1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
.. _orm_dataclasses_toplevel:
======================================
Integration with dataclasses and attrs
======================================
SQLAlchemy 1.4 has limited support for ORM mappings that are established
against classes that have already been pre-instrumented using either Python's
built-in dataclasses_ library or the attrs_ third party integration library.
.. tip:: SQLAlchemy 2.0 will include a new dataclass integration feature which
allows for a particular class to be mapped and converted into a Python
dataclass simultaneously, with full support for SQLAlchemy's declarative
syntax. Within the scope of the 1.4 release, the ``@dataclass`` decorator
is used separately as documented in this section.
.. _orm_declarative_dataclasses:
Applying ORM Mappings to an existing dataclass
----------------------------------------------
The dataclasses_ module, added in Python 3.7, provides a ``@dataclass`` class
decorator to automatically generate boilerplate definitions of common object
methods including ``__init__()``, ``__repr()__``, and other methods. SQLAlchemy
supports the application of ORM mappings to a class after it has been processed
with the ``@dataclass`` decorator, by using either the
:meth:`_orm.registry.mapped` class decorator, or the
:meth:`_orm.registry.map_imperatively` method to apply ORM mappings to the
class using Imperative.
.. versionadded:: 1.4 Added support for direct mapping of Python dataclasses
To map an existing dataclass, SQLAlchemy's "inline" declarative directives
cannot be used directly; ORM directives are assigned using one of three
techniques:
* Using "Declarative with Imperative Table", the table / column to be mapped
is defined using a :class:`_schema.Table` object assigned to the
``__table__`` attribute of the class; relationships are defined within
``__mapper_args__`` dictionary. The class is mapped using the
:meth:`_orm.registry.mapped` decorator. An example is below at
:ref:`orm_declarative_dataclasses_imperative_table`.
* Using full "Declarative", the Declarative-interpreted directives such as
:class:`_schema.Column`, :func:`_orm.relationship` are added to the
``.metadata`` dictionary of the ``dataclasses.field()`` construct, where
they are consumed by the declarative process. The class is again
mapped using the :meth:`_orm.registry.mapped` decorator. See the example
below at :ref:`orm_declarative_dataclasses_declarative_table`.
* An "Imperative" mapping can be applied to an existing dataclass using
the :meth:`_orm.registry.map_imperatively` method to produce the mapping
in exactly the same way as described at :ref:`orm_imperative_mapping`.
This is illustrated below at :ref:`orm_imperative_dataclasses`.
The general process by which SQLAlchemy applies mappings to a dataclass
is the same as that of an ordinary class, but also includes that
SQLAlchemy will detect class-level attributes that were part of the
dataclasses declaration process and replace them at runtime with
the usual SQLAlchemy ORM mapped attributes. The ``__init__`` method that
would have been generated by dataclasses is left intact, as is the same
for all the other methods that dataclasses generates such as
``__eq__()``, ``__repr__()``, etc.
.. _orm_declarative_dataclasses_imperative_table:
Mapping dataclasses using Declarative With Imperative Table
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
An example of a mapping using ``@dataclass`` using
:ref:`orm_imperative_table_configuration` is below. A complete
:class:`_schema.Table` object is constructed explicitly and assigned to the
``__table__`` attribute. Instance fields are defined using normal dataclass
syntaxes. Additional :class:`.MapperProperty`
definitions such as :func:`.relationship`, are placed in the
:ref:`__mapper_args__ <orm_declarative_mapper_options>` class-level
dictionary underneath the ``properties`` key, corresponding to the
:paramref:`_orm.mapper.properties` parameter::
from __future__ import annotations
from dataclasses import dataclass, field
from typing import List, Optional
from sqlalchemy import Column, ForeignKey, Integer, String, Table
from sqlalchemy.orm import registry, relationship
mapper_registry = registry()
@mapper_registry.mapped
@dataclass
class User:
__table__ = Table(
"user",
mapper_registry.metadata,
Column("id", Integer, primary_key=True),
Column("name", String(50)),
Column("fullname", String(50)),
Column("nickname", String(12)),
)
id: int = field(init=False)
name: Optional[str] = None
fullname: Optional[str] = None
nickname: Optional[str] = None
addresses: List[Address] = field(default_factory=list)
__mapper_args__ = { # type: ignore
"properties": {
"addresses": relationship("Address"),
}
}
@mapper_registry.mapped
@dataclass
class Address:
__table__ = Table(
"address",
mapper_registry.metadata,
Column("id", Integer, primary_key=True),
Column("user_id", Integer, ForeignKey("user.id")),
Column("email_address", String(50)),
)
id: int = field(init=False)
user_id: int = field(init=False)
email_address: Optional[str] = None
In the above example, the ``User.id``, ``Address.id``, and ``Address.user_id``
attributes are defined as ``field(init=False)``. This means that parameters for
these won't be added to ``__init__()`` methods, but
:class:`.Session` will still be able to set them after getting their values
during flush from autoincrement or other default value generator. To
allow them to be specified in the constructor explicitly, they would instead
be given a default value of ``None``.
For a :func:`_orm.relationship` to be declared separately, it needs to be
specified directly within the :paramref:`_orm.mapper.properties` dictionary
which itself is specified within the ``__mapper_args__`` dictionary, so that it
is passed to the :func:`_orm.mapper` construction function. An alternative to this
approach is in the next example.
.. _orm_declarative_dataclasses_declarative_table:
Mapping dataclasses using Declarative Mapping
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The fully declarative approach requires that :class:`_schema.Column` objects
are declared as class attributes, which when using dataclasses would conflict
with the dataclass-level attributes. An approach to combine these together
is to make use of the ``metadata`` attribute on the ``dataclass.field``
object, where SQLAlchemy-specific mapping information may be supplied.
Declarative supports extraction of these parameters when the class
specifies the attribute ``__sa_dataclass_metadata_key__``. This also
provides a more succinct method of indicating the :func:`_orm.relationship`
association::
from __future__ import annotations
from dataclasses import dataclass, field
from typing import List
from sqlalchemy import Column, ForeignKey, Integer, String
from sqlalchemy.orm import registry, relationship
mapper_registry = registry()
@mapper_registry.mapped
@dataclass
class User:
__tablename__ = "user"
__sa_dataclass_metadata_key__ = "sa"
id: int = field(init=False, metadata={"sa": Column(Integer, primary_key=True)})
name: str = field(default=None, metadata={"sa": Column(String(50))})
fullname: str = field(default=None, metadata={"sa": Column(String(50))})
nickname: str = field(default=None, metadata={"sa": Column(String(12))})
addresses: List[Address] = field(
default_factory=list, metadata={"sa": relationship("Address")}
)
@mapper_registry.mapped
@dataclass
class Address:
__tablename__ = "address"
__sa_dataclass_metadata_key__ = "sa"
id: int = field(init=False, metadata={"sa": Column(Integer, primary_key=True)})
user_id: int = field(init=False, metadata={"sa": Column(ForeignKey("user.id"))})
email_address: str = field(default=None, metadata={"sa": Column(String(50))})
.. _orm_imperative_dataclasses:
Mapping dataclasses using Imperative Mapping
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
As described previously, a class which is set up as a dataclass using the
``@dataclass`` decorator can then be further decorated using the
:meth:`_orm.registry.mapped` decorator in order to apply declarative-style
mapping to the class. As an alternative to using the
:meth:`_orm.registry.mapped` decorator, we may also pass the class through the
:meth:`_orm.registry.map_imperatively` method instead, so that we may pass all
:class:`_schema.Table` and :func:`_orm.mapper` configuration imperatively to
the function rather than having them defined on the class itself as class
variables::
from __future__ import annotations
from dataclasses import dataclass
from dataclasses import field
from typing import List
from sqlalchemy import Column
from sqlalchemy import ForeignKey
from sqlalchemy import Integer
from sqlalchemy import MetaData
from sqlalchemy import String
from sqlalchemy import Table
from sqlalchemy.orm import registry
from sqlalchemy.orm import relationship
mapper_registry = registry()
@dataclass
class User:
id: int = field(init=False)
name: str = None
fullname: str = None
nickname: str = None
addresses: List[Address] = field(default_factory=list)
@dataclass
class Address:
id: int = field(init=False)
user_id: int = field(init=False)
email_address: str = None
metadata_obj = MetaData()
user = Table(
"user",
metadata_obj,
Column("id", Integer, primary_key=True),
Column("name", String(50)),
Column("fullname", String(50)),
Column("nickname", String(12)),
)
address = Table(
"address",
metadata_obj,
Column("id", Integer, primary_key=True),
Column("user_id", Integer, ForeignKey("user.id")),
Column("email_address", String(50)),
)
mapper_registry.map_imperatively(
User,
user,
properties={
"addresses": relationship(Address, backref="user", order_by=address.c.id),
},
)
mapper_registry.map_imperatively(Address, address)
.. _orm_declarative_dataclasses_mixin:
Using Declarative Mixins with Dataclasses
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the section :ref:`orm_mixins_toplevel`, Declarative Mixin classes
are introduced. One requirement of declarative mixins is that certain
constructs that can't be easily duplicated must be given as callables,
using the :class:`_orm.declared_attr` decorator, such as in the
example at :ref:`orm_declarative_mixins_relationships`::
class RefTargetMixin:
@declared_attr
def target_id(cls):
return Column("target_id", ForeignKey("target.id"))
@declared_attr
def target(cls):
return relationship("Target")
This form is supported within the Dataclasses ``field()`` object by using
a lambda to indicate the SQLAlchemy construct inside the ``field()``.
Using :func:`_orm.declared_attr` to surround the lambda is optional.
If we wanted to produce our ``User`` class above where the ORM fields
came from a mixin that is itself a dataclass, the form would be::
@dataclass
class UserMixin:
__tablename__ = "user"
__sa_dataclass_metadata_key__ = "sa"
id: int = field(init=False, metadata={"sa": Column(Integer, primary_key=True)})
addresses: List[Address] = field(
default_factory=list, metadata={"sa": lambda: relationship("Address")}
)
@dataclass
class AddressMixin:
__tablename__ = "address"
__sa_dataclass_metadata_key__ = "sa"
id: int = field(init=False, metadata={"sa": Column(Integer, primary_key=True)})
user_id: int = field(
init=False, metadata={"sa": lambda: Column(ForeignKey("user.id"))}
)
email_address: str = field(default=None, metadata={"sa": Column(String(50))})
@mapper_registry.mapped
class User(UserMixin):
pass
@mapper_registry.mapped
class Address(AddressMixin):
pass
.. versionadded:: 1.4.2 Added support for "declared attr" style mixin attributes,
namely :func:`_orm.relationship` constructs as well as :class:`_schema.Column`
objects with foreign key declarations, to be used within "Dataclasses
with Declarative Table" style mappings.
.. _orm_declarative_attrs_imperative_table:
Applying ORM mappings to an existing attrs class
-------------------------------------------------
The attrs_ library is a popular third party library that provides similar
features as dataclasses, with many additional features provided not
found in ordinary dataclasses.
A class augmented with attrs_ uses the ``@define`` decorator. This decorator
initiates a process to scan the class for attributes that define the class'
behavior, which are then used to generate methods, documentation, and
annotations.
The SQLAlchemy ORM supports mapping an attrs_ class using **Declarative with
Imperative Table** or **Imperative** mapping. The general form of these two
styles is fully equivalent to the
:ref:`orm_declarative_dataclasses_declarative_table` and
:ref:`orm_declarative_dataclasses_imperative_table` mapping forms used with
dataclasses, where the inline attribute directives used by dataclasses or attrs
are unchanged, and SQLAlchemy's table-oriented instrumentation is applied at
runtime.
The ``@define`` decorator of attrs_ by default replaces the annotated class
with a new __slots__ based class, which is not supported. When using the old
style annotation ``@attr.s`` or using ``define(slots=False)``, the class
does not get replaced. Furthermore attrs removes its own class-bound attributes
after the decorator runs, so that SQLAlchemy's mapping process takes over these
attributes without any issue. Both decorators, ``@attr.s`` and ``@define(slots=False)``
work with SQLAlchemy.
Mapping attrs with Declarative "Imperative Table"
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In the "Declarative with Imperative Table" style, a :class:`_schema.Table`
object is declared inline with the declarative class. The
``@define`` decorator is applied to the class first, then the
:meth:`_orm.registry.mapped` decorator second::
from __future__ import annotations
from typing import List
from attrs import define
from sqlalchemy import Column
from sqlalchemy import ForeignKey
from sqlalchemy import Integer
from sqlalchemy import MetaData
from sqlalchemy import String
from sqlalchemy import Table
from sqlalchemy.orm import registry
from sqlalchemy.orm import relationship
mapper_registry = registry()
@mapper_registry.mapped
@define(slots=False)
class User:
__table__ = Table(
"user",
mapper_registry.metadata,
Column("id", Integer, primary_key=True),
Column("name", String(50)),
Column("fullname", String(50)),
Column("nickname", String(12)),
)
id: int
name: str
fullname: str
nickname: str
addresses: List[Address]
__mapper_args__ = { # type: ignore
"properties": {
"addresses": relationship("Address"),
}
}
@mapper_registry.mapped
@define(slots=False)
class Address:
__table__ = Table(
"address",
mapper_registry.metadata,
Column("id", Integer, primary_key=True),
Column("user_id", Integer, ForeignKey("user.id")),
Column("email_address", String(50)),
)
id: int
user_id: int
email_address: Optional[str]
.. note:: The ``attrs`` ``slots=True`` option, which enables ``__slots__`` on
a mapped class, cannot be used with SQLAlchemy mappings without fully
implementing alternative
:ref:`attribute instrumentation <examples_instrumentation>`, as mapped
classes normally rely upon direct access to ``__dict__`` for state storage.
Behavior is undefined when this option is present.
Mapping attrs with Imperative Mapping
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Just as is the case with dataclasses, we can make use of
:meth:`_orm.registry.map_imperatively` to map an existing ``attrs`` class
as well::
from __future__ import annotations
from typing import List
from attrs import define
from sqlalchemy import Column
from sqlalchemy import ForeignKey
from sqlalchemy import Integer
from sqlalchemy import MetaData
from sqlalchemy import String
from sqlalchemy import Table
from sqlalchemy.orm import registry
from sqlalchemy.orm import relationship
mapper_registry = registry()
@define(slots=False)
class User:
id: int
name: str
fullname: str
nickname: str
addresses: List[Address]
@define(slots=False)
class Address:
id: int
user_id: int
email_address: Optional[str]
metadata_obj = MetaData()
user = Table(
"user",
metadata_obj,
Column("id", Integer, primary_key=True),
Column("name", String(50)),
Column("fullname", String(50)),
Column("nickname", String(12)),
)
address = Table(
"address",
metadata_obj,
Column("id", Integer, primary_key=True),
Column("user_id", Integer, ForeignKey("user.id")),
Column("email_address", String(50)),
)
mapper_registry.map_imperatively(
User,
user,
properties={
"addresses": relationship(Address, backref="user", order_by=address.c.id),
},
)
mapper_registry.map_imperatively(Address, address)
The above form is equivalent to the previous example using
Declarative with Imperative Table.
.. _dataclasses: https://docs.python.org/3/library/dataclasses.html
.. _attrs: https://pypi.org/project/attrs/
|