1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
.. _declarative_inheritance:
Inheritance Configuration
=========================
Declarative supports all three forms of inheritance as intuitively
as possible. The ``inherits`` mapper keyword argument is not needed
as declarative will determine this from the class itself. The various
"polymorphic" keyword arguments are specified using ``__mapper_args__``.
.. seealso::
:ref:`inheritance_toplevel` - general introduction to inheritance
mapping with Declarative.
Joined Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~
Joined table inheritance is defined as a subclass that defines its own
table::
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
id = Column(Integer, ForeignKey('people.id'), primary_key=True)
primary_language = Column(String(50))
Note that above, the ``Engineer.id`` attribute, since it shares the
same attribute name as the ``Person.id`` attribute, will in fact
represent the ``people.id`` and ``engineers.id`` columns together,
with the "Engineer.id" column taking precedence if queried directly.
To provide the ``Engineer`` class with an attribute that represents
only the ``engineers.id`` column, give it a different attribute name::
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
engineer_id = Column('id', Integer, ForeignKey('people.id'),
primary_key=True)
primary_language = Column(String(50))
.. _declarative_single_table:
Single Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~
Single table inheritance is defined as a subclass that does not have
its own table; you just leave out the ``__table__`` and ``__tablename__``
attributes::
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
primary_language = Column(String(50))
When the above mappers are configured, the ``Person`` class is mapped
to the ``people`` table *before* the ``primary_language`` column is
defined, and this column will not be included in its own mapping.
When ``Engineer`` then defines the ``primary_language`` column, the
column is added to the ``people`` table so that it is included in the
mapping for ``Engineer`` and is also part of the table's full set of
columns. Columns which are not mapped to ``Person`` are also excluded
from any other single or joined inheriting classes using the
``exclude_properties`` mapper argument. Below, ``Manager`` will have
all the attributes of ``Person`` and ``Manager`` but *not* the
``primary_language`` attribute of ``Engineer``::
class Manager(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
golf_swing = Column(String(50))
The attribute exclusion logic is provided by the
``exclude_properties`` mapper argument, and declarative's default
behavior can be disabled by passing an explicit ``exclude_properties``
collection (empty or otherwise) to the ``__mapper_args__``.
Resolving Column Conflicts
^^^^^^^^^^^^^^^^^^^^^^^^^^
Note above that the ``primary_language`` and ``golf_swing`` columns
are "moved up" to be applied to ``Person.__table__``, as a result of their
declaration on a subclass that has no table of its own. A tricky case
comes up when two subclasses want to specify *the same* column, as below::
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
start_date = Column(DateTime)
class Manager(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
start_date = Column(DateTime)
Above, the ``start_date`` column declared on both ``Engineer`` and ``Manager``
will result in an error::
sqlalchemy.exc.ArgumentError: Column 'start_date' on class
<class '__main__.Manager'> conflicts with existing
column 'people.start_date'
In a situation like this, Declarative can't be sure
of the intent, especially if the ``start_date`` columns had, for example,
different types. A situation like this can be resolved by using
:class:`.declared_attr` to define the :class:`.Column` conditionally, taking
care to return the **existing column** via the parent ``__table__`` if it
already exists::
from sqlalchemy.ext.declarative import declared_attr
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
@declared_attr
def start_date(cls):
"Start date column, if not present already."
return Person.__table__.c.get('start_date', Column(DateTime))
class Manager(Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
@declared_attr
def start_date(cls):
"Start date column, if not present already."
return Person.__table__.c.get('start_date', Column(DateTime))
Above, when ``Manager`` is mapped, the ``start_date`` column is
already present on the ``Person`` class. Declarative lets us return
that :class:`.Column` as a result in this case, where it knows to skip
re-assigning the same column. If the mapping is mis-configured such
that the ``start_date`` column is accidentally re-assigned to a
different table (such as, if we changed ``Manager`` to be joined
inheritance without fixing ``start_date``), an error is raised which
indicates an existing :class:`.Column` is trying to be re-assigned to
a different owning :class:`.Table`.
.. versionadded:: 0.8 :class:`.declared_attr` can be used on a non-mixin
class, and the returned :class:`.Column` or other mapped attribute
will be applied to the mapping as any other attribute. Previously,
the resulting attribute would be ignored, and also result in a warning
being emitted when a subclass was created.
.. versionadded:: 0.8 :class:`.declared_attr`, when used either with a
mixin or non-mixin declarative class, can return an existing
:class:`.Column` already assigned to the parent :class:`.Table`,
to indicate that the re-assignment of the :class:`.Column` should be
skipped, however should still be mapped on the target class,
in order to resolve duplicate column conflicts.
The same concept can be used with mixin classes (see
:ref:`declarative_mixins`)::
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
discriminator = Column('type', String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class HasStartDate(object):
@declared_attr
def start_date(cls):
return cls.__table__.c.get('start_date', Column(DateTime))
class Engineer(HasStartDate, Person):
__mapper_args__ = {'polymorphic_identity': 'engineer'}
class Manager(HasStartDate, Person):
__mapper_args__ = {'polymorphic_identity': 'manager'}
The above mixin checks the local ``__table__`` attribute for the column.
Because we're using single table inheritance, we're sure that in this case,
``cls.__table__`` refers to ``Person.__table__``. If we were mixing joined-
and single-table inheritance, we might want our mixin to check more carefully
if ``cls.__table__`` is really the :class:`.Table` we're looking for.
.. _declarative_concrete_table:
Concrete Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~~~
Concrete is defined as a subclass which has its own table and sets the
``concrete`` keyword argument to ``True``::
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
name = Column(String(50))
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'concrete':True}
id = Column(Integer, primary_key=True)
primary_language = Column(String(50))
name = Column(String(50))
Usage of an abstract base class is a little less straightforward as it
requires usage of :func:`~sqlalchemy.orm.util.polymorphic_union`,
which needs to be created with the :class:`.Table` objects
before the class is built::
engineers = Table('engineers', Base.metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50)),
Column('primary_language', String(50))
)
managers = Table('managers', Base.metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50)),
Column('golf_swing', String(50))
)
punion = polymorphic_union({
'engineer':engineers,
'manager':managers
}, 'type', 'punion')
class Person(Base):
__table__ = punion
__mapper_args__ = {'polymorphic_on':punion.c.type}
class Engineer(Person):
__table__ = engineers
__mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True}
class Manager(Person):
__table__ = managers
__mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True}
The helper classes :class:`.AbstractConcreteBase` and :class:`.ConcreteBase`
provide automation for the above system of creating a polymorphic union.
See the documentation for these helpers as well as the main ORM documentation
on concrete inheritance for details.
.. seealso::
:ref:`concrete_inheritance`
:ref:`inheritance_concrete_helpers`
|