1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
|
/*
** 2011-09-11
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code to read and write checkpoints.
**
** A checkpoint represents the database layout at a single point in time.
** It includes a log offset. When an existing database is opened, the
** current state is determined by reading the newest checkpoint and updating
** it with all committed transactions from the log that follow the specified
** offset.
*/
#include "lsmInt.h"
/*
** CHECKPOINT BLOB FORMAT:
**
** A checkpoint blob is a series of unsigned 32-bit integers stored in
** big-endian byte order. As follows:
**
** Checkpoint header (see the CKPT_HDR_XXX #defines):
**
** 1. The checkpoint id MSW.
** 2. The checkpoint id LSW.
** 3. The number of integer values in the entire checkpoint, including
** the two checksum values.
** 4. The compression scheme id.
** 5. The total number of blocks in the database.
** 6. The block size.
** 7. The number of levels.
** 8. The nominal database page size.
** 9. The number of pages (in total) written to the database file.
**
** Log pointer:
**
** 1. The log offset MSW.
** 2. The log offset LSW.
** 3. Log checksum 0.
** 4. Log checksum 1.
**
** Note that the "log offset" is not the literal byte offset. Instead,
** it is the byte offset multiplied by 2, with least significant bit
** toggled each time the log pointer value is changed. This is to make
** sure that this field changes each time the log pointer is updated,
** even if the log file itself is disabled. See lsmTreeMakeOld().
**
** See ckptExportLog() and ckptImportLog().
**
** Append points:
**
** 8 integers (4 * 64-bit page numbers). See ckptExportAppendlist().
**
** For each level in the database, a level record. Formatted as follows:
**
** 0. Age of the level (least significant 16-bits). And flags mask (most
** significant 16-bits).
** 1. The number of right-hand segments (nRight, possibly 0),
** 2. Segment record for left-hand segment (8 integers defined below),
** 3. Segment record for each right-hand segment (8 integers defined below),
** 4. If nRight>0, The number of segments involved in the merge
** 5. if nRight>0, Current nSkip value (see Merge structure defn.),
** 6. For each segment in the merge:
** 5a. Page number of next cell to read during merge (this field
** is 64-bits - 2 integers)
** 5b. Cell number of next cell to read during merge
** 7. Page containing current split-key (64-bits - 2 integers).
** 8. Cell within page containing current split-key.
** 9. Current pointer value (64-bits - 2 integers).
**
** The block redirect array:
**
** 1. Number of redirections (maximum LSM_MAX_BLOCK_REDIRECTS).
** 2. For each redirection:
** a. "from" block number
** b. "to" block number
**
** The in-memory freelist entries. Each entry is either an insert or a
** delete. The in-memory freelist is to the free-block-list as the
** in-memory tree is to the users database content.
**
** 1. Number of free-list entries stored in checkpoint header.
** 2. Number of free blocks (in total).
** 3. Total number of blocks freed during database lifetime.
** 4. For each entry:
** 2a. Block number of free block.
** 2b. A 64-bit integer (MSW followed by LSW). -1 for a delete entry,
** or the associated checkpoint id for an insert.
**
** The checksum:
**
** 1. Checksum value 1.
** 2. Checksum value 2.
**
** In the above, a segment record consists of the following four 64-bit
** fields (converted to 2 * u32 by storing the MSW followed by LSW):
**
** 1. First page of array,
** 2. Last page of array,
** 3. Root page of array (or 0),
** 4. Size of array in pages.
*/
/*
** LARGE NUMBERS OF LEVEL RECORDS:
**
** A limit on the number of rhs segments that may be present in the database
** file. Defining this limit ensures that all level records fit within
** the 4096 byte limit for checkpoint blobs.
**
** The number of right-hand-side segments in a database is counted as
** follows:
**
** * For each level in the database not undergoing a merge, add 1.
**
** * For each level in the database that is undergoing a merge, add
** the number of segments on the rhs of the level.
**
** A level record not undergoing a merge is 10 integers. A level record
** with nRhs rhs segments and (nRhs+1) input segments (i.e. including the
** separators from the next level) is (11*nRhs+20) integers. The maximum
** per right-hand-side level is therefore 21 integers. So the maximum
** size of all level records in a checkpoint is 21*40=820 integers.
**
** TODO: Before pointer values were changed from 32 to 64 bits, the above
** used to come to 420 bytes - leaving significant space for a free-list
** prefix. No more. To fix this, reduce the size of the level records in
** a db snapshot, and improve management of the free-list tail in
** lsm_sorted.c.
*/
#define LSM_MAX_RHS_SEGMENTS 40
/*
** LARGE NUMBERS OF FREELIST ENTRIES:
**
** There is also a limit (LSM_MAX_FREELIST_ENTRIES - defined in lsmInt.h)
** on the number of free-list entries stored in a checkpoint. Since each
** free-list entry consists of 3 integers, the maximum free-list size is
** 3*100=300 integers. Combined with the limit on rhs segments defined
** above, this ensures that a checkpoint always fits within a 4096 byte
** meta page.
**
** If the database contains more than 100 free blocks, the "overflow" flag
** in the checkpoint header is set and the remainder are stored in the
** system FREELIST entry in the LSM (along with user data). The value
** accompanying the FREELIST key in the LSM is, like a checkpoint, an array
** of 32-bit big-endian integers. As follows:
**
** For each entry:
** a. Block number of free block.
** b. MSW of associated checkpoint id.
** c. LSW of associated checkpoint id.
**
** The number of entries is not required - it is implied by the size of the
** value blob containing the integer array.
**
** Note that the limit defined by LSM_MAX_FREELIST_ENTRIES is a hard limit.
** The actual value used may be configured using LSM_CONFIG_MAX_FREELIST.
*/
/*
** The argument to this macro must be of type u32. On a little-endian
** architecture, it returns the u32 value that results from interpreting
** the 4 bytes as a big-endian value. On a big-endian architecture, it
** returns the value that would be produced by intepreting the 4 bytes
** of the input value as a little-endian integer.
*/
#define BYTESWAP32(x) ( \
(((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
+ (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
)
static const int one = 1;
#define LSM_LITTLE_ENDIAN (*(u8 *)(&one))
/* Sizes, in integers, of various parts of the checkpoint. */
#define CKPT_HDR_SIZE 9
#define CKPT_LOGPTR_SIZE 4
#define CKPT_APPENDLIST_SIZE (LSM_APPLIST_SZ * 2)
/* A #define to describe each integer in the checkpoint header. */
#define CKPT_HDR_ID_MSW 0
#define CKPT_HDR_ID_LSW 1
#define CKPT_HDR_NCKPT 2
#define CKPT_HDR_CMPID 3
#define CKPT_HDR_NBLOCK 4
#define CKPT_HDR_BLKSZ 5
#define CKPT_HDR_NLEVEL 6
#define CKPT_HDR_PGSZ 7
#define CKPT_HDR_NWRITE 8
#define CKPT_HDR_LO_MSW 9
#define CKPT_HDR_LO_LSW 10
#define CKPT_HDR_LO_CKSUM1 11
#define CKPT_HDR_LO_CKSUM2 12
typedef struct CkptBuffer CkptBuffer;
/*
** Dynamic buffer used to accumulate data for a checkpoint.
*/
struct CkptBuffer {
lsm_env *pEnv;
int nAlloc;
u32 *aCkpt;
};
/*
** Calculate the checksum of the checkpoint specified by arguments aCkpt and
** nCkpt. Store the checksum in *piCksum1 and *piCksum2 before returning.
**
** The value of the nCkpt parameter includes the two checksum values at
** the end of the checkpoint. They are not used as inputs to the checksum
** calculation. The checksum is based on the array of (nCkpt-2) integers
** at aCkpt[].
*/
static void ckptChecksum(u32 *aCkpt, u32 nCkpt, u32 *piCksum1, u32 *piCksum2){
u32 i;
u32 cksum1 = 1;
u32 cksum2 = 2;
if( nCkpt % 2 ){
cksum1 += aCkpt[nCkpt-3] & 0x0000FFFF;
cksum2 += aCkpt[nCkpt-3] & 0xFFFF0000;
}
for(i=0; (i+3)<nCkpt; i+=2){
cksum1 += cksum2 + aCkpt[i];
cksum2 += cksum1 + aCkpt[i+1];
}
*piCksum1 = cksum1;
*piCksum2 = cksum2;
}
/*
** Set integer iIdx of the checkpoint accumulating in buffer *p to iVal.
*/
static void ckptSetValue(CkptBuffer *p, int iIdx, u32 iVal, int *pRc){
if( *pRc ) return;
if( iIdx>=p->nAlloc ){
int nNew = LSM_MAX(8, iIdx*2);
p->aCkpt = (u32 *)lsmReallocOrFree(p->pEnv, p->aCkpt, nNew*sizeof(u32));
if( !p->aCkpt ){
*pRc = LSM_NOMEM_BKPT;
return;
}
p->nAlloc = nNew;
}
p->aCkpt[iIdx] = iVal;
}
/*
** Argument aInt points to an array nInt elements in size. Switch the
** endian-ness of each element of the array.
*/
static void ckptChangeEndianness(u32 *aInt, int nInt){
if( LSM_LITTLE_ENDIAN ){
int i;
for(i=0; i<nInt; i++) aInt[i] = BYTESWAP32(aInt[i]);
}
}
/*
** Object *p contains a checkpoint in native byte-order. The checkpoint is
** nCkpt integers in size, not including any checksum. This function sets
** the two checksum elements of the checkpoint accordingly.
*/
static void ckptAddChecksum(CkptBuffer *p, int nCkpt, int *pRc){
if( *pRc==LSM_OK ){
u32 aCksum[2] = {0, 0};
ckptChecksum(p->aCkpt, nCkpt+2, &aCksum[0], &aCksum[1]);
ckptSetValue(p, nCkpt, aCksum[0], pRc);
ckptSetValue(p, nCkpt+1, aCksum[1], pRc);
}
}
static void ckptAppend64(CkptBuffer *p, int *piOut, i64 iVal, int *pRc){
int iOut = *piOut;
ckptSetValue(p, iOut++, (iVal >> 32) & 0xFFFFFFFF, pRc);
ckptSetValue(p, iOut++, (iVal & 0xFFFFFFFF), pRc);
*piOut = iOut;
}
static i64 ckptRead64(u32 *a){
return (((i64)a[0]) << 32) + (i64)a[1];
}
static i64 ckptGobble64(u32 *a, int *piIn){
int iIn = *piIn;
*piIn += 2;
return ckptRead64(&a[iIn]);
}
/*
** Append a 6-value segment record corresponding to pSeg to the checkpoint
** buffer passed as the third argument.
*/
static void ckptExportSegment(
Segment *pSeg,
CkptBuffer *p,
int *piOut,
int *pRc
){
ckptAppend64(p, piOut, pSeg->iFirst, pRc);
ckptAppend64(p, piOut, pSeg->iLastPg, pRc);
ckptAppend64(p, piOut, pSeg->iRoot, pRc);
ckptAppend64(p, piOut, pSeg->nSize, pRc);
}
static void ckptExportLevel(
Level *pLevel, /* Level object to serialize */
CkptBuffer *p, /* Append new level record to this ckpt */
int *piOut, /* IN/OUT: Size of checkpoint so far */
int *pRc /* IN/OUT: Error code */
){
int iOut = *piOut;
Merge *pMerge;
pMerge = pLevel->pMerge;
ckptSetValue(p, iOut++, (u32)pLevel->iAge + (u32)(pLevel->flags<<16), pRc);
ckptSetValue(p, iOut++, pLevel->nRight, pRc);
ckptExportSegment(&pLevel->lhs, p, &iOut, pRc);
assert( (pLevel->nRight>0)==(pMerge!=0) );
if( pMerge ){
int i;
for(i=0; i<pLevel->nRight; i++){
ckptExportSegment(&pLevel->aRhs[i], p, &iOut, pRc);
}
assert( pMerge->nInput==pLevel->nRight
|| pMerge->nInput==pLevel->nRight+1
);
ckptSetValue(p, iOut++, pMerge->nInput, pRc);
ckptSetValue(p, iOut++, pMerge->nSkip, pRc);
for(i=0; i<pMerge->nInput; i++){
ckptAppend64(p, &iOut, pMerge->aInput[i].iPg, pRc);
ckptSetValue(p, iOut++, pMerge->aInput[i].iCell, pRc);
}
ckptAppend64(p, &iOut, pMerge->splitkey.iPg, pRc);
ckptSetValue(p, iOut++, pMerge->splitkey.iCell, pRc);
ckptAppend64(p, &iOut, pMerge->iCurrentPtr, pRc);
}
*piOut = iOut;
}
/*
** Populate the log offset fields of the checkpoint buffer. 4 values.
*/
static void ckptExportLog(
lsm_db *pDb,
int bFlush,
CkptBuffer *p,
int *piOut,
int *pRc
){
int iOut = *piOut;
assert( iOut==CKPT_HDR_LO_MSW );
if( bFlush ){
i64 iOff = pDb->treehdr.iOldLog;
ckptAppend64(p, &iOut, iOff, pRc);
ckptSetValue(p, iOut++, pDb->treehdr.oldcksum0, pRc);
ckptSetValue(p, iOut++, pDb->treehdr.oldcksum1, pRc);
}else{
for(; iOut<=CKPT_HDR_LO_CKSUM2; iOut++){
ckptSetValue(p, iOut, pDb->pShmhdr->aSnap2[iOut], pRc);
}
}
assert( *pRc || iOut==CKPT_HDR_LO_CKSUM2+1 );
*piOut = iOut;
}
static void ckptExportAppendlist(
lsm_db *db, /* Database connection */
CkptBuffer *p, /* Checkpoint buffer to write to */
int *piOut, /* IN/OUT: Offset within checkpoint buffer */
int *pRc /* IN/OUT: Error code */
){
int i;
LsmPgno *aiAppend = db->pWorker->aiAppend;
for(i=0; i<LSM_APPLIST_SZ; i++){
ckptAppend64(p, piOut, aiAppend[i], pRc);
}
};
static int ckptExportSnapshot(
lsm_db *pDb, /* Connection handle */
int bLog, /* True to update log-offset fields */
i64 iId, /* Checkpoint id */
int bCksum, /* If true, include checksums */
void **ppCkpt, /* OUT: Buffer containing checkpoint */
int *pnCkpt /* OUT: Size of checkpoint in bytes */
){
int rc = LSM_OK; /* Return Code */
FileSystem *pFS = pDb->pFS; /* File system object */
Snapshot *pSnap = pDb->pWorker; /* Worker snapshot */
int nLevel = 0; /* Number of levels in checkpoint */
int iLevel; /* Used to count out nLevel levels */
int iOut = 0; /* Current offset in aCkpt[] */
Level *pLevel; /* Level iterator */
int i; /* Iterator used while serializing freelist */
CkptBuffer ckpt;
/* Initialize the output buffer */
memset(&ckpt, 0, sizeof(CkptBuffer));
ckpt.pEnv = pDb->pEnv;
iOut = CKPT_HDR_SIZE;
/* Write the log offset into the checkpoint. */
ckptExportLog(pDb, bLog, &ckpt, &iOut, &rc);
/* Write the append-point list */
ckptExportAppendlist(pDb, &ckpt, &iOut, &rc);
/* Figure out how many levels will be written to the checkpoint. */
for(pLevel=lsmDbSnapshotLevel(pSnap); pLevel; pLevel=pLevel->pNext) nLevel++;
/* Serialize nLevel levels. */
iLevel = 0;
for(pLevel=lsmDbSnapshotLevel(pSnap); iLevel<nLevel; pLevel=pLevel->pNext){
ckptExportLevel(pLevel, &ckpt, &iOut, &rc);
iLevel++;
}
/* Write the block-redirect list */
ckptSetValue(&ckpt, iOut++, pSnap->redirect.n, &rc);
for(i=0; i<pSnap->redirect.n; i++){
ckptSetValue(&ckpt, iOut++, pSnap->redirect.a[i].iFrom, &rc);
ckptSetValue(&ckpt, iOut++, pSnap->redirect.a[i].iTo, &rc);
}
/* Write the freelist */
assert( pSnap->freelist.nEntry<=pDb->nMaxFreelist );
if( rc==LSM_OK ){
int nFree = pSnap->freelist.nEntry;
ckptSetValue(&ckpt, iOut++, nFree, &rc);
for(i=0; i<nFree; i++){
FreelistEntry *p = &pSnap->freelist.aEntry[i];
ckptSetValue(&ckpt, iOut++, p->iBlk, &rc);
ckptSetValue(&ckpt, iOut++, (p->iId >> 32) & 0xFFFFFFFF, &rc);
ckptSetValue(&ckpt, iOut++, p->iId & 0xFFFFFFFF, &rc);
}
}
/* Write the checkpoint header */
assert( iId>=0 );
assert( pSnap->iCmpId==pDb->compress.iId
|| pSnap->iCmpId==LSM_COMPRESSION_EMPTY
);
ckptSetValue(&ckpt, CKPT_HDR_ID_MSW, (u32)(iId>>32), &rc);
ckptSetValue(&ckpt, CKPT_HDR_ID_LSW, (u32)(iId&0xFFFFFFFF), &rc);
ckptSetValue(&ckpt, CKPT_HDR_NCKPT, iOut+2, &rc);
ckptSetValue(&ckpt, CKPT_HDR_CMPID, pDb->compress.iId, &rc);
ckptSetValue(&ckpt, CKPT_HDR_NBLOCK, pSnap->nBlock, &rc);
ckptSetValue(&ckpt, CKPT_HDR_BLKSZ, lsmFsBlockSize(pFS), &rc);
ckptSetValue(&ckpt, CKPT_HDR_NLEVEL, nLevel, &rc);
ckptSetValue(&ckpt, CKPT_HDR_PGSZ, lsmFsPageSize(pFS), &rc);
ckptSetValue(&ckpt, CKPT_HDR_NWRITE, pSnap->nWrite, &rc);
if( bCksum ){
ckptAddChecksum(&ckpt, iOut, &rc);
}else{
ckptSetValue(&ckpt, iOut, 0, &rc);
ckptSetValue(&ckpt, iOut+1, 0, &rc);
}
iOut += 2;
assert( iOut<=1024 );
#ifdef LSM_LOG_FREELIST
lsmLogMessage(pDb, rc,
"ckptExportSnapshot(): id=%lld freelist: %d", iId, pSnap->freelist.nEntry
);
for(i=0; i<pSnap->freelist.nEntry; i++){
lsmLogMessage(pDb, rc,
"ckptExportSnapshot(): iBlk=%d id=%lld",
pSnap->freelist.aEntry[i].iBlk,
pSnap->freelist.aEntry[i].iId
);
}
#endif
*ppCkpt = (void *)ckpt.aCkpt;
if( pnCkpt ) *pnCkpt = sizeof(u32)*iOut;
return rc;
}
/*
** Helper function for ckptImport().
*/
static void ckptNewSegment(
u32 *aIn,
int *piIn,
Segment *pSegment /* Populate this structure */
){
assert( pSegment->iFirst==0 && pSegment->iLastPg==0 );
assert( pSegment->nSize==0 && pSegment->iRoot==0 );
pSegment->iFirst = ckptGobble64(aIn, piIn);
pSegment->iLastPg = ckptGobble64(aIn, piIn);
pSegment->iRoot = ckptGobble64(aIn, piIn);
pSegment->nSize = ckptGobble64(aIn, piIn);
assert( pSegment->iFirst );
}
static int ckptSetupMerge(lsm_db *pDb, u32 *aInt, int *piIn, Level *pLevel){
Merge *pMerge; /* Allocated Merge object */
int nInput; /* Number of input segments in merge */
int iIn = *piIn; /* Next value to read from aInt[] */
int i; /* Iterator variable */
int nByte; /* Number of bytes to allocate */
/* Allocate the Merge object. If malloc() fails, return LSM_NOMEM. */
nInput = (int)aInt[iIn++];
nByte = sizeof(Merge) + sizeof(MergeInput) * nInput;
pMerge = (Merge *)lsmMallocZero(pDb->pEnv, nByte);
if( !pMerge ) return LSM_NOMEM_BKPT;
pLevel->pMerge = pMerge;
/* Populate the Merge object. */
pMerge->aInput = (MergeInput *)&pMerge[1];
pMerge->nInput = nInput;
pMerge->iOutputOff = -1;
pMerge->nSkip = (int)aInt[iIn++];
for(i=0; i<nInput; i++){
pMerge->aInput[i].iPg = ckptGobble64(aInt, &iIn);
pMerge->aInput[i].iCell = (int)aInt[iIn++];
}
pMerge->splitkey.iPg = ckptGobble64(aInt, &iIn);
pMerge->splitkey.iCell = (int)aInt[iIn++];
pMerge->iCurrentPtr = ckptGobble64(aInt, &iIn);
/* Set *piIn and return LSM_OK. */
*piIn = iIn;
return LSM_OK;
}
static int ckptLoadLevels(
lsm_db *pDb,
u32 *aIn,
int *piIn,
int nLevel,
Level **ppLevel
){
int i;
int rc = LSM_OK;
Level *pRet = 0;
Level **ppNext;
int iIn = *piIn;
ppNext = &pRet;
for(i=0; rc==LSM_OK && i<nLevel; i++){
int iRight;
Level *pLevel;
/* Allocate space for the Level structure and Level.apRight[] array */
pLevel = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
if( rc==LSM_OK ){
pLevel->iAge = (u16)(aIn[iIn] & 0x0000FFFF);
pLevel->flags = (u16)((aIn[iIn]>>16) & 0x0000FFFF);
iIn++;
pLevel->nRight = aIn[iIn++];
if( pLevel->nRight ){
int nByte = sizeof(Segment) * pLevel->nRight;
pLevel->aRhs = (Segment *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
}
if( rc==LSM_OK ){
*ppNext = pLevel;
ppNext = &pLevel->pNext;
/* Allocate the main segment */
ckptNewSegment(aIn, &iIn, &pLevel->lhs);
/* Allocate each of the right-hand segments, if any */
for(iRight=0; iRight<pLevel->nRight; iRight++){
ckptNewSegment(aIn, &iIn, &pLevel->aRhs[iRight]);
}
/* Set up the Merge object, if required */
if( pLevel->nRight>0 ){
rc = ckptSetupMerge(pDb, aIn, &iIn, pLevel);
}
}
}
}
if( rc!=LSM_OK ){
/* An OOM must have occurred. Free any level structures allocated and
** return the error to the caller. */
lsmSortedFreeLevel(pDb->pEnv, pRet);
pRet = 0;
}
*ppLevel = pRet;
*piIn = iIn;
return rc;
}
int lsmCheckpointLoadLevels(lsm_db *pDb, void *pVal, int nVal){
int rc = LSM_OK;
if( nVal>0 ){
u32 *aIn;
aIn = lsmMallocRc(pDb->pEnv, nVal, &rc);
if( aIn ){
Level *pLevel = 0;
Level *pParent;
int nIn;
int nLevel;
int iIn = 1;
memcpy(aIn, pVal, nVal);
nIn = nVal / sizeof(u32);
ckptChangeEndianness(aIn, nIn);
nLevel = aIn[0];
rc = ckptLoadLevels(pDb, aIn, &iIn, nLevel, &pLevel);
lsmFree(pDb->pEnv, aIn);
assert( rc==LSM_OK || pLevel==0 );
if( rc==LSM_OK ){
pParent = lsmDbSnapshotLevel(pDb->pWorker);
assert( pParent );
while( pParent->pNext ) pParent = pParent->pNext;
pParent->pNext = pLevel;
}
}
}
return rc;
}
/*
** Return the data for the LEVELS record.
**
** The size of the checkpoint that can be stored in the database header
** must not exceed 1024 32-bit integers. Normally, it does not. However,
** if it does, part of the checkpoint must be stored in the LSM. This
** routine returns that part.
*/
int lsmCheckpointLevels(
lsm_db *pDb, /* Database handle */
int nLevel, /* Number of levels to write to blob */
void **paVal, /* OUT: Pointer to LEVELS blob */
int *pnVal /* OUT: Size of LEVELS blob in bytes */
){
Level *p; /* Used to iterate through levels */
int nAll= 0;
int rc;
int i;
int iOut;
CkptBuffer ckpt;
assert( nLevel>0 );
for(p=lsmDbSnapshotLevel(pDb->pWorker); p; p=p->pNext) nAll++;
assert( nAll>nLevel );
nAll -= nLevel;
for(p=lsmDbSnapshotLevel(pDb->pWorker); p && nAll>0; p=p->pNext) nAll--;
memset(&ckpt, 0, sizeof(CkptBuffer));
ckpt.pEnv = pDb->pEnv;
ckptSetValue(&ckpt, 0, nLevel, &rc);
iOut = 1;
for(i=0; rc==LSM_OK && i<nLevel; i++){
ckptExportLevel(p, &ckpt, &iOut, &rc);
p = p->pNext;
}
assert( rc!=LSM_OK || p==0 );
if( rc==LSM_OK ){
ckptChangeEndianness(ckpt.aCkpt, iOut);
*paVal = (void *)ckpt.aCkpt;
*pnVal = iOut * sizeof(u32);
}else{
*pnVal = 0;
*paVal = 0;
}
return rc;
}
/*
** Read the checkpoint id from meta-page pPg.
*/
static i64 ckptLoadId(MetaPage *pPg){
i64 ret = 0;
if( pPg ){
int nData;
u8 *aData = lsmFsMetaPageData(pPg, &nData);
ret = (((i64)lsmGetU32(&aData[CKPT_HDR_ID_MSW*4])) << 32) +
((i64)lsmGetU32(&aData[CKPT_HDR_ID_LSW*4]));
}
return ret;
}
/*
** Return true if the buffer passed as an argument contains a valid
** checkpoint.
*/
static int ckptChecksumOk(u32 *aCkpt){
u32 nCkpt = aCkpt[CKPT_HDR_NCKPT];
u32 cksum1;
u32 cksum2;
if( nCkpt<CKPT_HDR_NCKPT || nCkpt>(LSM_META_RW_PAGE_SIZE)/sizeof(u32) ){
return 0;
}
ckptChecksum(aCkpt, nCkpt, &cksum1, &cksum2);
return (cksum1==aCkpt[nCkpt-2] && cksum2==aCkpt[nCkpt-1]);
}
/*
** Attempt to load a checkpoint from meta page iMeta.
**
** This function is a no-op if *pRc is set to any value other than LSM_OK
** when it is called. If an error occurs, *pRc is set to an LSM error code
** before returning.
**
** If no error occurs and the checkpoint is successfully loaded, copy it to
** ShmHeader.aSnap1[] and ShmHeader.aSnap2[], and set ShmHeader.iMetaPage
** to indicate its origin. In this case return 1. Or, if the checkpoint
** cannot be loaded (because the checksum does not compute), return 0.
*/
static int ckptTryLoad(lsm_db *pDb, MetaPage *pPg, u32 iMeta, int *pRc){
int bLoaded = 0; /* Return value */
if( *pRc==LSM_OK ){
int rc = LSM_OK; /* Error code */
u32 *aCkpt = 0; /* Pointer to buffer containing checkpoint */
u32 nCkpt; /* Number of elements in aCkpt[] */
int nData; /* Bytes of data in aData[] */
u8 *aData; /* Meta page data */
aData = lsmFsMetaPageData(pPg, &nData);
nCkpt = (u32)lsmGetU32(&aData[CKPT_HDR_NCKPT*sizeof(u32)]);
if( nCkpt<=nData/sizeof(u32) && nCkpt>CKPT_HDR_NCKPT ){
aCkpt = (u32 *)lsmMallocRc(pDb->pEnv, nCkpt*sizeof(u32), &rc);
}
if( aCkpt ){
memcpy(aCkpt, aData, nCkpt*sizeof(u32));
ckptChangeEndianness(aCkpt, nCkpt);
if( ckptChecksumOk(aCkpt) ){
ShmHeader *pShm = pDb->pShmhdr;
memcpy(pShm->aSnap1, aCkpt, nCkpt*sizeof(u32));
memcpy(pShm->aSnap2, aCkpt, nCkpt*sizeof(u32));
memcpy(pDb->aSnapshot, aCkpt, nCkpt*sizeof(u32));
pShm->iMetaPage = iMeta;
bLoaded = 1;
}
}
lsmFree(pDb->pEnv, aCkpt);
*pRc = rc;
}
return bLoaded;
}
/*
** Initialize the shared-memory header with an empty snapshot. This function
** is called when no valid snapshot can be found in the database header.
*/
static void ckptLoadEmpty(lsm_db *pDb){
u32 aCkpt[] = {
0, /* CKPT_HDR_ID_MSW */
10, /* CKPT_HDR_ID_LSW */
0, /* CKPT_HDR_NCKPT */
LSM_COMPRESSION_EMPTY, /* CKPT_HDR_CMPID */
0, /* CKPT_HDR_NBLOCK */
0, /* CKPT_HDR_BLKSZ */
0, /* CKPT_HDR_NLEVEL */
0, /* CKPT_HDR_PGSZ */
0, /* CKPT_HDR_NWRITE */
0, 0, 1234, 5678, /* The log pointer and initial checksum */
0,0,0,0, 0,0,0,0, /* The append list */
0, /* The redirected block list */
0, /* The free block list */
0, 0 /* Space for checksum values */
};
u32 nCkpt = array_size(aCkpt);
ShmHeader *pShm = pDb->pShmhdr;
aCkpt[CKPT_HDR_NCKPT] = nCkpt;
aCkpt[CKPT_HDR_BLKSZ] = pDb->nDfltBlksz;
aCkpt[CKPT_HDR_PGSZ] = pDb->nDfltPgsz;
ckptChecksum(aCkpt, array_size(aCkpt), &aCkpt[nCkpt-2], &aCkpt[nCkpt-1]);
memcpy(pShm->aSnap1, aCkpt, nCkpt*sizeof(u32));
memcpy(pShm->aSnap2, aCkpt, nCkpt*sizeof(u32));
memcpy(pDb->aSnapshot, aCkpt, nCkpt*sizeof(u32));
}
/*
** This function is called as part of database recovery to initialize the
** ShmHeader.aSnap1[] and ShmHeader.aSnap2[] snapshots.
*/
int lsmCheckpointRecover(lsm_db *pDb){
int rc = LSM_OK; /* Return Code */
i64 iId1; /* Id of checkpoint on meta-page 1 */
i64 iId2; /* Id of checkpoint on meta-page 2 */
int bLoaded = 0; /* True once checkpoint has been loaded */
int cmp; /* True if (iId2>iId1) */
MetaPage *apPg[2] = {0, 0}; /* Meta-pages 1 and 2 */
rc = lsmFsMetaPageGet(pDb->pFS, 0, 1, &apPg[0]);
if( rc==LSM_OK ) rc = lsmFsMetaPageGet(pDb->pFS, 0, 2, &apPg[1]);
iId1 = ckptLoadId(apPg[0]);
iId2 = ckptLoadId(apPg[1]);
cmp = (iId2 > iId1);
bLoaded = ckptTryLoad(pDb, apPg[cmp?1:0], (cmp?2:1), &rc);
if( bLoaded==0 ){
bLoaded = ckptTryLoad(pDb, apPg[cmp?0:1], (cmp?1:2), &rc);
}
/* The database does not contain a valid checkpoint. Initialize the shared
** memory header with an empty checkpoint. */
if( bLoaded==0 ){
ckptLoadEmpty(pDb);
}
lsmFsMetaPageRelease(apPg[0]);
lsmFsMetaPageRelease(apPg[1]);
return rc;
}
/*
** Store the snapshot in pDb->aSnapshot[] in meta-page iMeta.
*/
int lsmCheckpointStore(lsm_db *pDb, int iMeta){
MetaPage *pPg = 0;
int rc;
assert( iMeta==1 || iMeta==2 );
rc = lsmFsMetaPageGet(pDb->pFS, 1, iMeta, &pPg);
if( rc==LSM_OK ){
u8 *aData;
int nData;
int nCkpt;
nCkpt = (int)pDb->aSnapshot[CKPT_HDR_NCKPT];
aData = lsmFsMetaPageData(pPg, &nData);
memcpy(aData, pDb->aSnapshot, nCkpt*sizeof(u32));
ckptChangeEndianness((u32 *)aData, nCkpt);
rc = lsmFsMetaPageRelease(pPg);
}
return rc;
}
/*
** Copy the current client snapshot from shared-memory to pDb->aSnapshot[].
*/
int lsmCheckpointLoad(lsm_db *pDb, int *piRead){
int nRem = LSM_ATTEMPTS_BEFORE_PROTOCOL;
ShmHeader *pShm = pDb->pShmhdr;
while( (nRem--)>0 ){
int nInt;
nInt = pShm->aSnap1[CKPT_HDR_NCKPT];
if( nInt<=(LSM_META_RW_PAGE_SIZE / sizeof(u32)) ){
memcpy(pDb->aSnapshot, pShm->aSnap1, nInt*sizeof(u32));
if( ckptChecksumOk(pDb->aSnapshot) ){
if( piRead ) *piRead = 1;
return LSM_OK;
}
}
nInt = pShm->aSnap2[CKPT_HDR_NCKPT];
if( nInt<=(LSM_META_RW_PAGE_SIZE / sizeof(u32)) ){
memcpy(pDb->aSnapshot, pShm->aSnap2, nInt*sizeof(u32));
if( ckptChecksumOk(pDb->aSnapshot) ){
if( piRead ) *piRead = 2;
return LSM_OK;
}
}
lsmShmBarrier(pDb);
}
return LSM_PROTOCOL_BKPT;
}
int lsmInfoCompressionId(lsm_db *db, u32 *piCmpId){
int rc;
assert( db->pClient==0 && db->pWorker==0 );
rc = lsmCheckpointLoad(db, 0);
if( rc==LSM_OK ){
*piCmpId = db->aSnapshot[CKPT_HDR_CMPID];
}
return rc;
}
int lsmCheckpointLoadOk(lsm_db *pDb, int iSnap){
u32 *aShm;
assert( iSnap==1 || iSnap==2 );
aShm = (iSnap==1) ? pDb->pShmhdr->aSnap1 : pDb->pShmhdr->aSnap2;
return (lsmCheckpointId(pDb->aSnapshot, 0)==lsmCheckpointId(aShm, 0) );
}
int lsmCheckpointClientCacheOk(lsm_db *pDb){
return ( pDb->pClient
&& pDb->pClient->iId==lsmCheckpointId(pDb->aSnapshot, 0)
&& pDb->pClient->iId==lsmCheckpointId(pDb->pShmhdr->aSnap1, 0)
&& pDb->pClient->iId==lsmCheckpointId(pDb->pShmhdr->aSnap2, 0)
);
}
int lsmCheckpointLoadWorker(lsm_db *pDb){
int rc;
ShmHeader *pShm = pDb->pShmhdr;
int nInt1;
int nInt2;
/* Must be holding the WORKER lock to do this. Or DMS2. */
assert(
lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL)
|| lsmShmAssertLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL)
);
/* Check that the two snapshots match. If not, repair them. */
nInt1 = pShm->aSnap1[CKPT_HDR_NCKPT];
nInt2 = pShm->aSnap2[CKPT_HDR_NCKPT];
if( nInt1!=nInt2 || memcmp(pShm->aSnap1, pShm->aSnap2, nInt2*sizeof(u32)) ){
if( ckptChecksumOk(pShm->aSnap1) ){
memcpy(pShm->aSnap2, pShm->aSnap1, sizeof(u32)*nInt1);
}else if( ckptChecksumOk(pShm->aSnap2) ){
memcpy(pShm->aSnap1, pShm->aSnap2, sizeof(u32)*nInt2);
}else{
return LSM_PROTOCOL_BKPT;
}
}
rc = lsmCheckpointDeserialize(pDb, 1, pShm->aSnap1, &pDb->pWorker);
if( pDb->pWorker ) pDb->pWorker->pDatabase = pDb->pDatabase;
if( rc==LSM_OK ){
rc = lsmCheckCompressionId(pDb, pDb->pWorker->iCmpId);
}
#if 0
assert( rc!=LSM_OK || lsmFsIntegrityCheck(pDb) );
#endif
return rc;
}
int lsmCheckpointDeserialize(
lsm_db *pDb,
int bInclFreelist, /* If true, deserialize free-list */
u32 *aCkpt,
Snapshot **ppSnap
){
int rc = LSM_OK;
Snapshot *pNew;
pNew = (Snapshot *)lsmMallocZeroRc(pDb->pEnv, sizeof(Snapshot), &rc);
if( rc==LSM_OK ){
Level *pLvl;
int nFree;
int i;
int nLevel = (int)aCkpt[CKPT_HDR_NLEVEL];
int iIn = CKPT_HDR_SIZE + CKPT_APPENDLIST_SIZE + CKPT_LOGPTR_SIZE;
pNew->iId = lsmCheckpointId(aCkpt, 0);
pNew->nBlock = aCkpt[CKPT_HDR_NBLOCK];
pNew->nWrite = aCkpt[CKPT_HDR_NWRITE];
rc = ckptLoadLevels(pDb, aCkpt, &iIn, nLevel, &pNew->pLevel);
pNew->iLogOff = lsmCheckpointLogOffset(aCkpt);
pNew->iCmpId = aCkpt[CKPT_HDR_CMPID];
/* Make a copy of the append-list */
for(i=0; i<LSM_APPLIST_SZ; i++){
u32 *a = &aCkpt[CKPT_HDR_SIZE + CKPT_LOGPTR_SIZE + i*2];
pNew->aiAppend[i] = ckptRead64(a);
}
/* Read the block-redirect list */
pNew->redirect.n = aCkpt[iIn++];
if( pNew->redirect.n ){
pNew->redirect.a = lsmMallocZeroRc(pDb->pEnv,
(sizeof(struct RedirectEntry) * LSM_MAX_BLOCK_REDIRECTS), &rc
);
if( rc==LSM_OK ){
for(i=0; i<pNew->redirect.n; i++){
pNew->redirect.a[i].iFrom = aCkpt[iIn++];
pNew->redirect.a[i].iTo = aCkpt[iIn++];
}
}
for(pLvl=pNew->pLevel; pLvl->pNext; pLvl=pLvl->pNext);
if( pLvl->nRight ){
pLvl->aRhs[pLvl->nRight-1].pRedirect = &pNew->redirect;
}else{
pLvl->lhs.pRedirect = &pNew->redirect;
}
}
/* Copy the free-list */
if( rc==LSM_OK && bInclFreelist ){
nFree = aCkpt[iIn++];
if( nFree ){
pNew->freelist.aEntry = (FreelistEntry *)lsmMallocZeroRc(
pDb->pEnv, sizeof(FreelistEntry)*nFree, &rc
);
if( rc==LSM_OK ){
int j;
for(j=0; j<nFree; j++){
FreelistEntry *p = &pNew->freelist.aEntry[j];
p->iBlk = aCkpt[iIn++];
p->iId = ((i64)(aCkpt[iIn])<<32) + aCkpt[iIn+1];
iIn += 2;
}
pNew->freelist.nEntry = pNew->freelist.nAlloc = nFree;
}
}
}
}
if( rc!=LSM_OK ){
lsmFreeSnapshot(pDb->pEnv, pNew);
pNew = 0;
}
*ppSnap = pNew;
return rc;
}
/*
** Connection pDb must be the worker connection in order to call this
** function. It returns true if the database already contains the maximum
** number of levels or false otherwise.
**
** This is used when flushing the in-memory tree to disk. If the database
** is already full, then the caller should invoke lsm_work() or similar
** until it is not full before creating a new level by flushing the in-memory
** tree to disk. Limiting the number of levels in the database ensures that
** the records describing them always fit within the checkpoint blob.
*/
int lsmDatabaseFull(lsm_db *pDb){
Level *p;
int nRhs = 0;
assert( lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL) );
assert( pDb->pWorker );
for(p=pDb->pWorker->pLevel; p; p=p->pNext){
nRhs += (p->nRight ? p->nRight : 1);
}
return (nRhs >= LSM_MAX_RHS_SEGMENTS);
}
/*
** The connection passed as the only argument is currently the worker
** connection. Some work has been performed on the database by the connection,
** but no new snapshot has been written into shared memory.
**
** This function updates the shared-memory worker and client snapshots with
** the new snapshot produced by the work performed by pDb.
**
** If successful, LSM_OK is returned. Otherwise, if an error occurs, an LSM
** error code is returned.
*/
int lsmCheckpointSaveWorker(lsm_db *pDb, int bFlush){
Snapshot *pSnap = pDb->pWorker;
ShmHeader *pShm = pDb->pShmhdr;
void *p = 0;
int n = 0;
int rc;
pSnap->iId++;
rc = ckptExportSnapshot(pDb, bFlush, pSnap->iId, 1, &p, &n);
if( rc!=LSM_OK ) return rc;
assert( ckptChecksumOk((u32 *)p) );
assert( n<=LSM_META_RW_PAGE_SIZE );
memcpy(pShm->aSnap2, p, n);
lsmShmBarrier(pDb);
memcpy(pShm->aSnap1, p, n);
lsmFree(pDb->pEnv, p);
/* assert( lsmFsIntegrityCheck(pDb) ); */
return LSM_OK;
}
/*
** This function is used to determine the snapshot-id of the most recently
** checkpointed snapshot. Variable ShmHeader.iMetaPage indicates which of
** the two meta-pages said snapshot resides on (if any).
**
** If successful, this function loads the snapshot from the meta-page,
** verifies its checksum and sets *piId to the snapshot-id before returning
** LSM_OK. Or, if the checksum attempt fails, *piId is set to zero and
** LSM_OK returned. If an error occurs, an LSM error code is returned and
** the final value of *piId is undefined.
*/
int lsmCheckpointSynced(lsm_db *pDb, i64 *piId, i64 *piLog, u32 *pnWrite){
int rc = LSM_OK;
MetaPage *pPg;
u32 iMeta;
iMeta = pDb->pShmhdr->iMetaPage;
if( iMeta==1 || iMeta==2 ){
rc = lsmFsMetaPageGet(pDb->pFS, 0, iMeta, &pPg);
if( rc==LSM_OK ){
int nCkpt;
int nData;
u8 *aData;
aData = lsmFsMetaPageData(pPg, &nData);
assert( nData==LSM_META_RW_PAGE_SIZE );
nCkpt = lsmGetU32(&aData[CKPT_HDR_NCKPT*sizeof(u32)]);
if( nCkpt<(LSM_META_RW_PAGE_SIZE/sizeof(u32)) ){
u32 *aCopy = lsmMallocRc(pDb->pEnv, sizeof(u32) * nCkpt, &rc);
if( aCopy ){
memcpy(aCopy, aData, nCkpt*sizeof(u32));
ckptChangeEndianness(aCopy, nCkpt);
if( ckptChecksumOk(aCopy) ){
if( piId ) *piId = lsmCheckpointId(aCopy, 0);
if( piLog ) *piLog = (lsmCheckpointLogOffset(aCopy) >> 1);
if( pnWrite ) *pnWrite = aCopy[CKPT_HDR_NWRITE];
}
lsmFree(pDb->pEnv, aCopy);
}
}
lsmFsMetaPageRelease(pPg);
}
}
if( (iMeta!=1 && iMeta!=2) || rc!=LSM_OK || pDb->pShmhdr->iMetaPage!=iMeta ){
if( piId ) *piId = 0;
if( piLog ) *piLog = 0;
if( pnWrite ) *pnWrite = 0;
}
return rc;
}
/*
** Return the checkpoint-id of the checkpoint array passed as the first
** argument to this function. If the second argument is true, then assume
** that the checkpoint is made up of 32-bit big-endian integers. If it
** is false, assume that the integers are in machine byte order.
*/
i64 lsmCheckpointId(u32 *aCkpt, int bDisk){
i64 iId;
if( bDisk ){
u8 *aData = (u8 *)aCkpt;
iId = (((i64)lsmGetU32(&aData[CKPT_HDR_ID_MSW*4])) << 32);
iId += ((i64)lsmGetU32(&aData[CKPT_HDR_ID_LSW*4]));
}else{
iId = ((i64)aCkpt[CKPT_HDR_ID_MSW] << 32) + (i64)aCkpt[CKPT_HDR_ID_LSW];
}
return iId;
}
u32 lsmCheckpointNBlock(u32 *aCkpt){
return aCkpt[CKPT_HDR_NBLOCK];
}
u32 lsmCheckpointNWrite(u32 *aCkpt, int bDisk){
if( bDisk ){
return lsmGetU32((u8 *)&aCkpt[CKPT_HDR_NWRITE]);
}else{
return aCkpt[CKPT_HDR_NWRITE];
}
}
i64 lsmCheckpointLogOffset(u32 *aCkpt){
return ((i64)aCkpt[CKPT_HDR_LO_MSW] << 32) + (i64)aCkpt[CKPT_HDR_LO_LSW];
}
int lsmCheckpointPgsz(u32 *aCkpt){ return (int)aCkpt[CKPT_HDR_PGSZ]; }
int lsmCheckpointBlksz(u32 *aCkpt){ return (int)aCkpt[CKPT_HDR_BLKSZ]; }
void lsmCheckpointLogoffset(
u32 *aCkpt,
DbLog *pLog
){
pLog->aRegion[2].iStart = (lsmCheckpointLogOffset(aCkpt) >> 1);
pLog->cksum0 = aCkpt[CKPT_HDR_LO_CKSUM1];
pLog->cksum1 = aCkpt[CKPT_HDR_LO_CKSUM2];
pLog->iSnapshotId = lsmCheckpointId(aCkpt, 0);
}
void lsmCheckpointZeroLogoffset(lsm_db *pDb){
u32 nCkpt;
nCkpt = pDb->aSnapshot[CKPT_HDR_NCKPT];
assert( nCkpt>CKPT_HDR_NCKPT );
assert( nCkpt==pDb->pShmhdr->aSnap1[CKPT_HDR_NCKPT] );
assert( 0==memcmp(pDb->aSnapshot, pDb->pShmhdr->aSnap1, nCkpt*sizeof(u32)) );
assert( 0==memcmp(pDb->aSnapshot, pDb->pShmhdr->aSnap2, nCkpt*sizeof(u32)) );
pDb->aSnapshot[CKPT_HDR_LO_MSW] = 0;
pDb->aSnapshot[CKPT_HDR_LO_LSW] = 0;
ckptChecksum(pDb->aSnapshot, nCkpt,
&pDb->aSnapshot[nCkpt-2], &pDb->aSnapshot[nCkpt-1]
);
memcpy(pDb->pShmhdr->aSnap1, pDb->aSnapshot, nCkpt*sizeof(u32));
memcpy(pDb->pShmhdr->aSnap2, pDb->aSnapshot, nCkpt*sizeof(u32));
}
/*
** Set the output variable to the number of KB of data written into the
** database file since the most recent checkpoint.
*/
int lsmCheckpointSize(lsm_db *db, int *pnKB){
int rc = LSM_OK;
u32 nSynced;
/* Set nSynced to the number of pages that had been written when the
** database was last checkpointed. */
rc = lsmCheckpointSynced(db, 0, 0, &nSynced);
if( rc==LSM_OK ){
u32 nPgsz = db->pShmhdr->aSnap1[CKPT_HDR_PGSZ];
u32 nWrite = db->pShmhdr->aSnap1[CKPT_HDR_NWRITE];
*pnKB = (int)(( ((i64)(nWrite - nSynced) * nPgsz) + 1023) / 1024);
}
return rc;
}
|