1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
|
/*
** 2011-08-13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of LSM database logging. Logging
** has one purpose in LSM - to make transactions durable.
**
** When data is written to an LSM database, it is initially stored in an
** in-memory tree structure. Since this structure is in volatile memory,
** if a power failure or application crash occurs it may be lost. To
** prevent loss of data in this case, each time a record is written to the
** in-memory tree an equivalent record is appended to the log on disk.
** If a power failure or application crash does occur, data can be recovered
** by reading the log.
**
** A log file consists of the following types of records representing data
** written into the database:
**
** LOG_WRITE: A key-value pair written to the database.
** LOG_DELETE: A delete key issued to the database.
** LOG_COMMIT: A transaction commit.
**
** And the following types of records for ancillary purposes..
**
** LOG_EOF: A record indicating the end of a log file.
** LOG_PAD1: A single byte padding record.
** LOG_PAD2: An N byte padding record (N>1).
** LOG_JUMP: A pointer to another offset within the log file.
**
** Each transaction written to the log contains one or more LOG_WRITE and/or
** LOG_DELETE records, followed by a LOG_COMMIT record. The LOG_COMMIT record
** contains an 8-byte checksum based on all previous data written to the
** log file.
**
** LOG CHECKSUMS & RECOVERY
**
** Checksums are found in two types of log records: LOG_COMMIT and
** LOG_CKSUM records. In order to recover content from a log, a client
** reads each record from the start of the log, calculating a checksum as
** it does. Each time a LOG_COMMIT or LOG_CKSUM is encountered, the
** recovery process verifies that the checksum stored in the log
** matches the calculated checksum. If it does not, the recovery process
** can stop reading the log.
**
** If a recovery process reads records (other than COMMIT or CKSUM)
** consisting of at least LSM_CKSUM_MAXDATA bytes, then the next record in
** the log must be either a LOG_CKSUM or LOG_COMMIT record. If it is
** not, the recovery process also stops reading the log.
**
** To recover the log file, it must be read twice. The first time to
** determine the location of the last valid commit record. And the second
** time to load data into the in-memory tree.
**
** Todo: Surely there is a better way...
**
** LOG WRAPPING
**
** If the log file were never deleted or wrapped, it would be possible to
** read it from start to end each time is required recovery (i.e each time
** the number of database clients changes from 0 to 1). Effectively reading
** the entire history of the database each time. This would quickly become
** inefficient. Additionally, since the log file would grow without bound,
** it wastes storage space.
**
** Instead, part of each checkpoint written into the database file contains
** a log offset (and other information required to read the log starting at
** at this offset) at which to begin recovery. Offset $O.
**
** Once a checkpoint has been written and synced into the database file, it
** is guaranteed that no recovery process will need to read any data before
** offset $O of the log file. It is therefore safe to begin overwriting
** any data that occurs before offset $O.
**
** This implementation separates the log into three regions mapped into
** the log file - regions 0, 1 and 2. During recovery, regions are read
** in ascending order (i.e. 0, then 1, then 2). Each region is zero or
** more bytes in size.
**
** |---1---|..|--0--|.|--2--|....
**
** New records are always appended to the end of region 2.
**
** Initially (when it is empty), all three regions are zero bytes in size.
** Each of them are located at the beginning of the file. As records are
** added to the log, region 2 grows, so that the log consists of a zero
** byte region 1, followed by a zero byte region 0, followed by an N byte
** region 2. After one or more checkpoints have been written to disk,
** the start point of region 2 is moved to $O. For example:
**
** A) ||.........|--2--|....
**
** (both regions 0 and 1 are 0 bytes in size at offset 0).
**
** Eventually, the log wraps around to write new records into the start.
** At this point, region 2 is renamed to region 0. Region 0 is renamed
** to region 2. After appending a few records to the new region 2, the
** log file looks like this:
**
** B) ||--2--|...|--0--|....
**
** (region 1 is still 0 bytes in size, located at offset 0).
**
** Any checkpoints made at this point may reduce the size of region 0.
** However, if they do not, and region 2 expands so that it is about to
** overwrite the start of region 0, then region 2 is renamed to region 1,
** and a new region 2 created at the end of the file following the existing
** region 0.
**
** C) |---1---|..|--0--|.|-2-|
**
** In this state records are appended to region 2 until checkpoints have
** contracted regions 0 AND 1 UNTil they are both zero bytes in size. They
** are then shifted to the start of the log file, leaving the system in
** the equivalent of state A above.
**
** Alternatively, state B may transition directly to state A if the size
** of region 0 is reduced to zero bytes before region 2 threatens to
** encroach upon it.
**
** LOG_PAD1 & LOG_PAD2 RECORDS
**
** PAD1 and PAD2 records may appear in a log file at any point. They allow
** a process writing the log file align the beginning of transactions with
** the beginning of disk sectors, which increases robustness.
**
** RECORD FORMATS:
**
** LOG_EOF: * A single 0x00 byte.
**
** LOG_PAD1: * A single 0x01 byte.
**
** LOG_PAD2: * A single 0x02 byte, followed by
** * The number of unused bytes (N) as a varint,
** * An N byte block of unused space.
**
** LOG_COMMIT: * A single 0x03 byte.
** * An 8-byte checksum.
**
** LOG_JUMP: * A single 0x04 byte.
** * Absolute file offset to jump to, encoded as a varint.
**
** LOG_WRITE: * A single 0x06 or 0x07 byte,
** * The number of bytes in the key, encoded as a varint,
** * The number of bytes in the value, encoded as a varint,
** * If the first byte was 0x07, an 8 byte checksum.
** * The key data,
** * The value data.
**
** LOG_DELETE: * A single 0x08 or 0x09 byte,
** * The number of bytes in the key, encoded as a varint,
** * If the first byte was 0x09, an 8 byte checksum.
** * The key data.
**
** Varints are as described in lsm_varint.c (SQLite 4 format).
**
** CHECKSUMS:
**
** The checksum is calculated using two 32-bit unsigned integers, s0 and
** s1. The initial value for both is 42. It is updated each time a record
** is written into the log file by treating the encoded (binary) record as
** an array of 32-bit little-endian integers. Then, if x[] is the integer
** array, updating the checksum accumulators as follows:
**
** for i from 0 to n-1 step 2:
** s0 += x[i] + s1;
** s1 += x[i+1] + s0;
** endfor
**
** If the record is not an even multiple of 8-bytes in size it is padded
** with zeroes to make it so before the checksum is updated.
**
** The checksum stored in a COMMIT, WRITE or DELETE is based on all bytes
** up to the start of the 8-byte checksum itself, including the COMMIT,
** WRITE or DELETE fields that appear before the checksum in the record.
**
** VARINT FORMAT
**
** See lsm_varint.c.
*/
#ifndef _LSM_INT_H
# include "lsmInt.h"
#endif
/* Log record types */
#define LSM_LOG_EOF 0x00
#define LSM_LOG_PAD1 0x01
#define LSM_LOG_PAD2 0x02
#define LSM_LOG_COMMIT 0x03
#define LSM_LOG_JUMP 0x04
#define LSM_LOG_WRITE 0x06
#define LSM_LOG_WRITE_CKSUM 0x07
#define LSM_LOG_DELETE 0x08
#define LSM_LOG_DELETE_CKSUM 0x09
#define LSM_LOG_DRANGE 0x0A
#define LSM_LOG_DRANGE_CKSUM 0x0B
/* Require a checksum every 32KB. */
#define LSM_CKSUM_MAXDATA (32*1024)
/* Do not wrap a log file smaller than this in bytes. */
#define LSM_MIN_LOGWRAP (128*1024)
/*
** szSector:
** Commit records must be aligned to end on szSector boundaries. If
** the safety-mode is set to NORMAL or OFF, this value is 1. Otherwise,
** if the safety-mode is set to FULL, it is the size of the file-system
** sectors as reported by lsmFsSectorSize().
*/
struct LogWriter {
u32 cksum0; /* Checksum 0 at offset iOff */
u32 cksum1; /* Checksum 1 at offset iOff */
int iCksumBuf; /* Bytes of buf that have been checksummed */
i64 iOff; /* Offset at start of buffer buf */
int szSector; /* Sector size for this transaction */
LogRegion jump; /* Avoid writing to this region */
i64 iRegion1End; /* End of first region written by trans */
i64 iRegion2Start; /* Start of second regions written by trans */
LsmString buf; /* Buffer containing data not yet written */
};
/*
** Return the result of interpreting the first 4 bytes in buffer aIn as
** a 32-bit unsigned little-endian integer.
*/
static u32 getU32le(u8 *aIn){
return ((u32)aIn[3] << 24)
+ ((u32)aIn[2] << 16)
+ ((u32)aIn[1] << 8)
+ ((u32)aIn[0]);
}
/*
** This function is the same as logCksum(), except that pointer "a" need
** not be aligned to an 8-byte boundary or padded with zero bytes. This
** version is slower, but sometimes more convenient to use.
*/
static void logCksumUnaligned(
char *z, /* Input buffer */
int n, /* Size of input buffer in bytes */
u32 *pCksum0, /* IN/OUT: Checksum value 1 */
u32 *pCksum1 /* IN/OUT: Checksum value 2 */
){
u8 *a = (u8 *)z;
u32 cksum0 = *pCksum0;
u32 cksum1 = *pCksum1;
int nIn = (n/8) * 8;
int i;
assert( n>0 );
for(i=0; i<nIn; i+=8){
cksum0 += getU32le(&a[i]) + cksum1;
cksum1 += getU32le(&a[i+4]) + cksum0;
}
if( nIn!=n ){
u8 aBuf[8] = {0, 0, 0, 0, 0, 0, 0, 0};
assert( (n-nIn)<8 && n>nIn );
memcpy(aBuf, &a[nIn], n-nIn);
cksum0 += getU32le(aBuf) + cksum1;
cksum1 += getU32le(&aBuf[4]) + cksum0;
}
*pCksum0 = cksum0;
*pCksum1 = cksum1;
}
/*
** Update pLog->cksum0 and pLog->cksum1 so that the first nBuf bytes in the
** write buffer (pLog->buf) are included in the checksum.
*/
static void logUpdateCksum(LogWriter *pLog, int nBuf){
assert( (pLog->iCksumBuf % 8)==0 );
assert( pLog->iCksumBuf<=nBuf );
assert( (nBuf % 8)==0 || nBuf==pLog->buf.n );
if( nBuf>pLog->iCksumBuf ){
logCksumUnaligned(
&pLog->buf.z[pLog->iCksumBuf], nBuf-pLog->iCksumBuf,
&pLog->cksum0, &pLog->cksum1
);
}
pLog->iCksumBuf = nBuf;
}
static i64 firstByteOnSector(LogWriter *pLog, i64 iOff){
return (iOff / pLog->szSector) * pLog->szSector;
}
static i64 lastByteOnSector(LogWriter *pLog, i64 iOff){
return firstByteOnSector(pLog, iOff) + pLog->szSector - 1;
}
/*
** If possible, reclaim log file space. Log file space is reclaimed after
** a snapshot that points to the same data in the database file is synced
** into the db header.
*/
static int logReclaimSpace(lsm_db *pDb){
int rc;
int iMeta;
int bRotrans; /* True if there exists some ro-trans */
/* Test if there exists some other connection with a read-only transaction
** open. If there does, then log file space may not be reclaimed. */
rc = lsmDetectRoTrans(pDb, &bRotrans);
if( rc!=LSM_OK || bRotrans ) return rc;
iMeta = (int)pDb->pShmhdr->iMetaPage;
if( iMeta==1 || iMeta==2 ){
DbLog *pLog = &pDb->treehdr.log;
i64 iSyncedId;
/* Read the snapshot-id of the snapshot stored on meta-page iMeta. Note
** that in theory, the value read is untrustworthy (due to a race
** condition - see comments above lsmFsReadSyncedId()). So it is only
** ever used to conclude that no log space can be reclaimed. If it seems
** to indicate that it may be possible to reclaim log space, a
** second call to lsmCheckpointSynced() (which does return trustworthy
** values) is made below to confirm. */
rc = lsmFsReadSyncedId(pDb, iMeta, &iSyncedId);
if( rc==LSM_OK && pLog->iSnapshotId!=iSyncedId ){
i64 iSnapshotId = 0;
i64 iOff = 0;
rc = lsmCheckpointSynced(pDb, &iSnapshotId, &iOff, 0);
if( rc==LSM_OK && pLog->iSnapshotId<iSnapshotId ){
int iRegion;
for(iRegion=0; iRegion<3; iRegion++){
LogRegion *p = &pLog->aRegion[iRegion];
if( iOff>=p->iStart && iOff<=p->iEnd ) break;
p->iStart = 0;
p->iEnd = 0;
}
assert( iRegion<3 );
pLog->aRegion[iRegion].iStart = iOff;
pLog->iSnapshotId = iSnapshotId;
}
}
}
return rc;
}
/*
** This function is called when a write-transaction is first opened. It
** is assumed that the caller is holding the client-mutex when it is
** called.
**
** Before returning, this function allocates the LogWriter object that
** will be used to write to the log file during the write transaction.
** LSM_OK is returned if no error occurs, otherwise an LSM error code.
*/
int lsmLogBegin(lsm_db *pDb){
int rc = LSM_OK;
LogWriter *pNew;
LogRegion *aReg;
if( pDb->bUseLog==0 ) return LSM_OK;
/* If the log file has not yet been opened, open it now. Also allocate
** the LogWriter structure, if it has not already been allocated. */
rc = lsmFsOpenLog(pDb, 0);
if( pDb->pLogWriter==0 ){
pNew = lsmMallocZeroRc(pDb->pEnv, sizeof(LogWriter), &rc);
if( pNew ){
lsmStringInit(&pNew->buf, pDb->pEnv);
rc = lsmStringExtend(&pNew->buf, 2);
}
pDb->pLogWriter = pNew;
}else{
pNew = pDb->pLogWriter;
assert( (u8 *)(&pNew[1])==(u8 *)(&((&pNew->buf)[1])) );
memset(pNew, 0, ((u8 *)&pNew->buf) - (u8 *)pNew);
pNew->buf.n = 0;
}
if( rc==LSM_OK ){
/* The following call detects whether or not a new snapshot has been
** synced into the database file. If so, it updates the contents of
** the pDb->treehdr.log structure to reclaim any space in the log
** file that is no longer required.
**
** TODO: Calling this every transaction is overkill. And since the
** call has to read and checksum a snapshot from the database file,
** it is expensive. It would be better to figure out a way so that
** this is only called occasionally - say for every 32KB written to
** the log file.
*/
rc = logReclaimSpace(pDb);
}
if( rc!=LSM_OK ){
lsmLogClose(pDb);
return rc;
}
/* Set the effective sector-size for this transaction. Sectors are assumed
** to be one byte in size if the safety-mode is OFF or NORMAL, or as
** reported by lsmFsSectorSize if it is FULL. */
if( pDb->eSafety==LSM_SAFETY_FULL ){
pNew->szSector = lsmFsSectorSize(pDb->pFS);
assert( pNew->szSector>0 );
}else{
pNew->szSector = 1;
}
/* There are now three scenarios:
**
** 1) Regions 0 and 1 are both zero bytes in size and region 2 begins
** at a file offset greater than LSM_MIN_LOGWRAP. In this case, wrap
** around to the start and write data into the start of the log file.
**
** 2) Region 1 is zero bytes in size and region 2 occurs earlier in the
** file than region 0. In this case, append data to region 2, but
** remember to jump over region 1 if required.
**
** 3) Region 2 is the last in the file. Append to it.
*/
aReg = &pDb->treehdr.log.aRegion[0];
assert( aReg[0].iEnd==0 || aReg[0].iEnd>aReg[0].iStart );
assert( aReg[1].iEnd==0 || aReg[1].iEnd>aReg[1].iStart );
pNew->cksum0 = pDb->treehdr.log.cksum0;
pNew->cksum1 = pDb->treehdr.log.cksum1;
if( aReg[0].iEnd==0 && aReg[1].iEnd==0 && aReg[2].iStart>=LSM_MIN_LOGWRAP ){
/* Case 1. Wrap around to the start of the file. Write an LSM_LOG_JUMP
** into the log file in this case. Pad it out to 8 bytes using a PAD2
** record so that the checksums can be updated immediately. */
u8 aJump[] = {
LSM_LOG_PAD2, 0x04, 0x00, 0x00, 0x00, 0x00, LSM_LOG_JUMP, 0x00
};
lsmStringBinAppend(&pNew->buf, aJump, sizeof(aJump));
logUpdateCksum(pNew, pNew->buf.n);
rc = lsmFsWriteLog(pDb->pFS, aReg[2].iEnd, &pNew->buf);
pNew->iCksumBuf = pNew->buf.n = 0;
aReg[2].iEnd += 8;
pNew->jump = aReg[0] = aReg[2];
aReg[2].iStart = aReg[2].iEnd = 0;
}else if( aReg[1].iEnd==0 && aReg[2].iEnd<aReg[0].iEnd ){
/* Case 2. */
pNew->iOff = aReg[2].iEnd;
pNew->jump = aReg[0];
}else{
/* Case 3. */
assert( aReg[2].iStart>=aReg[0].iEnd && aReg[2].iStart>=aReg[1].iEnd );
pNew->iOff = aReg[2].iEnd;
}
if( pNew->jump.iStart ){
i64 iRound;
assert( pNew->jump.iStart>pNew->iOff );
iRound = firstByteOnSector(pNew, pNew->jump.iStart);
if( iRound>pNew->iOff ) pNew->jump.iStart = iRound;
pNew->jump.iEnd = lastByteOnSector(pNew, pNew->jump.iEnd);
}
assert( pDb->pLogWriter==pNew );
return rc;
}
/*
** This function is called when a write-transaction is being closed.
** Parameter bCommit is true if the transaction is being committed,
** or false otherwise. The caller must hold the client-mutex to call
** this function.
**
** A call to this function deletes the LogWriter object allocated by
** lsmLogBegin(). If the transaction is being committed, the shared state
** in *pLog is updated before returning.
*/
void lsmLogEnd(lsm_db *pDb, int bCommit){
DbLog *pLog;
LogWriter *p;
p = pDb->pLogWriter;
if( p==0 ) return;
pLog = &pDb->treehdr.log;
if( bCommit ){
pLog->aRegion[2].iEnd = p->iOff;
pLog->cksum0 = p->cksum0;
pLog->cksum1 = p->cksum1;
if( p->iRegion1End ){
/* This happens when the transaction had to jump over some other
** part of the log. */
assert( pLog->aRegion[1].iEnd==0 );
assert( pLog->aRegion[2].iStart<p->iRegion1End );
pLog->aRegion[1].iStart = pLog->aRegion[2].iStart;
pLog->aRegion[1].iEnd = p->iRegion1End;
pLog->aRegion[2].iStart = p->iRegion2Start;
}
}
}
static int jumpIfRequired(
lsm_db *pDb,
LogWriter *pLog,
int nReq,
int *pbJump
){
/* Determine if it is necessary to add an LSM_LOG_JUMP to jump over the
** jump region before writing the LSM_LOG_WRITE or DELETE record. This
** is necessary if there is insufficient room between the current offset
** and the jump region to fit the new WRITE/DELETE record and the largest
** possible JUMP record with up to 7 bytes of padding (a total of 17
** bytes). */
if( (pLog->jump.iStart > (pLog->iOff + pLog->buf.n))
&& (pLog->jump.iStart < (pLog->iOff + pLog->buf.n + (nReq + 17)))
){
int rc; /* Return code */
i64 iJump; /* Offset to jump to */
u8 aJump[10]; /* Encoded jump record */
int nJump; /* Valid bytes in aJump[] */
int nPad; /* Bytes of padding required */
/* Serialize the JUMP record */
iJump = pLog->jump.iEnd+1;
aJump[0] = LSM_LOG_JUMP;
nJump = 1 + lsmVarintPut64(&aJump[1], iJump);
/* Adding padding to the contents of the buffer so that it will be a
** multiple of 8 bytes in size after the JUMP record is appended. This
** is not strictly required, it just makes the keeping the running
** checksum up to date in this file a little simpler. */
nPad = (pLog->buf.n + nJump) % 8;
if( nPad ){
u8 aPad[7] = {0,0,0,0,0,0,0};
nPad = 8-nPad;
if( nPad==1 ){
aPad[0] = LSM_LOG_PAD1;
}else{
aPad[0] = LSM_LOG_PAD2;
aPad[1] = (u8)(nPad-2);
}
rc = lsmStringBinAppend(&pLog->buf, aPad, nPad);
if( rc!=LSM_OK ) return rc;
}
/* Append the JUMP record to the buffer. Then flush the buffer to disk
** and update the checksums. The next write to the log file (assuming
** there is no transaction rollback) will be to offset iJump (just past
** the jump region). */
rc = lsmStringBinAppend(&pLog->buf, aJump, nJump);
if( rc!=LSM_OK ) return rc;
assert( (pLog->buf.n % 8)==0 );
rc = lsmFsWriteLog(pDb->pFS, pLog->iOff, &pLog->buf);
if( rc!=LSM_OK ) return rc;
logUpdateCksum(pLog, pLog->buf.n);
pLog->iRegion1End = (pLog->iOff + pLog->buf.n);
pLog->iRegion2Start = iJump;
pLog->iOff = iJump;
pLog->iCksumBuf = pLog->buf.n = 0;
if( pbJump ) *pbJump = 1;
}
return LSM_OK;
}
static int logCksumAndFlush(lsm_db *pDb){
int rc; /* Return code */
LogWriter *pLog = pDb->pLogWriter;
/* Calculate the checksum value. Append it to the buffer. */
logUpdateCksum(pLog, pLog->buf.n);
lsmPutU32((u8 *)&pLog->buf.z[pLog->buf.n], pLog->cksum0);
pLog->buf.n += 4;
lsmPutU32((u8 *)&pLog->buf.z[pLog->buf.n], pLog->cksum1);
pLog->buf.n += 4;
/* Write the contents of the buffer to disk. */
rc = lsmFsWriteLog(pDb->pFS, pLog->iOff, &pLog->buf);
pLog->iOff += pLog->buf.n;
pLog->iCksumBuf = pLog->buf.n = 0;
return rc;
}
/*
** Write the contents of the log-buffer to disk. Then write either a CKSUM
** or COMMIT record, depending on the value of parameter eType.
*/
static int logFlush(lsm_db *pDb, int eType){
int rc;
int nReq;
LogWriter *pLog = pDb->pLogWriter;
assert( eType==LSM_LOG_COMMIT );
assert( pLog );
/* Commit record is always 9 bytes in size. */
nReq = 9;
if( eType==LSM_LOG_COMMIT && pLog->szSector>1 ) nReq += pLog->szSector + 17;
rc = jumpIfRequired(pDb, pLog, nReq, 0);
/* If this is a COMMIT, add padding to the log so that the COMMIT record
** is aligned against the end of a disk sector. In other words, add padding
** so that the first byte following the COMMIT record lies on a different
** sector. */
if( eType==LSM_LOG_COMMIT && pLog->szSector>1 ){
int nPad; /* Bytes of padding to add */
/* Determine the value of nPad. */
nPad = ((pLog->iOff + pLog->buf.n + 9) % pLog->szSector);
if( nPad ) nPad = pLog->szSector - nPad;
rc = lsmStringExtend(&pLog->buf, nPad);
if( rc!=LSM_OK ) return rc;
while( nPad ){
if( nPad==1 ){
pLog->buf.z[pLog->buf.n++] = LSM_LOG_PAD1;
nPad = 0;
}else{
int n = LSM_MIN(200, nPad-2);
pLog->buf.z[pLog->buf.n++] = LSM_LOG_PAD2;
pLog->buf.z[pLog->buf.n++] = (char)n;
nPad -= 2;
memset(&pLog->buf.z[pLog->buf.n], 0x2B, n);
pLog->buf.n += n;
nPad -= n;
}
}
}
/* Make sure there is room in the log-buffer to add the CKSUM or COMMIT
** record. Then add the first byte of it. */
rc = lsmStringExtend(&pLog->buf, 9);
if( rc!=LSM_OK ) return rc;
pLog->buf.z[pLog->buf.n++] = (char)eType;
memset(&pLog->buf.z[pLog->buf.n], 0, 8);
rc = logCksumAndFlush(pDb);
/* If this is a commit and synchronous=full, sync the log to disk. */
if( rc==LSM_OK && eType==LSM_LOG_COMMIT && pDb->eSafety==LSM_SAFETY_FULL ){
rc = lsmFsSyncLog(pDb->pFS);
}
return rc;
}
/*
** Append an LSM_LOG_WRITE (if nVal>=0) or LSM_LOG_DELETE (if nVal<0)
** record to the database log.
*/
int lsmLogWrite(
lsm_db *pDb, /* Database handle */
int eType,
void *pKey, int nKey, /* Database key to write to log */
void *pVal, int nVal /* Database value (or nVal<0) to write */
){
int rc = LSM_OK;
LogWriter *pLog; /* Log object to write to */
int nReq; /* Bytes of space required in log */
int bCksum = 0; /* True to embed a checksum in this record */
assert( eType==LSM_WRITE || eType==LSM_DELETE || eType==LSM_DRANGE );
assert( LSM_LOG_WRITE==LSM_WRITE );
assert( LSM_LOG_DELETE==LSM_DELETE );
assert( LSM_LOG_DRANGE==LSM_DRANGE );
assert( (eType==LSM_LOG_DELETE)==(nVal<0) );
if( pDb->bUseLog==0 ) return LSM_OK;
pLog = pDb->pLogWriter;
/* Determine how many bytes of space are required, assuming that a checksum
** will be embedded in this record (even though it may not be). */
nReq = 1 + lsmVarintLen32(nKey) + 8 + nKey;
if( eType!=LSM_LOG_DELETE ) nReq += lsmVarintLen32(nVal) + nVal;
/* Jump over the jump region if required. Set bCksum to true to tell the
** code below to include a checksum in the record if either (a) writing
** this record would mean that more than LSM_CKSUM_MAXDATA bytes of data
** have been written to the log since the last checksum, or (b) the jump
** is taken. */
rc = jumpIfRequired(pDb, pLog, nReq, &bCksum);
if( (pLog->buf.n+nReq) > LSM_CKSUM_MAXDATA ) bCksum = 1;
if( rc==LSM_OK ){
rc = lsmStringExtend(&pLog->buf, nReq);
}
if( rc==LSM_OK ){
u8 *a = (u8 *)&pLog->buf.z[pLog->buf.n];
/* Write the record header - the type byte followed by either 1 (for
** DELETE) or 2 (for WRITE) varints. */
assert( LSM_LOG_WRITE_CKSUM == (LSM_LOG_WRITE | 0x0001) );
assert( LSM_LOG_DELETE_CKSUM == (LSM_LOG_DELETE | 0x0001) );
assert( LSM_LOG_DRANGE_CKSUM == (LSM_LOG_DRANGE | 0x0001) );
*(a++) = (u8)eType | (u8)bCksum;
a += lsmVarintPut32(a, nKey);
if( eType!=LSM_LOG_DELETE ) a += lsmVarintPut32(a, nVal);
if( bCksum ){
pLog->buf.n = (a - (u8 *)pLog->buf.z);
rc = logCksumAndFlush(pDb);
a = (u8 *)&pLog->buf.z[pLog->buf.n];
}
memcpy(a, pKey, nKey);
a += nKey;
if( eType!=LSM_LOG_DELETE ){
memcpy(a, pVal, nVal);
a += nVal;
}
pLog->buf.n = a - (u8 *)pLog->buf.z;
assert( pLog->buf.n<=pLog->buf.nAlloc );
}
return rc;
}
/*
** Append an LSM_LOG_COMMIT record to the database log.
*/
int lsmLogCommit(lsm_db *pDb){
if( pDb->bUseLog==0 ) return LSM_OK;
return logFlush(pDb, LSM_LOG_COMMIT);
}
/*
** Store the current offset and other checksum related information in the
** structure *pMark. Later, *pMark can be passed to lsmLogSeek() to "rewind"
** the LogWriter object to the current log file offset. This is used when
** rolling back savepoint transactions.
*/
void lsmLogTell(
lsm_db *pDb, /* Database handle */
LogMark *pMark /* Populate this object with current offset */
){
LogWriter *pLog;
int nCksum;
if( pDb->bUseLog==0 ) return;
pLog = pDb->pLogWriter;
nCksum = pLog->buf.n & 0xFFFFFFF8;
logUpdateCksum(pLog, nCksum);
assert( pLog->iCksumBuf==nCksum );
pMark->nBuf = pLog->buf.n - nCksum;
memcpy(pMark->aBuf, &pLog->buf.z[nCksum], pMark->nBuf);
pMark->iOff = pLog->iOff + pLog->buf.n;
pMark->cksum0 = pLog->cksum0;
pMark->cksum1 = pLog->cksum1;
}
/*
** Seek (rewind) back to the log file offset stored by an ealier call to
** lsmLogTell() in *pMark.
*/
void lsmLogSeek(
lsm_db *pDb, /* Database handle */
LogMark *pMark /* Object containing log offset to seek to */
){
LogWriter *pLog;
if( pDb->bUseLog==0 ) return;
pLog = pDb->pLogWriter;
assert( pMark->iOff<=pLog->iOff+pLog->buf.n );
if( (pMark->iOff & 0xFFFFFFF8)>=pLog->iOff ){
pLog->buf.n = (int)(pMark->iOff - pLog->iOff);
pLog->iCksumBuf = (pLog->buf.n & 0xFFFFFFF8);
}else{
pLog->buf.n = pMark->nBuf;
memcpy(pLog->buf.z, pMark->aBuf, pMark->nBuf);
pLog->iCksumBuf = 0;
pLog->iOff = pMark->iOff - pMark->nBuf;
}
pLog->cksum0 = pMark->cksum0;
pLog->cksum1 = pMark->cksum1;
if( pMark->iOff > pLog->iRegion1End ) pLog->iRegion1End = 0;
if( pMark->iOff > pLog->iRegion2Start ) pLog->iRegion2Start = 0;
}
/*
** This function does the work for an lsm_info(LOG_STRUCTURE) request.
*/
int lsmInfoLogStructure(lsm_db *pDb, char **pzVal){
int rc = LSM_OK;
char *zVal = 0;
/* If there is no read or write transaction open, read the latest
** tree-header from shared-memory to report on. If necessary, update
** it based on the contents of the database header.
**
** No locks are taken here - these are passive read operations only.
*/
if( pDb->pCsr==0 && pDb->nTransOpen==0 ){
rc = lsmTreeLoadHeader(pDb, 0);
if( rc==LSM_OK ) rc = logReclaimSpace(pDb);
}
if( rc==LSM_OK ){
DbLog *pLog = &pDb->treehdr.log;
zVal = lsmMallocPrintf(pDb->pEnv,
"%d %d %d %d %d %d",
(int)pLog->aRegion[0].iStart, (int)pLog->aRegion[0].iEnd,
(int)pLog->aRegion[1].iStart, (int)pLog->aRegion[1].iEnd,
(int)pLog->aRegion[2].iStart, (int)pLog->aRegion[2].iEnd
);
if( !zVal ) rc = LSM_NOMEM_BKPT;
}
*pzVal = zVal;
return rc;
}
/*************************************************************************
** Begin code for log recovery.
*/
typedef struct LogReader LogReader;
struct LogReader {
FileSystem *pFS; /* File system to read from */
i64 iOff; /* File offset at end of buf content */
int iBuf; /* Current read offset in buf */
LsmString buf; /* Buffer containing file content */
int iCksumBuf; /* Offset in buf corresponding to cksum[01] */
u32 cksum0; /* Checksum 0 at offset iCksumBuf */
u32 cksum1; /* Checksum 1 at offset iCksumBuf */
};
static void logReaderBlob(
LogReader *p, /* Log reader object */
LsmString *pBuf, /* Dynamic storage, if required */
int nBlob, /* Number of bytes to read */
u8 **ppBlob, /* OUT: Pointer to blob read */
int *pRc /* IN/OUT: Error code */
){
static const int LOG_READ_SIZE = 512;
int rc = *pRc; /* Return code */
int nReq = nBlob; /* Bytes required */
while( rc==LSM_OK && nReq>0 ){
int nAvail; /* Bytes of data available in p->buf */
if( p->buf.n==p->iBuf ){
int nCksum; /* Total bytes requiring checksum */
int nCarry = 0; /* Total bytes requiring checksum */
nCksum = p->iBuf - p->iCksumBuf;
if( nCksum>0 ){
nCarry = nCksum % 8;
nCksum = ((nCksum / 8) * 8);
if( nCksum>0 ){
logCksumUnaligned(
&p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1
);
}
}
if( nCarry>0 ) memcpy(p->buf.z, &p->buf.z[p->iBuf-nCarry], nCarry);
p->buf.n = nCarry;
p->iBuf = nCarry;
rc = lsmFsReadLog(p->pFS, p->iOff, LOG_READ_SIZE, &p->buf);
if( rc!=LSM_OK ) break;
p->iCksumBuf = 0;
p->iOff += LOG_READ_SIZE;
}
nAvail = p->buf.n - p->iBuf;
if( ppBlob && nReq==nBlob && nBlob<=nAvail ){
*ppBlob = (u8 *)&p->buf.z[p->iBuf];
p->iBuf += nBlob;
nReq = 0;
}else{
int nCopy = LSM_MIN(nAvail, nReq);
if( nBlob==nReq ){
pBuf->n = 0;
}
rc = lsmStringBinAppend(pBuf, (u8 *)&p->buf.z[p->iBuf], nCopy);
nReq -= nCopy;
p->iBuf += nCopy;
if( nReq==0 && ppBlob ){
*ppBlob = (u8*)pBuf->z;
}
}
}
*pRc = rc;
}
static void logReaderVarint(
LogReader *p,
LsmString *pBuf,
int *piVal, /* OUT: Value read from log */
int *pRc /* IN/OUT: Error code */
){
if( *pRc==LSM_OK ){
u8 *aVarint;
if( p->buf.n==p->iBuf ){
logReaderBlob(p, 0, 10, &aVarint, pRc);
if( LSM_OK==*pRc ) p->iBuf -= (10 - lsmVarintGet32(aVarint, piVal));
}else{
logReaderBlob(p, pBuf, lsmVarintSize(p->buf.z[p->iBuf]), &aVarint, pRc);
if( LSM_OK==*pRc ) lsmVarintGet32(aVarint, piVal);
}
}
}
static void logReaderByte(LogReader *p, u8 *pByte, int *pRc){
u8 *pPtr = 0;
logReaderBlob(p, 0, 1, &pPtr, pRc);
if( pPtr ) *pByte = *pPtr;
}
static void logReaderCksum(LogReader *p, LsmString *pBuf, int *pbEof, int *pRc){
if( *pRc==LSM_OK ){
u8 *pPtr = 0;
u32 cksum0, cksum1;
int nCksum = p->iBuf - p->iCksumBuf;
/* Update in-memory (expected) checksums */
assert( nCksum>=0 );
logCksumUnaligned(&p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1);
p->iCksumBuf = p->iBuf + 8;
logReaderBlob(p, pBuf, 8, &pPtr, pRc);
assert( pPtr || *pRc );
/* Read the checksums from the log file. Set *pbEof if they do not match. */
if( pPtr ){
cksum0 = lsmGetU32(pPtr);
cksum1 = lsmGetU32(&pPtr[4]);
*pbEof = (cksum0!=p->cksum0 || cksum1!=p->cksum1);
p->iCksumBuf = p->iBuf;
}
}
}
static void logReaderInit(
lsm_db *pDb, /* Database handle */
DbLog *pLog, /* Log object associated with pDb */
int bInitBuf, /* True if p->buf is uninitialized */
LogReader *p /* Initialize this LogReader object */
){
p->pFS = pDb->pFS;
p->iOff = pLog->aRegion[2].iStart;
p->cksum0 = pLog->cksum0;
p->cksum1 = pLog->cksum1;
if( bInitBuf ){ lsmStringInit(&p->buf, pDb->pEnv); }
p->buf.n = 0;
p->iCksumBuf = 0;
p->iBuf = 0;
}
/*
** This function is called after reading the header of a LOG_DELETE or
** LOG_WRITE record. Parameter nByte is the total size of the key and
** value that follow the header just read. Return true if the size and
** position of the record indicate that it should contain a checksum.
*/
static int logRequireCksum(LogReader *p, int nByte){
return ((p->iBuf + nByte - p->iCksumBuf) > LSM_CKSUM_MAXDATA);
}
/*
** Recover the contents of the log file.
*/
int lsmLogRecover(lsm_db *pDb){
LsmString buf1; /* Key buffer */
LsmString buf2; /* Value buffer */
LogReader reader; /* Log reader object */
int rc = LSM_OK; /* Return code */
int nCommit = 0; /* Number of transactions to recover */
int iPass;
int nJump = 0; /* Number of LSM_LOG_JUMP records in pass 0 */
DbLog *pLog;
int bOpen;
rc = lsmFsOpenLog(pDb, &bOpen);
if( rc!=LSM_OK ) return rc;
rc = lsmTreeInit(pDb);
if( rc!=LSM_OK ) return rc;
pLog = &pDb->treehdr.log;
lsmCheckpointLogoffset(pDb->pShmhdr->aSnap2, pLog);
logReaderInit(pDb, pLog, 1, &reader);
lsmStringInit(&buf1, pDb->pEnv);
lsmStringInit(&buf2, pDb->pEnv);
/* The outer for() loop runs at most twice. The first iteration is to
** count the number of committed transactions in the log. The second
** iterates through those transactions and updates the in-memory tree
** structure with their contents. */
if( bOpen ){
for(iPass=0; iPass<2 && rc==LSM_OK; iPass++){
int bEof = 0;
while( rc==LSM_OK && !bEof ){
u8 eType = 0;
logReaderByte(&reader, &eType, &rc);
switch( eType ){
case LSM_LOG_PAD1:
break;
case LSM_LOG_PAD2: {
int nPad;
logReaderVarint(&reader, &buf1, &nPad, &rc);
logReaderBlob(&reader, &buf1, nPad, 0, &rc);
break;
}
case LSM_LOG_DRANGE:
case LSM_LOG_DRANGE_CKSUM:
case LSM_LOG_WRITE:
case LSM_LOG_WRITE_CKSUM: {
int nKey;
int nVal;
u8 *aVal;
logReaderVarint(&reader, &buf1, &nKey, &rc);
logReaderVarint(&reader, &buf2, &nVal, &rc);
if( eType==LSM_LOG_WRITE_CKSUM || eType==LSM_LOG_DRANGE_CKSUM ){
logReaderCksum(&reader, &buf1, &bEof, &rc);
}else{
bEof = logRequireCksum(&reader, nKey+nVal);
}
if( bEof ) break;
logReaderBlob(&reader, &buf1, nKey, 0, &rc);
logReaderBlob(&reader, &buf2, nVal, &aVal, &rc);
if( iPass==1 && rc==LSM_OK ){
if( eType==LSM_LOG_WRITE || eType==LSM_LOG_WRITE_CKSUM ){
rc = lsmTreeInsert(pDb, (u8 *)buf1.z, nKey, aVal, nVal);
}else{
rc = lsmTreeDelete(pDb, (u8 *)buf1.z, nKey, aVal, nVal);
}
}
break;
}
case LSM_LOG_DELETE:
case LSM_LOG_DELETE_CKSUM: {
int nKey; u8 *aKey;
logReaderVarint(&reader, &buf1, &nKey, &rc);
if( eType==LSM_LOG_DELETE_CKSUM ){
logReaderCksum(&reader, &buf1, &bEof, &rc);
}else{
bEof = logRequireCksum(&reader, nKey);
}
if( bEof ) break;
logReaderBlob(&reader, &buf1, nKey, &aKey, &rc);
if( iPass==1 && rc==LSM_OK ){
rc = lsmTreeInsert(pDb, aKey, nKey, NULL, -1);
}
break;
}
case LSM_LOG_COMMIT:
logReaderCksum(&reader, &buf1, &bEof, &rc);
if( bEof==0 ){
nCommit++;
assert( nCommit>0 || iPass==1 );
if( nCommit==0 ) bEof = 1;
}
break;
case LSM_LOG_JUMP: {
int iOff = 0;
logReaderVarint(&reader, &buf1, &iOff, &rc);
if( rc==LSM_OK ){
if( iPass==1 ){
if( pLog->aRegion[2].iStart==0 ){
assert( pLog->aRegion[1].iStart==0 );
pLog->aRegion[1].iEnd = reader.iOff;
}else{
assert( pLog->aRegion[0].iStart==0 );
pLog->aRegion[0].iStart = pLog->aRegion[2].iStart;
pLog->aRegion[0].iEnd = reader.iOff-reader.buf.n+reader.iBuf;
}
pLog->aRegion[2].iStart = iOff;
}else{
if( (nJump++)==2 ){
bEof = 1;
}
}
reader.iOff = iOff;
reader.buf.n = reader.iBuf;
}
break;
}
default:
/* Including LSM_LOG_EOF */
bEof = 1;
break;
}
}
if( rc==LSM_OK && iPass==0 ){
if( nCommit==0 ){
if( pLog->aRegion[2].iStart==0 ){
iPass = 1;
}else{
pLog->aRegion[2].iStart = 0;
iPass = -1;
lsmCheckpointZeroLogoffset(pDb);
}
}
logReaderInit(pDb, pLog, 0, &reader);
nCommit = nCommit * -1;
}
}
}
/* Initialize DbLog object */
if( rc==LSM_OK ){
pLog->aRegion[2].iEnd = reader.iOff - reader.buf.n + reader.iBuf;
pLog->cksum0 = reader.cksum0;
pLog->cksum1 = reader.cksum1;
}
if( rc==LSM_OK ){
rc = lsmFinishRecovery(pDb);
}else{
lsmFinishRecovery(pDb);
}
if( pDb->bRoTrans ){
lsmFsCloseLog(pDb);
}
lsmStringClear(&buf1);
lsmStringClear(&buf2);
lsmStringClear(&reader.buf);
return rc;
}
void lsmLogClose(lsm_db *db){
if( db->pLogWriter ){
lsmFree(db->pEnv, db->pLogWriter->buf.z);
lsmFree(db->pEnv, db->pLogWriter);
db->pLogWriter = 0;
}
}
|