text = unicode(node.text)
            n.tail = unicode(node.tail)
            document._nodes.append(n)
            n.children = [traverse(n2) for n2 in node]
            n.attributes = [_Attribute(unicode(k), unicode(v)) for k, v in node.attrib.iteritems()]
            return n

        traverse(element.getroot())
        document._element = element
    
    def __delete__(self, document):
        del document._element
        document._nodes = []

# override Document's "element" attribute with the marshaller.
Document.element = ElementTreeMarshal()

########################################### PART V - Basic Persistence Example ############################

line = "\n--------------------------------------------------------"

# save to DB
session = create_session()

# get ElementTree documents
for file in ('test.xml', 'test2.xml', 'test3.xml'):
    filename = os.path.join(os.path.dirname(__file__), file)
    doc = ElementTree.parse(filename)
    session.add(Document(file, doc))

print "\nSaving three documents...", line
session.flush()
print "Done."

# clear session (to illustrate a full load), restore
session.expunge_all()

print "\nFull text of document 'text.xml':", line
document = session.query(Document).filter_by(filename="test.xml").first()

print document

############################################ PART VI - Searching for Paths #######################################

# manually search for a document which contains "/somefile/header/field1:hi"
print "\nManual search for /somefile/header/field1=='hi':", line
d = session.query(Document).join('_nodes', aliased=True).filter(and_(_Node.parent_id==None, _Node.tag==u'somefile')).\
    join('children', aliased=True, from_joinpoint=True).filter(_Node.tag==u'header').\
    join('children', aliased=True, from_joinpoint=True).filter(and_(_Node.tag==u'field1', _Node.text==u'hi')).\
    one()
print d

# generalize the above approach into an extremely impoverished xpath function:
def find_document(path, compareto):
    j = documents
    prev_elements = None
    query = session.query(Document)
    first = True
    for i, match in enumerate(re.finditer(r'/([\w_]+)(?:\[@([\w_]+)(?:=(.*))?\])?', path)):
        (token, attrname, attrvalue) = match.group(1, 2, 3)
        if first:
            query = query.join('_nodes', aliased=True).filter(_Node.parent_id==None)
            first = False
        else:
            query = query.join('children', aliased=True, from_joinpoint=True)
        query = query.filter(_Node.tag==token)
        if attrname:
            query = query.join('attributes', aliased=True, from_joinpoint=True)
            if attrvalue:
                query = query.filter(and_(_Attribute.name==attrname, _Attribute.value==attrvalue))
            else:
                query = query.filter(_Attribute.name==attrname)
    return query.options(lazyload('_nodes')).filter(_Node.text==compareto).all()

for path, compareto in (
        (u'/somefile/header/field1', u'hi'),
        (u'/somefile/field1', u'hi'),
        (u'/somefile/header/field2', u'there'),
        (u'/somefile/header/field2[@attr=foo]', u'there')
    ):
    print "\nDocuments containing '%s=%s':" % (path, compareto), line
    print [d.filename for d in find_document(path, compareto)]