File: basic_relationships.rst

package info (click to toggle)
sqlalchemy 1.0.15%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 13,056 kB
  • ctags: 26,600
  • sloc: python: 169,901; ansic: 1,346; makefile: 260; xml: 17
file content (423 lines) | stat: -rw-r--r-- 16,971 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
.. _relationship_patterns:

Basic Relationship Patterns
----------------------------

A quick walkthrough of the basic relational patterns.

The imports used for each of the following sections is as follows::

    from sqlalchemy import Table, Column, Integer, ForeignKey
    from sqlalchemy.orm import relationship
    from sqlalchemy.ext.declarative import declarative_base

    Base = declarative_base()


One To Many
~~~~~~~~~~~~

A one to many relationship places a foreign key on the child table referencing
the parent.  :func:`.relationship` is then specified on the parent, as referencing
a collection of items represented by the child::

    class Parent(Base):
        __tablename__ = 'parent'
        id = Column(Integer, primary_key=True)
        children = relationship("Child")

    class Child(Base):
        __tablename__ = 'child'
        id = Column(Integer, primary_key=True)
        parent_id = Column(Integer, ForeignKey('parent.id'))

To establish a bidirectional relationship in one-to-many, where the "reverse"
side is a many to one, specify an additional :func:`.relationship` and connect
the two using the :paramref:`.relationship.back_populates` parameter::

    class Parent(Base):
        __tablename__ = 'parent'
        id = Column(Integer, primary_key=True)
        children = relationship("Child", back_populates="parent")

    class Child(Base):
        __tablename__ = 'child'
        id = Column(Integer, primary_key=True)
        parent_id = Column(Integer, ForeignKey('parent.id'))
        parent = relationship("Parent", back_populates="children")

``Child`` will get a ``parent`` attribute with many-to-one semantics.

Alternatively, the :paramref:`~.relationship.backref` option may be used
on a single :func:`.relationship` instead of using
:paramref:`~.relationship.back_populates`::

    class Parent(Base):
        __tablename__ = 'parent'
        id = Column(Integer, primary_key=True)
        children = relationship("Child", backref="parent")


Many To One
~~~~~~~~~~~~

Many to one places a foreign key in the parent table referencing the child.
:func:`.relationship` is declared on the parent, where a new scalar-holding
attribute will be created::

    class Parent(Base):
        __tablename__ = 'parent'
        id = Column(Integer, primary_key=True)
        child_id = Column(Integer, ForeignKey('child.id'))
        child = relationship("Child")

    class Child(Base):
        __tablename__ = 'child'
        id = Column(Integer, primary_key=True)

Bidirectional behavior is achieved by adding a second :func:`.relationship`
and applying the :paramref:`.relationship.back_populates` parameter
in both directions::

    class Parent(Base):
        __tablename__ = 'parent'
        id = Column(Integer, primary_key=True)
        child_id = Column(Integer, ForeignKey('child.id'))
        child = relationship("Child", back_populates="parents")

    class Child(Base):
        __tablename__ = 'child'
        id = Column(Integer, primary_key=True)
        parents = relationship("Parent", back_populates="child")

Alternatively, the :paramref:`~.relationship.backref` parameter
may be applied to a single :func:`.relationship`, such as ``Parent.child``::

    class Parent(Base):
        __tablename__ = 'parent'
        id = Column(Integer, primary_key=True)
        child_id = Column(Integer, ForeignKey('child.id'))
        child = relationship("Child", backref="parents")

.. _relationships_one_to_one:

One To One
~~~~~~~~~~~

One To One is essentially a bidirectional relationship with a scalar
attribute on both sides. To achieve this, the :paramref:`~.relationship.uselist` flag indicates
the placement of a scalar attribute instead of a collection on the "many" side
of the relationship. To convert one-to-many into one-to-one::

    class Parent(Base):
        __tablename__ = 'parent'
        id = Column(Integer, primary_key=True)
        child = relationship("Child", uselist=False, back_populates="parent")

    class Child(Base):
        __tablename__ = 'child'
        id = Column(Integer, primary_key=True)
        parent_id = Column(Integer, ForeignKey('parent.id'))
        parent = relationship("Parent", back_populates="child")

Or for many-to-one::

    class Parent(Base):
        __tablename__ = 'parent'
        id = Column(Integer, primary_key=True)
        child_id = Column(Integer, ForeignKey('child.id'))
        child = relationship("Child", back_populates="parent")

    class Child(Base):
        __tablename__ = 'child'
        id = Column(Integer, primary_key=True)
        parent = relationship("Parent", back_populates="child", uselist=False)

As always, the :paramref:`.relationship.backref` and :func:`.backref` functions
may be used in lieu of the :paramref:`.relationship.back_populates` approach;
to specify ``uselist`` on a backref, use the :func:`.backref` function::

    from sqlalchemy.orm import backref

    class Parent(Base):
        __tablename__ = 'parent'
        id = Column(Integer, primary_key=True)
        child_id = Column(Integer, ForeignKey('child.id'))
        child = relationship("Child", backref=backref("parent", uselist=False))


.. _relationships_many_to_many:

Many To Many
~~~~~~~~~~~~~

Many to Many adds an association table between two classes. The association
table is indicated by the :paramref:`~.relationship.secondary` argument to
:func:`.relationship`.  Usually, the :class:`.Table` uses the :class:`.MetaData`
object associated with the declarative base class, so that the :class:`.ForeignKey`
directives can locate the remote tables with which to link::

    association_table = Table('association', Base.metadata,
        Column('left_id', Integer, ForeignKey('left.id')),
        Column('right_id', Integer, ForeignKey('right.id'))
    )

    class Parent(Base):
        __tablename__ = 'left'
        id = Column(Integer, primary_key=True)
        children = relationship("Child",
                        secondary=association_table)

    class Child(Base):
        __tablename__ = 'right'
        id = Column(Integer, primary_key=True)

For a bidirectional relationship, both sides of the relationship contain a
collection.  Specify using :paramref:`.relationship.back_populates`, and
for each :func:`.relationship` specify the common association table::

    association_table = Table('association', Base.metadata,
        Column('left_id', Integer, ForeignKey('left.id')),
        Column('right_id', Integer, ForeignKey('right.id'))
    )

    class Parent(Base):
        __tablename__ = 'left'
        id = Column(Integer, primary_key=True)
        children = relationship(
            "Child",
            secondary=association_table,
            back_populates="parents")

    class Child(Base):
        __tablename__ = 'right'
        id = Column(Integer, primary_key=True)
        parents = relationship(
            "Parent",
            secondary=association_table,
            back_populates="children")

When using the :paramref:`~.relationship.backref` parameter instead of
:paramref:`.relationship.back_populates`, the backref will automatically use
the same :paramref:`~.relationship.secondary` argument for the reverse relationship::

    association_table = Table('association', Base.metadata,
        Column('left_id', Integer, ForeignKey('left.id')),
        Column('right_id', Integer, ForeignKey('right.id'))
    )

    class Parent(Base):
        __tablename__ = 'left'
        id = Column(Integer, primary_key=True)
        children = relationship("Child",
                        secondary=association_table,
                        backref="parents")

    class Child(Base):
        __tablename__ = 'right'
        id = Column(Integer, primary_key=True)

The :paramref:`~.relationship.secondary` argument of :func:`.relationship` also accepts a callable
that returns the ultimate argument, which is evaluated only when mappers are
first used.   Using this, we can define the ``association_table`` at a later
point, as long as it's available to the callable after all module initialization
is complete::

    class Parent(Base):
        __tablename__ = 'left'
        id = Column(Integer, primary_key=True)
        children = relationship("Child",
                        secondary=lambda: association_table,
                        backref="parents")

With the declarative extension in use, the traditional "string name of the table"
is accepted as well, matching the name of the table as stored in ``Base.metadata.tables``::

    class Parent(Base):
        __tablename__ = 'left'
        id = Column(Integer, primary_key=True)
        children = relationship("Child",
                        secondary="association",
                        backref="parents")

.. _relationships_many_to_many_deletion:

Deleting Rows from the Many to Many Table
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A behavior which is unique to the :paramref:`~.relationship.secondary` argument to :func:`.relationship`
is that the :class:`.Table` which is specified here is automatically subject
to INSERT and DELETE statements, as objects are added or removed from the collection.
There is **no need to delete from this table manually**.   The act of removing a
record from the collection will have the effect of the row being deleted on flush::

    # row will be deleted from the "secondary" table
    # automatically
    myparent.children.remove(somechild)

A question which often arises is how the row in the "secondary" table can be deleted
when the child object is handed directly to :meth:`.Session.delete`::

    session.delete(somechild)

There are several possibilities here:

* If there is a :func:`.relationship` from ``Parent`` to ``Child``, but there is
  **not** a reverse-relationship that links a particular ``Child`` to each ``Parent``,
  SQLAlchemy will not have any awareness that when deleting this particular
  ``Child`` object, it needs to maintain the "secondary" table that links it to
  the ``Parent``.  No delete of the "secondary" table will occur.
* If there is a relationship that links a particular ``Child`` to each ``Parent``,
  suppose it's called ``Child.parents``, SQLAlchemy by default will load in
  the ``Child.parents`` collection to locate all ``Parent`` objects, and remove
  each row from the "secondary" table which establishes this link.  Note that
  this relationship does not need to be bidrectional; SQLAlchemy is strictly
  looking at every :func:`.relationship` associated with the ``Child`` object
  being deleted.
* A higher performing option here is to use ON DELETE CASCADE directives
  with the foreign keys used by the database.   Assuming the database supports
  this feature, the database itself can be made to automatically delete rows in the
  "secondary" table as referencing rows in "child" are deleted.   SQLAlchemy
  can be instructed to forego actively loading in the ``Child.parents``
  collection in this case using the :paramref:`~.relationship.passive_deletes`
  directive on :func:`.relationship`; see :ref:`passive_deletes` for more details
  on this.

Note again, these behaviors are *only* relevant to the :paramref:`~.relationship.secondary` option
used with :func:`.relationship`.   If dealing with association tables that
are mapped explicitly and are *not* present in the :paramref:`~.relationship.secondary` option
of a relevant :func:`.relationship`, cascade rules can be used instead
to automatically delete entities in reaction to a related entity being
deleted - see :ref:`unitofwork_cascades` for information on this feature.


.. _association_pattern:

Association Object
~~~~~~~~~~~~~~~~~~

The association object pattern is a variant on many-to-many: it's used
when your association table contains additional columns beyond those
which are foreign keys to the left and right tables. Instead of using
the :paramref:`~.relationship.secondary` argument, you map a new class
directly to the association table. The left side of the relationship
references the association object via one-to-many, and the association
class references the right side via many-to-one.  Below we illustrate
an association table mapped to the ``Association`` class which
includes a column called ``extra_data``, which is a string value that
is stored along with each association between ``Parent`` and
``Child``::

    class Association(Base):
        __tablename__ = 'association'
        left_id = Column(Integer, ForeignKey('left.id'), primary_key=True)
        right_id = Column(Integer, ForeignKey('right.id'), primary_key=True)
        extra_data = Column(String(50))
        child = relationship("Child")

    class Parent(Base):
        __tablename__ = 'left'
        id = Column(Integer, primary_key=True)
        children = relationship("Association")

    class Child(Base):
        __tablename__ = 'right'
        id = Column(Integer, primary_key=True)

As always, the bidirectional version make use of :paramref:`.relationship.back_populates`
or :paramref:`.relationship.backref`::

    class Association(Base):
        __tablename__ = 'association'
        left_id = Column(Integer, ForeignKey('left.id'), primary_key=True)
        right_id = Column(Integer, ForeignKey('right.id'), primary_key=True)
        extra_data = Column(String(50))
        child = relationship("Child", back_populates="parents")
        parent = relationship("Parent", back_populates="children")

    class Parent(Base):
        __tablename__ = 'left'
        id = Column(Integer, primary_key=True)
        children = relationship("Association", back_populates="parent")

    class Child(Base):
        __tablename__ = 'right'
        id = Column(Integer, primary_key=True)
        parents = relationship("Association", back_populates="child")

Working with the association pattern in its direct form requires that child
objects are associated with an association instance before being appended to
the parent; similarly, access from parent to child goes through the
association object::

    # create parent, append a child via association
    p = Parent()
    a = Association(extra_data="some data")
    a.child = Child()
    p.children.append(a)

    # iterate through child objects via association, including association
    # attributes
    for assoc in p.children:
        print(assoc.extra_data)
        print(assoc.child)

To enhance the association object pattern such that direct
access to the ``Association`` object is optional, SQLAlchemy
provides the :ref:`associationproxy_toplevel` extension. This
extension allows the configuration of attributes which will
access two "hops" with a single access, one "hop" to the
associated object, and a second to a target attribute.

.. warning::

  The association object pattern **does not coordinate changes with a
  separate relationship that maps the association table as "secondary"**.

  Below, changes made to ``Parent.children`` will not be coordinated
  with changes made to ``Parent.child_associations`` or
  ``Child.parent_associations`` in Python; while all of these relationships will continue
  to function normally by themselves, changes on one will not show up in another
  until the :class:`.Session` is expired, which normally occurs automatically
  after :meth:`.Session.commit`::

        class Association(Base):
            __tablename__ = 'association'

            left_id = Column(Integer, ForeignKey('left.id'), primary_key=True)
            right_id = Column(Integer, ForeignKey('right.id'), primary_key=True)
            extra_data = Column(String(50))

            child = relationship("Child", backref="parent_associations")
            parent = relationship("Parent", backref="child_associations")

        class Parent(Base):
            __tablename__ = 'left'
            id = Column(Integer, primary_key=True)

            children = relationship("Child", secondary="association")

        class Child(Base):
            __tablename__ = 'right'
            id = Column(Integer, primary_key=True)

  Additionally, just as changes to one relationship aren't reflected in the
  others automatically, writing the same data to both relationships will cause
  conflicting INSERT or DELETE statements as well, such as below where we
  establish the same relationship between a ``Parent`` and ``Child`` object
  twice::

        p1 = Parent()
        c1 = Child()
        p1.children.append(c1)

        # redundant, will cause a duplicate INSERT on Association
        p1.parent_associations.append(Association(child=c1))

  It's fine to use a mapping like the above if you know what
  you're doing, though it may be a good idea to apply the ``viewonly=True`` parameter
  to the "secondary" relationship to avoid the issue of redundant changes
  being logged.  However, to get a foolproof pattern that allows a simple
  two-object ``Parent->Child`` relationship while still using the association
  object pattern, use the association proxy extension
  as documented at :ref:`associationproxy_toplevel`.