1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
|
.. _orm_declarative_table_config_toplevel:
=============================================
Table Configuration with Declarative
=============================================
As introduced at :ref:`orm_declarative_mapping`, the Declarative style
includes the ability to generate a mapped :class:`_schema.Table` object
at the same time, or to accommodate a :class:`_schema.Table` or other
:class:`_sql.FromClause` object directly.
The following examples assume a declarative base class as::
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
pass
All of the examples that follow illustrate a class inheriting from the above
``Base``. The decorator style introduced at :ref:`orm_declarative_decorator`
is fully supported with all the following examples as well, as are legacy
forms of Declarative Base including base classes generated by
:func:`_orm.declarative_base`.
.. _orm_declarative_table:
Declarative Table with ``mapped_column()``
------------------------------------------
When using Declarative, the body of the class to be mapped in most cases
includes an attribute ``__tablename__`` that indicates the string name of a
:class:`_schema.Table` that should be generated along with the mapping. The
:func:`_orm.mapped_column` construct, which features additional ORM-specific
configuration capabilities not present in the plain :class:`_schema.Column`
class, is then used within the class body to indicate columns in the table. The
example below illustrates the most basic use of this construct within a
Declarative mapping::
from sqlalchemy import Integer, String
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import mapped_column
class Base(DeclarativeBase):
pass
class User(Base):
__tablename__ = "user"
id = mapped_column(Integer, primary_key=True)
name = mapped_column(String(50), nullable=False)
fullname = mapped_column(String)
nickname = mapped_column(String(30))
Above, :func:`_orm.mapped_column` constructs are placed inline within the class
definition as class level attributes. At the point at which the class is
declared, the Declarative mapping process will generate a new
:class:`_schema.Table` object against the :class:`_schema.MetaData` collection
associated with the Declarative ``Base``; each instance of
:func:`_orm.mapped_column` will then be used to generate a
:class:`_schema.Column` object during this process, which will become part of
the :attr:`.schema.Table.columns` collection of this :class:`_schema.Table`
object.
In the above example, Declarative will build a :class:`_schema.Table`
construct that is equivalent to the following::
# equivalent Table object produced
user_table = Table(
"user",
Base.metadata,
Column("id", Integer, primary_key=True),
Column("name", String(50)),
Column("fullname", String()),
Column("nickname", String(30)),
)
When the ``User`` class above is mapped, this :class:`_schema.Table` object
can be accessed directly via the ``__table__`` attribute; this is described
further at :ref:`orm_declarative_metadata`.
.. sidebar:: ``mapped_column()`` supersedes the use of ``Column()``
Users of 1.x SQLAlchemy will note the use of the :func:`_orm.mapped_column`
construct, which is new as of the SQLAlchemy 2.0 series. This ORM-specific
construct is intended first and foremost to be a drop-in replacement for
the use of :class:`_schema.Column` within Declarative mappings only, adding
new ORM-specific convenience features such as the ability to establish
:paramref:`_orm.mapped_column.deferred` within the construct, and most
importantly to indicate to typing tools such as Mypy_ and Pylance_ an
accurate representation of how the attribute will behave at runtime at
both the class level as well as the instance level. As will be seen in
the following sections, it's also at the forefront of a new
annotation-driven configuration style introduced in SQLAlchemy 2.0.
Users of legacy code should be aware that the :class:`_schema.Column` form
will always work in Declarative in the same way it always has. The different
forms of attribute mapping may also be mixed within a single mapping on an
attribute by attribute basis, so migration to the new form can be at
any pace. See the section :ref:`whatsnew_20_orm_declarative_typing` for
a step by step guide to migrating a Declarative model to the new form.
The :func:`_orm.mapped_column` construct accepts all arguments that are
accepted by the :class:`_schema.Column` construct, as well as additional
ORM-specific arguments. The :paramref:`_orm.mapped_column.__name` positional parameter,
indicating the name of the database column, is typically omitted, as the
Declarative process will make use of the attribute name given to the construct
and assign this as the name of the column (in the above example, this refers to
the names ``id``, ``name``, ``fullname``, ``nickname``). Assigning an alternate
:paramref:`_orm.mapped_column.__name` is valid as well, where the resulting
:class:`_schema.Column` will use the given name in SQL and DDL statements,
while the ``User`` mapped class will continue to allow access to the attribute
using the attribute name given, independent of the name given to the column
itself (more on this at :ref:`mapper_column_distinct_names`).
.. tip::
The :func:`_orm.mapped_column` construct is **only valid within a
Declarative class mapping**. When constructing a :class:`_schema.Table`
object using Core as well as when using
:ref:`imperative table <orm_imperative_table_configuration>` configuration,
the :class:`_schema.Column` construct is still required in order to
indicate the presence of a database column.
.. seealso::
:ref:`mapping_columns_toplevel` - contains additional notes on affecting
how :class:`_orm.Mapper` interprets incoming :class:`.Column` objects.
ORM Annotated Declarative - Automated Mapping with Type Annotations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :func:`_orm.mapped_column` construct in modern Python is normally augmented
by the use of :pep:`484` Python type annotations, where it is capable of
deriving its column-configuration information from type annotations associated
with the attribute as declared in the Declarative mapped class. These type
annotations, if used, must be present within a special SQLAlchemy type called
:class:`.Mapped`, which is a generic type that indicates a specific Python type
within it.
Using this technique, the example in the previous section can be written
more succinctly as below::
from sqlalchemy import String
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
class Base(DeclarativeBase):
pass
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str] = mapped_column(String(50))
fullname: Mapped[str | None]
nickname: Mapped[str | None] = mapped_column(String(30))
The example above demonstrates that if a class attribute is type-hinted with
:class:`.Mapped` but doesn't have an explicit :func:`_orm.mapped_column` assigned
to it, SQLAlchemy will automatically create one. Furthermore, details like the
column's datatype and whether it can be null (nullability) are inferred from
the :class:`.Mapped` annotation. However, you can always explicitly provide these
arguments to :func:`_orm.mapped_column` to override these automatically-derived
settings.
For complete details on using the ORM Annotated Declarative system, see
:ref:`orm_declarative_mapped_column` later in this chapter.
.. seealso::
:ref:`orm_declarative_mapped_column` - complete reference for ORM Annotated Declarative
Dataclass features in ``mapped_column()``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :func:`_orm.mapped_column` construct integrates with SQLAlchemy's
"native dataclasses" feature, discussed at
:ref:`orm_declarative_native_dataclasses`. See that section for current
background on additional directives supported by :func:`_orm.mapped_column`.
.. _orm_declarative_metadata:
Accessing Table and Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A declaratively mapped class will always include an attribute called
``__table__``; when the above configuration using ``__tablename__`` is
complete, the declarative process makes the :class:`_schema.Table`
available via the ``__table__`` attribute::
# access the Table
user_table = User.__table__
The above table is ultimately the same one that corresponds to the
:attr:`_orm.Mapper.local_table` attribute, which we can see through the
:ref:`runtime inspection system <inspection_toplevel>`::
from sqlalchemy import inspect
user_table = inspect(User).local_table
The :class:`_schema.MetaData` collection associated with both the declarative
:class:`_orm.registry` as well as the base class is frequently necessary in
order to run DDL operations such as CREATE, as well as in use with migration
tools such as Alembic. This object is available via the ``.metadata``
attribute of :class:`_orm.registry` as well as the declarative base class.
Below, for a small script we may wish to emit a CREATE for all tables against a
SQLite database::
engine = create_engine("sqlite://")
Base.metadata.create_all(engine)
.. _orm_declarative_table_configuration:
Declarative Table Configuration
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When using Declarative Table configuration with the ``__tablename__``
declarative class attribute, additional arguments to be supplied to the
:class:`_schema.Table` constructor should be provided using the
``__table_args__`` declarative class attribute.
This attribute accommodates both positional as well as keyword
arguments that are normally sent to the
:class:`_schema.Table` constructor.
The attribute can be specified in one of two forms. One is as a
dictionary::
class MyClass(Base):
__tablename__ = "sometable"
__table_args__ = {"mysql_engine": "InnoDB"}
The other, a tuple, where each argument is positional
(usually constraints)::
class MyClass(Base):
__tablename__ = "sometable"
__table_args__ = (
ForeignKeyConstraint(["id"], ["remote_table.id"]),
UniqueConstraint("foo"),
)
Keyword arguments can be specified with the above form by
specifying the last argument as a dictionary::
class MyClass(Base):
__tablename__ = "sometable"
__table_args__ = (
ForeignKeyConstraint(["id"], ["remote_table.id"]),
UniqueConstraint("foo"),
{"autoload": True},
)
A class may also specify the ``__table_args__`` declarative attribute,
as well as the ``__tablename__`` attribute, in a dynamic style using the
:func:`_orm.declared_attr` method decorator. See
:ref:`orm_mixins_toplevel` for background.
.. _orm_declarative_table_schema_name:
Explicit Schema Name with Declarative Table
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The schema name for a :class:`_schema.Table` as documented at
:ref:`schema_table_schema_name` is applied to an individual :class:`_schema.Table`
using the :paramref:`_schema.Table.schema` argument. When using Declarative
tables, this option is passed like any other to the ``__table_args__``
dictionary::
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
pass
class MyClass(Base):
__tablename__ = "sometable"
__table_args__ = {"schema": "some_schema"}
The schema name can also be applied to all :class:`_schema.Table` objects
globally by using the :paramref:`_schema.MetaData.schema` parameter documented
at :ref:`schema_metadata_schema_name`. The :class:`_schema.MetaData` object
may be constructed separately and associated with a :class:`_orm.DeclarativeBase`
subclass by assigning to the ``metadata`` attribute directly::
from sqlalchemy import MetaData
from sqlalchemy.orm import DeclarativeBase
metadata_obj = MetaData(schema="some_schema")
class Base(DeclarativeBase):
metadata = metadata_obj
class MyClass(Base):
# will use "some_schema" by default
__tablename__ = "sometable"
.. seealso::
:ref:`schema_table_schema_name` - in the :ref:`metadata_toplevel` documentation.
.. _orm_declarative_column_options:
Setting Load and Persistence Options for Declarative Mapped Columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :func:`_orm.mapped_column` construct accepts additional ORM-specific
arguments that affect how the generated :class:`_schema.Column` is
mapped, affecting its load and persistence-time behavior. Options
that are commonly used include:
* **deferred column loading** - The :paramref:`_orm.mapped_column.deferred`
boolean establishes the :class:`_schema.Column` using
:ref:`deferred column loading <orm_queryguide_column_deferral>` by default. In the example
below, the ``User.bio`` column will not be loaded by default, but only
when accessed::
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
bio: Mapped[str] = mapped_column(Text, deferred=True)
.. seealso::
:ref:`orm_queryguide_column_deferral` - full description of deferred column loading
* **active history** - The :paramref:`_orm.mapped_column.active_history`
ensures that upon change of value for the attribute, the previous value
will have been loaded and made part of the :attr:`.AttributeState.history`
collection when inspecting the history of the attribute. This may incur
additional SQL statements::
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column(primary_key=True)
important_identifier: Mapped[str] = mapped_column(active_history=True)
See the docstring for :func:`_orm.mapped_column` for a list of supported
parameters.
.. seealso::
:ref:`orm_imperative_table_column_options` - describes using
:func:`_orm.column_property` and :func:`_orm.deferred` for use with
Imperative Table configuration
.. _mapper_column_distinct_names:
.. _orm_declarative_table_column_naming:
Naming Declarative Mapped Columns Explicitly
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
All of the examples thus far feature the :func:`_orm.mapped_column` construct
linked to an ORM mapped attribute, where the Python attribute name given
to the :func:`_orm.mapped_column` is also that of the column as we see in
CREATE TABLE statements as well as queries. The name for a column as
expressed in SQL may be indicated by passing the string positional argument
:paramref:`_orm.mapped_column.__name` as the first positional argument.
In the example below, the ``User`` class is mapped with alternate names
given to the columns themselves::
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column("user_id", primary_key=True)
name: Mapped[str] = mapped_column("user_name")
Where above ``User.id`` resolves to a column named ``user_id``
and ``User.name`` resolves to a column named ``user_name``. We
may write a :func:`_sql.select` statement using our Python attribute names
and will see the SQL names generated:
.. sourcecode:: pycon+sql
>>> from sqlalchemy import select
>>> print(select(User.id, User.name).where(User.name == "x"))
{printsql}SELECT "user".user_id, "user".user_name
FROM "user"
WHERE "user".user_name = :user_name_1
.. seealso::
:ref:`orm_imperative_table_column_naming` - applies to Imperative Table
.. _orm_declarative_table_adding_columns:
Appending additional columns to an existing Declarative mapped class
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A declarative table configuration allows the addition of new
:class:`_schema.Column` objects to an existing mapping after the :class:`.Table`
metadata has already been generated.
For a declarative class that is declared using a declarative base class,
the underlying metaclass :class:`.DeclarativeMeta` includes a ``__setattr__()``
method that will intercept additional :func:`_orm.mapped_column` or Core
:class:`.Column` objects and
add them to both the :class:`.Table` using :meth:`.Table.append_column`
as well as to the existing :class:`.Mapper` using :meth:`.Mapper.add_property`::
MyClass.some_new_column = mapped_column(String)
Using core :class:`_schema.Column`::
MyClass.some_new_column = Column(String)
All arguments are supported including an alternate name, such as
``MyClass.some_new_column = mapped_column("some_name", String)``. However,
the SQL type must be passed to the :func:`_orm.mapped_column` or
:class:`_schema.Column` object explicitly, as in the above examples where
the :class:`_sqltypes.String` type is passed. There's no capability for
the :class:`_orm.Mapped` annotation type to take part in the operation.
Additional :class:`_schema.Column` objects may also be added to a mapping
in the specific circumstance of using single table inheritance, where
additional columns are present on mapped subclasses that have
no :class:`.Table` of their own. This is illustrated in the section
:ref:`single_inheritance`.
.. seealso::
:ref:`orm_declarative_table_adding_relationship` - similar examples for :func:`_orm.relationship`
.. note:: Assignment of mapped
properties to an already mapped class will only
function correctly if the "declarative base" class is used, meaning
the user-defined subclass of :class:`_orm.DeclarativeBase` or the
dynamically generated class returned by :func:`_orm.declarative_base`
or :meth:`_orm.registry.generate_base`. This "base" class includes
a Python metaclass which implements a special ``__setattr__()`` method
that intercepts these operations.
Runtime assignment of class-mapped attributes to a mapped class will **not** work
if the class is mapped using decorators like :meth:`_orm.registry.mapped`
or imperative functions like :meth:`_orm.registry.map_imperatively`.
.. _orm_declarative_mapped_column:
ORM Annotated Declarative - Complete Guide
------------------------------------------
The :func:`_orm.mapped_column` construct is capable of deriving its
column-configuration information from :pep:`484` type annotations associated
with the attribute as declared in the Declarative mapped class. These type
annotations, if used, must be present within a special SQLAlchemy type called
:class:`_orm.Mapped`, which is a generic_ type that then indicates a specific
Python type within it.
Using this technique, the ``User`` example from previous sections may be
written as below::
from sqlalchemy import String
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
class Base(DeclarativeBase):
pass
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str] = mapped_column(String(50))
fullname: Mapped[str | None]
nickname: Mapped[str | None] = mapped_column(String(30))
Above, when Declarative processes each class attribute, each
:func:`_orm.mapped_column` will derive additional arguments from the
corresponding :class:`_orm.Mapped` type annotation on the left side, if
present. Additionally, Declarative will generate an empty
:func:`_orm.mapped_column` directive implicitly, whenever a
:class:`_orm.Mapped` type annotation is encountered that does not have
a value assigned to the attribute (this form is inspired by the similar
style used in Python dataclasses_); this :func:`_orm.mapped_column` construct
proceeds to derive its configuration from the :class:`_orm.Mapped`
annotation present.
.. _orm_declarative_mapped_column_nullability:
``mapped_column()`` derives the datatype and nullability from the ``Mapped`` annotation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The two qualities that :func:`_orm.mapped_column` derives from the
:class:`_orm.Mapped` annotation are:
* **datatype** - the Python type given inside :class:`_orm.Mapped`, as contained
within the ``typing.Optional`` construct if present, is associated with a
:class:`_sqltypes.TypeEngine` subclass such as :class:`.Integer`, :class:`.String`,
:class:`.DateTime`, or :class:`.Uuid`, to name a few common types.
The datatype is determined based on a dictionary of Python type to
SQLAlchemy datatype. This dictionary is completely customizable,
as detailed in the next section :ref:`orm_declarative_mapped_column_type_map`.
The default type map is implemented as in the code example below::
from typing import Any
from typing import Dict
from typing import Type
import datetime
import decimal
import uuid
from sqlalchemy import types
# default type mapping, deriving the type for mapped_column()
# from a Mapped[] annotation
type_map: Dict[Type[Any], TypeEngine[Any]] = {
bool: types.Boolean(),
bytes: types.LargeBinary(),
datetime.date: types.Date(),
datetime.datetime: types.DateTime(),
datetime.time: types.Time(),
datetime.timedelta: types.Interval(),
decimal.Decimal: types.Numeric(),
float: types.Float(),
int: types.Integer(),
str: types.String(),
uuid.UUID: types.Uuid(),
}
If the :func:`_orm.mapped_column` construct indicates an explicit type
as passed to the :paramref:`_orm.mapped_column.__type` argument, then
the given Python type is disregarded.
* **nullability** - The :func:`_orm.mapped_column` construct will indicate
its :class:`_schema.Column` as ``NULL`` or ``NOT NULL`` first and foremost by
the presence of the :paramref:`_orm.mapped_column.nullable` parameter, passed
either as ``True`` or ``False``. Additionally , if the
:paramref:`_orm.mapped_column.primary_key` parameter is present and set to
``True``, that will also imply that the column should be ``NOT NULL``.
In the absence of **both** of these parameters, the presence of
``typing.Optional[]`` (or its equivalent) within the :class:`_orm.Mapped`
type annotation will be used to determine nullability, where
``typing.Optional[]`` means ``NULL``, and the absence of
``typing.Optional[]`` means ``NOT NULL``. If there is no ``Mapped[]``
annotation present at all, and there is no
:paramref:`_orm.mapped_column.nullable` or
:paramref:`_orm.mapped_column.primary_key` parameter, then SQLAlchemy's usual
default for :class:`_schema.Column` of ``NULL`` is used.
In the example below, the ``id`` and ``data`` columns will be ``NOT NULL``,
and the ``additional_info`` column will be ``NULL``::
from typing import Optional
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
class Base(DeclarativeBase):
pass
class SomeClass(Base):
__tablename__ = "some_table"
# primary_key=True, therefore will be NOT NULL
id: Mapped[int] = mapped_column(primary_key=True)
# not Optional[], therefore will be NOT NULL
data: Mapped[str]
# Optional[], therefore will be NULL
additional_info: Mapped[Optional[str]]
It is also perfectly valid to have a :func:`_orm.mapped_column` whose
nullability is **different** from what would be implied by the annotation.
For example, an ORM mapped attribute may be annotated as allowing ``None``
within Python code that works with the object as it is first being created
and populated, however the value will ultimately be written to a database
column that is ``NOT NULL``. The :paramref:`_orm.mapped_column.nullable`
parameter, when present, will always take precedence::
class SomeClass(Base):
# ...
# will be String() NOT NULL, but can be None in Python
data: Mapped[Optional[str]] = mapped_column(nullable=False)
Similarly, a non-None attribute that's written to a database column that
for whatever reason needs to be NULL at the schema level,
:paramref:`_orm.mapped_column.nullable` may be set to ``True``::
class SomeClass(Base):
# ...
# will be String() NULL, but type checker will not expect
# the attribute to be None
data: Mapped[str] = mapped_column(nullable=True)
.. _orm_declarative_mapped_column_type_map:
Customizing the Type Map
^^^^^^^^^^^^^^^^^^^^^^^^
The mapping of Python types to SQLAlchemy :class:`_types.TypeEngine` types
described in the previous section defaults to a hardcoded dictionary
present in the ``sqlalchemy.sql.sqltypes`` module. However, the :class:`_orm.registry`
object that coordinates the Declarative mapping process will first consult
a local, user defined dictionary of types which may be passed
as the :paramref:`_orm.registry.type_annotation_map` parameter when
constructing the :class:`_orm.registry`, which may be associated with
the :class:`_orm.DeclarativeBase` superclass when first used.
As an example, if we wish to make use of the :class:`_sqltypes.BIGINT` datatype
for ``int``, the :class:`_sqltypes.TIMESTAMP` datatype with ``timezone=True``
for ``datetime.datetime``, and then for ``str`` types we'd like to see
:class:`_sqltypes.NVARCHAR` when Microsoft SQL Server is used and
``VARCHAR(255)`` when MySQL is used, the registry and Declarative base could be
configured as::
import datetime
from sqlalchemy import BIGINT, NVARCHAR, String, TIMESTAMP
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column
class Base(DeclarativeBase):
type_annotation_map = {
int: BIGINT,
datetime.datetime: TIMESTAMP(timezone=True),
# set up variants for str/String()
str: String()
# use NVARCHAR for MSSQL
.with_variant(NVARCHAR, "mssql")
# add a default VARCHAR length for MySQL
.with_variant(VARCHAR(255), "mysql"),
}
class SomeClass(Base):
__tablename__ = "some_table"
id: Mapped[int] = mapped_column(primary_key=True)
date: Mapped[datetime.datetime]
status: Mapped[str]
Below illustrates the CREATE TABLE statement generated for the above mapping,
first on the Microsoft SQL Server backend, illustrating the ``NVARCHAR`` datatype:
.. sourcecode:: pycon+sql
>>> from sqlalchemy.schema import CreateTable
>>> from sqlalchemy.dialects import mssql, mysql, postgresql
>>> print(CreateTable(SomeClass.__table__).compile(dialect=mssql.dialect()))
{printsql}CREATE TABLE some_table (
id BIGINT NOT NULL IDENTITY,
date TIMESTAMP NOT NULL,
status NVARCHAR(max) NOT NULL,
PRIMARY KEY (id)
)
On MySQL, we get a VARCHAR column with an explcit length (required by
MySQL):
.. sourcecode:: pycon+sql
>>> print(CreateTable(SomeClass.__table__).compile(dialect=mysql.dialect()))
{printsql}CREATE TABLE some_table (
id BIGINT NOT NULL AUTO_INCREMENT,
date TIMESTAMP NOT NULL,
status VARCHAR(255) NOT NULL,
PRIMARY KEY (id)
)
Then on the PostgreSQL backend, illustrating ``TIMESTAMP WITH TIME ZONE``:
.. sourcecode:: pycon+sql
>>> print(CreateTable(SomeClass.__table__).compile(dialect=postgresql.dialect()))
{printsql}CREATE TABLE some_table (
id BIGSERIAL NOT NULL,
date TIMESTAMP WITH TIME ZONE NOT NULL,
status VARCHAR NOT NULL,
PRIMARY KEY (id)
)
By making use of methods such as :meth:`.TypeEngine.with_variant`, we're able
to build up a type map that's customized to what we need for different backends,
while still being able to use succinct annotation-only :func:`_orm.mapped_column`
configurations. There are two more levels of Python-type configurability
available beyond this, described in the next two sections.
.. _orm_declarative_type_map_union_types:
Union types inside the Type Map
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. versionchanged:: 2.0.37 The features described in this section have been
repaired and enhanced to work consistently. Prior to this change, union
types were supported in ``type_annotation_map``, however the feature
exhibited inconsistent behaviors between union syntaxes as well as in how
``None`` was handled. Please ensure SQLAlchemy is up to date before
attempting to use the features described in this section.
SQLAlchemy supports mapping union types inside the ``type_annotation_map`` to
allow mapping database types that can support multiple Python types, such as
:class:`_types.JSON` or :class:`_postgresql.JSONB`::
from typing import Union, Optional
from sqlalchemy import JSON
from sqlalchemy.dialects import postgresql
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column
from sqlalchemy.schema import CreateTable
# new style Union using a pipe operator
json_list = list[int] | list[str]
# old style Union using Union explicitly
json_scalar = Union[float, str, bool]
class Base(DeclarativeBase):
type_annotation_map = {
json_list: postgresql.JSONB,
json_scalar: JSON,
}
class SomeClass(Base):
__tablename__ = "some_table"
id: Mapped[int] = mapped_column(primary_key=True)
list_col: Mapped[list[str] | list[int]]
# uses JSON
scalar_col: Mapped[json_scalar]
# uses JSON and is also nullable=True
scalar_col_nullable: Mapped[json_scalar | None]
# these forms all use JSON as well due to the json_scalar entry
scalar_col_newstyle: Mapped[float | str | bool]
scalar_col_oldstyle: Mapped[Union[float, str, bool]]
scalar_col_mixedstyle: Mapped[Optional[float | str | bool]]
The above example maps the union of ``list[int]`` and ``list[str]`` to the Postgresql
:class:`_postgresql.JSONB` datatype, while naming a union of ``float,
str, bool`` will match to the :class:`_types.JSON` datatype. An equivalent
union, stated in the :class:`_orm.Mapped` construct, will match into the
corresponding entry in the type map.
The matching of a union type is based on the contents of the union regardless
of how the individual types are named, and additionally excluding the use of
the ``None`` type. That is, ``json_scalar`` will also match to ``str | bool |
float | None``. It will **not** match to a union that is a subset or superset
of this union; that is, ``str | bool`` would not match, nor would ``str | bool
| float | int``. The individual contents of the union excluding ``None`` must
be an exact match.
The ``None`` value is never significant as far as matching
from ``type_annotation_map`` to :class:`_orm.Mapped`, however is significant
as an indicator for nullability of the :class:`_schema.Column`. When ``None`` is present in the
union either as it is placed in the :class:`_orm.Mapped` construct. When
present in :class:`_orm.Mapped`, it indicates the :class:`_schema.Column`
would be nullable, in the absense of more specific indicators. This logic works
in the same way as indicating an ``Optional`` type as described at
:ref:`orm_declarative_mapped_column_nullability`.
The CREATE TABLE statement for the above mapping will look as below:
.. sourcecode:: pycon+sql
>>> print(CreateTable(SomeClass.__table__).compile(dialect=postgresql.dialect()))
{printsql}CREATE TABLE some_table (
id SERIAL NOT NULL,
list_col JSONB NOT NULL,
scalar_col JSON,
scalar_col_not_null JSON NOT NULL,
PRIMARY KEY (id)
)
While union types use a "loose" matching approach that matches on any equivalent
set of subtypes, Python typing also features a way to create "type aliases"
that are treated as distinct types that are non-equivalent to another type that
includes the same composition. Integration of these types with ``type_annotation_map``
is described in the next section, :ref:`orm_declarative_type_map_pep695_types`.
.. _orm_declarative_type_map_pep695_types:
Support for Type Alias Types (defined by PEP 695) and NewType
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In contrast to the typing lookup described in
:ref:`orm_declarative_type_map_union_types`, Python typing also includes two
ways to create a composed type in a more formal way, using ``typing.NewType`` as
well as the ``type`` keyword introduced in :pep:`695`. These types behave
differently from ordinary type aliases (i.e. assigning a type to a variable
name), and this difference is honored in how SQLAlchemy resolves these
types from the type map.
.. versionchanged:: 2.0.37 The behaviors described in this section for ``typing.NewType``
as well as :pep:`695` ``type`` have been formalized and corrected.
Deprecation warnings are now emitted for "loose matching" patterns that have
worked in some 2.0 releases, but are to be removed in SQLAlchemy 2.1.
Please ensure SQLAlchemy is up to date before attempting to use the features
described in this section.
The typing module allows the creation of "new types" using ``typing.NewType``::
from typing import NewType
nstr30 = NewType("nstr30", str)
nstr50 = NewType("nstr50", str)
Additionally, in Python 3.12, a new feature defined by :pep:`695` was introduced which
provides the ``type`` keyword to accomplish a similar task; using
``type`` produces an object that is similar in many ways to ``typing.NewType``
which is internally referred to as ``typing.TypeAliasType``::
type SmallInt = int
type BigInt = int
type JsonScalar = str | float | bool | None
For the purposes of how SQLAlchemy treats these type objects when used
for SQL type lookup inside of :class:`_orm.Mapped`, it's important to note
that Python does not consider two equivalent ``typing.TypeAliasType``
or ``typing.NewType`` objects to be equal::
# two typing.NewType objects are not equal even if they are both str
>>> nstr50 == nstr30
False
# two TypeAliasType objects are not equal even if they are both int
>>> SmallInt == BigInt
False
# an equivalent union is not equal to JsonScalar
>>> JsonScalar == str | float | bool | None
False
This is the opposite behavior from how ordinary unions are compared, and
informs the correct behavior for SQLAlchemy's ``type_annotation_map``. When
using ``typing.NewType`` or :pep:`695` ``type`` objects, the type object is
expected to be explicit within the ``type_annotation_map`` for it to be matched
from a :class:`_orm.Mapped` type, where the same object must be stated in order
for a match to be made (excluding whether or not the type inside of
:class:`_orm.Mapped` also unions on ``None``). This is distinct from the
behavior described at :ref:`orm_declarative_type_map_union_types`, where a
plain ``Union`` that is referenced directly will match to other ``Unions``
based on the composition, rather than the object identity, of a particular type
in ``type_annotation_map``.
In the example below, the composed types for ``nstr30``, ``nstr50``,
``SmallInt``, ``BigInt``, and ``JsonScalar`` have no overlap with each other
and can be named distinctly within each :class:`_orm.Mapped` construct, and
are also all explicit in ``type_annotation_map``. Any of these types may
also be unioned with ``None`` or declared as ``Optional[]`` without affecting
the lookup, only deriving column nullability::
from typing import NewType
from sqlalchemy import SmallInteger, BigInteger, JSON, String
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column
from sqlalchemy.schema import CreateTable
nstr30 = NewType("nstr30", str)
nstr50 = NewType("nstr50", str)
type SmallInt = int
type BigInt = int
type JsonScalar = str | float | bool | None
class TABase(DeclarativeBase):
type_annotation_map = {
nstr30: String(30),
nstr50: String(50),
SmallInt: SmallInteger,
BigInteger: BigInteger,
JsonScalar: JSON,
}
class SomeClass(TABase):
__tablename__ = "some_table"
id: Mapped[int] = mapped_column(primary_key=True)
normal_str: Mapped[str]
short_str: Mapped[nstr30]
long_str_nullable: Mapped[nstr50 | None]
small_int: Mapped[SmallInt]
big_int: Mapped[BigInteger]
scalar_col: Mapped[JsonScalar]
a CREATE TABLE for the above mapping will illustrate the different variants
of integer and string we've configured, and looks like:
.. sourcecode:: pycon+sql
>>> print(CreateTable(SomeClass.__table__))
{printsql}CREATE TABLE some_table (
id INTEGER NOT NULL,
normal_str VARCHAR NOT NULL,
short_str VARCHAR(30) NOT NULL,
long_str_nullable VARCHAR(50),
small_int SMALLINT NOT NULL,
big_int BIGINT NOT NULL,
scalar_col JSON,
PRIMARY KEY (id)
)
Regarding nullability, the ``JsonScalar`` type includes ``None`` in its
definition, which indicates a nullable column. Similarly the
``long_str_nullable`` column applies a union of ``None`` to ``nstr50``,
which matches to the ``nstr50`` type in the ``type_annotation_map`` while
also applying nullability to the mapped column. The other columns all remain
NOT NULL as they are not indicated as optional.
.. _orm_declarative_mapped_column_type_map_pep593:
Mapping Multiple Type Configurations to Python Types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
As individual Python types may be associated with :class:`_types.TypeEngine`
configurations of any variety by using the :paramref:`_orm.registry.type_annotation_map`
parameter, an additional
capability is the ability to associate a single Python type with different
variants of a SQL type based on additional type qualifiers. One typical
example of this is mapping the Python ``str`` datatype to ``VARCHAR``
SQL types of different lengths. Another is mapping different varieties of
``decimal.Decimal`` to differently sized ``NUMERIC`` columns.
Python's typing system provides a great way to add additional metadata to a
Python type which is by using the :pep:`593` ``Annotated`` generic type, which
allows additional information to be bundled along with a Python type. The
:func:`_orm.mapped_column` construct will correctly interpret an ``Annotated``
object by identity when resolving it in the
:paramref:`_orm.registry.type_annotation_map`, as in the example below where we
declare two variants of :class:`.String` and :class:`.Numeric`::
from decimal import Decimal
from typing_extensions import Annotated
from sqlalchemy import Numeric
from sqlalchemy import String
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
from sqlalchemy.orm import registry
str_30 = Annotated[str, 30]
str_50 = Annotated[str, 50]
num_12_4 = Annotated[Decimal, 12]
num_6_2 = Annotated[Decimal, 6]
class Base(DeclarativeBase):
registry = registry(
type_annotation_map={
str_30: String(30),
str_50: String(50),
num_12_4: Numeric(12, 4),
num_6_2: Numeric(6, 2),
}
)
The Python type passed to the ``Annotated`` container, in the above example the
``str`` and ``Decimal`` types, is important only for the benefit of typing
tools; as far as the :func:`_orm.mapped_column` construct is concerned, it will only need
perform a lookup of each type object in the
:paramref:`_orm.registry.type_annotation_map` dictionary without actually
looking inside of the ``Annotated`` object, at least in this particular
context. Similarly, the arguments passed to ``Annotated`` beyond the underlying
Python type itself are also not important, it's only that at least one argument
must be present for the ``Annotated`` construct to be valid. We can then use
these augmented types directly in our mapping where they will be matched to the
more specific type constructions, as in the following example::
class SomeClass(Base):
__tablename__ = "some_table"
short_name: Mapped[str_30] = mapped_column(primary_key=True)
long_name: Mapped[str_50]
num_value: Mapped[num_12_4]
short_num_value: Mapped[num_6_2]
a CREATE TABLE for the above mapping will illustrate the different variants
of ``VARCHAR`` and ``NUMERIC`` we've configured, and looks like:
.. sourcecode:: pycon+sql
>>> from sqlalchemy.schema import CreateTable
>>> print(CreateTable(SomeClass.__table__))
{printsql}CREATE TABLE some_table (
short_name VARCHAR(30) NOT NULL,
long_name VARCHAR(50) NOT NULL,
num_value NUMERIC(12, 4) NOT NULL,
short_num_value NUMERIC(6, 2) NOT NULL,
PRIMARY KEY (short_name)
)
While variety in linking ``Annotated`` types to different SQL types grants
us a wide degree of flexibility, the next section illustrates a second
way in which ``Annotated`` may be used with Declarative that is even
more open ended.
.. _orm_declarative_mapped_column_pep593:
Mapping Whole Column Declarations to Python Types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The previous section illustrated using :pep:`593` ``Annotated`` type
instances as keys within the :paramref:`_orm.registry.type_annotation_map`
dictionary. In this form, the :func:`_orm.mapped_column` construct does not
actually look inside the ``Annotated`` object itself, it's instead
used only as a dictionary key. However, Declarative also has the ability to extract
an entire pre-established :func:`_orm.mapped_column` construct from
an ``Annotated`` object directly. Using this form, we can define not only
different varieties of SQL datatypes linked to Python types without using
the :paramref:`_orm.registry.type_annotation_map` dictionary, we can also
set up any number of arguments such as nullability, column defaults,
and constraints in a reusable fashion.
A set of ORM models will usually have some kind of primary
key style that is common to all mapped classes. There also may be
common column configurations such as timestamps with defaults and other fields of
pre-established sizes and configurations. We can compose these configurations
into :func:`_orm.mapped_column` instances that we then bundle directly into
instances of ``Annotated``, which are then re-used in any number of class
declarations. Declarative will unpack an ``Annotated`` object
when provided in this manner, skipping over any other directives that don't
apply to SQLAlchemy and searching only for SQLAlchemy ORM constructs.
The example below illustrates a variety of pre-configured field types used
in this way, where we define ``intpk`` that represents an :class:`.Integer` primary
key column, ``timestamp`` that represents a :class:`.DateTime` type
which will use ``CURRENT_TIMESTAMP`` as a DDL level column default,
and ``required_name`` which is a :class:`.String` of length 30 that's
``NOT NULL``::
import datetime
from typing_extensions import Annotated
from sqlalchemy import func
from sqlalchemy import String
from sqlalchemy.orm import mapped_column
intpk = Annotated[int, mapped_column(primary_key=True)]
timestamp = Annotated[
datetime.datetime,
mapped_column(nullable=False, server_default=func.CURRENT_TIMESTAMP()),
]
required_name = Annotated[str, mapped_column(String(30), nullable=False)]
The above ``Annotated`` objects can then be used directly within
:class:`_orm.Mapped`, where the pre-configured :func:`_orm.mapped_column`
constructs will be extracted and copied to a new instance that will be
specific to each attribute::
class Base(DeclarativeBase):
pass
class SomeClass(Base):
__tablename__ = "some_table"
id: Mapped[intpk]
name: Mapped[required_name]
created_at: Mapped[timestamp]
``CREATE TABLE`` for our above mapping looks like:
.. sourcecode:: pycon+sql
>>> from sqlalchemy.schema import CreateTable
>>> print(CreateTable(SomeClass.__table__))
{printsql}CREATE TABLE some_table (
id INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP NOT NULL,
PRIMARY KEY (id)
)
When using ``Annotated`` types in this way, the configuration of the type
may also be affected on a per-attribute basis. For the types in the above
example that feature explicit use of :paramref:`_orm.mapped_column.nullable`,
we can apply the ``Optional[]`` generic modifier to any of our types so that
the field is optional or not at the Python level, which will be independent
of the ``NULL`` / ``NOT NULL`` setting that takes place in the database::
from typing_extensions import Annotated
import datetime
from typing import Optional
from sqlalchemy.orm import DeclarativeBase
timestamp = Annotated[
datetime.datetime,
mapped_column(nullable=False),
]
class Base(DeclarativeBase):
pass
class SomeClass(Base):
# ...
# pep-484 type will be Optional, but column will be
# NOT NULL
created_at: Mapped[Optional[timestamp]]
The :func:`_orm.mapped_column` construct is also reconciled with an explicitly
passed :func:`_orm.mapped_column` construct, whose arguments will take precedence
over those of the ``Annotated`` construct. Below we add a :class:`.ForeignKey`
constraint to our integer primary key and also use an alternate server
default for the ``created_at`` column::
import datetime
from typing_extensions import Annotated
from sqlalchemy import ForeignKey
from sqlalchemy import func
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
from sqlalchemy.schema import CreateTable
intpk = Annotated[int, mapped_column(primary_key=True)]
timestamp = Annotated[
datetime.datetime,
mapped_column(nullable=False, server_default=func.CURRENT_TIMESTAMP()),
]
class Base(DeclarativeBase):
pass
class Parent(Base):
__tablename__ = "parent"
id: Mapped[intpk]
class SomeClass(Base):
__tablename__ = "some_table"
# add ForeignKey to mapped_column(Integer, primary_key=True)
id: Mapped[intpk] = mapped_column(ForeignKey("parent.id"))
# change server default from CURRENT_TIMESTAMP to UTC_TIMESTAMP
created_at: Mapped[timestamp] = mapped_column(server_default=func.UTC_TIMESTAMP())
The CREATE TABLE statement illustrates these per-attribute settings,
adding a ``FOREIGN KEY`` constraint as well as substituting
``UTC_TIMESTAMP`` for ``CURRENT_TIMESTAMP``:
.. sourcecode:: pycon+sql
>>> from sqlalchemy.schema import CreateTable
>>> print(CreateTable(SomeClass.__table__))
{printsql}CREATE TABLE some_table (
id INTEGER NOT NULL,
created_at DATETIME DEFAULT UTC_TIMESTAMP() NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY(id) REFERENCES parent (id)
)
.. note:: The feature of :func:`_orm.mapped_column` just described, where
a fully constructed set of column arguments may be indicated using
:pep:`593` ``Annotated`` objects that contain a "template"
:func:`_orm.mapped_column` object to be copied into the attribute, is
currently not implemented for other ORM constructs such as
:func:`_orm.relationship` and :func:`_orm.composite`. While this functionality
is in theory possible, for the moment attempting to use ``Annotated``
to indicate further arguments for :func:`_orm.relationship` and similar
will raise a ``NotImplementedError`` exception at runtime, but
may be implemented in future releases.
.. _orm_declarative_mapped_column_enums:
Using Python ``Enum`` or pep-586 ``Literal`` types in the type map
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. versionadded:: 2.0.0b4 - Added ``Enum`` support
.. versionadded:: 2.0.1 - Added ``Literal`` support
User-defined Python types which derive from the Python built-in ``enum.Enum``
as well as the ``typing.Literal``
class are automatically linked to the SQLAlchemy :class:`.Enum` datatype
when used in an ORM declarative mapping. The example below uses
a custom ``enum.Enum`` within the ``Mapped[]`` constructor::
import enum
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
class Base(DeclarativeBase):
pass
class Status(enum.Enum):
PENDING = "pending"
RECEIVED = "received"
COMPLETED = "completed"
class SomeClass(Base):
__tablename__ = "some_table"
id: Mapped[int] = mapped_column(primary_key=True)
status: Mapped[Status]
In the above example, the mapped attribute ``SomeClass.status`` will be
linked to a :class:`.Column` with the datatype of ``Enum(Status)``.
We can see this for example in the CREATE TABLE output for the PostgreSQL
database:
.. sourcecode:: sql
CREATE TYPE status AS ENUM ('PENDING', 'RECEIVED', 'COMPLETED')
CREATE TABLE some_table (
id SERIAL NOT NULL,
status status NOT NULL,
PRIMARY KEY (id)
)
In a similar way, ``typing.Literal`` may be used instead, using
a ``typing.Literal`` that consists of all strings::
from typing import Literal
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
class Base(DeclarativeBase):
pass
Status = Literal["pending", "received", "completed"]
class SomeClass(Base):
__tablename__ = "some_table"
id: Mapped[int] = mapped_column(primary_key=True)
status: Mapped[Status]
The entries used in :paramref:`_orm.registry.type_annotation_map` link the base
``enum.Enum`` Python type as well as the ``typing.Literal`` type to the
SQLAlchemy :class:`.Enum` SQL type, using a special form which indicates to the
:class:`.Enum` datatype that it should automatically configure itself against
an arbitrary enumerated type. This configuration, which is implicit by default,
would be indicated explicitly as::
import enum
import typing
import sqlalchemy
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
type_annotation_map = {
enum.Enum: sqlalchemy.Enum(enum.Enum),
typing.Literal: sqlalchemy.Enum(enum.Enum),
}
The resolution logic within Declarative is able to resolve subclasses
of ``enum.Enum`` as well as instances of ``typing.Literal`` to match the
``enum.Enum`` or ``typing.Literal`` entry in the
:paramref:`_orm.registry.type_annotation_map` dictionary. The :class:`.Enum`
SQL type then knows how to produce a configured version of itself with the
appropriate settings, including default string length. If a ``typing.Literal``
that does not consist of only string values is passed, an informative
error is raised.
``typing.TypeAliasType`` can also be used to create enums, by assigning them
to a ``typing.Literal`` of strings::
from typing import Literal
type Status = Literal["on", "off", "unknown"]
Since this is a ``typing.TypeAliasType``, it represents a unique type object,
so it must be placed in the ``type_annotation_map`` for it to be looked up
successfully, keyed to the :class:`.Enum` type as follows::
import enum
import sqlalchemy
class Base(DeclarativeBase):
type_annotation_map = {Status: sqlalchemy.Enum(enum.Enum)}
Since SQLAlchemy supports mapping different ``typing.TypeAliasType``
objects that are otherwise structurally equivalent individually,
these must be present in ``type_annotation_map`` to avoid ambiguity.
Native Enums and Naming
~~~~~~~~~~~~~~~~~~~~~~~~
The :paramref:`.sqltypes.Enum.native_enum` parameter refers to if the
:class:`.sqltypes.Enum` datatype should create a so-called "native"
enum, which on MySQL/MariaDB is the ``ENUM`` datatype and on PostgreSQL is
a new ``TYPE`` object created by ``CREATE TYPE``, or a "non-native" enum,
which means that ``VARCHAR`` will be used to create the datatype. For
backends other than MySQL/MariaDB or PostgreSQL, ``VARCHAR`` is used in
all cases (third party dialects may have their own behaviors).
Because PostgreSQL's ``CREATE TYPE`` requires that there's an explicit name
for the type to be created, special fallback logic exists when working
with implicitly generated :class:`.sqltypes.Enum` without specifying an
explicit :class:`.sqltypes.Enum` datatype within a mapping:
1. If the :class:`.sqltypes.Enum` is linked to an ``enum.Enum`` object,
the :paramref:`.sqltypes.Enum.native_enum` parameter defaults to
``True`` and the name of the enum will be taken from the name of the
``enum.Enum`` datatype. The PostgreSQL backend will assume ``CREATE TYPE``
with this name.
2. If the :class:`.sqltypes.Enum` is linked to a ``typing.Literal`` object,
the :paramref:`.sqltypes.Enum.native_enum` parameter defaults to
``False``; no name is generated and ``VARCHAR`` is assumed.
To use ``typing.Literal`` with a PostgreSQL ``CREATE TYPE`` type, an
explicit :class:`.sqltypes.Enum` must be used, either within the
type map::
import enum
import typing
import sqlalchemy
from sqlalchemy.orm import DeclarativeBase
Status = Literal["pending", "received", "completed"]
class Base(DeclarativeBase):
type_annotation_map = {
Status: sqlalchemy.Enum("pending", "received", "completed", name="status_enum"),
}
Or alternatively within :func:`_orm.mapped_column`::
import enum
import typing
import sqlalchemy
from sqlalchemy.orm import DeclarativeBase
Status = Literal["pending", "received", "completed"]
class Base(DeclarativeBase):
pass
class SomeClass(Base):
__tablename__ = "some_table"
id: Mapped[int] = mapped_column(primary_key=True)
status: Mapped[Status] = mapped_column(
sqlalchemy.Enum("pending", "received", "completed", name="status_enum")
)
Altering the Configuration of the Default Enum
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to modify the fixed configuration of the :class:`.enum.Enum` datatype
that's generated implicitly, specify new entries in the
:paramref:`_orm.registry.type_annotation_map`, indicating additional arguments.
For example, to use "non native enumerations" unconditionally, the
:paramref:`.Enum.native_enum` parameter may be set to False for all types::
import enum
import typing
import sqlalchemy
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
type_annotation_map = {
enum.Enum: sqlalchemy.Enum(enum.Enum, native_enum=False),
typing.Literal: sqlalchemy.Enum(enum.Enum, native_enum=False),
}
.. versionchanged:: 2.0.1 Implemented support for overriding parameters
such as :paramref:`_sqltypes.Enum.native_enum` within the
:class:`_sqltypes.Enum` datatype when establishing the
:paramref:`_orm.registry.type_annotation_map`. Previously, this
functionality was not working.
To use a specific configuration for a specific ``enum.Enum`` subtype, such
as setting the string length to 50 when using the example ``Status``
datatype::
import enum
import sqlalchemy
from sqlalchemy.orm import DeclarativeBase
class Status(enum.Enum):
PENDING = "pending"
RECEIVED = "received"
COMPLETED = "completed"
class Base(DeclarativeBase):
type_annotation_map = {
Status: sqlalchemy.Enum(Status, length=50, native_enum=False)
}
By default :class:`_sqltypes.Enum` that are automatically generated are not
associated with the :class:`_sql.MetaData` instance used by the ``Base``, so if
the metadata defines a schema it will not be automatically associated with the
enum. To automatically associate the enum with the schema in the metadata or
table they belong to the :paramref:`_sqltypes.Enum.inherit_schema` can be set::
from enum import Enum
import sqlalchemy as sa
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
metadata = sa.MetaData(schema="my_schema")
type_annotation_map = {Enum: sa.Enum(Enum, inherit_schema=True)}
Linking Specific ``enum.Enum`` or ``typing.Literal`` to other datatypes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The above examples feature the use of an :class:`_sqltypes.Enum` that is
automatically configuring itself to the arguments / attributes present on
an ``enum.Enum`` or ``typing.Literal`` type object. For use cases where
specific kinds of ``enum.Enum`` or ``typing.Literal`` should be linked to
other types, these specific types may be placed in the type map also.
In the example below, an entry for ``Literal[]`` that contains non-string
types is linked to the :class:`_sqltypes.JSON` datatype::
from typing import Literal
from sqlalchemy import JSON
from sqlalchemy.orm import DeclarativeBase
my_literal = Literal[0, 1, True, False, "true", "false"]
class Base(DeclarativeBase):
type_annotation_map = {my_literal: JSON}
In the above configuration, the ``my_literal`` datatype will resolve to a
:class:`._sqltypes.JSON` instance. Other ``Literal`` variants will continue
to resolve to :class:`_sqltypes.Enum` datatypes.
.. _orm_imperative_table_configuration:
Declarative with Imperative Table (a.k.a. Hybrid Declarative)
-------------------------------------------------------------
Declarative mappings may also be provided with a pre-existing
:class:`_schema.Table` object, or otherwise a :class:`_schema.Table` or other
arbitrary :class:`_sql.FromClause` construct (such as a :class:`_sql.Join`
or :class:`_sql.Subquery`) that is constructed separately.
This is referred to as a "hybrid declarative"
mapping, as the class is mapped using the declarative style for everything
involving the mapper configuration, however the mapped :class:`_schema.Table`
object is produced separately and passed to the declarative process
directly::
from sqlalchemy import Column, ForeignKey, Integer, String
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
pass
# construct a Table directly. The Base.metadata collection is
# usually a good choice for MetaData but any MetaData
# collection may be used.
user_table = Table(
"user",
Base.metadata,
Column("id", Integer, primary_key=True),
Column("name", String),
Column("fullname", String),
Column("nickname", String),
)
# construct the User class using this table.
class User(Base):
__table__ = user_table
Above, a :class:`_schema.Table` object is constructed using the approach
described at :ref:`metadata_describing`. It can then be applied directly
to a class that is declaratively mapped. The ``__tablename__`` and
``__table_args__`` declarative class attributes are not used in this form.
The above configuration is often more readable as an inline definition::
class User(Base):
__table__ = Table(
"user",
Base.metadata,
Column("id", Integer, primary_key=True),
Column("name", String),
Column("fullname", String),
Column("nickname", String),
)
A natural effect of the above style is that the ``__table__`` attribute is
itself defined within the class definition block. As such it may be
immediately referenced within subsequent attributes, such as the example
below which illustrates referring to the ``type`` column in a polymorphic
mapper configuration::
class Person(Base):
__table__ = Table(
"person",
Base.metadata,
Column("id", Integer, primary_key=True),
Column("name", String(50)),
Column("type", String(50)),
)
__mapper_args__ = {
"polymorphic_on": __table__.c.type,
"polymorphic_identity": "person",
}
The "imperative table" form is also used when a non-:class:`_schema.Table`
construct, such as a :class:`_sql.Join` or :class:`_sql.Subquery` object,
is to be mapped. An example below::
from sqlalchemy import func, select
subq = (
select(
func.count(orders.c.id).label("order_count"),
func.max(orders.c.price).label("highest_order"),
orders.c.customer_id,
)
.group_by(orders.c.customer_id)
.subquery()
)
customer_select = (
select(customers, subq)
.join_from(customers, subq, customers.c.id == subq.c.customer_id)
.subquery()
)
class Customer(Base):
__table__ = customer_select
For background on mapping to non-:class:`_schema.Table` constructs see
the sections :ref:`orm_mapping_joins` and :ref:`orm_mapping_arbitrary_subqueries`.
The "imperative table" form is of particular use when the class itself
is using an alternative form of attribute declaration, such as Python
dataclasses. See the section :ref:`orm_declarative_dataclasses` for detail.
.. seealso::
:ref:`metadata_describing`
:ref:`orm_declarative_dataclasses`
.. _orm_imperative_table_column_naming:
Alternate Attribute Names for Mapping Table Columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The section :ref:`orm_declarative_table_column_naming` illustrated how to
use :func:`_orm.mapped_column` to provide a specific name for the generated
:class:`_schema.Column` object separate from the attribute name under which
it is mapped.
When using Imperative Table configuration, we already have
:class:`_schema.Column` objects present. To map these to alternate names
we may assign the :class:`_schema.Column` to the desired attributes
directly::
user_table = Table(
"user",
Base.metadata,
Column("user_id", Integer, primary_key=True),
Column("user_name", String),
)
class User(Base):
__table__ = user_table
id = user_table.c.user_id
name = user_table.c.user_name
The ``User`` mapping above will refer to the ``"user_id"`` and ``"user_name"``
columns via the ``User.id`` and ``User.name`` attributes, in the same
way as demonstrated at :ref:`orm_declarative_table_column_naming`.
One caveat to the above mapping is that the direct inline link to
:class:`_schema.Column` will not be typed correctly when using
:pep:`484` typing tools. A strategy to resolve this is to apply the
:class:`_schema.Column` objects within the :func:`_orm.column_property`
function; while the :class:`_orm.Mapper` already generates this property
object for its internal use automatically, by naming it in the class
declaration, typing tools will be able to match the attribute to the
:class:`_orm.Mapped` annotation::
from sqlalchemy.orm import column_property
from sqlalchemy.orm import Mapped
class User(Base):
__table__ = user_table
id: Mapped[int] = column_property(user_table.c.user_id)
name: Mapped[str] = column_property(user_table.c.user_name)
.. seealso::
:ref:`orm_declarative_table_column_naming` - applies to Declarative Table
.. _column_property_options:
.. _orm_imperative_table_column_options:
Applying Load, Persistence and Mapping Options for Imperative Table Columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The section :ref:`orm_declarative_column_options` reviewed how to set load
and persistence options when using the :func:`_orm.mapped_column` construct
with Declarative Table configuration. When using Imperative Table configuration,
we already have existing :class:`_schema.Column` objects that are mapped.
In order to map these :class:`_schema.Column` objects along with additional
parameters that are specific to the ORM mapping, we may use the
:func:`_orm.column_property` and :func:`_orm.deferred` constructs in order to
associate additional parameters with the column. Options include:
* **deferred column loading** - The :func:`_orm.deferred` function is shorthand
for invoking :func:`_orm.column_property` with the
:paramref:`_orm.column_property.deferred` parameter set to ``True``;
this construct establishes the :class:`_schema.Column` using
:ref:`deferred column loading <orm_queryguide_column_deferral>` by default. In the example
below, the ``User.bio`` column will not be loaded by default, but only
when accessed::
from sqlalchemy.orm import deferred
user_table = Table(
"user",
Base.metadata,
Column("id", Integer, primary_key=True),
Column("name", String),
Column("bio", Text),
)
class User(Base):
__table__ = user_table
bio = deferred(user_table.c.bio)
.. seealso::
:ref:`orm_queryguide_column_deferral` - full description of deferred column loading
* **active history** - The :paramref:`_orm.column_property.active_history`
ensures that upon change of value for the attribute, the previous value
will have been loaded and made part of the :attr:`.AttributeState.history`
collection when inspecting the history of the attribute. This may incur
additional SQL statements::
from sqlalchemy.orm import column_property
user_table = Table(
"user",
Base.metadata,
Column("id", Integer, primary_key=True),
Column("important_identifier", String),
)
class User(Base):
__table__ = user_table
important_identifier = column_property(
user_table.c.important_identifier, active_history=True
)
.. seealso::
The :func:`_orm.column_property` construct is also important for cases
where classes are mapped to alternative FROM clauses such as joins and
selects. More background on these cases is at:
* :ref:`maptojoin`
* :ref:`mapper_sql_expressions`
For Declarative Table configuration with :func:`_orm.mapped_column`,
most options are available directly; see the section
:ref:`orm_declarative_column_options` for examples.
.. _orm_declarative_reflected:
Mapping Declaratively with Reflected Tables
--------------------------------------------
There are several patterns available which provide for producing mapped
classes against a series of :class:`_schema.Table` objects that were
introspected from the database, using the reflection process described at
:ref:`metadata_reflection`.
A simple way to map a class to a table reflected from the database is to
use a declarative hybrid mapping, passing the
:paramref:`_schema.Table.autoload_with` parameter to the constructor for
:class:`_schema.Table`::
from sqlalchemy import create_engine
from sqlalchemy import Table
from sqlalchemy.orm import DeclarativeBase
engine = create_engine("postgresql+psycopg2://user:pass@hostname/my_existing_database")
class Base(DeclarativeBase):
pass
class MyClass(Base):
__table__ = Table(
"mytable",
Base.metadata,
autoload_with=engine,
)
A variant on the above pattern that scales for many tables is to use the
:meth:`.MetaData.reflect` method to reflect a full set of :class:`.Table`
objects at once, then refer to them from the :class:`.MetaData`::
from sqlalchemy import create_engine
from sqlalchemy import Table
from sqlalchemy.orm import DeclarativeBase
engine = create_engine("postgresql+psycopg2://user:pass@hostname/my_existing_database")
class Base(DeclarativeBase):
pass
Base.metadata.reflect(engine)
class MyClass(Base):
__table__ = Base.metadata.tables["mytable"]
One caveat to the approach of using ``__table__`` is that the mapped classes cannot
be declared until the tables have been reflected, which requires the database
connectivity source to be present while the application classes are being
declared; it's typical that classes are declared as the modules of an
application are being imported, but database connectivity isn't available
until the application starts running code so that it can consume configuration
information and create an engine. There are currently two approaches
to working around this, described in the next two sections.
.. _orm_declarative_reflected_deferred_reflection:
Using DeferredReflection
^^^^^^^^^^^^^^^^^^^^^^^^^
To accommodate the use case of declaring mapped classes where reflection of
table metadata can occur afterwards, a simple extension called the
:class:`.DeferredReflection` mixin is available, which alters the declarative
mapping process to be delayed until a special class-level
:meth:`.DeferredReflection.prepare` method is called, which will perform
the reflection process against a target database, and will integrate the
results with the declarative table mapping process, that is, classes which
use the ``__tablename__`` attribute::
from sqlalchemy.ext.declarative import DeferredReflection
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
pass
class Reflected(DeferredReflection):
__abstract__ = True
class Foo(Reflected, Base):
__tablename__ = "foo"
bars = relationship("Bar")
class Bar(Reflected, Base):
__tablename__ = "bar"
foo_id = mapped_column(Integer, ForeignKey("foo.id"))
Above, we create a mixin class ``Reflected`` that will serve as a base
for classes in our declarative hierarchy that should become mapped when
the ``Reflected.prepare`` method is called. The above mapping is not
complete until we do so, given an :class:`_engine.Engine`::
engine = create_engine("postgresql+psycopg2://user:pass@hostname/my_existing_database")
Reflected.prepare(engine)
The purpose of the ``Reflected`` class is to define the scope at which
classes should be reflectively mapped. The plugin will search among the
subclass tree of the target against which ``.prepare()`` is called and reflect
all tables which are named by declared classes; tables in the target database
that are not part of mappings and are not related to the target tables
via foreign key constraint will not be reflected.
Using Automap
^^^^^^^^^^^^^^
A more automated solution to mapping against an existing database where table
reflection is to be used is to use the :ref:`automap_toplevel` extension. This
extension will generate entire mapped classes from a database schema, including
relationships between classes based on observed foreign key constraints. While
it includes hooks for customization, such as hooks that allow custom
class naming and relationship naming schemes, automap is oriented towards an
expedient zero-configuration style of working. If an application wishes to have
a fully explicit model that makes use of table reflection, the
:ref:`DeferredReflection <orm_declarative_reflected_deferred_reflection>`
class may be preferable for its less automated approach.
.. seealso::
:ref:`automap_toplevel`
.. _mapper_automated_reflection_schemes:
Automating Column Naming Schemes from Reflected Tables
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When using any of the previous reflection techniques, we have the option
to change the naming scheme by which columns are mapped. The
:class:`_schema.Column` object includes a parameter
:paramref:`_schema.Column.key` which is a string name that determines
under what name
this :class:`_schema.Column` will be present in the :attr:`_schema.Table.c`
collection, independently of the SQL name of the column. This key is also
used by :class:`_orm.Mapper` as the attribute name under which the
:class:`_schema.Column` will be mapped, if not supplied through other
means such as that illustrated at :ref:`orm_imperative_table_column_naming`.
When working with table reflection, we can intercept the parameters that
will be used for :class:`_schema.Column` as they are received using
the :meth:`_events.DDLEvents.column_reflect` event and apply whatever
changes we need, including the ``.key`` attribute but also things like
datatypes.
The event hook is most easily
associated with the :class:`_schema.MetaData` object that's in use
as illustrated below::
from sqlalchemy import event
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
pass
@event.listens_for(Base.metadata, "column_reflect")
def column_reflect(inspector, table, column_info):
# set column.key = "attr_<lower_case_name>"
column_info["key"] = "attr_%s" % column_info["name"].lower()
With the above event, the reflection of :class:`_schema.Column` objects will be intercepted
with our event that adds a new ".key" element, such as in a mapping as below::
class MyClass(Base):
__table__ = Table("some_table", Base.metadata, autoload_with=some_engine)
The approach also works with both the :class:`.DeferredReflection` base class
as well as with the :ref:`automap_toplevel` extension. For automap
specifically, see the section :ref:`automap_intercepting_columns` for
background.
.. seealso::
:ref:`orm_declarative_reflected`
:meth:`_events.DDLEvents.column_reflect`
:ref:`automap_intercepting_columns` - in the :ref:`automap_toplevel` documentation
.. _mapper_primary_key:
Mapping to an Explicit Set of Primary Key Columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :class:`.Mapper` construct in order to successfully map a table always
requires that at least one column be identified as the "primary key" for
that selectable. This is so that when an ORM object is loaded or persisted,
it can be placed in the :term:`identity map` with an appropriate
:term:`identity key`.
In those cases where a reflected table to be mapped does not include
a primary key constraint, as well as in the general case for
:ref:`mapping against arbitrary selectables <orm_mapping_arbitrary_subqueries>`
where primary key columns might not be present, the
:paramref:`.Mapper.primary_key` parameter is provided so that any set of
columns may be configured as the "primary key" for the table, as far as
ORM mapping is concerned.
Given the following example of an Imperative Table
mapping against an existing :class:`.Table` object where the table does not
have any declared primary key (as may occur in reflection scenarios), we may
map such a table as in the following example::
from sqlalchemy import Column
from sqlalchemy import MetaData
from sqlalchemy import String
from sqlalchemy import Table
from sqlalchemy import UniqueConstraint
from sqlalchemy.orm import DeclarativeBase
metadata = MetaData()
group_users = Table(
"group_users",
metadata,
Column("user_id", String(40), nullable=False),
Column("group_id", String(40), nullable=False),
UniqueConstraint("user_id", "group_id"),
)
class Base(DeclarativeBase):
pass
class GroupUsers(Base):
__table__ = group_users
__mapper_args__ = {"primary_key": [group_users.c.user_id, group_users.c.group_id]}
Above, the ``group_users`` table is an association table of some kind
with string columns ``user_id`` and ``group_id``, but no primary key is set up;
instead, there is only a :class:`.UniqueConstraint` establishing that the
two columns represent a unique key. The :class:`.Mapper` does not automatically
inspect unique constraints for primary keys; instead, we make use of the
:paramref:`.Mapper.primary_key` parameter, passing a collection of
``[group_users.c.user_id, group_users.c.group_id]``, indicating that these two
columns should be used in order to construct the identity key for instances
of the ``GroupUsers`` class.
.. _include_exclude_cols:
Mapping a Subset of Table Columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sometimes table reflection may provide a :class:`_schema.Table` with many
columns that are not important for our needs and may be safely ignored.
For such a table that has lots of columns that don't need to be referenced
in the application, the :paramref:`_orm.Mapper.include_properties`
or :paramref:`_orm.Mapper.exclude_properties` parameters can indicate
a subset of columns to be mapped, where other columns from the
target :class:`_schema.Table` will not be considered by the ORM in any
way. Example::
class User(Base):
__table__ = user_table
__mapper_args__ = {"include_properties": ["user_id", "user_name"]}
In the above example, the ``User`` class will map to the ``user_table`` table, only
including the ``user_id`` and ``user_name`` columns - the rest are not referenced.
Similarly::
class Address(Base):
__table__ = address_table
__mapper_args__ = {"exclude_properties": ["street", "city", "state", "zip"]}
will map the ``Address`` class to the ``address_table`` table, including
all columns present except ``street``, ``city``, ``state``, and ``zip``.
As indicated in the two examples, columns may be referenced either
by string name or by referring to the :class:`_schema.Column` object
directly. Referring to the object directly may be useful for explicitness as
well as to resolve ambiguities when
mapping to multi-table constructs that might have repeated names::
class User(Base):
__table__ = user_table
__mapper_args__ = {
"include_properties": [user_table.c.user_id, user_table.c.user_name]
}
When columns are not included in a mapping, these columns will not be
referenced in any SELECT statements emitted when executing :func:`_sql.select`
or legacy :class:`_query.Query` objects, nor will there be any mapped attribute
on the mapped class which represents the column; assigning an attribute of that
name will have no effect beyond that of a normal Python attribute assignment.
However, it is important to note that **schema level column defaults WILL
still be in effect** for those :class:`_schema.Column` objects that include them,
even though they may be excluded from the ORM mapping.
"Schema level column defaults" refers to the defaults described at
:ref:`metadata_defaults` including those configured by the
:paramref:`_schema.Column.default`, :paramref:`_schema.Column.onupdate`,
:paramref:`_schema.Column.server_default` and
:paramref:`_schema.Column.server_onupdate` parameters. These constructs
continue to have normal effects because in the case of
:paramref:`_schema.Column.default` and :paramref:`_schema.Column.onupdate`, the
:class:`_schema.Column` object is still present on the underlying
:class:`_schema.Table`, thus allowing the default functions to take place when
the ORM emits an INSERT or UPDATE, and in the case of
:paramref:`_schema.Column.server_default` and
:paramref:`_schema.Column.server_onupdate`, the relational database itself
emits these defaults as a server side behavior.
.. _mypy: https://mypy.readthedocs.io/en/stable/
.. _pylance: https://github.com/microsoft/pylance-release
.. _generic: https://peps.python.org/pep-0484/#generics
.. _dataclasses: https://docs.python.org/3/library/dataclasses.html
|