File: migration_04.rst

package info (click to toggle)
sqlalchemy 1.0.15%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 13,056 kB
  • ctags: 26,600
  • sloc: python: 169,901; ansic: 1,346; makefile: 260; xml: 17
file content (868 lines) | stat: -rw-r--r-- 25,856 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
=============================
What's new in SQLAlchemy 0.4?
=============================

.. admonition:: About this Document

    This document describes changes between SQLAlchemy version 0.3,
    last released October 14, 2007, and SQLAlchemy version 0.4,
    last released October 12, 2008.

    Document date:  March 21, 2008

First Things First
==================

If you're using any ORM features, make sure you import from
``sqlalchemy.orm``:

::

    from sqlalchemy import *
    from sqlalchemy.orm import *

Secondly, anywhere you used to say ``engine=``,
``connectable=``, ``bind_to=``, ``something.engine``,
``metadata.connect()``, use ``bind``:

::

    myengine = create_engine('sqlite://')

    meta = MetaData(myengine)

    meta2 = MetaData()
    meta2.bind = myengine

    session = create_session(bind=myengine)

    statement = select([table], bind=myengine)

Got those ?  Good!  You're now (95%) 0.4 compatible.  If
you're using 0.3.10, you can make these changes immediately;
they'll work there too.

Module Imports
==============

In 0.3, "``from sqlachemy import *``" would import all of
sqlachemy's sub-modules into your namespace. Version 0.4 no
longer imports sub-modules into the namespace. This may mean
you need to add extra imports into your code.

In 0.3, this code worked:

::

    from sqlalchemy import *

    class UTCDateTime(types.TypeDecorator):
        pass

In 0.4, one must do:

::

    from sqlalchemy import *
    from sqlalchemy import types

    class UTCDateTime(types.TypeDecorator):
        pass

Object Relational Mapping
=========================

Querying
--------

New Query API
^^^^^^^^^^^^^

Query is standardized on the generative interface (old
interface is still there, just deprecated).   While most of
the generative interface is available in 0.3, the 0.4 Query
has the inner guts to match the generative outside, and has
a lot more tricks.  All result narrowing is via ``filter()``
and ``filter_by()``, limiting/offset is either through array
slices or ``limit()``/``offset()``, joining is via
``join()`` and ``outerjoin()`` (or more manually, through
``select_from()`` as well as manually-formed criteria).

To avoid deprecation warnings, you must make some changes to
your 03 code

User.query.get_by( \**kwargs )

::

    User.query.filter_by(**kwargs).first()

User.query.select_by( \**kwargs )

::

    User.query.filter_by(**kwargs).all()

User.query.select()

::

    User.query.filter(xxx).all()

New Property-Based Expression Constructs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

By far the most palpable difference within the ORM is that
you can now construct your query criterion using class-based
attributes directly.  The ".c." prefix is no longer needed
when working with mapped classes:

::

    session.query(User).filter(and_(User.name == 'fred', User.id > 17))

While simple column-based comparisons are no big deal, the
class attributes have some new "higher level" constructs
available, including what was previously only available in
``filter_by()``:

::

    # comparison of scalar relations to an instance
    filter(Address.user == user)

    # return all users who contain a particular address
    filter(User.addresses.contains(address))

    # return all users who *dont* contain the address
    filter(~User.address.contains(address))

    # return all users who contain a particular address with
    # the email_address like '%foo%'
    filter(User.addresses.any(Address.email_address.like('%foo%')))

    # same, email address equals 'foo@bar.com'.  can fall back to keyword
    # args for simple comparisons
    filter(User.addresses.any(email_address = 'foo@bar.com'))

    # return all Addresses whose user attribute has the username 'ed'
    filter(Address.user.has(name='ed'))

    # return all Addresses whose user attribute has the username 'ed'
    # and an id > 5 (mixing clauses with kwargs)
    filter(Address.user.has(User.id > 5, name='ed'))

The ``Column`` collection remains available on mapped
classes in the ``.c`` attribute.  Note that property-based
expressions are only available with mapped properties of
mapped classes.  ``.c`` is still used to access columns in
regular tables and selectable objects produced from SQL
Expressions.

Automatic Join Aliasing
^^^^^^^^^^^^^^^^^^^^^^^

We've had join() and outerjoin() for a while now:

::

    session.query(Order).join('items')...

Now you can alias them:

::

    session.query(Order).join('items', aliased=True).
       filter(Item.name='item 1').join('items', aliased=True).filter(Item.name=='item 3')

The above will create two joins from orders->items using
aliases.  the ``filter()`` call subsequent to each will
adjust its table criterion to that of the alias.  To get at
the ``Item`` objects, use ``add_entity()`` and target each
join with an ``id``:

::

    session.query(Order).join('items', id='j1', aliased=True).
    filter(Item.name == 'item 1').join('items', aliased=True, id='j2').
    filter(Item.name == 'item 3').add_entity(Item, id='j1').add_entity(Item, id='j2')

Returns tuples in the form: ``(Order, Item, Item)``.

Self-referential Queries
^^^^^^^^^^^^^^^^^^^^^^^^

So query.join() can make aliases now.  What does that give
us ?  Self-referential queries !   Joins can be done without
any ``Alias`` objects:

::

    # standard self-referential TreeNode mapper with backref
    mapper(TreeNode, tree_nodes, properties={
        'children':relation(TreeNode, backref=backref('parent', remote_side=tree_nodes.id))
    })

    # query for node with child containing "bar" two levels deep
    session.query(TreeNode).join(["children", "children"], aliased=True).filter_by(name='bar')

To add criterion for each table along the way in an aliased
join, you can use ``from_joinpoint`` to keep joining against
the same line of aliases:

::

    # search for the treenode along the path "n1/n12/n122"

    # first find a Node with name="n122"
    q = sess.query(Node).filter_by(name='n122')

    # then join to parent with "n12"
    q = q.join('parent', aliased=True).filter_by(name='n12')

    # join again to the next parent with 'n1'.  use 'from_joinpoint'
    # so we join from the previous point, instead of joining off the
    # root table
    q = q.join('parent', aliased=True, from_joinpoint=True).filter_by(name='n1')

    node = q.first()

``query.populate_existing()``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The eager version of ``query.load()`` (or
``session.refresh()``).  Every instance loaded from the
query, including all eagerly loaded items, get refreshed
immediately if already present in the session:

::

    session.query(Blah).populate_existing().all()

Relations
---------

SQL Clauses Embedded in Updates/Inserts
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

For inline execution of SQL clauses, embedded right in the
UPDATE or INSERT, during a ``flush()``:

::


    myobject.foo = mytable.c.value + 1

    user.pwhash = func.md5(password)

    order.hash = text("select hash from hashing_table")

The column-attribute is set up with a deferred loader after
the operation, so that it issues the SQL to load the new
value when you next access.

Self-referential and Cyclical Eager Loading
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Since our alias-fu has improved, ``relation()`` can join
along the same table \*any number of times*; you tell it how
deep you want to go.  Lets show the self-referential
``TreeNode`` more clearly:

::

    nodes = Table('nodes', metadata,
         Column('id', Integer, primary_key=True),
         Column('parent_id', Integer, ForeignKey('nodes.id')),
         Column('name', String(30)))

    class TreeNode(object):
        pass

    mapper(TreeNode, nodes, properties={
        'children':relation(TreeNode, lazy=False, join_depth=3)
    })

So what happens when we say:

::

    create_session().query(TreeNode).all()

?  A join along aliases, three levels deep off the parent:

::

    SELECT
    nodes_3.id AS nodes_3_id, nodes_3.parent_id AS nodes_3_parent_id, nodes_3.name AS nodes_3_name,
    nodes_2.id AS nodes_2_id, nodes_2.parent_id AS nodes_2_parent_id, nodes_2.name AS nodes_2_name,
    nodes_1.id AS nodes_1_id, nodes_1.parent_id AS nodes_1_parent_id, nodes_1.name AS nodes_1_name,
    nodes.id AS nodes_id, nodes.parent_id AS nodes_parent_id, nodes.name AS nodes_name
    FROM nodes LEFT OUTER JOIN nodes AS nodes_1 ON nodes.id = nodes_1.parent_id
    LEFT OUTER JOIN nodes AS nodes_2 ON nodes_1.id = nodes_2.parent_id
    LEFT OUTER JOIN nodes AS nodes_3 ON nodes_2.id = nodes_3.parent_id
    ORDER BY nodes.oid, nodes_1.oid, nodes_2.oid, nodes_3.oid

Notice the nice clean alias names too.  The joining doesn't
care if it's against the same immediate table or some other
object which then cycles back to the beginning.  Any kind
of chain of eager loads can cycle back onto itself when
``join_depth`` is specified.  When not present, eager
loading automatically stops when it hits a cycle.

Composite Types
^^^^^^^^^^^^^^^

This is one from the Hibernate camp.  Composite Types let
you define a custom datatype that is composed of more than
one column (or one column, if you wanted).   Lets define a
new type, ``Point``.  Stores an x/y coordinate:

::

    class Point(object):
        def __init__(self, x, y):
            self.x = x
            self.y = y
        def __composite_values__(self):
            return self.x, self.y
        def __eq__(self, other):
            return other.x == self.x and other.y == self.y
        def __ne__(self, other):
            return not self.__eq__(other)

The way the ``Point`` object is defined is specific to a
custom type; constructor takes a list of arguments, and the
``__composite_values__()`` method produces a sequence of
those arguments.  The order will match up to our mapper, as
we'll see in a moment.

Let's create a table of vertices storing two points per row:

::

    vertices = Table('vertices', metadata,
        Column('id', Integer, primary_key=True),
        Column('x1', Integer),
        Column('y1', Integer),
        Column('x2', Integer),
        Column('y2', Integer),
        )

Then, map it !  We'll create a ``Vertex`` object which
stores two ``Point`` objects:

::

    class Vertex(object):
        def __init__(self, start, end):
            self.start = start
            self.end = end

    mapper(Vertex, vertices, properties={
        'start':composite(Point, vertices.c.x1, vertices.c.y1),
        'end':composite(Point, vertices.c.x2, vertices.c.y2)
    })

Once you've set up your composite type, it's usable just
like any other type:

::


    v = Vertex(Point(3, 4), Point(26,15))
    session.save(v)
    session.flush()

    # works in queries too
    q = session.query(Vertex).filter(Vertex.start == Point(3, 4))

If you'd like to define the way the mapped attributes
generate SQL clauses when used in expressions, create your
own ``sqlalchemy.orm.PropComparator`` subclass, defining any
of the common operators (like ``__eq__()``, ``__le__()``,
etc.), and send it in to ``composite()``.  Composite types
work as primary keys too, and are usable in ``query.get()``:

::

    # a Document class which uses a composite Version
    # object as primary key
    document = query.get(Version(1, 'a'))

``dynamic_loader()`` relations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A ``relation()`` that returns a live ``Query`` object for
all read operations.  Write operations are limited to just
``append()`` and ``remove()``, changes to the collection are
not visible until the session is flushed.  This feature is
particularly handy with an "autoflushing" session which will
flush before each query.

::

    mapper(Foo, foo_table, properties={
        'bars':dynamic_loader(Bar, backref='foo', <other relation() opts>)
    })

    session = create_session(autoflush=True)
    foo = session.query(Foo).first()

    foo.bars.append(Bar(name='lala'))

    for bar in foo.bars.filter(Bar.name=='lala'):
        print(bar)

    session.commit()

New Options: ``undefer_group()``, ``eagerload_all()``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A couple of query options which are handy.
``undefer_group()`` marks a whole group of "deferred"
columns as undeferred:

::

    mapper(Class, table, properties={
        'foo' : deferred(table.c.foo, group='group1'),
        'bar' : deferred(table.c.bar, group='group1'),
        'bat' : deferred(table.c.bat, group='group1'),
    )

    session.query(Class).options(undefer_group('group1')).filter(...).all()

and ``eagerload_all()`` sets a chain of attributes to be
eager in one pass:

::

    mapper(Foo, foo_table, properties={
       'bar':relation(Bar)
    })
    mapper(Bar, bar_table, properties={
       'bat':relation(Bat)
    })
    mapper(Bat, bat_table)

    # eager load bar and bat
    session.query(Foo).options(eagerload_all('bar.bat')).filter(...).all()

New Collection API
^^^^^^^^^^^^^^^^^^

Collections are no longer proxied by an
{{{InstrumentedList}}} proxy, and access to members, methods
and attributes is direct.   Decorators now intercept objects
entering and leaving the collection, and it is now possible
to easily write a custom collection class that manages its
own membership.  Flexible decorators also replace the named
method interface of custom collections in 0.3, allowing any
class to be easily adapted to use as a collection container.

Dictionary-based collections are now much easier to use and
fully ``dict``-like.  Changing ``__iter__`` is no longer
needed for ``dict``s, and new built-in ``dict`` types cover
many needs:

::

    # use a dictionary relation keyed by a column
    relation(Item, collection_class=column_mapped_collection(items.c.keyword))
    # or named attribute
    relation(Item, collection_class=attribute_mapped_collection('keyword'))
    # or any function you like
    relation(Item, collection_class=mapped_collection(lambda entity: entity.a + entity.b))

Existing 0.3 ``dict``-like and freeform object derived
collection classes will need to be updated for the new API.
In most cases this is simply a matter of adding a couple
decorators to the class definition.

Mapped Relations from External Tables/Subqueries
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This feature quietly appeared in 0.3 but has been improved
in 0.4 thanks to better ability to convert subqueries
against a table into subqueries against an alias of that
table; this is key for eager loading, aliased joins in
queries, etc.  It reduces the need to create mappers against
select statements when you just need to add some extra
columns or subqueries:

::

    mapper(User, users, properties={
           'fullname': column_property((users.c.firstname + users.c.lastname).label('fullname')),
           'numposts': column_property(
                select([func.count(1)], users.c.id==posts.c.user_id).correlate(users).label('posts')
           )
        })

a typical query looks like:

::

    SELECT (SELECT count(1) FROM posts WHERE users.id = posts.user_id) AS count,
    users.firstname || users.lastname AS fullname,
    users.id AS users_id, users.firstname AS users_firstname, users.lastname AS users_lastname
    FROM users ORDER BY users.oid

Horizontal Scaling (Sharding) API
---------------------------------

[browser:/sqlalchemy/trunk/examples/sharding/attribute_shard
.py]

Sessions
--------

New Session Create Paradigm; SessionContext, assignmapper Deprecated
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

That's right, the whole shebang is being replaced with two
configurational functions.  Using both will produce the most
0.1-ish feel we've had since 0.1 (i.e., the least amount of
typing).

Configure your own ``Session`` class right where you define
your ``engine`` (or anywhere):

::

    from sqlalchemy import create_engine
    from sqlalchemy.orm import sessionmaker

    engine = create_engine('myengine://')
    Session = sessionmaker(bind=engine, autoflush=True, transactional=True)

    # use the new Session() freely
    sess = Session()
    sess.save(someobject)
    sess.flush()


If you need to post-configure your Session, say with an
engine, add it later with ``configure()``:

::

    Session.configure(bind=create_engine(...))

All the behaviors of ``SessionContext`` and the ``query``
and ``__init__`` methods of ``assignmapper`` are moved into
the new ``scoped_session()`` function, which is compatible
with both ``sessionmaker`` as well as ``create_session()``:

::

    from sqlalchemy.orm import scoped_session, sessionmaker

    Session = scoped_session(sessionmaker(autoflush=True, transactional=True))
    Session.configure(bind=engine)

    u = User(name='wendy')

    sess = Session()
    sess.save(u)
    sess.commit()

    # Session constructor is thread-locally scoped.  Everyone gets the same
    # Session in the thread when scope="thread".
    sess2 = Session()
    assert sess is sess2


When using a thread-local ``Session``, the returned class
has all of ``Session's`` interface implemented as
classmethods, and "assignmapper"'s functionality is
available using the ``mapper`` classmethod.  Just like the
old ``objectstore`` days....

::


    # "assignmapper"-like functionality available via ScopedSession.mapper
    Session.mapper(User, users_table)

    u = User(name='wendy')

    Session.commit()


Sessions are again Weak Referencing By Default
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The weak_identity_map flag is now set to ``True`` by default
on Session.  Instances which are externally deferenced and
fall out of scope are removed from the session
automatically.   However, items which have "dirty" changes
present will remain strongly referenced until those changes
are flushed at which case the object reverts to being weakly
referenced (this works for 'mutable' types, like picklable
attributes, as well).  Setting weak_identity_map to
``False`` restores the old strong-referencing behavior for
those of you using the session like a cache.

Auto-Transactional Sessions
^^^^^^^^^^^^^^^^^^^^^^^^^^^

As you might have noticed above, we are calling ``commit()``
on ``Session``.  The flag ``transactional=True`` means the
``Session`` is always in a transaction, ``commit()``
persists permanently.

Auto-Flushing Sessions
^^^^^^^^^^^^^^^^^^^^^^

Also, ``autoflush=True`` means the ``Session`` will
``flush()`` before each ``query`` as well as when you call
``flush()`` or ``commit()``.  So now this will work:

::

    Session = sessionmaker(bind=engine, autoflush=True, transactional=True)

    u = User(name='wendy')

    sess = Session()
    sess.save(u)

    # wendy is flushed, comes right back from a query
    wendy = sess.query(User).filter_by(name='wendy').one()

Transactional methods moved onto sessions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``commit()`` and ``rollback()``, as well as ``begin()`` are
now directly on ``Session``.  No more need to use
``SessionTransaction`` for anything (it remains in the
background).

::

    Session = sessionmaker(autoflush=True, transactional=False)

    sess = Session()
    sess.begin()

    # use the session

    sess.commit() # commit transaction

Sharing a ``Session`` with an enclosing engine-level (i.e.
non-ORM) transaction is easy:

::

    Session = sessionmaker(autoflush=True, transactional=False)

    conn = engine.connect()
    trans = conn.begin()
    sess = Session(bind=conn)

    # ... session is transactional

    # commit the outermost transaction
    trans.commit()

Nested Session Transactions with SAVEPOINT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Available at the Engine and ORM level.  ORM docs so far:

http://www.sqlalchemy.org/docs/04/session.html#unitofwork_ma
naging

Two-Phase Commit Sessions
^^^^^^^^^^^^^^^^^^^^^^^^^

Available at the Engine and ORM level.  ORM docs so far:

http://www.sqlalchemy.org/docs/04/session.html#unitofwork_ma
naging

Inheritance
-----------

Polymorphic Inheritance with No Joins or Unions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

New docs for inheritance:  http://www.sqlalchemy.org/docs/04
/mappers.html#advdatamapping_mapper_inheritance_joined

Better Polymorphic Behavior with ``get()``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

All classes within a joined-table inheritance hierarchy get
an ``_instance_key`` using the base class, i.e.
``(BaseClass, (1, ), None)``.  That way when you call
``get()`` a ``Query`` against the base class, it can locate
subclass instances in the current identity map without
querying the database.

Types
-----

Custom Subclasses of ``sqlalchemy.types.TypeDecorator``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

There is a `New API <http://www.sqlalchemy.org/docs/04/types
.html#types_custom>`_ for subclassing a TypeDecorator.
Using the 0.3 API causes compilation errors in some cases.

SQL Expressions
===============

All New, Deterministic Label/Alias Generation
---------------------------------------------

All the "anonymous" labels and aliases use a simple
<name>_<number> format now.  SQL is much easier to read and
is compatible with plan optimizer caches.  Just check out
some of the examples in the tutorials:
http://www.sqlalchemy.org/docs/04/ormtutorial.html
http://www.sqlalchemy.org/docs/04/sqlexpression.html

Generative select() Constructs
------------------------------

This is definitely the way to go with ``select()``.  See htt
p://www.sqlalchemy.org/docs/04/sqlexpression.html#sql_transf
orm .

New Operator System
-------------------

SQL operators and more or less every SQL keyword there is
are now abstracted into the compiler layer.  They now act
intelligently and are type/backend aware, see: http://www.sq
lalchemy.org/docs/04/sqlexpression.html#sql_operators

All ``type`` Keyword Arguments Renamed to ``type_``
---------------------------------------------------

Just like it says:

::

       b = bindparam('foo', type_=String)

in\_ Function Changed to Accept Sequence or Selectable
------------------------------------------------------

The in\_ function now takes a sequence of values or a
selectable as its sole argument. The previous API of passing
in values as positional arguments still works, but is now
deprecated. This means that

::

    my_table.select(my_table.c.id.in_(1,2,3)
    my_table.select(my_table.c.id.in_(*listOfIds)

should be changed to

::

    my_table.select(my_table.c.id.in_([1,2,3])
    my_table.select(my_table.c.id.in_(listOfIds)

Schema and Reflection
=====================

``MetaData``, ``BoundMetaData``, ``DynamicMetaData``...
-------------------------------------------------------

In the 0.3.x series, ``BoundMetaData`` and
``DynamicMetaData`` were deprecated in favor of ``MetaData``
and ``ThreadLocalMetaData``.  The older names have been
removed in 0.4.  Updating is simple:

::

    +-------------------------------------+-------------------------+
    |If You Had                           | Now Use                 |
    +=====================================+=========================+
    | ``MetaData``                        | ``MetaData``            |
    +-------------------------------------+-------------------------+
    | ``BoundMetaData``                   | ``MetaData``            |
    +-------------------------------------+-------------------------+
    | ``DynamicMetaData`` (with one       | ``MetaData``            |
    | engine or threadlocal=False)        |                         |
    +-------------------------------------+-------------------------+
    | ``DynamicMetaData``                 | ``ThreadLocalMetaData`` |
    | (with different engines per thread) |                         |
    +-------------------------------------+-------------------------+

The seldom-used ``name`` parameter to ``MetaData`` types has
been removed.  The ``ThreadLocalMetaData`` constructor now
takes no arguments.  Both types can now be bound to an
``Engine`` or a single ``Connection``.

One Step Multi-Table Reflection
-------------------------------

You can now load table definitions and automatically create
``Table`` objects from an entire database or schema in one
pass:

::

    >>> metadata = MetaData(myengine, reflect=True)
    >>> metadata.tables.keys()
    ['table_a', 'table_b', 'table_c', '...']

``MetaData`` also gains a ``.reflect()`` method enabling
finer control over the loading process, including
specification of a subset of available tables to load.

SQL Execution
=============

``engine``, ``connectable``, and ``bind_to`` are all now ``bind``
-----------------------------------------------------------------

``Transactions``, ``NestedTransactions`` and ``TwoPhaseTransactions``
---------------------------------------------------------------------

Connection Pool Events
----------------------

The connection pool now fires events when new DB-API
connections are created, checked out and checked back into
the pool.   You can use these to execute session-scoped SQL
setup statements on fresh connections, for example.

Oracle Engine Fixed
-------------------

In 0.3.11, there were bugs in the Oracle Engine on how
Primary Keys are handled.  These bugs could cause programs
that worked fine with other engines, such as sqlite, to fail
when using the Oracle Engine.  In 0.4, the Oracle Engine has
been reworked, fixing these Primary Key problems.

Out Parameters for Oracle
-------------------------

::

    result = engine.execute(text("begin foo(:x, :y, :z); end;", bindparams=[bindparam('x', Numeric), outparam('y', Numeric), outparam('z', Numeric)]), x=5)
    assert result.out_parameters == {'y':10, 'z':75}

Connection-bound ``MetaData``, ``Sessions``
-------------------------------------------

``MetaData`` and ``Session`` can be explicitly bound to a
connection:

::

    conn = engine.connect()
    sess = create_session(bind=conn)

Faster, More Foolproof ``ResultProxy`` Objects
----------------------------------------------