1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
.. currentmodule:: sqlalchemy.orm
.. _mapper_composite:
Composite Column Types
======================
Sets of columns can be associated with a single user-defined datatype,
which in modern use is normally a Python dataclass_. The ORM
provides a single attribute which represents the group of columns using the
class you provide.
A simple example represents pairs of :class:`_types.Integer` columns as a
``Point`` object, with attributes ``.x`` and ``.y``. Using a
dataclass, these attributes are defined with the corresponding ``int``
Python type::
import dataclasses
@dataclasses.dataclass
class Point:
x: int
y: int
Non-dataclass forms are also accepted, but require additional methods
to be implemented. For an example using a non-dataclass class, see the section
:ref:`composite_legacy_no_dataclass`.
.. versionadded:: 2.0 The :func:`_orm.composite` construct fully supports
Python dataclasses including the ability to derive mapped column datatypes
from the composite class.
We will create a mapping to a table ``vertices``, which represents two points
as ``x1/y1`` and ``x2/y2``. The ``Point`` class is associated with
the mapped columns using the :func:`_orm.composite` construct.
The example below illustrates the most modern form of :func:`_orm.composite` as
used with a fully
:ref:`Annotated Declarative Table <orm_declarative_mapped_column>`
configuration. :func:`_orm.mapped_column` constructs representing each column
are passed directly to :func:`_orm.composite`, indicating zero or more aspects
of the columns to be generated, in this case the names; the
:func:`_orm.composite` construct derives the column types (in this case
``int``, corresponding to :class:`_types.Integer`) from the dataclass directly::
from sqlalchemy.orm import DeclarativeBase, Mapped
from sqlalchemy.orm import composite, mapped_column
class Base(DeclarativeBase):
pass
class Vertex(Base):
__tablename__ = "vertices"
id: Mapped[int] = mapped_column(primary_key=True)
start: Mapped[Point] = composite(mapped_column("x1"), mapped_column("y1"))
end: Mapped[Point] = composite(mapped_column("x2"), mapped_column("y2"))
def __repr__(self):
return f"Vertex(start={self.start}, end={self.end})"
.. tip:: In the example above the columns that represent the composites
(``x1``, ``y1``, etc.) are also accessible on the class but are not
correctly understood by type checkers.
If accessing the single columns is important they can be explicitly declared,
as shown in :ref:`composite_with_typing`.
The above mapping would correspond to a CREATE TABLE statement as:
.. sourcecode:: pycon+sql
>>> from sqlalchemy.schema import CreateTable
>>> print(CreateTable(Vertex.__table__))
{printsql}CREATE TABLE vertices (
id INTEGER NOT NULL,
x1 INTEGER NOT NULL,
y1 INTEGER NOT NULL,
x2 INTEGER NOT NULL,
y2 INTEGER NOT NULL,
PRIMARY KEY (id)
)
Working with Mapped Composite Column Types
-------------------------------------------
With a mapping as illustrated in the top section, we can work with the
``Vertex`` class, where the ``.start`` and ``.end`` attributes will
transparently refer to the columns referenced by the ``Point`` class, as
well as with instances of the ``Vertex`` class, where the ``.start`` and
``.end`` attributes will refer to instances of the ``Point`` class. The ``x1``,
``y1``, ``x2``, and ``y2`` columns are handled transparently:
* **Persisting Point objects**
We can create a ``Vertex`` object, assign ``Point`` objects as members,
and they will be persisted as expected:
.. sourcecode:: pycon+sql
>>> v = Vertex(start=Point(3, 4), end=Point(5, 6))
>>> session.add(v)
>>> session.commit()
{execsql}BEGIN (implicit)
INSERT INTO vertices (x1, y1, x2, y2) VALUES (?, ?, ?, ?)
[generated in ...] (3, 4, 5, 6)
COMMIT
* **Selecting Point objects as columns**
:func:`_orm.composite` will allow the ``Vertex.start`` and ``Vertex.end``
attributes to behave like a single SQL expression to as much an extent
as possible when using the ORM :class:`_orm.Session` (including the legacy
:class:`_orm.Query` object) to select ``Point`` objects:
.. sourcecode:: pycon+sql
>>> stmt = select(Vertex.start, Vertex.end)
>>> session.execute(stmt).all()
{execsql}SELECT vertices.x1, vertices.y1, vertices.x2, vertices.y2
FROM vertices
[...] ()
{stop}[(Point(x=3, y=4), Point(x=5, y=6))]
* **Comparing Point objects in SQL expressions**
The ``Vertex.start`` and ``Vertex.end`` attributes may be used in
WHERE criteria and similar, using ad-hoc ``Point`` objects for comparisons:
.. sourcecode:: pycon+sql
>>> stmt = select(Vertex).where(Vertex.start == Point(3, 4)).where(Vertex.end < Point(7, 8))
>>> session.scalars(stmt).all()
{execsql}SELECT vertices.id, vertices.x1, vertices.y1, vertices.x2, vertices.y2
FROM vertices
WHERE vertices.x1 = ? AND vertices.y1 = ? AND vertices.x2 < ? AND vertices.y2 < ?
[...] (3, 4, 7, 8)
{stop}[Vertex(Point(x=3, y=4), Point(x=5, y=6))]
.. versionadded:: 2.0 :func:`_orm.composite` constructs now support
"ordering" comparisons such as ``<``, ``>=``, and similar, in addition
to the already-present support for ``==``, ``!=``.
.. tip:: The "ordering" comparison above using the "less than" operator (``<``)
as well as the "equality" comparison using ``==``, when used to generate
SQL expressions, are implemented by the :class:`_orm.Composite.Comparator`
class, and don't make use of the comparison methods on the composite class
itself, e.g. the ``__lt__()`` or ``__eq__()`` methods. From this it
follows that the ``Point`` dataclass above also need not implement the
dataclasses ``order=True`` parameter for the above SQL operations to work.
The section :ref:`composite_operations` contains background on how
to customize the comparison operations.
* **Updating Point objects on Vertex Instances**
By default, the ``Point`` object **must be replaced by a new object** for
changes to be detected:
.. sourcecode:: pycon+sql
>>> v1 = session.scalars(select(Vertex)).one()
{execsql}SELECT vertices.id, vertices.x1, vertices.y1, vertices.x2, vertices.y2
FROM vertices
[...] ()
{stop}
>>> v1.end = Point(x=10, y=14)
>>> session.commit()
{execsql}UPDATE vertices SET x2=?, y2=? WHERE vertices.id = ?
[...] (10, 14, 1)
COMMIT
In order to allow in place changes on the composite object, the
:ref:`mutable_toplevel` extension must be used. See the section
:ref:`mutable_composites` for examples.
.. _orm_composite_other_forms:
Other mapping forms for composites
----------------------------------
The :func:`_orm.composite` construct may be passed the relevant columns
using a :func:`_orm.mapped_column` construct, a :class:`_schema.Column`,
or the string name of an existing mapped column. The following examples
illustrate an equivalent mapping as that of the main section above.
Map columns directly, then pass to composite
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here we pass the existing :func:`_orm.mapped_column` instances to the
:func:`_orm.composite` construct, as in the non-annotated example below
where we also pass the ``Point`` class as the first argument to
:func:`_orm.composite`::
from sqlalchemy import Integer
from sqlalchemy.orm import mapped_column, composite
class Vertex(Base):
__tablename__ = "vertices"
id = mapped_column(Integer, primary_key=True)
x1 = mapped_column(Integer)
y1 = mapped_column(Integer)
x2 = mapped_column(Integer)
y2 = mapped_column(Integer)
start = composite(Point, x1, y1)
end = composite(Point, x2, y2)
.. _composite_with_typing:
Map columns directly, pass attribute names to composite
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We can write the same example above using more annotated forms where we have
the option to pass attribute names to :func:`_orm.composite` instead of
full column constructs::
from sqlalchemy.orm import mapped_column, composite, Mapped
class Vertex(Base):
__tablename__ = "vertices"
id: Mapped[int] = mapped_column(primary_key=True)
x1: Mapped[int]
y1: Mapped[int]
x2: Mapped[int]
y2: Mapped[int]
start: Mapped[Point] = composite("x1", "y1")
end: Mapped[Point] = composite("x2", "y2")
Imperative mapping and imperative table
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When using :ref:`imperative table <orm_imperative_table_configuration>` or
fully :ref:`imperative <orm_imperative_mapping>` mappings, we have access
to :class:`_schema.Column` objects directly. These may be passed to
:func:`_orm.composite` as well, as in the imperative example below::
mapper_registry.map_imperatively(
Vertex,
vertices_table,
properties={
"start": composite(Point, vertices_table.c.x1, vertices_table.c.y1),
"end": composite(Point, vertices_table.c.x2, vertices_table.c.y2),
},
)
.. _composite_legacy_no_dataclass:
Using Legacy Non-Dataclasses
----------------------------
If not using a dataclass, the requirements for the custom datatype class are
that it have a constructor
which accepts positional arguments corresponding to its column format, and
also provides a method ``__composite_values__()`` which returns the state of
the object as a list or tuple, in order of its column-based attributes. It
also should supply adequate ``__eq__()`` and ``__ne__()`` methods which test
the equality of two instances.
To illustrate the equivalent ``Point`` class from the main section
not using a dataclass::
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __composite_values__(self):
return self.x, self.y
def __repr__(self):
return f"Point(x={self.x!r}, y={self.y!r})"
def __eq__(self, other):
return isinstance(other, Point) and other.x == self.x and other.y == self.y
def __ne__(self, other):
return not self.__eq__(other)
Usage with :func:`_orm.composite` then proceeds where the columns to be
associated with the ``Point`` class must also be declared with explicit
types, using one of the forms at :ref:`orm_composite_other_forms`.
Tracking In-Place Mutations on Composites
-----------------------------------------
In-place changes to an existing composite value are
not tracked automatically. Instead, the composite class needs to provide
events to its parent object explicitly. This task is largely automated
via the usage of the :class:`.MutableComposite` mixin, which uses events
to associate each user-defined composite object with all parent associations.
Please see the example in :ref:`mutable_composites`.
.. _composite_operations:
Redefining Comparison Operations for Composites
-----------------------------------------------
The "equals" comparison operation by default produces an AND of all
corresponding columns equated to one another. This can be changed using
the ``comparator_factory`` argument to :func:`.composite`, where we
specify a custom :class:`.CompositeProperty.Comparator` class
to define existing or new operations.
Below we illustrate the "greater than" operator, implementing
the same expression that the base "greater than" does::
import dataclasses
from sqlalchemy.orm import composite
from sqlalchemy.orm import CompositeProperty
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
from sqlalchemy.sql import and_
@dataclasses.dataclass
class Point:
x: int
y: int
class PointComparator(CompositeProperty.Comparator):
def __gt__(self, other):
"""redefine the 'greater than' operation"""
return and_(
*[
a > b
for a, b in zip(
self.__clause_element__().clauses,
dataclasses.astuple(other),
)
]
)
class Base(DeclarativeBase):
pass
class Vertex(Base):
__tablename__ = "vertices"
id: Mapped[int] = mapped_column(primary_key=True)
start: Mapped[Point] = composite(
mapped_column("x1"), mapped_column("y1"), comparator_factory=PointComparator
)
end: Mapped[Point] = composite(
mapped_column("x2"), mapped_column("y2"), comparator_factory=PointComparator
)
Since ``Point`` is a dataclass, we may make use of
``dataclasses.astuple()`` to get a tuple form of ``Point`` instances.
The custom comparator then returns the appropriate SQL expression:
.. sourcecode:: pycon+sql
>>> print(Vertex.start > Point(5, 6))
{printsql}vertices.x1 > :x1_1 AND vertices.y1 > :y1_1
Nesting Composites
-------------------
Composite objects can be defined to work in simple nested schemes, by
redefining behaviors within the composite class to work as desired, then
mapping the composite class to the full length of individual columns normally.
This requires that additional methods to move between the "nested" and
"flat" forms are defined.
Below we reorganize the ``Vertex`` class to itself be a composite object which
refers to ``Point`` objects. ``Vertex`` and ``Point`` can be dataclasses,
however we will add a custom construction method to ``Vertex`` that can be used
to create new ``Vertex`` objects given four column values, which will will
arbitrarily name ``_generate()`` and define as a classmethod so that we can
make new ``Vertex`` objects by passing values to the ``Vertex._generate()``
method.
We will also implement the ``__composite_values__()`` method, which is a fixed
name recognized by the :func:`_orm.composite` construct (introduced previously
at :ref:`composite_legacy_no_dataclass`) that indicates a standard way of
receiving the object as a flat tuple of column values, which in this case will
supersede the usual dataclass-oriented methodology.
With our custom ``_generate()`` constructor and
``__composite_values__()`` serializer method, we can now move between
a flat tuple of columns and ``Vertex`` objects that contain ``Point``
instances. The ``Vertex._generate`` method is passed as the
first argument to the :func:`_orm.composite` construct as the source of new
``Vertex`` instances, and the ``__composite_values__()`` method will be
used implicitly by :func:`_orm.composite`.
For the purposes of the example, the ``Vertex`` composite is then mapped to a
class called ``HasVertex``, which is where the :class:`.Table` containing the
four source columns ultimately resides::
from __future__ import annotations
import dataclasses
from typing import Any
from typing import Tuple
from sqlalchemy.orm import composite
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
@dataclasses.dataclass
class Point:
x: int
y: int
@dataclasses.dataclass
class Vertex:
start: Point
end: Point
@classmethod
def _generate(cls, x1: int, y1: int, x2: int, y2: int) -> Vertex:
"""generate a Vertex from a row"""
return Vertex(Point(x1, y1), Point(x2, y2))
def __composite_values__(self) -> Tuple[Any, ...]:
"""generate a row from a Vertex"""
return dataclasses.astuple(self.start) + dataclasses.astuple(self.end)
class Base(DeclarativeBase):
pass
class HasVertex(Base):
__tablename__ = "has_vertex"
id: Mapped[int] = mapped_column(primary_key=True)
x1: Mapped[int]
y1: Mapped[int]
x2: Mapped[int]
y2: Mapped[int]
vertex: Mapped[Vertex] = composite(Vertex._generate, "x1", "y1", "x2", "y2")
The above mapping can then be used in terms of ``HasVertex``, ``Vertex``, and
``Point``::
hv = HasVertex(vertex=Vertex(Point(1, 2), Point(3, 4)))
session.add(hv)
session.commit()
stmt = select(HasVertex).where(HasVertex.vertex == Vertex(Point(1, 2), Point(3, 4)))
hv = session.scalars(stmt).first()
print(hv.vertex.start)
print(hv.vertex.end)
.. _dataclass: https://docs.python.org/3/library/dataclasses.html
Composite API
-------------
.. autofunction:: composite
|