1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
|
/*
** 2011-08-18
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of an in-memory tree structure.
**
** Technically the tree is a B-tree of order 4 (in the Knuth sense - each
** node may have up to 4 children). Keys are stored within B-tree nodes by
** reference. This may be slightly slower than a conventional red-black
** tree, but it is simpler. It is also an easier structure to modify to
** create a version that supports nested transaction rollback.
**
** This tree does not currently support a delete operation. One is not
** required. When LSM deletes a key from a database, it inserts a DELETE
** marker into the data structure. As a result, although the value associated
** with a key stored in the in-memory tree structure may be modified, no
** keys are ever removed.
*/
/*
** MVCC NOTES
**
** The in-memory tree structure supports SQLite-style MVCC. This means
** that while one client is writing to the tree structure, other clients
** may still be querying an older snapshot of the tree.
**
** One way to implement this is to use an append-only b-tree. In this
** case instead of modifying nodes in-place, a copy of the node is made
** and the required modifications made to the copy. The parent of the
** node is then modified (to update the pointer so that it points to
** the new copy), which causes a copy of the parent to be made, and so on.
** This means that each time the tree is written to a new root node is
** created. A snapshot is identified by the root node that it uses.
**
** The problem with the above is that each time the tree is written to,
** a copy of the node structure modified and all of its ancestor nodes
** is made. This may prove excessive with large tree structures.
**
** To reduce this overhead, the data structure used for a tree node is
** designed so that it may be edited in place exactly once without
** affecting existing users. In other words, the node structure is capable
** of storing two separate versions of the node at the same time.
** When a node is to be edited, if the node structure already contains
** two versions, a copy is made as in the append-only approach. Or, if
** it only contains a single version, it is edited in place.
**
** This reduces the overhead so that, roughly, one new node structure
** must be allocated for each write (on top of those allocations that
** would have been required by a non-MVCC tree). Logic: Assume that at
** any time, 50% of nodes in the tree already contain 2 versions. When
** a new entry is written to a node, there is a 50% chance that a copy
** of the node will be required. And a 25% chance that a copy of its
** parent is required. And so on.
**
** ROLLBACK
**
** The in-memory tree also supports transaction and sub-transaction
** rollback. In order to rollback to point in time X, the following is
** necessary:
**
** 1. All memory allocated since X must be freed, and
** 2. All "v2" data adding to nodes that existed at X should be zeroed.
** 3. The root node must be restored to its X value.
**
** The Mempool object used to allocate memory for the tree supports
** operation (1) - see the lsmPoolMark() and lsmPoolRevert() functions.
**
** To support (2), all nodes that have v2 data are part of a singly linked
** list, sorted by the age of the v2 data (nodes that have had data added
** most recently are at the end of the list). So to zero all v2 data added
** since X, the linked list is traversed from the first node added following
** X onwards.
**
*/
#ifndef _LSM_INT_H
# include "lsmInt.h"
#endif
#include <string.h>
#define MAX_DEPTH 32
typedef struct TreeKey TreeKey;
typedef struct TreeNode TreeNode;
typedef struct TreeLeaf TreeLeaf;
typedef struct NodeVersion NodeVersion;
struct TreeOld {
u32 iShmid; /* Last shared-memory chunk in use by old */
u32 iRoot; /* Offset of root node in shm file */
u32 nHeight; /* Height of tree structure */
};
#if 0
/*
** assert() that a TreeKey.flags value is sane. Usage:
**
** assert( lsmAssertFlagsOk(pTreeKey->flags) );
*/
static int lsmAssertFlagsOk(u8 keyflags){
/* At least one flag must be set. Otherwise, what is this key doing? */
assert( keyflags!=0 );
/* The POINT_DELETE and INSERT flags cannot both be set. */
assert( (keyflags & LSM_POINT_DELETE)==0 || (keyflags & LSM_INSERT)==0 );
/* If both the START_DELETE and END_DELETE flags are set, then the INSERT
** flag must also be set. In other words - the three DELETE flags cannot
** all be set */
assert( (keyflags & LSM_END_DELETE)==0
|| (keyflags & LSM_START_DELETE)==0
|| (keyflags & LSM_POINT_DELETE)==0
);
return 1;
}
#endif
static int assert_delete_ranges_match(lsm_db *);
static int treeCountEntries(lsm_db *db);
/*
** Container for a key-value pair. Within the *-shm file, each key/value
** pair is stored in a single allocation (which may not actually be
** contiguous in memory). Layout is the TreeKey structure, followed by
** the nKey bytes of key blob, followed by the nValue bytes of value blob
** (if nValue is non-negative).
*/
struct TreeKey {
int nKey; /* Size of pKey in bytes */
int nValue; /* Size of pValue. Or negative. */
u8 flags; /* Various LSM_XXX flags */
};
#define TKV_KEY(p) ((void *)&(p)[1])
#define TKV_VAL(p) ((void *)(((u8 *)&(p)[1]) + (p)->nKey))
/*
** A single tree node. A node structure may contain up to 3 key/value
** pairs. Internal (non-leaf) nodes have up to 4 children.
**
** TODO: Update the format of this to be more compact. Get it working
** first though...
*/
struct TreeNode {
u32 aiKeyPtr[3]; /* Array of pointers to TreeKey objects */
/* The following fields are present for interior nodes only, not leaves. */
u32 aiChildPtr[4]; /* Array of pointers to child nodes */
/* The extra child pointer slot. */
u32 iV2; /* Transaction number of v2 */
u8 iV2Child; /* apChild[] entry replaced by pV2Ptr */
u32 iV2Ptr; /* Substitute pointer */
};
struct TreeLeaf {
u32 aiKeyPtr[3]; /* Array of pointers to TreeKey objects */
};
typedef struct TreeBlob TreeBlob;
struct TreeBlob {
int n;
u8 *a;
};
/*
** Cursor for searching a tree structure.
**
** If a cursor does not point to any element (a.k.a. EOF), then the
** TreeCursor.iNode variable is set to a negative value. Otherwise, the
** cursor currently points to key aiCell[iNode] on node apTreeNode[iNode].
**
** Entries in the apTreeNode[] and aiCell[] arrays contain the node and
** index of the TreeNode.apChild[] pointer followed to descend to the
** current element. Hence apTreeNode[0] always contains the root node of
** the tree.
*/
struct TreeCursor {
lsm_db *pDb; /* Database handle for this cursor */
TreeRoot *pRoot; /* Root node and height of tree to access */
int iNode; /* Cursor points at apTreeNode[iNode] */
TreeNode *apTreeNode[MAX_DEPTH];/* Current position in tree */
u8 aiCell[MAX_DEPTH]; /* Current position in tree */
TreeKey *pSave; /* Saved key */
TreeBlob blob; /* Dynamic storage for a key */
};
/*
** A value guaranteed to be larger than the largest possible transaction
** id (TreeHeader.iTransId).
*/
#define WORKING_VERSION (1<<30)
static int tblobGrow(lsm_db *pDb, TreeBlob *p, int n, int *pRc){
if( n>p->n ){
lsmFree(pDb->pEnv, p->a);
p->a = lsmMallocRc(pDb->pEnv, n, pRc);
p->n = n;
}
return (p->a==0);
}
static void tblobFree(lsm_db *pDb, TreeBlob *p){
lsmFree(pDb->pEnv, p->a);
}
/***********************************************************************
** Start of IntArray methods. */
/*
** Append value iVal to the contents of IntArray *p. Return LSM_OK if
** successful, or LSM_NOMEM if an OOM condition is encountered.
*/
static int intArrayAppend(lsm_env *pEnv, IntArray *p, u32 iVal){
assert( p->nArray<=p->nAlloc );
if( p->nArray>=p->nAlloc ){
u32 *aNew;
int nNew = p->nArray ? p->nArray*2 : 128;
aNew = lsmRealloc(pEnv, p->aArray, nNew*sizeof(u32));
if( !aNew ) return LSM_NOMEM_BKPT;
p->aArray = aNew;
p->nAlloc = nNew;
}
p->aArray[p->nArray++] = iVal;
return LSM_OK;
}
/*
** Zero the IntArray object.
*/
static void intArrayFree(lsm_env *pEnv, IntArray *p){
p->nArray = 0;
}
/*
** Return the number of entries currently in the int-array object.
*/
static int intArraySize(IntArray *p){
return p->nArray;
}
/*
** Return a copy of the iIdx'th entry in the int-array.
*/
static u32 intArrayEntry(IntArray *p, int iIdx){
return p->aArray[iIdx];
}
/*
** Truncate the int-array so that all but the first nVal values are
** discarded.
*/
static void intArrayTruncate(IntArray *p, int nVal){
p->nArray = nVal;
}
/* End of IntArray methods.
***********************************************************************/
static int treeKeycmp(void *p1, int n1, void *p2, int n2){
int res;
res = memcmp(p1, p2, LSM_MIN(n1, n2));
if( res==0 ) res = (n1-n2);
return res;
}
/*
** The pointer passed as the first argument points to an interior node,
** not a leaf. This function returns the offset of the iCell'th child
** sub-tree of the node.
*/
static u32 getChildPtr(TreeNode *p, int iVersion, int iCell){
assert( iVersion>=0 );
assert( iCell>=0 && iCell<=array_size(p->aiChildPtr) );
if( p->iV2 && p->iV2<=(u32)iVersion && iCell==p->iV2Child ) return p->iV2Ptr;
return p->aiChildPtr[iCell];
}
/*
** Given an offset within the *-shm file, return the associated chunk number.
*/
static int treeOffsetToChunk(u32 iOff){
assert( LSM_SHM_CHUNK_SIZE==(1<<15) );
return (int)(iOff>>15);
}
#define treeShmptrUnsafe(pDb, iPtr) \
(&((u8*)((pDb)->apShm[(iPtr)>>15]))[(iPtr) & (LSM_SHM_CHUNK_SIZE-1)])
/*
** Return a pointer to the mapped memory location associated with *-shm
** file offset iPtr.
*/
static void *treeShmptr(lsm_db *pDb, u32 iPtr){
assert( (iPtr>>15)<(u32)pDb->nShm );
assert( pDb->apShm[iPtr>>15] );
return iPtr ? treeShmptrUnsafe(pDb, iPtr) : 0;
}
static ShmChunk * treeShmChunk(lsm_db *pDb, int iChunk){
return (ShmChunk *)(pDb->apShm[iChunk]);
}
static ShmChunk * treeShmChunkRc(lsm_db *pDb, int iChunk, int *pRc){
assert( *pRc==LSM_OK );
if( iChunk<pDb->nShm || LSM_OK==(*pRc = lsmShmCacheChunks(pDb, iChunk+1)) ){
return (ShmChunk *)(pDb->apShm[iChunk]);
}
return 0;
}
#ifndef NDEBUG
static void assertIsWorkingChild(
lsm_db *db,
TreeNode *pNode,
TreeNode *pParent,
int iCell
){
TreeNode *p;
u32 iPtr = getChildPtr(pParent, WORKING_VERSION, iCell);
p = treeShmptr(db, iPtr);
assert( p==pNode );
}
#else
# define assertIsWorkingChild(w,x,y,z)
#endif
/* Values for the third argument to treeShmkey(). */
#define TKV_LOADKEY 1
#define TKV_LOADVAL 2
static TreeKey *treeShmkey(
lsm_db *pDb, /* Database handle */
u32 iPtr, /* Shmptr to TreeKey struct */
int eLoad, /* Either zero or a TREEKEY_LOADXXX value */
TreeBlob *pBlob, /* Used if dynamic memory is required */
int *pRc /* IN/OUT: Error code */
){
TreeKey *pRet;
assert( eLoad==TKV_LOADKEY || eLoad==TKV_LOADVAL );
pRet = (TreeKey *)treeShmptr(pDb, iPtr);
if( pRet ){
int nReq; /* Bytes of space required at pRet */
int nAvail; /* Bytes of space available at pRet */
nReq = sizeof(TreeKey) + pRet->nKey;
if( eLoad==TKV_LOADVAL && pRet->nValue>0 ){
nReq += pRet->nValue;
}
assert( LSM_SHM_CHUNK_SIZE==(1<<15) );
nAvail = LSM_SHM_CHUNK_SIZE - (iPtr & (LSM_SHM_CHUNK_SIZE-1));
if( nAvail<nReq ){
if( tblobGrow(pDb, pBlob, nReq, pRc)==0 ){
int nLoad = 0;
while( *pRc==LSM_OK ){
ShmChunk *pChunk;
void *p = treeShmptr(pDb, iPtr);
int n = LSM_MIN(nAvail, nReq-nLoad);
memcpy(&pBlob->a[nLoad], p, n);
nLoad += n;
if( nLoad==nReq ) break;
pChunk = treeShmChunk(pDb, treeOffsetToChunk(iPtr));
assert( pChunk );
iPtr = (pChunk->iNext * LSM_SHM_CHUNK_SIZE) + LSM_SHM_CHUNK_HDR;
nAvail = LSM_SHM_CHUNK_SIZE - LSM_SHM_CHUNK_HDR;
}
}
pRet = (TreeKey *)(pBlob->a);
}
}
return pRet;
}
#if defined(LSM_DEBUG) && defined(LSM_EXPENSIVE_ASSERT)
void assert_leaf_looks_ok(TreeNode *pNode){
assert( pNode->apKey[1] );
}
void assert_node_looks_ok(TreeNode *pNode, int nHeight){
if( pNode ){
assert( pNode->apKey[1] );
if( nHeight>1 ){
int i;
assert( getChildPtr(pNode, WORKING_VERSION, 1) );
assert( getChildPtr(pNode, WORKING_VERSION, 2) );
for(i=0; i<4; i++){
assert_node_looks_ok(getChildPtr(pNode, WORKING_VERSION, i), nHeight-1);
}
}
}
}
/*
** Run various assert() statements to check that the working-version of the
** tree is correct in the following respects:
**
** * todo...
*/
void assert_tree_looks_ok(int rc, Tree *pTree){
}
#else
# define assert_tree_looks_ok(x,y)
#endif
void lsmFlagsToString(int flags, char *zFlags){
zFlags[0] = (flags & LSM_END_DELETE) ? ']' : '.';
/* Only one of LSM_POINT_DELETE, LSM_INSERT and LSM_SEPARATOR should ever
** be set. If this is not true, write a '?' to the output. */
switch( flags & (LSM_POINT_DELETE|LSM_INSERT|LSM_SEPARATOR) ){
case 0: zFlags[1] = '.'; break;
case LSM_POINT_DELETE: zFlags[1] = '-'; break;
case LSM_INSERT: zFlags[1] = '+'; break;
case LSM_SEPARATOR: zFlags[1] = '^'; break;
default: zFlags[1] = '?'; break;
}
zFlags[2] = (flags & LSM_SYSTEMKEY) ? '*' : '.';
zFlags[3] = (flags & LSM_START_DELETE) ? '[' : '.';
zFlags[4] = '\0';
}
#ifdef LSM_DEBUG
/*
** Pointer pBlob points to a buffer containing a blob of binary data
** nBlob bytes long. Append the contents of this blob to *pStr, with
** each octet represented by a 2-digit hexadecimal number. For example,
** if the input blob is three bytes in size and contains {0x01, 0x44, 0xFF},
** then "0144ff" is appended to *pStr.
*/
static void lsmAppendStrBlob(LsmString *pStr, void *pBlob, int nBlob){
int i;
lsmStringExtend(pStr, nBlob*2);
if( pStr->nAlloc==0 ) return;
for(i=0; i<nBlob; i++){
u8 c = ((u8*)pBlob)[i];
if( c>='a' && c<='z' ){
pStr->z[pStr->n++] = c;
}else if( c!=0 || nBlob==1 || i!=(nBlob-1) ){
pStr->z[pStr->n++] = "0123456789abcdef"[(c>>4)&0xf];
pStr->z[pStr->n++] = "0123456789abcdef"[c&0xf];
}
}
pStr->z[pStr->n] = 0;
}
#if 0 /* NOT USED */
/*
** Append nIndent space (0x20) characters to string *pStr.
*/
static void lsmAppendIndent(LsmString *pStr, int nIndent){
int i;
lsmStringExtend(pStr, nIndent);
for(i=0; i<nIndent; i++) lsmStringAppend(pStr, " ", 1);
}
#endif
static void strAppendFlags(LsmString *pStr, u8 flags){
char zFlags[8];
lsmFlagsToString(flags, zFlags);
zFlags[4] = ':';
lsmStringAppend(pStr, zFlags, 5);
}
void dump_node_contents(
lsm_db *pDb,
u32 iNode, /* Print out the contents of this node */
char *zPath, /* Path from root to this node */
int nPath, /* Number of bytes in zPath */
int nHeight /* Height: (0==leaf) (1==parent-of-leaf) */
){
const char *zSpace = " ";
int i;
int rc = LSM_OK;
LsmString s;
TreeNode *pNode;
TreeBlob b = {0, 0};
pNode = (TreeNode *)treeShmptr(pDb, iNode);
if( nHeight==0 ){
/* Append the nIndent bytes of space to string s. */
lsmStringInit(&s, pDb->pEnv);
/* Append each key to string s. */
for(i=0; i<3; i++){
u32 iPtr = pNode->aiKeyPtr[i];
if( iPtr ){
TreeKey *pKey = treeShmkey(pDb, pNode->aiKeyPtr[i],TKV_LOADKEY, &b,&rc);
strAppendFlags(&s, pKey->flags);
lsmAppendStrBlob(&s, TKV_KEY(pKey), pKey->nKey);
lsmStringAppend(&s, " ", -1);
}
}
printf("% 6d %.*sleaf%.*s: %s\n",
iNode, nPath, zPath, 20-nPath-4, zSpace, s.z
);
lsmStringClear(&s);
}else{
for(i=0; i<4 && nHeight>0; i++){
u32 iPtr = getChildPtr(pNode, pDb->treehdr.root.iTransId, i);
zPath[nPath] = (char)(i+'0');
zPath[nPath+1] = '/';
if( iPtr ){
dump_node_contents(pDb, iPtr, zPath, nPath+2, nHeight-1);
}
if( i!=3 && pNode->aiKeyPtr[i] ){
TreeKey *pKey = treeShmkey(pDb, pNode->aiKeyPtr[i], TKV_LOADKEY,&b,&rc);
lsmStringInit(&s, pDb->pEnv);
strAppendFlags(&s, pKey->flags);
lsmAppendStrBlob(&s, TKV_KEY(pKey), pKey->nKey);
printf("% 6d %.*s%.*s: %s\n",
iNode, nPath+1, zPath, 20-nPath-1, zSpace, s.z);
lsmStringClear(&s);
}
}
}
tblobFree(pDb, &b);
}
void dump_tree_contents(lsm_db *pDb, const char *zCaption){
char zPath[64];
TreeRoot *p = &pDb->treehdr.root;
printf("\n%s\n", zCaption);
zPath[0] = '/';
if( p->iRoot ){
dump_node_contents(pDb, p->iRoot, zPath, 1, p->nHeight-1);
}
fflush(stdout);
}
#endif
/*
** Initialize a cursor object, the space for which has already been
** allocated.
*/
static void treeCursorInit(lsm_db *pDb, int bOld, TreeCursor *pCsr){
memset(pCsr, 0, sizeof(TreeCursor));
pCsr->pDb = pDb;
if( bOld ){
pCsr->pRoot = &pDb->treehdr.oldroot;
}else{
pCsr->pRoot = &pDb->treehdr.root;
}
pCsr->iNode = -1;
}
/*
** Return a pointer to the mapping of the TreeKey object that the cursor
** is pointing to.
*/
static TreeKey *csrGetKey(TreeCursor *pCsr, TreeBlob *pBlob, int *pRc){
TreeKey *pRet;
lsm_db *pDb = pCsr->pDb;
u32 iPtr = pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]];
assert( iPtr );
pRet = (TreeKey*)treeShmptrUnsafe(pDb, iPtr);
if( !(pRet->flags & LSM_CONTIGUOUS) ){
pRet = treeShmkey(pDb, iPtr, TKV_LOADVAL, pBlob, pRc);
}
return pRet;
}
/*
** Save the current position of tree cursor pCsr.
*/
int lsmTreeCursorSave(TreeCursor *pCsr){
int rc = LSM_OK;
if( pCsr && pCsr->pSave==0 ){
int iNode = pCsr->iNode;
if( iNode>=0 ){
pCsr->pSave = csrGetKey(pCsr, &pCsr->blob, &rc);
}
pCsr->iNode = -1;
}
return rc;
}
/*
** Restore the position of a saved tree cursor.
*/
static int treeCursorRestore(TreeCursor *pCsr, int *pRes){
int rc = LSM_OK;
if( pCsr->pSave ){
TreeKey *pKey = pCsr->pSave;
pCsr->pSave = 0;
if( pRes ){
rc = lsmTreeCursorSeek(pCsr, TKV_KEY(pKey), pKey->nKey, pRes);
}
}
return rc;
}
/*
** Allocate nByte bytes of space within the *-shm file. If successful,
** return LSM_OK and set *piPtr to the offset within the file at which
** the allocated space is located.
*/
static u32 treeShmalloc(lsm_db *pDb, int bAlign, int nByte, int *pRc){
u32 iRet = 0;
if( *pRc==LSM_OK ){
const static int CHUNK_SIZE = LSM_SHM_CHUNK_SIZE;
const static int CHUNK_HDR = LSM_SHM_CHUNK_HDR;
u32 iWrite; /* Current write offset */
u32 iEof; /* End of current chunk */
int iChunk; /* Current chunk */
assert( nByte <= (CHUNK_SIZE-CHUNK_HDR) );
/* Check if there is enough space on the current chunk to fit the
** new allocation. If not, link in a new chunk and put the new
** allocation at the start of it. */
iWrite = pDb->treehdr.iWrite;
if( bAlign ){
iWrite = (iWrite + 3) & ~0x0003;
assert( (iWrite % 4)==0 );
}
assert( iWrite );
iChunk = treeOffsetToChunk(iWrite-1);
iEof = (iChunk+1) * CHUNK_SIZE;
assert( iEof>=iWrite && (iEof-iWrite)<(u32)CHUNK_SIZE );
if( (iWrite+nByte)>iEof ){
ShmChunk *pHdr; /* Header of chunk just finished (iChunk) */
ShmChunk *pFirst; /* Header of chunk treehdr.iFirst */
ShmChunk *pNext; /* Header of new chunk */
int iNext = 0; /* Next chunk */
int rc = LSM_OK;
pFirst = treeShmChunk(pDb, pDb->treehdr.iFirst);
assert( shm_sequence_ge(pDb->treehdr.iUsedShmid, pFirst->iShmid) );
assert( (pDb->treehdr.iNextShmid+1-pDb->treehdr.nChunk)==pFirst->iShmid );
/* Check if the chunk at the start of the linked list is still in
** use. If not, reuse it. If so, allocate a new chunk by appending
** to the *-shm file. */
if( pDb->treehdr.iUsedShmid!=pFirst->iShmid ){
int bInUse;
rc = lsmTreeInUse(pDb, pFirst->iShmid, &bInUse);
if( rc!=LSM_OK ){
*pRc = rc;
return 0;
}
if( bInUse==0 ){
iNext = pDb->treehdr.iFirst;
pDb->treehdr.iFirst = pFirst->iNext;
assert( pDb->treehdr.iFirst );
}
}
if( iNext==0 ) iNext = pDb->treehdr.nChunk++;
/* Set the header values for the new chunk */
pNext = treeShmChunkRc(pDb, iNext, &rc);
if( pNext ){
pNext->iNext = 0;
pNext->iShmid = (pDb->treehdr.iNextShmid++);
}else{
*pRc = rc;
return 0;
}
/* Set the header values for the chunk just finished */
pHdr = (ShmChunk *)treeShmptr(pDb, iChunk*CHUNK_SIZE);
pHdr->iNext = iNext;
/* Advance to the next chunk */
iWrite = iNext * CHUNK_SIZE + CHUNK_HDR;
}
/* Allocate space at iWrite. */
iRet = iWrite;
pDb->treehdr.iWrite = iWrite + nByte;
pDb->treehdr.root.nByte += nByte;
}
return iRet;
}
/*
** Allocate and zero nByte bytes of space within the *-shm file.
*/
static void *treeShmallocZero(lsm_db *pDb, int nByte, u32 *piPtr, int *pRc){
u32 iPtr;
void *p;
iPtr = treeShmalloc(pDb, 1, nByte, pRc);
p = treeShmptr(pDb, iPtr);
if( p ){
assert( *pRc==LSM_OK );
memset(p, 0, nByte);
*piPtr = iPtr;
}
return p;
}
static TreeNode *newTreeNode(lsm_db *pDb, u32 *piPtr, int *pRc){
return treeShmallocZero(pDb, sizeof(TreeNode), piPtr, pRc);
}
static TreeLeaf *newTreeLeaf(lsm_db *pDb, u32 *piPtr, int *pRc){
return treeShmallocZero(pDb, sizeof(TreeLeaf), piPtr, pRc);
}
static TreeKey *newTreeKey(
lsm_db *pDb,
u32 *piPtr,
void *pKey, int nKey, /* Key data */
void *pVal, int nVal, /* Value data (or nVal<0 for delete) */
int *pRc
){
TreeKey *p;
u32 iPtr;
u32 iEnd;
int nRem;
u8 *a;
int n;
/* Allocate space for the TreeKey structure itself */
*piPtr = iPtr = treeShmalloc(pDb, 1, sizeof(TreeKey), pRc);
p = treeShmptr(pDb, iPtr);
if( *pRc ) return 0;
p->nKey = nKey;
p->nValue = nVal;
/* Allocate and populate the space required for the key and value. */
n = nRem = nKey;
a = (u8 *)pKey;
while( a ){
while( nRem>0 ){
u8 *aAlloc;
int nAlloc;
u32 iWrite;
iWrite = (pDb->treehdr.iWrite & (LSM_SHM_CHUNK_SIZE-1));
iWrite = LSM_MAX(iWrite, LSM_SHM_CHUNK_HDR);
nAlloc = LSM_MIN((LSM_SHM_CHUNK_SIZE-iWrite), (u32)nRem);
aAlloc = treeShmptr(pDb, treeShmalloc(pDb, 0, nAlloc, pRc));
if( aAlloc==0 ) break;
memcpy(aAlloc, &a[n-nRem], nAlloc);
nRem -= nAlloc;
}
a = pVal;
n = nRem = nVal;
pVal = 0;
}
iEnd = iPtr + sizeof(TreeKey) + nKey + LSM_MAX(0, nVal);
if( (iPtr & ~(LSM_SHM_CHUNK_SIZE-1))!=(iEnd & ~(LSM_SHM_CHUNK_SIZE-1)) ){
p->flags = 0;
}else{
p->flags = LSM_CONTIGUOUS;
}
if( *pRc ) return 0;
#if 0
printf("store: %d %s\n", (int)iPtr, (char *)pKey);
#endif
return p;
}
static TreeNode *copyTreeNode(
lsm_db *pDb,
TreeNode *pOld,
u32 *piNew,
int *pRc
){
TreeNode *pNew;
pNew = newTreeNode(pDb, piNew, pRc);
if( pNew ){
memcpy(pNew->aiKeyPtr, pOld->aiKeyPtr, sizeof(pNew->aiKeyPtr));
memcpy(pNew->aiChildPtr, pOld->aiChildPtr, sizeof(pNew->aiChildPtr));
if( pOld->iV2 ) pNew->aiChildPtr[pOld->iV2Child] = pOld->iV2Ptr;
}
return pNew;
}
static TreeNode *copyTreeLeaf(
lsm_db *pDb,
TreeLeaf *pOld,
u32 *piNew,
int *pRc
){
TreeLeaf *pNew;
pNew = newTreeLeaf(pDb, piNew, pRc);
if( pNew ){
memcpy(pNew, pOld, sizeof(TreeLeaf));
}
return (TreeNode *)pNew;
}
/*
** The tree cursor passed as the second argument currently points to an
** internal node (not a leaf). Specifically, to a sub-tree pointer. This
** function replaces the sub-tree that the cursor currently points to
** with sub-tree pNew.
**
** The sub-tree may be replaced either by writing the "v2 data" on the
** internal node, or by allocating a new TreeNode structure and then
** calling this function on the parent of the internal node.
*/
static int treeUpdatePtr(lsm_db *pDb, TreeCursor *pCsr, u32 iNew){
int rc = LSM_OK;
if( pCsr->iNode<0 ){
/* iNew is the new root node */
pDb->treehdr.root.iRoot = iNew;
}else{
/* If this node already has version 2 content, allocate a copy and
** update the copy with the new pointer value. Otherwise, store the
** new pointer as v2 data within the current node structure. */
TreeNode *p; /* The node to be modified */
int iChildPtr; /* apChild[] entry to modify */
p = pCsr->apTreeNode[pCsr->iNode];
iChildPtr = pCsr->aiCell[pCsr->iNode];
if( p->iV2 ){
/* The "allocate new TreeNode" option */
u32 iCopy;
TreeNode *pCopy;
pCopy = copyTreeNode(pDb, p, &iCopy, &rc);
if( pCopy ){
assert( rc==LSM_OK );
pCopy->aiChildPtr[iChildPtr] = iNew;
pCsr->iNode--;
rc = treeUpdatePtr(pDb, pCsr, iCopy);
}
}else{
/* The "v2 data" option */
u32 iPtr;
assert( pDb->treehdr.root.iTransId>0 );
if( pCsr->iNode ){
iPtr = getChildPtr(
pCsr->apTreeNode[pCsr->iNode-1],
pDb->treehdr.root.iTransId, pCsr->aiCell[pCsr->iNode-1]
);
}else{
iPtr = pDb->treehdr.root.iRoot;
}
rc = intArrayAppend(pDb->pEnv, &pDb->rollback, iPtr);
if( rc==LSM_OK ){
p->iV2 = pDb->treehdr.root.iTransId;
p->iV2Child = (u8)iChildPtr;
p->iV2Ptr = iNew;
}
}
}
return rc;
}
/*
** Cursor pCsr points at a node that is part of pTree. This function
** inserts a new key and optionally child node pointer into that node.
**
** The position into which the new key and pointer are inserted is
** determined by the iSlot parameter. The new key will be inserted to
** the left of the key currently stored in apKey[iSlot]. Or, if iSlot is
** greater than the index of the rightmost key in the node.
**
** Pointer pLeftPtr points to a child tree that contains keys that are
** smaller than pTreeKey.
*/
static int treeInsert(
lsm_db *pDb, /* Database handle */
TreeCursor *pCsr, /* Cursor indicating path to insert at */
u32 iLeftPtr, /* Left child pointer */
u32 iTreeKey, /* Location of key to insert */
u32 iRightPtr, /* Right child pointer */
int iSlot /* Position to insert key into */
){
int rc = LSM_OK;
TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
/* Check if the node is currently full. If so, split pNode in two and
** call this function recursively to add a key to the parent. Otherwise,
** insert the new key directly into pNode. */
assert( pNode->aiKeyPtr[1] );
if( pNode->aiKeyPtr[0] && pNode->aiKeyPtr[2] ){
u32 iLeft; TreeNode *pLeft; /* New left-hand sibling node */
u32 iRight; TreeNode *pRight; /* New right-hand sibling node */
pLeft = newTreeNode(pDb, &iLeft, &rc);
pRight = newTreeNode(pDb, &iRight, &rc);
if( rc ) return rc;
pLeft->aiChildPtr[1] = getChildPtr(pNode, WORKING_VERSION, 0);
pLeft->aiKeyPtr[1] = pNode->aiKeyPtr[0];
pLeft->aiChildPtr[2] = getChildPtr(pNode, WORKING_VERSION, 1);
pRight->aiChildPtr[1] = getChildPtr(pNode, WORKING_VERSION, 2);
pRight->aiKeyPtr[1] = pNode->aiKeyPtr[2];
pRight->aiChildPtr[2] = getChildPtr(pNode, WORKING_VERSION, 3);
if( pCsr->iNode==0 ){
/* pNode is the root of the tree. Grow the tree by one level. */
u32 iRoot; TreeNode *pRoot; /* New root node */
pRoot = newTreeNode(pDb, &iRoot, &rc);
pRoot->aiKeyPtr[1] = pNode->aiKeyPtr[1];
pRoot->aiChildPtr[1] = iLeft;
pRoot->aiChildPtr[2] = iRight;
pDb->treehdr.root.iRoot = iRoot;
pDb->treehdr.root.nHeight++;
}else{
pCsr->iNode--;
rc = treeInsert(pDb, pCsr,
iLeft, pNode->aiKeyPtr[1], iRight, pCsr->aiCell[pCsr->iNode]
);
}
assert( pLeft->iV2==0 );
assert( pRight->iV2==0 );
switch( iSlot ){
case 0:
pLeft->aiKeyPtr[0] = iTreeKey;
pLeft->aiChildPtr[0] = iLeftPtr;
if( iRightPtr ) pLeft->aiChildPtr[1] = iRightPtr;
break;
case 1:
pLeft->aiChildPtr[3] = (iRightPtr ? iRightPtr : pLeft->aiChildPtr[2]);
pLeft->aiKeyPtr[2] = iTreeKey;
pLeft->aiChildPtr[2] = iLeftPtr;
break;
case 2:
pRight->aiKeyPtr[0] = iTreeKey;
pRight->aiChildPtr[0] = iLeftPtr;
if( iRightPtr ) pRight->aiChildPtr[1] = iRightPtr;
break;
case 3:
pRight->aiChildPtr[3] = (iRightPtr ? iRightPtr : pRight->aiChildPtr[2]);
pRight->aiKeyPtr[2] = iTreeKey;
pRight->aiChildPtr[2] = iLeftPtr;
break;
}
}else{
TreeNode *pNew;
u32 *piKey;
u32 *piChild;
u32 iStore = 0;
u32 iNew = 0;
int i;
/* Allocate a new version of node pNode. */
pNew = newTreeNode(pDb, &iNew, &rc);
if( rc ) return rc;
piKey = pNew->aiKeyPtr;
piChild = pNew->aiChildPtr;
for(i=0; i<iSlot; i++){
if( pNode->aiKeyPtr[i] ){
*(piKey++) = pNode->aiKeyPtr[i];
*(piChild++) = getChildPtr(pNode, WORKING_VERSION, i);
}
}
*piKey++ = iTreeKey;
*piChild++ = iLeftPtr;
iStore = iRightPtr;
for(i=iSlot; i<3; i++){
if( pNode->aiKeyPtr[i] ){
*(piKey++) = pNode->aiKeyPtr[i];
*(piChild++) = iStore ? iStore : getChildPtr(pNode, WORKING_VERSION, i);
iStore = 0;
}
}
if( iStore ){
*piChild = iStore;
}else{
*piChild = getChildPtr(pNode, WORKING_VERSION,
(pNode->aiKeyPtr[2] ? 3 : 2)
);
}
pCsr->iNode--;
rc = treeUpdatePtr(pDb, pCsr, iNew);
}
return rc;
}
static int treeInsertLeaf(
lsm_db *pDb, /* Database handle */
TreeCursor *pCsr, /* Cursor structure */
u32 iTreeKey, /* Key pointer to insert */
int iSlot /* Insert key to the left of this */
){
int rc = LSM_OK; /* Return code */
TreeNode *pLeaf = pCsr->apTreeNode[pCsr->iNode];
TreeLeaf *pNew;
u32 iNew;
assert( iSlot>=0 && iSlot<=4 );
assert( pCsr->iNode>0 );
assert( pLeaf->aiKeyPtr[1] );
pCsr->iNode--;
pNew = newTreeLeaf(pDb, &iNew, &rc);
if( pNew ){
if( pLeaf->aiKeyPtr[0] && pLeaf->aiKeyPtr[2] ){
/* The leaf is full. Split it in two. */
TreeLeaf *pRight;
u32 iRight;
pRight = newTreeLeaf(pDb, &iRight, &rc);
if( pRight ){
assert( rc==LSM_OK );
pNew->aiKeyPtr[1] = pLeaf->aiKeyPtr[0];
pRight->aiKeyPtr[1] = pLeaf->aiKeyPtr[2];
switch( iSlot ){
case 0: pNew->aiKeyPtr[0] = iTreeKey; break;
case 1: pNew->aiKeyPtr[2] = iTreeKey; break;
case 2: pRight->aiKeyPtr[0] = iTreeKey; break;
case 3: pRight->aiKeyPtr[2] = iTreeKey; break;
}
rc = treeInsert(pDb, pCsr, iNew, pLeaf->aiKeyPtr[1], iRight,
pCsr->aiCell[pCsr->iNode]
);
}
}else{
int iOut = 0;
int i;
for(i=0; i<4; i++){
if( i==iSlot ) pNew->aiKeyPtr[iOut++] = iTreeKey;
if( i<3 && pLeaf->aiKeyPtr[i] ){
pNew->aiKeyPtr[iOut++] = pLeaf->aiKeyPtr[i];
}
}
rc = treeUpdatePtr(pDb, pCsr, iNew);
}
}
return rc;
}
void lsmTreeMakeOld(lsm_db *pDb){
/* A write transaction must be open. Otherwise the code below that
** assumes (pDb->pClient->iLogOff) is current may malfunction.
**
** Update: currently this assert fails due to lsm_flush(), which does
** not set nTransOpen.
*/
assert( /* pDb->nTransOpen>0 && */ pDb->iReader>=0 );
if( pDb->treehdr.iOldShmid==0 ){
pDb->treehdr.iOldLog = (pDb->treehdr.log.aRegion[2].iEnd << 1);
pDb->treehdr.iOldLog |= (~(pDb->pClient->iLogOff) & (i64)0x0001);
pDb->treehdr.oldcksum0 = pDb->treehdr.log.cksum0;
pDb->treehdr.oldcksum1 = pDb->treehdr.log.cksum1;
pDb->treehdr.iOldShmid = pDb->treehdr.iNextShmid-1;
memcpy(&pDb->treehdr.oldroot, &pDb->treehdr.root, sizeof(TreeRoot));
pDb->treehdr.root.iTransId = 1;
pDb->treehdr.root.iRoot = 0;
pDb->treehdr.root.nHeight = 0;
pDb->treehdr.root.nByte = 0;
}
}
void lsmTreeDiscardOld(lsm_db *pDb){
assert( lsmShmAssertLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_EXCL)
|| lsmShmAssertLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_EXCL)
);
pDb->treehdr.iUsedShmid = pDb->treehdr.iOldShmid;
pDb->treehdr.iOldShmid = 0;
}
int lsmTreeHasOld(lsm_db *pDb){
return pDb->treehdr.iOldShmid!=0;
}
/*
** This function is called during recovery to initialize the
** tree header. Only the database connections private copy of the tree-header
** is initialized here - it will be copied into shared memory if log file
** recovery is successful.
*/
int lsmTreeInit(lsm_db *pDb){
ShmChunk *pOne;
int rc = LSM_OK;
memset(&pDb->treehdr, 0, sizeof(TreeHeader));
pDb->treehdr.root.iTransId = 1;
pDb->treehdr.iFirst = 1;
pDb->treehdr.nChunk = 2;
pDb->treehdr.iWrite = LSM_SHM_CHUNK_SIZE + LSM_SHM_CHUNK_HDR;
pDb->treehdr.iNextShmid = 2;
pDb->treehdr.iUsedShmid = 1;
pOne = treeShmChunkRc(pDb, 1, &rc);
if( pOne ){
pOne->iNext = 0;
pOne->iShmid = 1;
}
return rc;
}
static void treeHeaderChecksum(
TreeHeader *pHdr,
u32 *aCksum
){
u32 cksum1 = 0x12345678;
u32 cksum2 = 0x9ABCDEF0;
u32 *a = (u32 *)pHdr;
int i;
assert( (offsetof(TreeHeader, aCksum) + sizeof(u32)*2)==sizeof(TreeHeader) );
assert( (sizeof(TreeHeader) % (sizeof(u32)*2))==0 );
for(i=0; i<(offsetof(TreeHeader, aCksum) / sizeof(u32)); i+=2){
cksum1 += a[i];
cksum2 += (cksum1 + a[i+1]);
}
aCksum[0] = cksum1;
aCksum[1] = cksum2;
}
/*
** Return true if the checksum stored in TreeHeader object *pHdr is
** consistent with the contents of its other fields.
*/
static int treeHeaderChecksumOk(TreeHeader *pHdr){
u32 aCksum[2];
treeHeaderChecksum(pHdr, aCksum);
return (0==memcmp(aCksum, pHdr->aCksum, sizeof(aCksum)));
}
/*
** This type is used by functions lsmTreeRepair() and treeSortByShmid() to
** make relinking the linked list of shared-memory chunks easier.
*/
typedef struct ShmChunkLoc ShmChunkLoc;
struct ShmChunkLoc {
ShmChunk *pShm;
u32 iLoc;
};
/*
** This function checks that the linked list of shared memory chunks
** that starts at chunk db->treehdr.iFirst:
**
** 1) Includes all chunks in the shared-memory region, and
** 2) Links them together in order of ascending shm-id.
**
** If no error occurs and the conditions above are met, LSM_OK is returned.
**
** If either of the conditions are untrue, LSM_CORRUPT is returned. Or, if
** an error is encountered before the checks are completed, another LSM error
** code (i.e. LSM_IOERR or LSM_NOMEM) may be returned.
*/
static int treeCheckLinkedList(lsm_db *db){
int rc = LSM_OK;
int nVisit = 0;
ShmChunk *p;
p = treeShmChunkRc(db, db->treehdr.iFirst, &rc);
while( rc==LSM_OK && p ){
if( p->iNext ){
if( p->iNext>=db->treehdr.nChunk ){
rc = LSM_CORRUPT_BKPT;
}else{
ShmChunk *pNext = treeShmChunkRc(db, p->iNext, &rc);
if( rc==LSM_OK ){
if( pNext->iShmid!=p->iShmid+1 ){
rc = LSM_CORRUPT_BKPT;
}
p = pNext;
}
}
}else{
p = 0;
}
nVisit++;
}
if( rc==LSM_OK && (u32)nVisit!=db->treehdr.nChunk-1 ){
rc = LSM_CORRUPT_BKPT;
}
return rc;
}
/*
** Iterate through the current in-memory tree. If there are any v2-pointers
** with transaction ids larger than db->treehdr.iTransId, zero them.
*/
static int treeRepairPtrs(lsm_db *db){
int rc = LSM_OK;
if( db->treehdr.root.nHeight>1 ){
TreeCursor csr; /* Cursor used to iterate through tree */
u32 iTransId = db->treehdr.root.iTransId;
/* Initialize the cursor structure. Also decrement the nHeight variable
** in the tree-header. This will prevent the cursor from visiting any
** leaf nodes. */
db->treehdr.root.nHeight--;
treeCursorInit(db, 0, &csr);
rc = lsmTreeCursorEnd(&csr, 0);
while( rc==LSM_OK && lsmTreeCursorValid(&csr) ){
TreeNode *pNode = csr.apTreeNode[csr.iNode];
if( pNode->iV2>iTransId ){
pNode->iV2Child = 0;
pNode->iV2Ptr = 0;
pNode->iV2 = 0;
}
rc = lsmTreeCursorNext(&csr);
}
tblobFree(csr.pDb, &csr.blob);
db->treehdr.root.nHeight++;
}
return rc;
}
static int treeRepairList(lsm_db *db){
int rc = LSM_OK;
int i;
ShmChunk *p;
ShmChunk *pMin = 0;
u32 iMin = 0;
/* Iterate through all shm chunks. Find the smallest shm-id present in
** the shared-memory region. */
for(i=1; rc==LSM_OK && (u32)i<db->treehdr.nChunk; i++){
p = treeShmChunkRc(db, i, &rc);
if( p && (pMin==0 || shm_sequence_ge(pMin->iShmid, p->iShmid)) ){
pMin = p;
iMin = i;
}
}
/* Fix the shm-id values on any chunks with a shm-id greater than or
** equal to treehdr.iNextShmid. Then do a merge-sort of all chunks to
** fix the ShmChunk.iNext pointers.
*/
if( rc==LSM_OK ){
int nSort;
int nByte;
u32 iPrevShmid;
ShmChunkLoc *aSort;
/* Allocate space for a merge sort. */
nSort = 1;
while( (u32)nSort < (db->treehdr.nChunk-1) ) nSort = nSort * 2;
nByte = sizeof(ShmChunkLoc) * nSort * 2;
aSort = lsmMallocZeroRc(db->pEnv, nByte, &rc);
iPrevShmid = pMin->iShmid;
/* Fix all shm-ids, if required. */
if( rc==LSM_OK ){
iPrevShmid = pMin->iShmid-1;
for(i=1; (u32)i<db->treehdr.nChunk; i++){
p = treeShmChunk(db, i);
aSort[i-1].pShm = p;
aSort[i-1].iLoc = i;
if( (u32)i!=db->treehdr.iFirst ){
if( shm_sequence_ge(p->iShmid, db->treehdr.iNextShmid) ){
p->iShmid = iPrevShmid--;
}
}
}
if( iMin!=db->treehdr.iFirst ){
p = treeShmChunk(db, db->treehdr.iFirst);
p->iShmid = iPrevShmid;
}
}
if( rc==LSM_OK ){
ShmChunkLoc *aSpace = &aSort[nSort];
for(i=0; i<nSort; i++){
if( aSort[i].pShm ){
assert( shm_sequence_ge(aSort[i].pShm->iShmid, iPrevShmid) );
assert( aSpace[aSort[i].pShm->iShmid - iPrevShmid].pShm==0 );
aSpace[aSort[i].pShm->iShmid - iPrevShmid] = aSort[i];
}
}
if( aSpace[nSort-1].pShm ) aSpace[nSort-1].pShm->iNext = 0;
for(i=0; i<nSort-1; i++){
if( aSpace[i].pShm ){
aSpace[i].pShm->iNext = aSpace[i+1].iLoc;
}
}
rc = treeCheckLinkedList(db);
lsmFree(db->pEnv, aSort);
}
}
return rc;
}
/*
** This function is called as part of opening a write-transaction if the
** writer-flag is already set - indicating that the previous writer
** failed before ending its transaction.
*/
int lsmTreeRepair(lsm_db *db){
int rc = LSM_OK;
TreeHeader hdr;
ShmHeader *pHdr = db->pShmhdr;
/* Ensure that the two tree-headers are consistent. Copy one over the other
** if necessary. Prefer the data from a tree-header for which the checksum
** computes. Or, if they both compute, prefer tree-header-1. */
if( memcmp(&pHdr->hdr1, &pHdr->hdr2, sizeof(TreeHeader)) ){
if( treeHeaderChecksumOk(&pHdr->hdr1) ){
memcpy(&pHdr->hdr2, &pHdr->hdr1, sizeof(TreeHeader));
}else{
memcpy(&pHdr->hdr1, &pHdr->hdr2, sizeof(TreeHeader));
}
}
/* Save the connections current copy of the tree-header. It will be
** restored before returning. */
memcpy(&hdr, &db->treehdr, sizeof(TreeHeader));
/* Walk the tree. Zero any v2 pointers with a transaction-id greater than
** the transaction-id currently in the tree-headers. */
rc = treeRepairPtrs(db);
/* Repair the linked list of shared-memory chunks. */
if( rc==LSM_OK ){
rc = treeRepairList(db);
}
memcpy(&db->treehdr, &hdr, sizeof(TreeHeader));
return rc;
}
static void treeOverwriteKey(lsm_db *db, TreeCursor *pCsr, u32 iKey, int *pRc){
if( *pRc==LSM_OK ){
TreeRoot *p = &db->treehdr.root;
TreeNode *pNew;
u32 iNew;
TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
int iCell = pCsr->aiCell[pCsr->iNode];
/* Create a copy of this node */
if( (pCsr->iNode>0 && (u32)pCsr->iNode==(p->nHeight-1)) ){
pNew = copyTreeLeaf(db, (TreeLeaf *)pNode, &iNew, pRc);
}else{
pNew = copyTreeNode(db, pNode, &iNew, pRc);
}
if( pNew ){
/* Modify the value in the new version */
pNew->aiKeyPtr[iCell] = iKey;
/* Change the pointer in the parent (if any) to point at the new
** TreeNode */
pCsr->iNode--;
treeUpdatePtr(db, pCsr, iNew);
}
}
}
static int treeNextIsEndDelete(lsm_db *db, TreeCursor *pCsr){
int iNode = pCsr->iNode;
int iCell = pCsr->aiCell[iNode]+1;
/* Cursor currently points to a leaf node. */
assert( (u32)pCsr->iNode==(db->treehdr.root.nHeight-1) );
while( iNode>=0 ){
TreeNode *pNode = pCsr->apTreeNode[iNode];
if( iCell<3 && pNode->aiKeyPtr[iCell] ){
int rc = LSM_OK;
TreeKey *pKey = treeShmptr(db, pNode->aiKeyPtr[iCell]);
assert( rc==LSM_OK );
return ((pKey->flags & LSM_END_DELETE) ? 1 : 0);
}
iNode--;
iCell = pCsr->aiCell[iNode];
}
return 0;
}
static int treePrevIsStartDelete(lsm_db *db, TreeCursor *pCsr){
int iNode = pCsr->iNode;
/* Cursor currently points to a leaf node. */
assert( (u32)pCsr->iNode==(db->treehdr.root.nHeight-1) );
while( iNode>=0 ){
TreeNode *pNode = pCsr->apTreeNode[iNode];
int iCell = pCsr->aiCell[iNode]-1;
if( iCell>=0 && pNode->aiKeyPtr[iCell] ){
int rc = LSM_OK;
TreeKey *pKey = treeShmptr(db, pNode->aiKeyPtr[iCell]);
assert( rc==LSM_OK );
return ((pKey->flags & LSM_START_DELETE) ? 1 : 0);
}
iNode--;
}
return 0;
}
static int treeInsertEntry(
lsm_db *pDb, /* Database handle */
int flags, /* Flags associated with entry */
void *pKey, /* Pointer to key data */
int nKey, /* Size of key data in bytes */
void *pVal, /* Pointer to value data (or NULL) */
int nVal /* Bytes in value data (or -ve for delete) */
){
int rc = LSM_OK; /* Return Code */
TreeKey *pTreeKey; /* New key-value being inserted */
u32 iTreeKey;
TreeRoot *p = &pDb->treehdr.root;
TreeCursor csr; /* Cursor to seek to pKey/nKey */
int res = 0; /* Result of seek operation on csr */
assert( nVal>=0 || pVal==0 );
assert_tree_looks_ok(LSM_OK, pTree);
assert( flags==LSM_INSERT || flags==LSM_POINT_DELETE
|| flags==LSM_START_DELETE || flags==LSM_END_DELETE
);
assert( (flags & LSM_CONTIGUOUS)==0 );
#if 0
dump_tree_contents(pDb, "before");
#endif
if( p->iRoot ){
TreeKey *pRes; /* Key at end of seek operation */
treeCursorInit(pDb, 0, &csr);
/* Seek to the leaf (or internal node) that the new key belongs on */
rc = lsmTreeCursorSeek(&csr, pKey, nKey, &res);
pRes = csrGetKey(&csr, &csr.blob, &rc);
if( rc!=LSM_OK ) return rc;
assert( pRes );
if( flags==LSM_START_DELETE ){
/* When inserting a start-delete-range entry, if the key that
** occurs immediately before the new entry is already a START_DELETE,
** then the new entry is not required. */
if( (res<=0 && (pRes->flags & LSM_START_DELETE))
|| (res>0 && treePrevIsStartDelete(pDb, &csr))
){
goto insert_entry_out;
}
}else if( flags==LSM_END_DELETE ){
/* When inserting an start-delete-range entry, if the key that
** occurs immediately after the new entry is already an END_DELETE,
** then the new entry is not required. */
if( (res<0 && treeNextIsEndDelete(pDb, &csr))
|| (res>=0 && (pRes->flags & LSM_END_DELETE))
){
goto insert_entry_out;
}
}
if( res==0 && (flags & (LSM_END_DELETE|LSM_START_DELETE)) ){
if( pRes->flags & LSM_INSERT ){
nVal = pRes->nValue;
pVal = TKV_VAL(pRes);
}
flags = flags | pRes->flags;
}
if( flags & (LSM_INSERT|LSM_POINT_DELETE) ){
if( (res<0 && (pRes->flags & LSM_START_DELETE))
|| (res>0 && (pRes->flags & LSM_END_DELETE))
){
flags = flags | (LSM_END_DELETE|LSM_START_DELETE);
}else if( res==0 ){
flags = flags | (pRes->flags & (LSM_END_DELETE|LSM_START_DELETE));
}
}
}else{
memset(&csr, 0, sizeof(TreeCursor));
}
/* Allocate and populate a new key-value pair structure */
pTreeKey = newTreeKey(pDb, &iTreeKey, pKey, nKey, pVal, nVal, &rc);
if( rc!=LSM_OK ) return rc;
assert( pTreeKey->flags==0 || pTreeKey->flags==LSM_CONTIGUOUS );
pTreeKey->flags |= flags;
if( p->iRoot==0 ){
/* The tree is completely empty. Add a new root node and install
** (pKey/nKey) as the middle entry. Even though it is a leaf at the
** moment, use newTreeNode() to allocate the node (i.e. allocate enough
** space for the fields used by interior nodes). This is because the
** treeInsert() routine may convert this node to an interior node. */
TreeNode *pRoot = newTreeNode(pDb, &p->iRoot, &rc);
if( rc==LSM_OK ){
assert( p->nHeight==0 );
pRoot->aiKeyPtr[1] = iTreeKey;
p->nHeight = 1;
}
}else{
if( res==0 ){
/* The search found a match within the tree. */
treeOverwriteKey(pDb, &csr, iTreeKey, &rc);
}else{
/* The cursor now points to the leaf node into which the new entry should
** be inserted. There may or may not be a free slot within the leaf for
** the new key-value pair.
**
** iSlot is set to the index of the key within pLeaf that the new key
** should be inserted to the left of (or to a value 1 greater than the
** index of the rightmost key if the new key is larger than all keys
** currently stored in the node).
*/
int iSlot = csr.aiCell[csr.iNode] + (res<0);
if( csr.iNode==0 ){
rc = treeInsert(pDb, &csr, 0, iTreeKey, 0, iSlot);
}else{
rc = treeInsertLeaf(pDb, &csr, iTreeKey, iSlot);
}
}
}
#if 0
dump_tree_contents(pDb, "after");
#endif
insert_entry_out:
tblobFree(pDb, &csr.blob);
assert_tree_looks_ok(rc, pTree);
return rc;
}
/*
** Insert a new entry into the in-memory tree.
**
** If the value of the 5th parameter, nVal, is negative, then a delete-marker
** is inserted into the tree. In this case the value pointer, pVal, must be
** NULL.
*/
int lsmTreeInsert(
lsm_db *pDb, /* Database handle */
void *pKey, /* Pointer to key data */
int nKey, /* Size of key data in bytes */
void *pVal, /* Pointer to value data (or NULL) */
int nVal /* Bytes in value data (or -ve for delete) */
){
int flags;
if( nVal<0 ){
flags = LSM_POINT_DELETE;
}else{
flags = LSM_INSERT;
}
return treeInsertEntry(pDb, flags, pKey, nKey, pVal, nVal);
}
static int treeDeleteEntry(lsm_db *db, TreeCursor *pCsr, u32 iNewptr){
TreeRoot *p = &db->treehdr.root;
TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
int iSlot = pCsr->aiCell[pCsr->iNode];
int bLeaf;
int rc = LSM_OK;
assert( pNode->aiKeyPtr[1] );
assert( pNode->aiKeyPtr[iSlot] );
assert( iSlot==0 || iSlot==1 || iSlot==2 );
assert( ((u32)pCsr->iNode==(db->treehdr.root.nHeight-1))==(iNewptr==0) );
bLeaf = ((u32)pCsr->iNode==(p->nHeight-1) && p->nHeight>1);
if( pNode->aiKeyPtr[0] || pNode->aiKeyPtr[2] ){
/* There are currently at least 2 keys on this node. So just create
** a new copy of the node with one of the keys removed. If the node
** happens to be the root node of the tree, allocate an entire
** TreeNode structure instead of just a TreeLeaf. */
TreeNode *pNew;
u32 iNew;
if( bLeaf ){
pNew = (TreeNode *)newTreeLeaf(db, &iNew, &rc);
}else{
pNew = newTreeNode(db, &iNew, &rc);
}
if( pNew ){
int i;
int iOut = 1;
for(i=0; i<4; i++){
if( i==iSlot ){
i++;
if( bLeaf==0 ) pNew->aiChildPtr[iOut] = iNewptr;
if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i];
iOut++;
}else if( bLeaf || p->nHeight==1 ){
if( i<3 && pNode->aiKeyPtr[i] ){
pNew->aiKeyPtr[iOut++] = pNode->aiKeyPtr[i];
}
}else{
if( getChildPtr(pNode, WORKING_VERSION, i) ){
pNew->aiChildPtr[iOut] = getChildPtr(pNode, WORKING_VERSION, i);
if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i];
iOut++;
}
}
}
assert( iOut<=4 );
assert( bLeaf || pNew->aiChildPtr[0]==0 );
pCsr->iNode--;
rc = treeUpdatePtr(db, pCsr, iNew);
}
}else if( pCsr->iNode==0 ){
/* Removing the only key in the root node. iNewptr is the new root. */
assert( iSlot==1 );
db->treehdr.root.iRoot = iNewptr;
db->treehdr.root.nHeight--;
}else{
/* There is only one key on this node and the node is not the root
** node. Find a peer for this node. Then redistribute the contents of
** the peer and the parent cell between the parent and either one or
** two new nodes. */
TreeNode *pParent; /* Parent tree node */
int iPSlot;
u32 iPeer; /* Pointer to peer leaf node */
int iDir;
TreeNode *pPeer; /* The peer leaf node */
TreeNode *pNew1; u32 iNew1; /* First new leaf node */
assert( iSlot==1 );
pParent = pCsr->apTreeNode[pCsr->iNode-1];
iPSlot = pCsr->aiCell[pCsr->iNode-1];
if( iPSlot>0 && getChildPtr(pParent, WORKING_VERSION, iPSlot-1) ){
iDir = -1;
}else{
iDir = +1;
}
iPeer = getChildPtr(pParent, WORKING_VERSION, iPSlot+iDir);
pPeer = (TreeNode *)treeShmptr(db, iPeer);
assertIsWorkingChild(db, pNode, pParent, iPSlot);
/* Allocate the first new leaf node. This is always required. */
if( bLeaf ){
pNew1 = (TreeNode *)newTreeLeaf(db, &iNew1, &rc);
}else{
pNew1 = (TreeNode *)newTreeNode(db, &iNew1, &rc);
}
if( pPeer->aiKeyPtr[0] && pPeer->aiKeyPtr[2] ){
/* Peer node is completely full. This means that two new leaf nodes
** and a new parent node are required. */
TreeNode *pNew2; u32 iNew2; /* Second new leaf node */
TreeNode *pNewP; u32 iNewP; /* New parent node */
if( bLeaf ){
pNew2 = (TreeNode *)newTreeLeaf(db, &iNew2, &rc);
}else{
pNew2 = (TreeNode *)newTreeNode(db, &iNew2, &rc);
}
pNewP = copyTreeNode(db, pParent, &iNewP, &rc);
if( iDir==-1 ){
pNew1->aiKeyPtr[1] = pPeer->aiKeyPtr[0];
if( bLeaf==0 ){
pNew1->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 0);
pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 1);
}
pNewP->aiChildPtr[iPSlot-1] = iNew1;
pNewP->aiKeyPtr[iPSlot-1] = pPeer->aiKeyPtr[1];
pNewP->aiChildPtr[iPSlot] = iNew2;
pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[2];
pNew2->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot-1];
if( bLeaf==0 ){
pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 2);
pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 3);
pNew2->aiChildPtr[2] = iNewptr;
}
}else{
pNew1->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot];
if( bLeaf==0 ){
pNew1->aiChildPtr[1] = iNewptr;
pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 0);
}
pNewP->aiChildPtr[iPSlot] = iNew1;
pNewP->aiKeyPtr[iPSlot] = pPeer->aiKeyPtr[0];
pNewP->aiChildPtr[iPSlot+1] = iNew2;
pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[1];
pNew2->aiKeyPtr[1] = pPeer->aiKeyPtr[2];
if( bLeaf==0 ){
pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 1);
pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 2);
pNew2->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 3);
}
}
assert( pCsr->iNode>=1 );
pCsr->iNode -= 2;
if( rc==LSM_OK ){
assert( pNew1->aiKeyPtr[1] && pNew2->aiKeyPtr[1] );
rc = treeUpdatePtr(db, pCsr, iNewP);
}
}else{
int iKOut = 0;
int iPOut = 0;
int i;
pCsr->iNode--;
if( iDir==1 ){
pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot];
if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr;
}
for(i=0; i<3; i++){
if( pPeer->aiKeyPtr[i] ){
pNew1->aiKeyPtr[iKOut++] = pPeer->aiKeyPtr[i];
}
}
if( bLeaf==0 ){
for(i=0; i<4; i++){
if( getChildPtr(pPeer, WORKING_VERSION, i) ){
pNew1->aiChildPtr[iPOut++] = getChildPtr(pPeer, WORKING_VERSION, i);
}
}
}
if( iDir==-1 ){
iPSlot--;
pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot];
if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr;
pCsr->aiCell[pCsr->iNode] = (u8)iPSlot;
}
rc = treeDeleteEntry(db, pCsr, iNew1);
}
}
return rc;
}
/*
** Delete a range of keys from the tree structure (i.e. the lsm_delete_range()
** function, not lsm_delete()).
**
** This is a two step process:
**
** 1) Remove all entries currently stored in the tree that have keys
** that fall into the deleted range.
**
** TODO: There are surely good ways to optimize this step - removing
** a range of keys from a b-tree. But for now, this function removes
** them one at a time using the usual approach.
**
** 2) Unless the largest key smaller than or equal to (pKey1/nKey1) is
** already marked as START_DELETE, insert a START_DELETE key.
** Similarly, unless the smallest key greater than or equal to
** (pKey2/nKey2) is already START_END, insert a START_END key.
*/
int lsmTreeDelete(
lsm_db *db,
void *pKey1, int nKey1, /* Start of range */
void *pKey2, int nKey2 /* End of range */
){
int rc = LSM_OK;
int bDone = 0;
TreeRoot *p = &db->treehdr.root;
TreeBlob blob = {0, 0};
/* The range must be sensible - that (key1 < key2). */
assert( treeKeycmp(pKey1, nKey1, pKey2, nKey2)<0 );
assert( assert_delete_ranges_match(db) );
#if 0
static int nCall = 0;
printf("\n");
nCall++;
printf("%d delete %s .. %s\n", nCall, (char *)pKey1, (char *)pKey2);
dump_tree_contents(db, "before delete");
#endif
/* Step 1. This loop runs until the tree contains no keys within the
** range being deleted. Or until an error occurs. */
while( bDone==0 && rc==LSM_OK ){
int res;
TreeCursor csr; /* Cursor to seek to first key in range */
void *pDel; int nDel; /* Key to (possibly) delete this iteration */
#ifndef NDEBUG
int nEntry = treeCountEntries(db);
#endif
/* Seek the cursor to the first entry in the tree greater than pKey1. */
treeCursorInit(db, 0, &csr);
lsmTreeCursorSeek(&csr, pKey1, nKey1, &res);
if( res<=0 && lsmTreeCursorValid(&csr) ) lsmTreeCursorNext(&csr);
/* If there is no such entry, or if it is greater than pKey2, then the
** tree now contains no keys in the range being deleted. In this case
** break out of the loop. */
bDone = 1;
if( lsmTreeCursorValid(&csr) ){
lsmTreeCursorKey(&csr, 0, &pDel, &nDel);
if( treeKeycmp(pDel, nDel, pKey2, nKey2)<0 ) bDone = 0;
}
if( bDone==0 ){
if( (u32)csr.iNode==(p->nHeight-1) ){
/* The element to delete already lies on a leaf node */
rc = treeDeleteEntry(db, &csr, 0);
}else{
/* 1. Overwrite the current key with a copy of the next key in the
** tree (key N).
**
** 2. Seek to key N (cursor will stop at the internal node copy of
** N). Move to the next key (original copy of N). Delete
** this entry.
*/
u32 iKey;
TreeKey *pKey;
int iNode = csr.iNode;
lsmTreeCursorNext(&csr);
assert( (u32)csr.iNode==(p->nHeight-1) );
iKey = csr.apTreeNode[csr.iNode]->aiKeyPtr[csr.aiCell[csr.iNode]];
lsmTreeCursorPrev(&csr);
treeOverwriteKey(db, &csr, iKey, &rc);
pKey = treeShmkey(db, iKey, TKV_LOADKEY, &blob, &rc);
if( pKey ){
rc = lsmTreeCursorSeek(&csr, TKV_KEY(pKey), pKey->nKey, &res);
}
if( rc==LSM_OK ){
assert( res==0 && csr.iNode==iNode );
rc = lsmTreeCursorNext(&csr);
if( rc==LSM_OK ){
rc = treeDeleteEntry(db, &csr, 0);
}
}
}
}
/* Clean up any memory allocated by the cursor. */
tblobFree(db, &csr.blob);
#if 0
dump_tree_contents(db, "ddd delete");
#endif
assert( bDone || treeCountEntries(db)==(nEntry-1) );
}
#if 0
dump_tree_contents(db, "during delete");
#endif
/* Now insert the START_DELETE and END_DELETE keys. */
if( rc==LSM_OK ){
rc = treeInsertEntry(db, LSM_START_DELETE, pKey1, nKey1, 0, -1);
}
#if 0
dump_tree_contents(db, "during delete 2");
#endif
if( rc==LSM_OK ){
rc = treeInsertEntry(db, LSM_END_DELETE, pKey2, nKey2, 0, -1);
}
#if 0
dump_tree_contents(db, "after delete");
#endif
tblobFree(db, &blob);
assert( assert_delete_ranges_match(db) );
return rc;
}
/*
** Return, in bytes, the amount of memory currently used by the tree
** structure.
*/
int lsmTreeSize(lsm_db *pDb){
return pDb->treehdr.root.nByte;
}
/*
** Open a cursor on the in-memory tree pTree.
*/
int lsmTreeCursorNew(lsm_db *pDb, int bOld, TreeCursor **ppCsr){
TreeCursor *pCsr;
*ppCsr = pCsr = lsmMalloc(pDb->pEnv, sizeof(TreeCursor));
if( pCsr ){
treeCursorInit(pDb, bOld, pCsr);
return LSM_OK;
}
return LSM_NOMEM_BKPT;
}
/*
** Close an in-memory tree cursor.
*/
void lsmTreeCursorDestroy(TreeCursor *pCsr){
if( pCsr ){
tblobFree(pCsr->pDb, &pCsr->blob);
lsmFree(pCsr->pDb->pEnv, pCsr);
}
}
void lsmTreeCursorReset(TreeCursor *pCsr){
if( pCsr ){
pCsr->iNode = -1;
pCsr->pSave = 0;
}
}
#ifndef NDEBUG
static int treeCsrCompare(TreeCursor *pCsr, void *pKey, int nKey, int *pRc){
TreeKey *p;
int cmp = 0;
assert( pCsr->iNode>=0 );
p = csrGetKey(pCsr, &pCsr->blob, pRc);
if( p ){
cmp = treeKeycmp(TKV_KEY(p), p->nKey, pKey, nKey);
}
return cmp;
}
#endif
/*
** Attempt to seek the cursor passed as the first argument to key (pKey/nKey)
** in the tree structure. If an exact match for the key is found, leave the
** cursor pointing to it and set *pRes to zero before returning. If an
** exact match cannot be found, do one of the following:
**
** * Leave the cursor pointing to the smallest element in the tree that
** is larger than the key and set *pRes to +1, or
**
** * Leave the cursor pointing to the largest element in the tree that
** is smaller than the key and set *pRes to -1, or
**
** * If the tree is empty, leave the cursor at EOF and set *pRes to -1.
*/
int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes){
int rc = LSM_OK; /* Return code */
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
u32 iNodePtr; /* Location of current node in search */
/* Discard any saved position data */
treeCursorRestore(pCsr, 0);
iNodePtr = pRoot->iRoot;
if( iNodePtr==0 ){
/* Either an error occurred or the tree is completely empty. */
assert( rc!=LSM_OK || pRoot->iRoot==0 );
*pRes = -1;
pCsr->iNode = -1;
}else{
TreeBlob b = {0, 0};
int res = 0; /* Result of comparison function */
int iNode = -1;
while( iNodePtr ){
TreeNode *pNode; /* Node at location iNodePtr */
int iTest; /* Index of second key to test (0 or 2) */
u32 iTreeKey;
TreeKey *pTreeKey; /* Key to compare against */
pNode = (TreeNode *)treeShmptrUnsafe(pDb, iNodePtr);
iNode++;
pCsr->apTreeNode[iNode] = pNode;
/* Compare (pKey/nKey) with the key in the middle slot of B-tree node
** pNode. The middle slot is never empty. If the comparison is a match,
** then the search is finished. Break out of the loop. */
pTreeKey = (TreeKey*)treeShmptrUnsafe(pDb, pNode->aiKeyPtr[1]);
if( !(pTreeKey->flags & LSM_CONTIGUOUS) ){
pTreeKey = treeShmkey(pDb, pNode->aiKeyPtr[1], TKV_LOADKEY, &b, &rc);
if( rc!=LSM_OK ) break;
}
res = treeKeycmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
if( res==0 ){
pCsr->aiCell[iNode] = 1;
break;
}
/* Based on the results of the previous comparison, compare (pKey/nKey)
** to either the left or right key of the B-tree node, if such a key
** exists. */
iTest = (res>0 ? 0 : 2);
iTreeKey = pNode->aiKeyPtr[iTest];
if( iTreeKey ){
pTreeKey = (TreeKey*)treeShmptrUnsafe(pDb, iTreeKey);
if( !(pTreeKey->flags & LSM_CONTIGUOUS) ){
pTreeKey = treeShmkey(pDb, iTreeKey, TKV_LOADKEY, &b, &rc);
if( rc ) break;
}
res = treeKeycmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
if( res==0 ){
pCsr->aiCell[iNode] = (u8)iTest;
break;
}
}else{
iTest = 1;
}
if( (u32)iNode<(pRoot->nHeight-1) ){
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iTest + (res<0));
}else{
iNodePtr = 0;
}
pCsr->aiCell[iNode] = (u8)(iTest + (iNodePtr && (res<0)));
}
*pRes = res;
pCsr->iNode = iNode;
tblobFree(pDb, &b);
}
/* assert() that *pRes has been set properly */
#ifndef NDEBUG
if( rc==LSM_OK && lsmTreeCursorValid(pCsr) ){
int cmp = treeCsrCompare(pCsr, pKey, nKey, &rc);
assert( rc!=LSM_OK || *pRes==cmp || (*pRes ^ cmp)>0 );
}
#endif
return rc;
}
int lsmTreeCursorNext(TreeCursor *pCsr){
#ifndef NDEBUG
TreeKey *pK1;
TreeBlob key1 = {0, 0};
#endif
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
const int iLeaf = pRoot->nHeight-1;
int iCell;
int rc = LSM_OK;
TreeNode *pNode;
/* Restore the cursor position, if required */
int iRestore = 0;
treeCursorRestore(pCsr, &iRestore);
if( iRestore>0 ) return LSM_OK;
/* Save a pointer to the current key. This is used in an assert() at the
** end of this function - to check that the 'next' key really is larger
** than the current key. */
#ifndef NDEBUG
pK1 = csrGetKey(pCsr, &key1, &rc);
if( rc!=LSM_OK ) return rc;
#endif
assert( lsmTreeCursorValid(pCsr) );
assert( pCsr->aiCell[pCsr->iNode]<3 );
pNode = pCsr->apTreeNode[pCsr->iNode];
iCell = ++pCsr->aiCell[pCsr->iNode];
/* If the current node is not a leaf, and the current cell has sub-tree
** associated with it, descend to the left-most key on the left-most
** leaf of the sub-tree. */
if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
do {
u32 iNodePtr;
pCsr->iNode++;
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
pCsr->apTreeNode[pCsr->iNode] = pNode;
iCell = pCsr->aiCell[pCsr->iNode] = (pNode->aiKeyPtr[0]==0);
}while( pCsr->iNode < iLeaf );
}
/* Otherwise, the next key is found by following pointer up the tree
** until there is a key immediately to the right of the pointer followed
** to reach the sub-tree containing the current key. */
else if( iCell>=3 || pNode->aiKeyPtr[iCell]==0 ){
while( (--pCsr->iNode)>=0 ){
iCell = pCsr->aiCell[pCsr->iNode];
if( iCell<3 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break;
}
}
#ifndef NDEBUG
if( pCsr->iNode>=0 ){
TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc);
assert( rc||treeKeycmp(TKV_KEY(pK2),pK2->nKey,TKV_KEY(pK1),pK1->nKey)>=0 );
}
tblobFree(pDb, &key1);
#endif
return rc;
}
int lsmTreeCursorPrev(TreeCursor *pCsr){
#ifndef NDEBUG
TreeKey *pK1;
TreeBlob key1 = {0, 0};
#endif
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
const int iLeaf = pRoot->nHeight-1;
int iCell;
int rc = LSM_OK;
TreeNode *pNode;
/* Restore the cursor position, if required */
int iRestore = 0;
treeCursorRestore(pCsr, &iRestore);
if( iRestore<0 ) return LSM_OK;
/* Save a pointer to the current key. This is used in an assert() at the
** end of this function - to check that the 'next' key really is smaller
** than the current key. */
#ifndef NDEBUG
pK1 = csrGetKey(pCsr, &key1, &rc);
if( rc!=LSM_OK ) return rc;
#endif
assert( lsmTreeCursorValid(pCsr) );
pNode = pCsr->apTreeNode[pCsr->iNode];
iCell = pCsr->aiCell[pCsr->iNode];
assert( iCell>=0 && iCell<3 );
/* If the current node is not a leaf, and the current cell has sub-tree
** associated with it, descend to the right-most key on the right-most
** leaf of the sub-tree. */
if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
do {
u32 iNodePtr;
pCsr->iNode++;
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
if( rc!=LSM_OK ) break;
pCsr->apTreeNode[pCsr->iNode] = pNode;
iCell = 1 + (pNode->aiKeyPtr[2]!=0) + (pCsr->iNode < iLeaf);
pCsr->aiCell[pCsr->iNode] = (u8)iCell;
}while( pCsr->iNode < iLeaf );
}
/* Otherwise, the next key is found by following pointer up the tree until
** there is a key immediately to the left of the pointer followed to reach
** the sub-tree containing the current key. */
else{
do {
iCell = pCsr->aiCell[pCsr->iNode]-1;
if( iCell>=0 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break;
}while( (--pCsr->iNode)>=0 );
pCsr->aiCell[pCsr->iNode] = (u8)iCell;
}
#ifndef NDEBUG
if( pCsr->iNode>=0 ){
TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc);
assert( rc || treeKeycmp(TKV_KEY(pK2),pK2->nKey,TKV_KEY(pK1),pK1->nKey)<0 );
}
tblobFree(pDb, &key1);
#endif
return rc;
}
/*
** Move the cursor to the first (bLast==0) or last (bLast!=0) entry in the
** in-memory tree.
*/
int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast){
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
int rc = LSM_OK;
u32 iNodePtr;
pCsr->iNode = -1;
/* Discard any saved position data */
treeCursorRestore(pCsr, 0);
iNodePtr = pRoot->iRoot;
while( iNodePtr ){
int iCell;
TreeNode *pNode;
pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
if( rc ) break;
if( bLast ){
iCell = ((pNode->aiKeyPtr[2]==0) ? 2 : 3);
}else{
iCell = ((pNode->aiKeyPtr[0]==0) ? 1 : 0);
}
pCsr->iNode++;
pCsr->apTreeNode[pCsr->iNode] = pNode;
if( (u32)pCsr->iNode<pRoot->nHeight-1 ){
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
}else{
iNodePtr = 0;
}
pCsr->aiCell[pCsr->iNode] = (u8)(iCell - (iNodePtr==0 && bLast));
}
return rc;
}
int lsmTreeCursorFlags(TreeCursor *pCsr){
int flags = 0;
if( pCsr && pCsr->iNode>=0 ){
int rc = LSM_OK;
TreeKey *pKey = (TreeKey *)treeShmptrUnsafe(pCsr->pDb,
pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]]
);
assert( rc==LSM_OK );
flags = (pKey->flags & ~LSM_CONTIGUOUS);
}
return flags;
}
int lsmTreeCursorKey(TreeCursor *pCsr, int *pFlags, void **ppKey, int *pnKey){
TreeKey *pTreeKey;
int rc = LSM_OK;
assert( lsmTreeCursorValid(pCsr) );
pTreeKey = pCsr->pSave;
if( !pTreeKey ){
pTreeKey = csrGetKey(pCsr, &pCsr->blob, &rc);
}
if( rc==LSM_OK ){
*pnKey = pTreeKey->nKey;
if( pFlags ) *pFlags = pTreeKey->flags;
*ppKey = (void *)&pTreeKey[1];
}
return rc;
}
int lsmTreeCursorValue(TreeCursor *pCsr, void **ppVal, int *pnVal){
int res = 0;
int rc;
rc = treeCursorRestore(pCsr, &res);
if( res==0 ){
TreeKey *pTreeKey = csrGetKey(pCsr, &pCsr->blob, &rc);
if( rc==LSM_OK ){
if( pTreeKey->flags & LSM_INSERT ){
*pnVal = pTreeKey->nValue;
*ppVal = TKV_VAL(pTreeKey);
}else{
*ppVal = 0;
*pnVal = -1;
}
}
}else{
*ppVal = 0;
*pnVal = 0;
}
return rc;
}
/*
** Return true if the cursor currently points to a valid entry.
*/
int lsmTreeCursorValid(TreeCursor *pCsr){
return (pCsr && (pCsr->pSave || pCsr->iNode>=0));
}
/*
** Store a mark in *pMark. Later on, a call to lsmTreeRollback() with a
** pointer to the same TreeMark structure may be used to roll the tree
** contents back to their current state.
*/
void lsmTreeMark(lsm_db *pDb, TreeMark *pMark){
pMark->iRoot = pDb->treehdr.root.iRoot;
pMark->nHeight = pDb->treehdr.root.nHeight;
pMark->iWrite = pDb->treehdr.iWrite;
pMark->nChunk = pDb->treehdr.nChunk;
pMark->iNextShmid = pDb->treehdr.iNextShmid;
pMark->iRollback = intArraySize(&pDb->rollback);
}
/*
** Roll back to mark pMark. Structure *pMark should have been previously
** populated by a call to lsmTreeMark().
*/
void lsmTreeRollback(lsm_db *pDb, TreeMark *pMark){
int iIdx;
int nIdx;
u32 iNext;
ShmChunk *pChunk;
u32 iChunk;
u32 iShmid;
/* Revert all required v2 pointers. */
nIdx = intArraySize(&pDb->rollback);
for(iIdx = pMark->iRollback; iIdx<nIdx; iIdx++){
TreeNode *pNode;
pNode = treeShmptr(pDb, intArrayEntry(&pDb->rollback, iIdx));
assert( pNode );
pNode->iV2 = 0;
pNode->iV2Child = 0;
pNode->iV2Ptr = 0;
}
intArrayTruncate(&pDb->rollback, pMark->iRollback);
/* Restore the free-chunk list. */
assert( pMark->iWrite!=0 );
iChunk = treeOffsetToChunk(pMark->iWrite-1);
pChunk = treeShmChunk(pDb, iChunk);
iNext = pChunk->iNext;
pChunk->iNext = 0;
pChunk = treeShmChunk(pDb, pDb->treehdr.iFirst);
iShmid = pChunk->iShmid-1;
while( iNext ){
u32 iFree = iNext; /* Current chunk being rollback-freed */
ShmChunk *pFree; /* Pointer to chunk iFree */
pFree = treeShmChunk(pDb, iFree);
iNext = pFree->iNext;
if( iFree<pMark->nChunk ){
pFree->iNext = pDb->treehdr.iFirst;
pFree->iShmid = iShmid--;
pDb->treehdr.iFirst = iFree;
}
}
/* Restore the tree-header fields */
pDb->treehdr.root.iRoot = pMark->iRoot;
pDb->treehdr.root.nHeight = pMark->nHeight;
pDb->treehdr.iWrite = pMark->iWrite;
pDb->treehdr.nChunk = pMark->nChunk;
pDb->treehdr.iNextShmid = pMark->iNextShmid;
}
/*
** Load the in-memory tree header from shared-memory into pDb->treehdr.
** If the header cannot be loaded, return LSM_PROTOCOL.
**
** If the header is successfully loaded and parameter piRead is not NULL,
** is is set to 1 if the header was loaded from ShmHeader.hdr1, or 2 if
** the header was loaded from ShmHeader.hdr2.
*/
int lsmTreeLoadHeader(lsm_db *pDb, int *piRead){
int nRem = LSM_ATTEMPTS_BEFORE_PROTOCOL;
while( (nRem--)>0 ){
ShmHeader *pShm = pDb->pShmhdr;
memcpy(&pDb->treehdr, &pShm->hdr1, sizeof(TreeHeader));
if( treeHeaderChecksumOk(&pDb->treehdr) ){
if( piRead ) *piRead = 1;
return LSM_OK;
}
memcpy(&pDb->treehdr, &pShm->hdr2, sizeof(TreeHeader));
if( treeHeaderChecksumOk(&pDb->treehdr) ){
if( piRead ) *piRead = 2;
return LSM_OK;
}
lsmShmBarrier(pDb);
}
return LSM_PROTOCOL_BKPT;
}
int lsmTreeLoadHeaderOk(lsm_db *pDb, int iRead){
TreeHeader *p = (iRead==1) ? &pDb->pShmhdr->hdr1 : &pDb->pShmhdr->hdr2;
assert( iRead==1 || iRead==2 );
return (0==memcmp(pDb->treehdr.aCksum, p->aCksum, sizeof(u32)*2));
}
/*
** This function is called to conclude a transaction. If argument bCommit
** is true, the transaction is committed. Otherwise it is rolled back.
*/
int lsmTreeEndTransaction(lsm_db *pDb, int bCommit){
ShmHeader *pShm = pDb->pShmhdr;
treeHeaderChecksum(&pDb->treehdr, pDb->treehdr.aCksum);
memcpy(&pShm->hdr2, &pDb->treehdr, sizeof(TreeHeader));
lsmShmBarrier(pDb);
memcpy(&pShm->hdr1, &pDb->treehdr, sizeof(TreeHeader));
pShm->bWriter = 0;
intArrayFree(pDb->pEnv, &pDb->rollback);
return LSM_OK;
}
#ifndef NDEBUG
static int assert_delete_ranges_match(lsm_db *db){
int prev = 0;
TreeBlob blob = {0, 0};
TreeCursor csr; /* Cursor used to iterate through tree */
int rc;
treeCursorInit(db, 0, &csr);
for( rc = lsmTreeCursorEnd(&csr, 0);
rc==LSM_OK && lsmTreeCursorValid(&csr);
rc = lsmTreeCursorNext(&csr)
){
TreeKey *pKey = csrGetKey(&csr, &blob, &rc);
if( rc!=LSM_OK ) break;
assert( ((prev&LSM_START_DELETE)==0)==((pKey->flags&LSM_END_DELETE)==0) );
prev = pKey->flags;
}
tblobFree(csr.pDb, &csr.blob);
tblobFree(csr.pDb, &blob);
return 1;
}
static int treeCountEntries(lsm_db *db){
TreeCursor csr; /* Cursor used to iterate through tree */
int rc;
int nEntry = 0;
treeCursorInit(db, 0, &csr);
for( rc = lsmTreeCursorEnd(&csr, 0);
rc==LSM_OK && lsmTreeCursorValid(&csr);
rc = lsmTreeCursorNext(&csr)
){
nEntry++;
}
tblobFree(csr.pDb, &csr.blob);
return nEntry;
}
#endif
|