1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
.. highlight:: python
.. _custom_collections_toplevel:
.. currentmodule:: sqlalchemy.orm
========================================
Collection Customization and API Details
========================================
The :func:`_orm.relationship` function defines a linkage between two classes.
When the linkage defines a one-to-many or many-to-many relationship, it's
represented as a Python collection when objects are loaded and manipulated.
This section presents additional information about collection configuration
and techniques.
.. _custom_collections:
Customizing Collection Access
-----------------------------
Mapping a one-to-many or many-to-many relationship results in a collection of
values accessible through an attribute on the parent instance. The two
common collection types for these are ``list`` and ``set``, which in
:ref:`Declarative <orm_declarative_styles_toplevel>` mappings that use
:class:`_orm.Mapped` is established by using the collection type within
the :class:`_orm.Mapped` container, as demonstrated in the ``Parent.children`` collection
below where ``list`` is used::
from sqlalchemy import ForeignKey
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
from sqlalchemy.orm import relationship
class Base(DeclarativeBase):
pass
class Parent(Base):
__tablename__ = "parent"
parent_id: Mapped[int] = mapped_column(primary_key=True)
# use a list
children: Mapped[List["Child"]] = relationship()
class Child(Base):
__tablename__ = "child"
child_id: Mapped[int] = mapped_column(primary_key=True)
parent_id: Mapped[int] = mapped_column(ForeignKey("parent.id"))
Or for a ``set``, illustrated in the same
``Parent.children`` collection::
from typing import Set
from sqlalchemy import ForeignKey
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
from sqlalchemy.orm import relationship
class Base(DeclarativeBase):
pass
class Parent(Base):
__tablename__ = "parent"
parent_id: Mapped[int] = mapped_column(primary_key=True)
# use a set
children: Mapped[Set["Child"]] = relationship()
class Child(Base):
__tablename__ = "child"
child_id: Mapped[int] = mapped_column(primary_key=True)
parent_id: Mapped[int] = mapped_column(ForeignKey("parent.id"))
.. note:: If using Python 3.7 or 3.8, annotations for collections need
to use ``typing.List`` or ``typing.Set``, e.g. ``Mapped[List["Child"]]`` or
``Mapped[Set["Child"]]``; the ``list`` and ``set`` Python built-ins
don't yet support generic annotation in these Python versions, such as::
from typing import List
class Parent(Base):
__tablename__ = "parent"
parent_id: Mapped[int] = mapped_column(primary_key=True)
# use a List, Python 3.8 and earlier
children: Mapped[List["Child"]] = relationship()
When using mappings without the :class:`_orm.Mapped` annotation, such as when
using :ref:`imperative mappings <orm_imperative_mapping>` or untyped
Python code, as well as in a few special cases, the collection class for a
:func:`_orm.relationship` can always be specified directly using the
:paramref:`_orm.relationship.collection_class` parameter::
# non-annotated mapping
class Parent(Base):
__tablename__ = "parent"
parent_id = mapped_column(Integer, primary_key=True)
children = relationship("Child", collection_class=set)
class Child(Base):
__tablename__ = "child"
child_id = mapped_column(Integer, primary_key=True)
parent_id = mapped_column(ForeignKey("parent.id"))
In the absence of :paramref:`_orm.relationship.collection_class`
or :class:`_orm.Mapped`, the default collection type is ``list``.
Beyond ``list`` and ``set`` builtins, there is also support for two varieties of
dictionary, described below at :ref:`orm_dictionary_collection`. There is also
support for any arbitrary mutable sequence type can be set up as the target
collection, with some additional configuration steps; this is described in the
section :ref:`orm_custom_collection`.
.. _orm_dictionary_collection:
Dictionary Collections
~~~~~~~~~~~~~~~~~~~~~~
A little extra detail is needed when using a dictionary as a collection.
This because objects are always loaded from the database as lists, and a key-generation
strategy must be available to populate the dictionary correctly. The
:func:`.attribute_keyed_dict` function is by far the most common way
to achieve a simple dictionary collection. It produces a dictionary class that will apply a particular attribute
of the mapped class as a key. Below we map an ``Item`` class containing
a dictionary of ``Note`` items keyed to the ``Note.keyword`` attribute.
When using :func:`.attribute_keyed_dict`, the :class:`_orm.Mapped`
annotation may be typed using the :class:`_orm.KeyFuncDict`
or just plain ``dict`` as illustrated in the following example. However,
the :paramref:`_orm.relationship.collection_class` parameter
is required in this case so that the :func:`.attribute_keyed_dict`
may be appropriately parametrized::
from typing import Dict
from typing import Optional
from sqlalchemy import ForeignKey
from sqlalchemy.orm import attribute_keyed_dict
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import Mapped
from sqlalchemy.orm import mapped_column
from sqlalchemy.orm import relationship
class Base(DeclarativeBase):
pass
class Item(Base):
__tablename__ = "item"
id: Mapped[int] = mapped_column(primary_key=True)
notes: Mapped[Dict[str, "Note"]] = relationship(
collection_class=attribute_keyed_dict("keyword"),
cascade="all, delete-orphan",
)
class Note(Base):
__tablename__ = "note"
id: Mapped[int] = mapped_column(primary_key=True)
item_id: Mapped[int] = mapped_column(ForeignKey("item.id"))
keyword: Mapped[str]
text: Mapped[Optional[str]]
def __init__(self, keyword: str, text: str):
self.keyword = keyword
self.text = text
``Item.notes`` is then a dictionary::
>>> item = Item()
>>> item.notes["a"] = Note("a", "atext")
>>> item.notes.items()
{'a': <__main__.Note object at 0x2eaaf0>}
:func:`.attribute_keyed_dict` will ensure that
the ``.keyword`` attribute of each ``Note`` complies with the key in the
dictionary. Such as, when assigning to ``Item.notes``, the dictionary
key we supply must match that of the actual ``Note`` object::
item = Item()
item.notes = {
"a": Note("a", "atext"),
"b": Note("b", "btext"),
}
The attribute which :func:`.attribute_keyed_dict` uses as a key
does not need to be mapped at all! Using a regular Python ``@property`` allows virtually
any detail or combination of details about the object to be used as the key, as
below when we establish it as a tuple of ``Note.keyword`` and the first ten letters
of the ``Note.text`` field::
class Item(Base):
__tablename__ = "item"
id: Mapped[int] = mapped_column(primary_key=True)
notes: Mapped[Dict[str, "Note"]] = relationship(
collection_class=attribute_keyed_dict("note_key"),
back_populates="item",
cascade="all, delete-orphan",
)
class Note(Base):
__tablename__ = "note"
id: Mapped[int] = mapped_column(primary_key=True)
item_id: Mapped[int] = mapped_column(ForeignKey("item.id"))
keyword: Mapped[str]
text: Mapped[str]
item: Mapped["Item"] = relationship()
@property
def note_key(self):
return (self.keyword, self.text[0:10])
def __init__(self, keyword: str, text: str):
self.keyword = keyword
self.text = text
Above we added a ``Note.item`` relationship, with a bi-directional
:paramref:`_orm.relationship.back_populates` configuration.
Assigning to this reverse relationship, the ``Note``
is added to the ``Item.notes`` dictionary and the key is generated for us automatically::
>>> item = Item()
>>> n1 = Note("a", "atext")
>>> n1.item = item
>>> item.notes
{('a', 'atext'): <__main__.Note object at 0x2eaaf0>}
Other built-in dictionary types include :func:`.column_keyed_dict`,
which is almost like :func:`.attribute_keyed_dict` except given the :class:`_schema.Column`
object directly::
from sqlalchemy.orm import column_keyed_dict
class Item(Base):
__tablename__ = "item"
id: Mapped[int] = mapped_column(primary_key=True)
notes: Mapped[Dict[str, "Note"]] = relationship(
collection_class=column_keyed_dict(Note.__table__.c.keyword),
cascade="all, delete-orphan",
)
as well as :func:`.mapped_collection` which is passed any callable function.
Note that it's usually easier to use :func:`.attribute_keyed_dict` along
with a ``@property`` as mentioned earlier::
from sqlalchemy.orm import mapped_collection
class Item(Base):
__tablename__ = "item"
id: Mapped[int] = mapped_column(primary_key=True)
notes: Mapped[Dict[str, "Note"]] = relationship(
collection_class=mapped_collection(lambda note: note.text[0:10]),
cascade="all, delete-orphan",
)
Dictionary mappings are often combined with the "Association Proxy" extension to produce
streamlined dictionary views. See :ref:`proxying_dictionaries` and :ref:`composite_association_proxy`
for examples.
.. _key_collections_mutations:
Dealing with Key Mutations and back-populating for Dictionary collections
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When using :func:`.attribute_keyed_dict`, the "key" for the dictionary
is taken from an attribute on the target object. **Changes to this key
are not tracked**. This means that the key must be assigned towards when
it is first used, and if the key changes, the collection will not be mutated.
A typical example where this might be an issue is when relying upon backrefs
to populate an attribute mapped collection. Given the following::
class A(Base):
__tablename__ = "a"
id: Mapped[int] = mapped_column(primary_key=True)
bs: Mapped[Dict[str, "B"]] = relationship(
collection_class=attribute_keyed_dict("data"),
back_populates="a",
)
class B(Base):
__tablename__ = "b"
id: Mapped[int] = mapped_column(primary_key=True)
a_id: Mapped[int] = mapped_column(ForeignKey("a.id"))
data: Mapped[str]
a: Mapped["A"] = relationship(back_populates="bs")
Above, if we create a ``B()`` that refers to a specific ``A()``, the back
populates will then add the ``B()`` to the ``A.bs`` collection, however
if the value of ``B.data`` is not set yet, the key will be ``None``::
>>> a1 = A()
>>> b1 = B(a=a1)
>>> a1.bs
{None: <test3.B object at 0x7f7b1023ef70>}
Setting ``b1.data`` after the fact does not update the collection::
>>> b1.data = "the key"
>>> a1.bs
{None: <test3.B object at 0x7f7b1023ef70>}
This can also be seen if one attempts to set up ``B()`` in the constructor.
The order of arguments changes the result::
>>> B(a=a1, data="the key")
<test3.B object at 0x7f7b10114280>
>>> a1.bs
{None: <test3.B object at 0x7f7b10114280>}
vs::
>>> B(data="the key", a=a1)
<test3.B object at 0x7f7b10114340>
>>> a1.bs
{'the key': <test3.B object at 0x7f7b10114340>}
If backrefs are being used in this way, ensure that attributes are populated
in the correct order using an ``__init__`` method.
An event handler such as the following may also be used to track changes in the
collection as well::
from sqlalchemy import event
from sqlalchemy.orm import attributes
@event.listens_for(B.data, "set")
def set_item(obj, value, previous, initiator):
if obj.a is not None:
previous = None if previous == attributes.NO_VALUE else previous
obj.a.bs[value] = obj
obj.a.bs.pop(previous)
.. _orm_custom_collection:
Custom Collection Implementations
---------------------------------
You can use your own types for collections as well. In simple cases,
inheriting from ``list`` or ``set``, adding custom behavior, is all that's needed.
In other cases, special decorators are needed to tell SQLAlchemy more detail
about how the collection operates.
.. topic:: Do I need a custom collection implementation?
In most cases not at all! The most common use cases for a "custom" collection
is one that validates or marshals incoming values into a new form, such as
a string that becomes a class instance, or one which goes a
step beyond and represents the data internally in some fashion, presenting
a "view" of that data on the outside of a different form.
For the first use case, the :func:`_orm.validates` decorator is by far
the simplest way to intercept incoming values in all cases for the purposes
of validation and simple marshaling. See :ref:`simple_validators`
for an example of this.
For the second use case, the :ref:`associationproxy_toplevel` extension is a
well-tested, widely used system that provides a read/write "view" of a
collection in terms of some attribute present on the target object. As the
target attribute can be a ``@property`` that returns virtually anything, a
wide array of "alternative" views of a collection can be constructed with
just a few functions. This approach leaves the underlying mapped collection
unaffected and avoids the need to carefully tailor collection behavior on a
method-by-method basis.
Customized collections are useful when the collection needs to
have special behaviors upon access or mutation operations that can't
otherwise be modeled externally to the collection. They can of course
be combined with the above two approaches.
Collections in SQLAlchemy are transparently *instrumented*. Instrumentation
means that normal operations on the collection are tracked and result in
changes being written to the database at flush time. Additionally, collection
operations can fire *events* which indicate some secondary operation must take
place. Examples of a secondary operation include saving the child item in the
parent's :class:`~sqlalchemy.orm.session.Session` (i.e. the ``save-update``
cascade), as well as synchronizing the state of a bi-directional relationship
(i.e. a :func:`.backref`).
The collections package understands the basic interface of lists, sets and
dicts and will automatically apply instrumentation to those built-in types and
their subclasses. Object-derived types that implement a basic collection
interface are detected and instrumented via duck-typing:
.. sourcecode:: python+sql
class ListLike:
def __init__(self):
self.data = []
def append(self, item):
self.data.append(item)
def remove(self, item):
self.data.remove(item)
def extend(self, items):
self.data.extend(items)
def __iter__(self):
return iter(self.data)
def foo(self):
return "foo"
``append``, ``remove``, and ``extend`` are known members of ``list``, and will
be instrumented automatically. ``__iter__`` is not a mutator method and won't
be instrumented, and ``foo`` won't be either.
Duck-typing (i.e. guesswork) isn't rock-solid, of course, so you can be
explicit about the interface you are implementing by providing an
``__emulates__`` class attribute::
class SetLike:
__emulates__ = set
def __init__(self):
self.data = set()
def append(self, item):
self.data.add(item)
def remove(self, item):
self.data.remove(item)
def __iter__(self):
return iter(self.data)
This class looks similar to a Python ``list`` (i.e. "list-like") as it has an
``append`` method, but the ``__emulates__`` attribute forces it to be treated
as a ``set``. ``remove`` is known to be part of the set interface and will be
instrumented.
But this class won't work quite yet: a little glue is needed to adapt it for
use by SQLAlchemy. The ORM needs to know which methods to use to append, remove
and iterate over members of the collection. When using a type like ``list`` or
``set``, the appropriate methods are well-known and used automatically when
present. However the class above, which only roughly resembles a ``set``, does not
provide the expected ``add`` method, so we must indicate to the ORM the
method that will instead take the place of the ``add`` method, in this
case using a decorator ``@collection.appender``; this is illustrated in the
next section.
Annotating Custom Collections via Decorators
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Decorators can be used to tag the individual methods the ORM needs to manage
collections. Use them when your class doesn't quite meet the regular interface
for its container type, or when you otherwise would like to use a different method to
get the job done.
.. sourcecode:: python
from sqlalchemy.orm.collections import collection
class SetLike:
__emulates__ = set
def __init__(self):
self.data = set()
@collection.appender
def append(self, item):
self.data.add(item)
def remove(self, item):
self.data.remove(item)
def __iter__(self):
return iter(self.data)
And that's all that's needed to complete the example. SQLAlchemy will add
instances via the ``append`` method. ``remove`` and ``__iter__`` are the
default methods for sets and will be used for removing and iteration. Default
methods can be changed as well:
.. sourcecode:: python+sql
from sqlalchemy.orm.collections import collection
class MyList(list):
@collection.remover
def zark(self, item):
# do something special...
...
@collection.iterator
def hey_use_this_instead_for_iteration(self): ...
There is no requirement to be "list-like" or "set-like" at all. Collection classes
can be any shape, so long as they have the append, remove and iterate
interface marked for SQLAlchemy's use. Append and remove methods will be
called with a mapped entity as the single argument, and iterator methods are
called with no arguments and must return an iterator.
.. _dictionary_collections:
Custom Dictionary-Based Collections
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The :class:`.KeyFuncDict` class can be used as
a base class for your custom types or as a mix-in to quickly add ``dict``
collection support to other classes. It uses a keying function to delegate to
``__setitem__`` and ``__delitem__``:
.. sourcecode:: python+sql
from sqlalchemy.orm.collections import KeyFuncDict
class MyNodeMap(KeyFuncDict):
"""Holds 'Node' objects, keyed by the 'name' attribute."""
def __init__(self, *args, **kw):
super().__init__(keyfunc=lambda node: node.name)
dict.__init__(self, *args, **kw)
When subclassing :class:`.KeyFuncDict`, user-defined versions
of ``__setitem__()`` or ``__delitem__()`` should be decorated
with :meth:`.collection.internally_instrumented`, **if** they call down
to those same methods on :class:`.KeyFuncDict`. This because the methods
on :class:`.KeyFuncDict` are already instrumented - calling them
from within an already instrumented call can cause events to be fired off
repeatedly, or inappropriately, leading to internal state corruption in
rare cases::
from sqlalchemy.orm.collections import KeyFuncDict, collection
class MyKeyFuncDict(KeyFuncDict):
"""Use @internally_instrumented when your methods
call down to already-instrumented methods.
"""
@collection.internally_instrumented
def __setitem__(self, key, value, _sa_initiator=None):
# do something with key, value
super(MyKeyFuncDict, self).__setitem__(key, value, _sa_initiator)
@collection.internally_instrumented
def __delitem__(self, key, _sa_initiator=None):
# do something with key
super(MyKeyFuncDict, self).__delitem__(key, _sa_initiator)
The ORM understands the ``dict`` interface just like lists and sets, and will
automatically instrument all "dict-like" methods if you choose to subclass
``dict`` or provide dict-like collection behavior in a duck-typed class. You
must decorate appender and remover methods, however- there are no compatible
methods in the basic dictionary interface for SQLAlchemy to use by default.
Iteration will go through ``values()`` unless otherwise decorated.
Instrumentation and Custom Types
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Many custom types and existing library classes can be used as a entity
collection type as-is without further ado. However, it is important to note
that the instrumentation process will modify the type, adding decorators
around methods automatically.
The decorations are lightweight and no-op outside of relationships, but they
do add unneeded overhead when triggered elsewhere. When using a library class
as a collection, it can be good practice to use the "trivial subclass" trick
to restrict the decorations to just your usage in relationships. For example:
.. sourcecode:: python+sql
class MyAwesomeList(some.great.library.AwesomeList):
pass
# ... relationship(..., collection_class=MyAwesomeList)
The ORM uses this approach for built-ins, quietly substituting a trivial
subclass when a ``list``, ``set`` or ``dict`` is used directly.
Collection API
-----------------------------
.. currentmodule:: sqlalchemy.orm
.. autofunction:: attribute_keyed_dict
.. autofunction:: column_keyed_dict
.. autofunction:: keyfunc_mapping
.. autodata:: attribute_mapped_collection
.. autodata:: column_mapped_collection
.. autodata:: mapped_collection
.. autoclass:: sqlalchemy.orm.KeyFuncDict
:members:
.. autodata:: sqlalchemy.orm.MappedCollection
Collection Internals
-----------------------------
.. currentmodule:: sqlalchemy.orm.collections
.. autofunction:: bulk_replace
.. autoclass:: collection
:members:
.. autodata:: collection_adapter
.. autoclass:: CollectionAdapter
.. autoclass:: InstrumentedDict
.. autoclass:: InstrumentedList
.. autoclass:: InstrumentedSet
.. autofunction:: prepare_instrumentation
|