1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
"""A performance profiling suite for a variety of SQLAlchemy use cases.
Each suite focuses on a specific use case with a particular performance
profile and associated implications:
* bulk inserts
* individual inserts, with or without transactions
* fetching large numbers of rows
* running lots of short queries
All suites include a variety of use patterns illustrating both Core
and ORM use, and are generally sorted in order of performance from worst
to greatest, inversely based on amount of functionality provided by SQLAlchemy,
greatest to least (these two things generally correspond perfectly).
A command line tool is presented at the package level which allows
individual suites to be run::
$ python -m examples.performance --help
usage: python -m examples.performance [-h] [--test TEST] [--dburl DBURL]
[--num NUM] [--profile] [--dump]
[--runsnake] [--echo]
{bulk_inserts,large_resultsets,single_inserts}
positional arguments:
{bulk_inserts,large_resultsets,single_inserts}
suite to run
optional arguments:
-h, --help show this help message and exit
--test TEST run specific test name
--dburl DBURL database URL, default sqlite:///profile.db
--num NUM Number of iterations/items/etc for tests; default is 0
module-specific
--profile run profiling and dump call counts
--dump dump full call profile (implies --profile)
--runsnake invoke runsnakerun (implies --profile)
--echo Echo SQL output
An example run looks like::
$ python -m examples.performance bulk_inserts
Or with options::
$ python -m examples.performance bulk_inserts \\
--dburl mysql+mysqldb://scott:tiger@localhost/test \\
--profile --num 1000
.. seealso::
:ref:`faq_how_to_profile`
File Listing
-------------
.. autosource::
Running all tests with time
---------------------------
This is the default form of run::
$ python -m examples.performance single_inserts
Tests to run: test_orm_commit, test_bulk_save,
test_bulk_insert_dictionaries, test_core,
test_core_query_caching, test_dbapi_raw_w_connect,
test_dbapi_raw_w_pool
test_orm_commit : Individual INSERT/COMMIT pairs via the
ORM (10000 iterations); total time 13.690218 sec
test_bulk_save : Individual INSERT/COMMIT pairs using
the "bulk" API (10000 iterations); total time 11.290371 sec
test_bulk_insert_dictionaries : Individual INSERT/COMMIT pairs using
the "bulk" API with dictionaries (10000 iterations);
total time 10.814626 sec
test_core : Individual INSERT/COMMIT pairs using Core.
(10000 iterations); total time 9.665620 sec
test_core_query_caching : Individual INSERT/COMMIT pairs using Core
with query caching (10000 iterations); total time 9.209010 sec
test_dbapi_raw_w_connect : Individual INSERT/COMMIT pairs w/ DBAPI +
connection each time (10000 iterations); total time 9.551103 sec
test_dbapi_raw_w_pool : Individual INSERT/COMMIT pairs w/ DBAPI +
connection pool (10000 iterations); total time 8.001813 sec
Dumping Profiles for Individual Tests
--------------------------------------
A Python profile output can be dumped for all tests, or more commonly
individual tests::
$ python -m examples.performance single_inserts --test test_core --num 1000 --dump
Tests to run: test_core
test_core : Individual INSERT/COMMIT pairs using Core. (1000 iterations); total fn calls 186109
186109 function calls (186102 primitive calls) in 1.089 seconds
Ordered by: internal time, call count
ncalls tottime percall cumtime percall filename:lineno(function)
1000 0.634 0.001 0.634 0.001 {method 'commit' of 'sqlite3.Connection' objects}
1000 0.154 0.000 0.154 0.000 {method 'execute' of 'sqlite3.Cursor' objects}
1000 0.021 0.000 0.074 0.000 /Users/classic/dev/sqlalchemy/lib/sqlalchemy/sql/compiler.py:1950(_get_colparams)
1000 0.015 0.000 0.034 0.000 /Users/classic/dev/sqlalchemy/lib/sqlalchemy/engine/default.py:503(_init_compiled)
1 0.012 0.012 1.091 1.091 examples/performance/single_inserts.py:79(test_core)
...
Using RunSnake
--------------
This option requires the `RunSnake <https://pypi.python.org/pypi/RunSnakeRun>`_
command line tool be installed::
$ python -m examples.performance single_inserts --test test_core --num 1000 --runsnake
A graphical RunSnake output will be displayed.
.. _examples_profiling_writeyourown:
Writing your Own Suites
-----------------------
The profiler suite system is extensible, and can be applied to your own set
of tests. This is a valuable technique to use in deciding upon the proper
approach for some performance-critical set of routines. For example,
if we wanted to profile the difference between several kinds of loading,
we can create a file ``test_loads.py``, with the following content::
from examples.performance import Profiler
from sqlalchemy import Integer, Column, create_engine, ForeignKey
from sqlalchemy.orm import relationship, joinedload, subqueryload, Session
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
engine = None
session = None
class Parent(Base):
__tablename__ = 'parent'
id = Column(Integer, primary_key=True)
children = relationship("Child")
class Child(Base):
__tablename__ = 'child'
id = Column(Integer, primary_key=True)
parent_id = Column(Integer, ForeignKey('parent.id'))
# Init with name of file, default number of items
Profiler.init("test_loads", 1000)
@Profiler.setup_once
def setup_once(dburl, echo, num):
"setup once. create an engine, insert fixture data"
global engine
engine = create_engine(dburl, echo=echo)
Base.metadata.drop_all(engine)
Base.metadata.create_all(engine)
sess = Session(engine)
sess.add_all([
Parent(children=[Child() for j in range(100)])
for i in range(num)
])
sess.commit()
@Profiler.setup
def setup(dburl, echo, num):
"setup per test. create a new Session."
global session
session = Session(engine)
# pre-connect so this part isn't profiled (if we choose)
session.connection()
@Profiler.profile
def test_lazyload(n):
"load everything, no eager loading."
for parent in session.query(Parent):
parent.children
@Profiler.profile
def test_joinedload(n):
"load everything, joined eager loading."
for parent in session.query(Parent).options(joinedload("children")):
parent.children
@Profiler.profile
def test_subqueryload(n):
"load everything, subquery eager loading."
for parent in session.query(Parent).options(subqueryload("children")):
parent.children
if __name__ == '__main__':
Profiler.main()
We can run our new script directly::
$ python test_loads.py --dburl postgresql+psycopg2://scott:tiger@localhost/test
Running setup once...
Tests to run: test_lazyload, test_joinedload, test_subqueryload
test_lazyload : load everything, no eager loading. (1000 iterations); total time 11.971159 sec
test_joinedload : load everything, joined eager loading. (1000 iterations); total time 2.754592 sec
test_subqueryload : load everything, subquery eager loading. (1000 iterations); total time 2.977696 sec
As well as see RunSnake output for an individual test::
$ python test_loads.py --num 100 --runsnake --test test_joinedload
"""
import argparse
import cProfile
import pstats
import os
import time
import re
import sys
class Profiler(object):
tests = []
_setup = None
_setup_once = None
name = None
num = 0
def __init__(self, options):
self.test = options.test
self.dburl = options.dburl
self.runsnake = options.runsnake
self.profile = options.profile
self.dump = options.dump
self.callers = options.callers
self.num = options.num
self.echo = options.echo
self.stats = []
@classmethod
def init(cls, name, num):
cls.name = name
cls.num = num
@classmethod
def profile(cls, fn):
if cls.name is None:
raise ValueError(
"Need to call Profile.init(<suitename>, <default_num>) first.")
cls.tests.append(fn)
return fn
@classmethod
def setup(cls, fn):
if cls._setup is not None:
raise ValueError("setup function already set to %s" % cls._setup)
cls._setup = staticmethod(fn)
return fn
@classmethod
def setup_once(cls, fn):
if cls._setup_once is not None:
raise ValueError(
"setup_once function already set to %s" % cls._setup_once)
cls._setup_once = staticmethod(fn)
return fn
def run(self):
if self.test:
tests = [fn for fn in self.tests if fn.__name__ == self.test]
if not tests:
raise ValueError("No such test: %s" % self.test)
else:
tests = self.tests
if self._setup_once:
print("Running setup once...")
self._setup_once(self.dburl, self.echo, self.num)
print("Tests to run: %s" % ", ".join([t.__name__ for t in tests]))
for test in tests:
self._run_test(test)
self.stats[-1].report()
def _run_with_profile(self, fn):
pr = cProfile.Profile()
pr.enable()
try:
result = fn(self.num)
finally:
pr.disable()
stats = pstats.Stats(pr).sort_stats('cumulative')
self.stats.append(TestResult(self, fn, stats=stats))
return result
def _run_with_time(self, fn):
now = time.time()
try:
return fn(self.num)
finally:
total = time.time() - now
self.stats.append(TestResult(self, fn, total_time=total))
def _run_test(self, fn):
if self._setup:
self._setup(self.dburl, self.echo, self.num)
if self.profile or self.runsnake or self.dump:
self._run_with_profile(fn)
else:
self._run_with_time(fn)
@classmethod
def main(cls):
parser = argparse.ArgumentParser("python -m examples.performance")
if cls.name is None:
parser.add_argument(
"name", choices=cls._suite_names(), help="suite to run")
if len(sys.argv) > 1:
potential_name = sys.argv[1]
try:
suite = __import__(__name__ + "." + potential_name)
except ImportError:
pass
parser.add_argument(
"--test", type=str,
help="run specific test name"
)
parser.add_argument(
'--dburl', type=str, default="sqlite:///profile.db",
help="database URL, default sqlite:///profile.db"
)
parser.add_argument(
'--num', type=int, default=cls.num,
help="Number of iterations/items/etc for tests; "
"default is %d module-specific" % cls.num
)
parser.add_argument(
'--profile', action='store_true',
help='run profiling and dump call counts')
parser.add_argument(
'--dump', action='store_true',
help='dump full call profile (implies --profile)')
parser.add_argument(
'--callers', action='store_true',
help='print callers as well (implies --dump)')
parser.add_argument(
'--runsnake', action='store_true',
help='invoke runsnakerun (implies --profile)')
parser.add_argument(
'--echo', action='store_true',
help="Echo SQL output")
args = parser.parse_args()
args.dump = args.dump or args.callers
args.profile = args.profile or args.dump or args.runsnake
if cls.name is None:
suite = __import__(__name__ + "." + args.name)
Profiler(args).run()
@classmethod
def _suite_names(cls):
suites = []
for file_ in os.listdir(os.path.dirname(__file__)):
match = re.match(r'^([a-z].*).py$', file_)
if match:
suites.append(match.group(1))
return suites
class TestResult(object):
def __init__(self, profile, test, stats=None, total_time=None):
self.profile = profile
self.test = test
self.stats = stats
self.total_time = total_time
def report(self):
print(self._summary())
if self.profile.profile:
self.report_stats()
def _summary(self):
summary = "%s : %s (%d iterations)" % (
self.test.__name__, self.test.__doc__, self.profile.num)
if self.total_time:
summary += "; total time %f sec" % self.total_time
if self.stats:
summary += "; total fn calls %d" % self.stats.total_calls
return summary
def report_stats(self):
if self.profile.runsnake:
self._runsnake()
elif self.profile.dump:
self._dump()
def _dump(self):
self.stats.sort_stats('time', 'calls')
self.stats.print_stats()
if self.profile.callers:
self.stats.print_callers()
def _runsnake(self):
filename = "%s.profile" % self.test.__name__
try:
self.stats.dump_stats(filename)
os.system("runsnake %s" % filename)
finally:
os.remove(filename)
|