1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
|
# 2010 September 25
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests to verify that the "testable statements" in
# the lang_createtable.html document are correct.
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix e_createtable
# Test organization:
#
# e_createtable-0.*: Test that the syntax diagrams are correct.
#
# e_createtable-1.*: Test statements related to table and database names,
# the TEMP and TEMPORARY keywords, and the IF NOT EXISTS clause.
#
# e_createtable-2.*: Test "CREATE TABLE AS" statements.
#
proc do_createtable_tests {nm args} {
uplevel do_select_tests [list e_createtable-$nm] $args
}
#-------------------------------------------------------------------------
# This command returns a serialized tcl array mapping from the name of
# each attached database to a list of tables in that database. For example,
# if the database schema is created with:
#
# CREATE TABLE t1(x);
# CREATE TEMP TABLE t2(x);
# CREATE TEMP TABLE t3(x);
#
# Then this command returns "main t1 temp {t2 t3}".
#
proc table_list {} {
set res [list]
db eval { pragma database_list } a {
set dbname $a(name)
set master $a(name).sqlite_master
if {$dbname == "temp"} { set master sqlite_temp_master }
lappend res $dbname [
db eval "SELECT DISTINCT tbl_name FROM $master ORDER BY tbl_name"
]
}
set res
}
do_createtable_tests 0.1.1 -repair {
drop_all_tables
} {
1 "CREATE TABLE t1(c1 one)" {}
2 "CREATE TABLE t1(c1 one two)" {}
3 "CREATE TABLE t1(c1 one two three)" {}
4 "CREATE TABLE t1(c1 one two three four)" {}
5 "CREATE TABLE t1(c1 one two three four(14))" {}
6 "CREATE TABLE t1(c1 one two three four(14, 22))" {}
7 "CREATE TABLE t1(c1 var(+14, -22.3))" {}
8 "CREATE TABLE t1(c1 var(1.0e10))" {}
}
do_createtable_tests 0.1.2 -error {
near "%s": syntax error
} {
1 "CREATE TABLE t1(c1 one(number))" {number}
}
# syntax diagram column-constraint
#
do_createtable_tests 0.2.1 -repair {
drop_all_tables
execsql { CREATE TABLE t2(x PRIMARY KEY) }
} {
1.1 "CREATE TABLE t1(c1 text PRIMARY KEY)" {}
1.2 "CREATE TABLE t1(c1 text PRIMARY KEY ASC)" {}
1.3 "CREATE TABLE t1(c1 text PRIMARY KEY DESC)" {}
1.4 "CREATE TABLE t1(c1 text CONSTRAINT cons PRIMARY KEY DESC)" {}
2.1 "CREATE TABLE t1(c1 text NOT NULL)" {}
2.2 "CREATE TABLE t1(c1 text CONSTRAINT nm NOT NULL)" {}
2.3 "CREATE TABLE t1(c1 text NULL)" {}
2.4 "CREATE TABLE t1(c1 text CONSTRAINT nm NULL)" {}
3.1 "CREATE TABLE t1(c1 text UNIQUE)" {}
3.2 "CREATE TABLE t1(c1 text CONSTRAINT un UNIQUE)" {}
4.1 "CREATE TABLE t1(c1 text CHECK(c1!=0))" {}
4.2 "CREATE TABLE t1(c1 text CONSTRAINT chk CHECK(c1!=0))" {}
5.1 "CREATE TABLE t1(c1 text DEFAULT 1)" {}
5.2 "CREATE TABLE t1(c1 text DEFAULT -1)" {}
5.3 "CREATE TABLE t1(c1 text DEFAULT +1)" {}
5.4 "CREATE TABLE t1(c1 text DEFAULT -45.8e22)" {}
5.5 "CREATE TABLE t1(c1 text DEFAULT (1+1))" {}
5.6 "CREATE TABLE t1(c1 text CONSTRAINT \"1 2\" DEFAULT (1+1))" {}
6.1 "CREATE TABLE t1(c1 text COLLATE nocase)" {}
6.2 "CREATE TABLE t1(c1 text CONSTRAINT 'a x' COLLATE nocase)" {}
7.1 "CREATE TABLE t1(c1 REFERENCES t2)" {}
7.2 "CREATE TABLE t1(c1 CONSTRAINT abc REFERENCES t2)" {}
8.1 {
CREATE TABLE t1(c1
PRIMARY KEY NOT NULL UNIQUE CHECK(c1 IS 'ten') DEFAULT 123 REFERENCES t1
);
} {}
8.2 {
CREATE TABLE t1(c1
REFERENCES t1 DEFAULT 123 CHECK(c1 IS 'ten') UNIQUE NOT NULL PRIMARY KEY
);
} {}
}
# -- syntax diagram table-constraint
#
do_createtable_tests 0.3.1 -repair {
drop_all_tables
execsql { CREATE TABLE t2(x PRIMARY KEY) }
} {
1.1 "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1))" {}
1.2 "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2))" {}
1.3 "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2) ON CONFLICT IGNORE)" {}
2.1 "CREATE TABLE t1(c1, c2, UNIQUE(c1))" {}
2.2 "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2))" {}
2.3 "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2) ON CONFLICT IGNORE)" {}
3.1 "CREATE TABLE t1(c1, c2, CHECK(c1 IS NOT c2))" {}
4.1 "CREATE TABLE t1(c1, c2, FOREIGN KEY(c1) REFERENCES t2)" {}
}
# -- syntax diagram column-def
#
do_createtable_tests 0.4.1 -repair {
drop_all_tables
} {
1 {CREATE TABLE t1(
col1,
col2 TEXT,
col3 INTEGER UNIQUE,
col4 VARCHAR(10, 10) PRIMARY KEY,
"name with spaces" REFERENCES t1
);
} {}
}
# -- syntax diagram create-table-stmt
#
do_createtable_tests 0.5.1 -repair {
drop_all_tables
execsql { CREATE TABLE t2(a, b, c) }
} {
1 "CREATE TABLE t1(a, b, c)" {}
2 "CREATE TEMP TABLE t1(a, b, c)" {}
3 "CREATE TEMPORARY TABLE t1(a, b, c)" {}
4 "CREATE TABLE IF NOT EXISTS t1(a, b, c)" {}
5 "CREATE TEMP TABLE IF NOT EXISTS t1(a, b, c)" {}
6 "CREATE TEMPORARY TABLE IF NOT EXISTS t1(a, b, c)" {}
7 "CREATE TABLE main.t1(a, b, c)" {}
8 "CREATE TEMP TABLE temp.t1(a, b, c)" {}
9 "CREATE TEMPORARY TABLE temp.t1(a, b, c)" {}
10 "CREATE TABLE IF NOT EXISTS main.t1(a, b, c)" {}
11 "CREATE TEMP TABLE IF NOT EXISTS temp.t1(a, b, c)" {}
12 "CREATE TEMPORARY TABLE IF NOT EXISTS temp.t1(a, b, c)" {}
13 "CREATE TABLE t1 AS SELECT * FROM t2" {}
14 "CREATE TEMP TABLE t1 AS SELECT c, b, a FROM t2" {}
15 "CREATE TABLE t1 AS SELECT count(*), max(b), min(a) FROM t2" {}
}
#
# 1: Explicit parent-key columns.
# 2: Implicit child-key columns.
#
# 1: MATCH FULL
# 2: MATCH PARTIAL
# 3: MATCH SIMPLE
# 4: MATCH STICK
# 5:
#
# 1: ON DELETE SET NULL
# 2: ON DELETE SET DEFAULT
# 3: ON DELETE CASCADE
# 4: ON DELETE RESTRICT
# 5: ON DELETE NO ACTION
# 6:
#
# 1: ON UPDATE SET NULL
# 2: ON UPDATE SET DEFAULT
# 3: ON UPDATE CASCADE
# 4: ON UPDATE RESTRICT
# 5: ON UPDATE NO ACTION
# 6:
#
# 1: NOT DEFERRABLE INITIALLY DEFERRED
# 2: NOT DEFERRABLE INITIALLY IMMEDIATE
# 3: NOT DEFERRABLE
# 4: DEFERRABLE INITIALLY DEFERRED
# 5: DEFERRABLE INITIALLY IMMEDIATE
# 6: DEFERRABLE
# 7:
#
do_createtable_tests 0.6.1 -repair {
drop_all_tables
execsql { CREATE TABLE t2(x PRIMARY KEY, y) }
execsql { CREATE TABLE t3(i, j, UNIQUE(i, j) ) }
} {
11146 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH FULL
ON DELETE SET NULL ON UPDATE RESTRICT DEFERRABLE
)} {}
11412 { CREATE TABLE t1(a
REFERENCES t2(x)
ON DELETE RESTRICT ON UPDATE SET NULL MATCH FULL
NOT DEFERRABLE INITIALLY IMMEDIATE
)} {}
12135 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH PARTIAL
ON DELETE SET NULL ON UPDATE CASCADE DEFERRABLE INITIALLY IMMEDIATE
)} {}
12427 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH PARTIAL
ON DELETE RESTRICT ON UPDATE SET DEFAULT
)} {}
12446 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH PARTIAL
ON DELETE RESTRICT ON UPDATE RESTRICT DEFERRABLE
)} {}
12522 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH PARTIAL
ON DELETE NO ACTION ON UPDATE SET DEFAULT NOT DEFERRABLE INITIALLY IMMEDIATE
)} {}
13133 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH SIMPLE
ON DELETE SET NULL ON UPDATE CASCADE NOT DEFERRABLE
)} {}
13216 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH SIMPLE
ON DELETE SET DEFAULT ON UPDATE SET NULL DEFERRABLE
)} {}
13263 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH SIMPLE
ON DELETE SET DEFAULT NOT DEFERRABLE
)} {}
13421 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH SIMPLE
ON DELETE RESTRICT ON UPDATE SET DEFAULT NOT DEFERRABLE INITIALLY DEFERRED
)} {}
13432 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH SIMPLE
ON DELETE RESTRICT ON UPDATE CASCADE NOT DEFERRABLE INITIALLY IMMEDIATE
)} {}
13523 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH SIMPLE
ON DELETE NO ACTION ON UPDATE SET DEFAULT NOT DEFERRABLE
)} {}
14336 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH STICK
ON DELETE CASCADE ON UPDATE CASCADE DEFERRABLE
)} {}
14611 { CREATE TABLE t1(a
REFERENCES t2(x) MATCH STICK
ON UPDATE SET NULL NOT DEFERRABLE INITIALLY DEFERRED
)} {}
15155 { CREATE TABLE t1(a
REFERENCES t2(x)
ON DELETE SET NULL ON UPDATE NO ACTION DEFERRABLE INITIALLY IMMEDIATE
)} {}
15453 { CREATE TABLE t1(a
REFERENCES t2(x) ON DELETE RESTRICT ON UPDATE NO ACTION NOT DEFERRABLE
)} {}
15661 { CREATE TABLE t1(a
REFERENCES t2(x) NOT DEFERRABLE INITIALLY DEFERRED
)} {}
21115 { CREATE TABLE t1(a
REFERENCES t2 MATCH FULL
ON DELETE SET NULL ON UPDATE SET NULL DEFERRABLE INITIALLY IMMEDIATE
)} {}
21123 { CREATE TABLE t1(a
REFERENCES t2 MATCH FULL
ON DELETE SET NULL ON UPDATE SET DEFAULT NOT DEFERRABLE
)} {}
21217 { CREATE TABLE t1(a
REFERENCES t2 MATCH FULL ON DELETE SET DEFAULT ON UPDATE SET NULL
)} {}
21362 { CREATE TABLE t1(a
REFERENCES t2 MATCH FULL
ON DELETE CASCADE NOT DEFERRABLE INITIALLY IMMEDIATE
)} {}
22143 { CREATE TABLE t1(a
REFERENCES t2 MATCH PARTIAL
ON DELETE SET NULL ON UPDATE RESTRICT NOT DEFERRABLE
)} {}
22156 { CREATE TABLE t1(a
REFERENCES t2 MATCH PARTIAL
ON DELETE SET NULL ON UPDATE NO ACTION DEFERRABLE
)} {}
22327 { CREATE TABLE t1(a
REFERENCES t2 MATCH PARTIAL ON DELETE CASCADE ON UPDATE SET DEFAULT
)} {}
22663 { CREATE TABLE t1(a
REFERENCES t2 MATCH PARTIAL NOT DEFERRABLE
)} {}
23236 { CREATE TABLE t1(a
REFERENCES t2 MATCH SIMPLE
ON DELETE SET DEFAULT ON UPDATE CASCADE DEFERRABLE
)} {}
24155 { CREATE TABLE t1(a
REFERENCES t2 MATCH STICK
ON DELETE SET NULL ON UPDATE NO ACTION DEFERRABLE INITIALLY IMMEDIATE
)} {}
24522 { CREATE TABLE t1(a
REFERENCES t2 MATCH STICK
ON DELETE NO ACTION ON UPDATE SET DEFAULT NOT DEFERRABLE INITIALLY IMMEDIATE
)} {}
24625 { CREATE TABLE t1(a
REFERENCES t2 MATCH STICK
ON UPDATE SET DEFAULT DEFERRABLE INITIALLY IMMEDIATE
)} {}
25454 { CREATE TABLE t1(a
REFERENCES t2
ON DELETE RESTRICT ON UPDATE NO ACTION DEFERRABLE INITIALLY DEFERRED
)} {}
}
#-------------------------------------------------------------------------
# Test cases e_createtable-1.* - test statements related to table and
# database names, the TEMP and TEMPORARY keywords, and the IF NOT EXISTS
# clause.
#
drop_all_tables
forcedelete test.db2 test.db3
do_execsql_test e_createtable-1.0 {
ATTACH 'test.db2' AS auxa;
ATTACH 'test.db3' AS auxb;
} {}
# EVIDENCE-OF: R-17899-04554 Table names that begin with "sqlite_" are
# reserved for internal use. It is an error to attempt to create a table
# with a name that starts with "sqlite_".
#
do_createtable_tests 1.1.1 -error {
object name reserved for internal use: %s
} {
1 "CREATE TABLE sqlite_abc(a, b, c)" sqlite_abc
2 "CREATE TABLE temp.sqlite_helloworld(x)" sqlite_helloworld
3 {CREATE TABLE auxa."sqlite__"(x, y)} sqlite__
4 {CREATE TABLE auxb."sqlite_"(z)} sqlite_
5 {CREATE TABLE "SQLITE_TBL"(z)} SQLITE_TBL
}
do_createtable_tests 1.1.2 {
1 "CREATE TABLE sqlit_abc(a, b, c)" {}
2 "CREATE TABLE temp.sqlitehelloworld(x)" {}
3 {CREATE TABLE auxa."sqlite"(x, y)} {}
4 {CREATE TABLE auxb."sqlite-"(z)} {}
5 {CREATE TABLE "SQLITE-TBL"(z)} {}
}
# EVIDENCE-OF: R-18448-33677 If a schema-name is specified, it must be
# either "main", "temp", or the name of an attached database.
#
# EVIDENCE-OF: R-39822-07822 In this case the new table is created in
# the named database.
#
# Test cases 1.2.* test the first of the two requirements above. The
# second is verified by cases 1.3.*.
#
do_createtable_tests 1.2.1 -error {
unknown database %s
} {
1 "CREATE TABLE george.t1(a, b)" george
2 "CREATE TABLE _.t1(a, b)" _
}
do_createtable_tests 1.2.2 {
1 "CREATE TABLE main.abc(a, b, c)" {}
2 "CREATE TABLE temp.helloworld(x)" {}
3 {CREATE TABLE auxa."t 1"(x, y)} {}
4 {CREATE TABLE auxb.xyz(z)} {}
}
drop_all_tables
if {[permutation]!="maindbname"} {
do_createtable_tests 1.3 -tclquery {
unset -nocomplain X
array set X [table_list]
list $X(main) $X(temp) $X(auxa) $X(auxb)
} {
1 "CREATE TABLE main.abc(a, b, c)" {abc {} {} {}}
2 "CREATE TABLE main.t1(a, b, c)" {{abc t1} {} {} {}}
3 "CREATE TABLE temp.tmp(a, b, c)" {{abc t1} tmp {} {}}
4 "CREATE TABLE auxb.tbl(x, y)" {{abc t1} tmp {} tbl}
5 "CREATE TABLE auxb.t1(k, v)" {{abc t1} tmp {} {t1 tbl}}
6 "CREATE TABLE auxa.next(c, d)" {{abc t1} tmp next {t1 tbl}}
}
}
# EVIDENCE-OF: R-18895-27365 If the "TEMP" or "TEMPORARY" keyword occurs
# between the "CREATE" and "TABLE" then the new table is created in the
# temp database.
#
drop_all_tables
if {[permutation]!="maindbname"} {
do_createtable_tests 1.4 -tclquery {
unset -nocomplain X
array set X [table_list]
list $X(main) $X(temp) $X(auxa) $X(auxb)
} {
1 "CREATE TEMP TABLE t1(a, b)" {{} t1 {} {}}
2 "CREATE TEMPORARY TABLE t2(a, b)" {{} {t1 t2} {} {}}
}
}
# EVIDENCE-OF: R-23976-43329 It is an error to specify both a
# schema-name and the TEMP or TEMPORARY keyword, unless the schema-name
# is "temp".
#
drop_all_tables
do_createtable_tests 1.5.1 -error {
temporary table name must be unqualified
} {
1 "CREATE TEMP TABLE main.t1(a, b)" {}
2 "CREATE TEMPORARY TABLE auxa.t2(a, b)" {}
3 "CREATE TEMP TABLE auxb.t3(a, b)" {}
4 "CREATE TEMPORARY TABLE main.xxx(x)" {}
}
drop_all_tables
if {[permutation]!="maindbname"} {
do_createtable_tests 1.5.2 -tclquery {
unset -nocomplain X
array set X [table_list]
list $X(main) $X(temp) $X(auxa) $X(auxb)
} {
1 "CREATE TEMP TABLE temp.t1(a, b)" {{} t1 {} {}}
2 "CREATE TEMPORARY TABLE temp.t2(a, b)" {{} {t1 t2} {} {}}
3 "CREATE TEMP TABLE TEMP.t3(a, b)" {{} {t1 t2 t3} {} {}}
4 "CREATE TEMPORARY TABLE TEMP.xxx(x)" {{} {t1 t2 t3 xxx} {} {}}
}
}
# EVIDENCE-OF: R-31997-24564 If no schema name is specified and the TEMP
# keyword is not present then the table is created in the main database.
#
drop_all_tables
if {[permutation]!="maindbname"} {
do_createtable_tests 1.6 -tclquery {
unset -nocomplain X
array set X [table_list]
list $X(main) $X(temp) $X(auxa) $X(auxb)
} {
1 "CREATE TABLE t1(a, b)" {t1 {} {} {}}
2 "CREATE TABLE t2(a, b)" {{t1 t2} {} {} {}}
3 "CREATE TABLE t3(a, b)" {{t1 t2 t3} {} {} {}}
4 "CREATE TABLE xxx(x)" {{t1 t2 t3 xxx} {} {} {}}
}
}
drop_all_tables
do_execsql_test e_createtable-1.7.0 {
CREATE TABLE t1(x, y);
CREATE INDEX i1 ON t1(x);
CREATE VIEW v1 AS SELECT * FROM t1;
CREATE TABLE auxa.tbl1(x, y);
CREATE INDEX auxa.idx1 ON tbl1(x);
CREATE VIEW auxa.view1 AS SELECT * FROM tbl1;
} {}
# EVIDENCE-OF: R-01232-54838 It is usually an error to attempt to create
# a new table in a database that already contains a table, index or view
# of the same name.
#
# Test cases 1.7.1.* verify that creating a table in a database with a
# table/index/view of the same name does fail. 1.7.2.* tests that creating
# a table with the same name as a table/index/view in a different database
# is Ok.
#
do_createtable_tests 1.7.1 -error { %s } {
1 "CREATE TABLE t1(a, b)" {{table t1 already exists}}
2 "CREATE TABLE i1(a, b)" {{there is already an index named i1}}
3 "CREATE TABLE v1(a, b)" {{view v1 already exists}}
4 "CREATE TABLE auxa.tbl1(a, b)" {{table tbl1 already exists}}
5 "CREATE TABLE auxa.idx1(a, b)" {{there is already an index named idx1}}
6 "CREATE TABLE auxa.view1(a, b)" {{view view1 already exists}}
}
do_createtable_tests 1.7.2 {
1 "CREATE TABLE auxa.t1(a, b)" {}
2 "CREATE TABLE auxa.i1(a, b)" {}
3 "CREATE TABLE auxa.v1(a, b)" {}
4 "CREATE TABLE tbl1(a, b)" {}
5 "CREATE TABLE idx1(a, b)" {}
6 "CREATE TABLE view1(a, b)" {}
}
# EVIDENCE-OF: R-33917-24086 However, if the "IF NOT EXISTS" clause is
# specified as part of the CREATE TABLE statement and a table or view of
# the same name already exists, the CREATE TABLE command simply has no
# effect (and no error message is returned).
#
drop_all_tables
do_execsql_test e_createtable-1.8.0 {
CREATE TABLE t1(x, y);
CREATE INDEX i1 ON t1(x);
CREATE VIEW v1 AS SELECT * FROM t1;
CREATE TABLE auxa.tbl1(x, y);
CREATE INDEX auxa.idx1 ON tbl1(x);
CREATE VIEW auxa.view1 AS SELECT * FROM tbl1;
} {}
do_createtable_tests 1.8 {
1 "CREATE TABLE IF NOT EXISTS t1(a, b)" {}
2 "CREATE TABLE IF NOT EXISTS auxa.tbl1(a, b)" {}
3 "CREATE TABLE IF NOT EXISTS v1(a, b)" {}
4 "CREATE TABLE IF NOT EXISTS auxa.view1(a, b)" {}
}
# EVIDENCE-OF: R-16465-40078 An error is still returned if the table
# cannot be created because of an existing index, even if the "IF NOT
# EXISTS" clause is specified.
#
do_createtable_tests 1.9 -error { %s } {
1 "CREATE TABLE IF NOT EXISTS i1(a, b)"
{{there is already an index named i1}}
2 "CREATE TABLE IF NOT EXISTS auxa.idx1(a, b)"
{{there is already an index named idx1}}
}
# EVIDENCE-OF: R-05513-33819 It is not an error to create a table that
# has the same name as an existing trigger.
#
drop_all_tables
do_execsql_test e_createtable-1.10.0 {
CREATE TABLE t1(x, y);
CREATE TABLE auxb.t2(x, y);
CREATE TRIGGER tr1 AFTER INSERT ON t1 BEGIN
SELECT 1;
END;
CREATE TRIGGER auxb.tr2 AFTER INSERT ON t2 BEGIN
SELECT 1;
END;
} {}
do_createtable_tests 1.10 {
1 "CREATE TABLE tr1(a, b)" {}
2 "CREATE TABLE tr2(a, b)" {}
3 "CREATE TABLE auxb.tr1(a, b)" {}
4 "CREATE TABLE auxb.tr2(a, b)" {}
}
# EVIDENCE-OF: R-22283-14179 Tables are removed using the DROP TABLE
# statement.
#
drop_all_tables
do_execsql_test e_createtable-1.11.0 {
CREATE TABLE t1(a, b);
CREATE TABLE t2(a, b);
CREATE TABLE auxa.t3(a, b);
CREATE TABLE auxa.t4(a, b);
} {}
do_execsql_test e_createtable-1.11.1.1 {
SELECT * FROM t1;
SELECT * FROM t2;
SELECT * FROM t3;
SELECT * FROM t4;
} {}
do_execsql_test e_createtable-1.11.1.2 { DROP TABLE t1 } {}
do_catchsql_test e_createtable-1.11.1.3 {
SELECT * FROM t1
} {1 {no such table: t1}}
do_execsql_test e_createtable-1.11.1.4 { DROP TABLE t3 } {}
do_catchsql_test e_createtable-1.11.1.5 {
SELECT * FROM t3
} {1 {no such table: t3}}
do_execsql_test e_createtable-1.11.2.1 {
SELECT name FROM sqlite_master;
SELECT name FROM auxa.sqlite_master;
} {t2 t4}
do_execsql_test e_createtable-1.11.2.2 { DROP TABLE t2 } {}
do_execsql_test e_createtable-1.11.2.3 { DROP TABLE t4 } {}
do_execsql_test e_createtable-1.11.2.4 {
SELECT name FROM sqlite_master;
SELECT name FROM auxa.sqlite_master;
} {}
#-------------------------------------------------------------------------
# Test cases e_createtable-2.* - test statements related to the CREATE
# TABLE AS ... SELECT statement.
#
# Three Tcl commands:
#
# select_column_names SQL
# The argument must be a SELECT statement. Return a list of the names
# of the columns of the result-set that would be returned by executing
# the SELECT.
#
# table_column_names TBL
# The argument must be a table name. Return a list of column names, from
# left to right, for the table.
#
# table_column_decltypes TBL
# The argument must be a table name. Return a list of column declared
# types, from left to right, for the table.
#
proc sci {select cmd} {
set res [list]
set STMT [sqlite3_prepare_v2 db $select -1 dummy]
for {set i 0} {$i < [sqlite3_column_count $STMT]} {incr i} {
lappend res [$cmd $STMT $i]
}
sqlite3_finalize $STMT
set res
}
proc tci {tbl cmd} { sci "SELECT * FROM $tbl" $cmd }
proc select_column_names {sql} { sci $sql sqlite3_column_name }
proc table_column_names {tbl} { tci $tbl sqlite3_column_name }
proc table_column_decltypes {tbl} { tci $tbl sqlite3_column_decltype }
# Create a database schema. This schema is used by tests 2.1.* through 2.3.*.
#
drop_all_tables
do_execsql_test e_createtable-2.0 {
CREATE TABLE t1(a, b, c);
CREATE TABLE t2(d, e, f);
CREATE TABLE t3(g BIGINT, h VARCHAR(10));
CREATE TABLE t4(i BLOB, j ANYOLDATA);
CREATE TABLE t5(k FLOAT, l INTEGER);
CREATE TABLE t6(m DEFAULT 10, n DEFAULT 5, PRIMARY KEY(m, n));
CREATE TABLE t7(x INTEGER PRIMARY KEY);
CREATE TABLE t8(o COLLATE nocase DEFAULT 'abc');
CREATE TABLE t9(p NOT NULL, q DOUBLE CHECK (q!=0), r STRING UNIQUE);
} {}
# EVIDENCE-OF: R-64828-59568 The table has the same number of columns as
# the rows returned by the SELECT statement. The name of each column is
# the same as the name of the corresponding column in the result set of
# the SELECT statement.
#
do_createtable_tests 2.1 -tclquery {
table_column_names x1
} -repair {
catchsql { DROP TABLE x1 }
} {
1 "CREATE TABLE x1 AS SELECT * FROM t1" {a b c}
2 "CREATE TABLE x1 AS SELECT c, b, a FROM t1" {c b a}
3 "CREATE TABLE x1 AS SELECT * FROM t1, t2" {a b c d e f}
4 "CREATE TABLE x1 AS SELECT count(*) FROM t1" {count(*)}
5 "CREATE TABLE x1 AS SELECT count(a) AS a, max(b) FROM t1" {a max(b)}
}
# EVIDENCE-OF: R-55407-45319 The declared type of each column is
# determined by the expression affinity of the corresponding expression
# in the result set of the SELECT statement, as follows: Expression
# Affinity Column Declared Type TEXT "TEXT" NUMERIC "NUM" INTEGER "INT"
# REAL "REAL" BLOB (a.k.a "NONE") "" (empty string)
#
do_createtable_tests 2.2 -tclquery {
table_column_decltypes x1
} -repair {
catchsql { DROP TABLE x1 }
} {
1 "CREATE TABLE x1 AS SELECT a FROM t1" {""}
2 "CREATE TABLE x1 AS SELECT * FROM t3" {INT TEXT}
3 "CREATE TABLE x1 AS SELECT * FROM t4" {"" NUM}
4 "CREATE TABLE x1 AS SELECT * FROM t5" {REAL INT}
}
# EVIDENCE-OF: R-16667-09772 A table created using CREATE TABLE AS has
# no PRIMARY KEY and no constraints of any kind. The default value of
# each column is NULL. The default collation sequence for each column of
# the new table is BINARY.
#
# The following tests create tables based on SELECT statements that read
# from tables that have primary keys, constraints and explicit default
# collation sequences. None of this is transfered to the definition of
# the new table as stored in the sqlite_master table.
#
# Tests 2.3.2.* show that the default value of each column is NULL.
#
do_createtable_tests 2.3.1 -query {
SELECT sql FROM sqlite_master ORDER BY rowid DESC LIMIT 1
} {
1 "CREATE TABLE x1 AS SELECT * FROM t6" {{CREATE TABLE x1(m,n)}}
2 "CREATE TABLE x2 AS SELECT * FROM t7" {{CREATE TABLE x2(x INT)}}
3 "CREATE TABLE x3 AS SELECT * FROM t8" {{CREATE TABLE x3(o)}}
4 "CREATE TABLE x4 AS SELECT * FROM t9" {{CREATE TABLE x4(p,q REAL,r NUM)}}
}
do_execsql_test e_createtable-2.3.2.1 {
INSERT INTO x1 DEFAULT VALUES;
INSERT INTO x2 DEFAULT VALUES;
INSERT INTO x3 DEFAULT VALUES;
INSERT INTO x4 DEFAULT VALUES;
} {}
db nullvalue null
do_execsql_test e_createtable-2.3.2.2 { SELECT * FROM x1 } {null null}
do_execsql_test e_createtable-2.3.2.3 { SELECT * FROM x2 } {null}
do_execsql_test e_createtable-2.3.2.4 { SELECT * FROM x3 } {null}
do_execsql_test e_createtable-2.3.2.5 { SELECT * FROM x4 } {null null null}
db nullvalue {}
drop_all_tables
do_execsql_test e_createtable-2.4.0 {
CREATE TABLE t1(x, y);
INSERT INTO t1 VALUES('i', 'one');
INSERT INTO t1 VALUES('ii', 'two');
INSERT INTO t1 VALUES('iii', 'three');
} {}
# EVIDENCE-OF: R-24153-28352 Tables created using CREATE TABLE AS are
# initially populated with the rows of data returned by the SELECT
# statement.
#
# EVIDENCE-OF: R-08224-30249 Rows are assigned contiguously ascending
# rowid values, starting with 1, in the order that they are returned by
# the SELECT statement.
#
# Each test case below is specified as the name of a table to create
# using "CREATE TABLE ... AS SELECT ..." and a SELECT statement to use in
# creating it. The table is created.
#
# Test cases 2.4.*.1 check that after it has been created, the data in the
# table is the same as the data returned by the SELECT statement executed as
# a standalone command, verifying the first testable statement above.
#
# Test cases 2.4.*.2 check that the rowids were allocated contiguously
# as required by the second testable statement above. That the rowids
# from the contiguous block were allocated to rows in the order rows are
# returned by the SELECT statement is verified by 2.4.*.1.
#
# EVIDENCE-OF: R-32365-09043 A "CREATE TABLE ... AS SELECT" statement
# creates and populates a database table based on the results of a
# SELECT statement.
#
# The above is also considered to be tested by the following. It is
# clear that tables are being created and populated by the command in
# question.
#
foreach {tn tbl select} {
1 x1 "SELECT * FROM t1"
2 x2 "SELECT * FROM t1 ORDER BY x DESC"
3 x3 "SELECT * FROM t1 ORDER BY x ASC"
} {
# Create the table using a "CREATE TABLE ... AS SELECT ..." command.
execsql [subst {CREATE TABLE $tbl AS $select}]
# Check that the rows inserted into the table, sorted in ascending rowid
# order, match those returned by executing the SELECT statement as a
# standalone command.
do_execsql_test e_createtable-2.4.$tn.1 [subst {
SELECT * FROM $tbl ORDER BY rowid;
}] [execsql $select]
# Check that the rowids in the new table are a contiguous block starting
# with rowid 1. Note that this will fail if SELECT statement $select
# returns 0 rows (as max(rowid) will be NULL).
do_execsql_test e_createtable-2.4.$tn.2 [subst {
SELECT min(rowid), count(rowid)==max(rowid) FROM $tbl
}] {1 1}
}
#--------------------------------------------------------------------------
# Test cases for column defintions in CREATE TABLE statements that do not
# use a SELECT statement. Not including data constraints. In other words,
# tests for the specification of:
#
# * declared types,
# * default values, and
# * default collation sequences.
#
# EVIDENCE-OF: R-27219-49057 Unlike most SQL databases, SQLite does not
# restrict the type of data that may be inserted into a column based on
# the columns declared type.
#
# Test this by creating a few tables with varied declared types, then
# inserting various different types of values into them.
#
drop_all_tables
do_execsql_test e_createtable-3.1.0 {
CREATE TABLE t1(x VARCHAR(10), y INTEGER, z DOUBLE);
CREATE TABLE t2(a DATETIME, b STRING, c REAL);
CREATE TABLE t3(o, t);
} {}
# value type -> declared column type
# ----------------------------------
# integer -> VARCHAR(10)
# string -> INTEGER
# blob -> DOUBLE
#
do_execsql_test e_createtable-3.1.1 {
INSERT INTO t1 VALUES(14, 'quite a lengthy string', X'555655');
SELECT * FROM t1;
} {14 {quite a lengthy string} UVU}
# string -> DATETIME
# integer -> STRING
# time -> REAL
#
do_execsql_test e_createtable-3.1.2 {
INSERT INTO t2 VALUES('not a datetime', 13, '12:41:59');
SELECT * FROM t2;
} {{not a datetime} 13 12:41:59}
# EVIDENCE-OF: R-10565-09557 The declared type of a column is used to
# determine the affinity of the column only.
#
# Affinities are tested in more detail elsewhere (see document
# datatype3.html). Here, just test that affinity transformations
# consistent with the expected affinity of each column (based on
# the declared type) appear to take place.
#
# Affinities of t1 (test cases 3.2.1.*): TEXT, INTEGER, REAL
# Affinities of t2 (test cases 3.2.2.*): NUMERIC, NUMERIC, REAL
# Affinities of t3 (test cases 3.2.3.*): NONE, NONE
#
do_execsql_test e_createtable-3.2.0 { DELETE FROM t1; DELETE FROM t2; } {}
do_createtable_tests 3.2.1 -query {
SELECT quote(x), quote(y), quote(z) FROM t1 ORDER BY rowid DESC LIMIT 1;
} {
1 "INSERT INTO t1 VALUES(15, '22.0', '14')" {'15' 22 14.0}
2 "INSERT INTO t1 VALUES(22.0, 22.0, 22.0)" {'22.0' 22 22.0}
}
do_createtable_tests 3.2.2 -query {
SELECT quote(a), quote(b), quote(c) FROM t2 ORDER BY rowid DESC LIMIT 1;
} {
1 "INSERT INTO t2 VALUES(15, '22.0', '14')" {15 22 14.0}
2 "INSERT INTO t2 VALUES(22.0, 22.0, 22.0)" {22 22 22.0}
}
do_createtable_tests 3.2.3 -query {
SELECT quote(o), quote(t) FROM t3 ORDER BY rowid DESC LIMIT 1;
} {
1 "INSERT INTO t3 VALUES('15', '22.0')" {'15' '22.0'}
2 "INSERT INTO t3 VALUES(15, 22.0)" {15 22.0}
}
# EVIDENCE-OF: R-42316-09582 If there is no explicit DEFAULT clause
# attached to a column definition, then the default value of the column
# is NULL.
#
# None of the columns in table t1 have an explicit DEFAULT clause.
# So testing that the default value of all columns in table t1 is
# NULL serves to verify the above.
#
do_createtable_tests 3.2.3 -query {
SELECT quote(x), quote(y), quote(z) FROM t1
} -repair {
execsql { DELETE FROM t1 }
} {
1 "INSERT INTO t1(x, y) VALUES('abc', 'xyz')" {'abc' 'xyz' NULL}
2 "INSERT INTO t1(x, z) VALUES('abc', 'xyz')" {'abc' NULL 'xyz'}
3 "INSERT INTO t1 DEFAULT VALUES" {NULL NULL NULL}
}
# EVIDENCE-OF: R-07343-35026 An explicit DEFAULT clause may specify that
# the default value is NULL, a string constant, a blob constant, a
# signed-number, or any constant expression enclosed in parentheses. A
# default value may also be one of the special case-independent keywords
# CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP.
#
do_execsql_test e_createtable-3.3.1 {
CREATE TABLE t4(
a DEFAULT NULL,
b DEFAULT 'string constant',
c DEFAULT X'424C4F42',
d DEFAULT 1,
e DEFAULT -1,
f DEFAULT 3.14,
g DEFAULT -3.14,
h DEFAULT ( substr('abcd', 0, 2) || 'cd' ),
i DEFAULT CURRENT_TIME,
j DEFAULT CURRENT_DATE,
k DEFAULT CURRENT_TIMESTAMP
);
} {}
# EVIDENCE-OF: R-33440-07331 For the purposes of the DEFAULT clause, an
# expression is considered constant if it contains no sub-queries,
# column or table references, bound parameters, or string literals
# enclosed in double-quotes instead of single-quotes.
#
do_createtable_tests 3.4.1 -error {
default value of column [x] is not constant
} {
1 {CREATE TABLE t5(x DEFAULT ( (SELECT 1) ))} {}
2 {CREATE TABLE t5(x DEFAULT ( "abc" ))} {}
3 {CREATE TABLE t5(x DEFAULT ( 1 IN (SELECT 1) ))} {}
4 {CREATE TABLE t5(x DEFAULT ( EXISTS (SELECT 1) ))} {}
5 {CREATE TABLE t5(x DEFAULT ( x!=?1 ))} {}
}
do_createtable_tests 3.4.2 -repair {
catchsql { DROP TABLE t5 }
} {
1 {CREATE TABLE t5(x DEFAULT ( 'abc' ))} {}
2 {CREATE TABLE t5(x DEFAULT ( 1 IN (1, 2, 3) ))} {}
}
# EVIDENCE-OF: R-18814-23501 Each time a row is inserted into the table
# by an INSERT statement that does not provide explicit values for all
# table columns the values stored in the new row are determined by their
# default values
#
# Verify this with some assert statements for which all, some and no
# columns lack explicit values.
#
set sqlite_current_time 1000000000
do_createtable_tests 3.5 -query {
SELECT quote(a), quote(b), quote(c), quote(d), quote(e), quote(f),
quote(g), quote(h), quote(i), quote(j), quote(k)
FROM t4 ORDER BY rowid DESC LIMIT 1;
} {
1 "INSERT INTO t4 DEFAULT VALUES" {
NULL {'string constant'} X'424C4F42' 1 -1 3.14 -3.14
'acd' '01:46:40' '2001-09-09' {'2001-09-09 01:46:40'}
}
2 "INSERT INTO t4(a, b, c) VALUES(1, 2, 3)" {
1 2 3 1 -1 3.14 -3.14 'acd' '01:46:40' '2001-09-09' {'2001-09-09 01:46:40'}
}
3 "INSERT INTO t4(k, j, i) VALUES(1, 2, 3)" {
NULL {'string constant'} X'424C4F42' 1 -1 3.14 -3.14 'acd' 3 2 1
}
4 "INSERT INTO t4(a,b,c,d,e,f,g,h,i,j,k) VALUES(1,2,3,4,5,6,7,8,9,10,11)" {
1 2 3 4 5 6 7 8 9 10 11
}
}
# EVIDENCE-OF: R-12572-62501 If the default value of the column is a
# constant NULL, text, blob or signed-number value, then that value is
# used directly in the new row.
#
do_execsql_test e_createtable-3.6.1 {
CREATE TABLE t5(
a DEFAULT NULL,
b DEFAULT 'text value',
c DEFAULT X'424C4F42',
d DEFAULT -45678.6,
e DEFAULT 394507
);
} {}
do_execsql_test e_createtable-3.6.2 {
INSERT INTO t5 DEFAULT VALUES;
SELECT quote(a), quote(b), quote(c), quote(d), quote(e) FROM t5;
} {NULL {'text value'} X'424C4F42' -45678.6 394507}
# EVIDENCE-OF: R-60616-50251 If the default value of a column is an
# expression in parentheses, then the expression is evaluated once for
# each row inserted and the results used in the new row.
#
# Test case 3.6.4 demonstrates that the expression is evaluated
# separately for each row if the INSERT is an "INSERT INTO ... SELECT ..."
# command.
#
set ::nextint 0
proc nextint {} { incr ::nextint }
db func nextint nextint
do_execsql_test e_createtable-3.7.1 {
CREATE TABLE t6(a DEFAULT ( nextint() ), b DEFAULT ( nextint() ));
} {}
do_execsql_test e_createtable-3.7.2 {
INSERT INTO t6 DEFAULT VALUES;
SELECT quote(a), quote(b) FROM t6;
} {1 2}
do_execsql_test e_createtable-3.7.3 {
INSERT INTO t6(a) VALUES('X');
SELECT quote(a), quote(b) FROM t6;
} {1 2 'X' 3}
do_execsql_test e_createtable-3.7.4 {
INSERT INTO t6(a) SELECT a FROM t6;
SELECT quote(a), quote(b) FROM t6;
} {1 2 'X' 3 1 4 'X' 5}
# EVIDENCE-OF: R-15363-55230 If the default value of a column is
# CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP, then the value used
# in the new row is a text representation of the current UTC date and/or
# time.
#
# This is difficult to test literally without knowing what time the
# user will run the tests. Instead, we test that the three cases
# above set the value to the current date and/or time according to
# the xCurrentTime() method of the VFS. Which is usually the same
# as UTC. In this case, however, we instrument it to always return
# a time equivalent to "2001-09-09 01:46:40 UTC".
#
set sqlite_current_time 1000000000
do_execsql_test e_createtable-3.8.1 {
CREATE TABLE t7(
a DEFAULT CURRENT_TIME,
b DEFAULT CURRENT_DATE,
c DEFAULT CURRENT_TIMESTAMP
);
} {}
do_execsql_test e_createtable-3.8.2 {
INSERT INTO t7 DEFAULT VALUES;
SELECT quote(a), quote(b), quote(c) FROM t7;
} {'01:46:40' '2001-09-09' {'2001-09-09 01:46:40'}}
# EVIDENCE-OF: R-62327-53843 For CURRENT_TIME, the format of the value
# is "HH:MM:SS".
#
# EVIDENCE-OF: R-03775-43471 For CURRENT_DATE, "YYYY-MM-DD".
#
# EVIDENCE-OF: R-07677-44926 The format for CURRENT_TIMESTAMP is
# "YYYY-MM-DD HH:MM:SS".
#
# The three above are demonstrated by tests 1, 2 and 3 below.
# Respectively.
#
do_createtable_tests 3.8.3 -query {
SELECT a, b, c FROM t7 ORDER BY rowid DESC LIMIT 1;
} {
1 "INSERT INTO t7(b, c) VALUES('x', 'y')" {01:46:40 x y}
2 "INSERT INTO t7(c, a) VALUES('x', 'y')" {y 2001-09-09 x}
3 "INSERT INTO t7(a, b) VALUES('x', 'y')" {x y {2001-09-09 01:46:40}}
}
# EVIDENCE-OF: R-55061-47754 The COLLATE clause specifies the name of a
# collating sequence to use as the default collation sequence for the
# column.
#
# EVIDENCE-OF: R-40275-54363 If no COLLATE clause is specified, the
# default collation sequence is BINARY.
#
do_execsql_test e_createtable-3-9.1 {
CREATE TABLE t8(a COLLATE nocase, b COLLATE rtrim, c COLLATE binary, d);
INSERT INTO t8 VALUES('abc', 'abc', 'abc', 'abc');
INSERT INTO t8 VALUES('abc ', 'abc ', 'abc ', 'abc ');
INSERT INTO t8 VALUES('ABC ', 'ABC ', 'ABC ', 'ABC ');
INSERT INTO t8 VALUES('ABC', 'ABC', 'ABC', 'ABC');
} {}
do_createtable_tests 3.9 {
2 "SELECT a FROM t8 ORDER BY a, rowid" {abc ABC {abc } {ABC }}
3 "SELECT b FROM t8 ORDER BY b, rowid" {{ABC } ABC abc {abc }}
4 "SELECT c FROM t8 ORDER BY c, rowid" {ABC {ABC } abc {abc }}
5 "SELECT d FROM t8 ORDER BY d, rowid" {ABC {ABC } abc {abc }}
}
# EVIDENCE-OF: R-25473-20557 The number of columns in a table is limited
# by the SQLITE_MAX_COLUMN compile-time parameter.
#
proc columns {n} {
set res [list]
for {set i 0} {$i < $n} {incr i} { lappend res "c$i" }
join $res ", "
}
do_execsql_test e_createtable-3.10.1 [subst {
CREATE TABLE t9([columns $::SQLITE_MAX_COLUMN]);
}] {}
do_catchsql_test e_createtable-3.10.2 [subst {
CREATE TABLE t10([columns [expr $::SQLITE_MAX_COLUMN+1]]);
}] {1 {too many columns on t10}}
# EVIDENCE-OF: R-27775-64721 Both of these limits can be lowered at
# runtime using the sqlite3_limit() C/C++ interface.
#
# A 30,000 byte blob consumes 30,003 bytes of record space. A record
# that contains 3 such blobs consumes (30,000*3)+1 bytes of space. Tests
# 3.11.4 and 3.11.5, which verify that SQLITE_MAX_LENGTH may be lowered
# at runtime, are based on this calculation.
#
sqlite3_limit db SQLITE_LIMIT_COLUMN 500
do_execsql_test e_createtable-3.11.1 [subst {
CREATE TABLE t10([columns 500]);
}] {}
do_catchsql_test e_createtable-3.11.2 [subst {
CREATE TABLE t11([columns 501]);
}] {1 {too many columns on t11}}
# Check that it is not possible to raise the column limit above its
# default compile time value.
#
sqlite3_limit db SQLITE_LIMIT_COLUMN [expr $::SQLITE_MAX_COLUMN+2]
do_catchsql_test e_createtable-3.11.3 [subst {
CREATE TABLE t11([columns [expr $::SQLITE_MAX_COLUMN+1]]);
}] {1 {too many columns on t11}}
sqlite3_limit db SQLITE_LIMIT_LENGTH 90010
do_execsql_test e_createtable-3.11.4 {
CREATE TABLE t12(a, b, c);
INSERT INTO t12 VALUES(randomblob(30000),randomblob(30000),randomblob(30000));
} {}
do_catchsql_test e_createtable-3.11.5 {
INSERT INTO t12 VALUES(randomblob(30001),randomblob(30000),randomblob(30000));
} {1 {string or blob too big}}
#-------------------------------------------------------------------------
# Tests for statements regarding constraints (PRIMARY KEY, UNIQUE, NOT
# NULL and CHECK constraints).
#
# EVIDENCE-OF: R-52382-54248 Each table in SQLite may have at most one
# PRIMARY KEY.
#
# EVIDENCE-OF: R-31826-01813 An error is raised if more than one PRIMARY
# KEY clause appears in a CREATE TABLE statement.
#
# To test the two above, show that zero primary keys is Ok, one primary
# key is Ok, and two or more primary keys is an error.
#
drop_all_tables
do_createtable_tests 4.1.1 {
1 "CREATE TABLE t1(a, b, c)" {}
2 "CREATE TABLE t2(a PRIMARY KEY, b, c)" {}
3 "CREATE TABLE t3(a, b, c, PRIMARY KEY(a))" {}
4 "CREATE TABLE t4(a, b, c, PRIMARY KEY(c,b,a))" {}
}
do_createtable_tests 4.1.2 -error {
table "t5" has more than one primary key
} {
1 "CREATE TABLE t5(a PRIMARY KEY, b PRIMARY KEY, c)" {}
2 "CREATE TABLE t5(a, b PRIMARY KEY, c, PRIMARY KEY(a))" {}
3 "CREATE TABLE t5(a INTEGER PRIMARY KEY, b PRIMARY KEY, c)" {}
4 "CREATE TABLE t5(a INTEGER PRIMARY KEY, b, c, PRIMARY KEY(b, c))" {}
5 "CREATE TABLE t5(a PRIMARY KEY, b, c, PRIMARY KEY(a))" {}
6 "CREATE TABLE t5(a INTEGER PRIMARY KEY, b, c, PRIMARY KEY(a))" {}
}
# EVIDENCE-OF: R-54755-39291 The PRIMARY KEY is optional for ordinary
# tables but is required for WITHOUT ROWID tables.
#
do_catchsql_test 4.1.3 {
CREATE TABLE t6(a, b); --ok
} {0 {}}
do_catchsql_test 4.1.4 {
CREATE TABLE t7(a, b) WITHOUT ROWID; --Error, no PRIMARY KEY
} {1 {PRIMARY KEY missing on table t7}}
proc table_pk {tbl} {
set pk [list]
db eval "pragma table_info($tbl)" a {
if {$a(pk)} { lappend pk $a(name) }
}
set pk
}
# EVIDENCE-OF: R-41411-18837 If the keywords PRIMARY KEY are added to a
# column definition, then the primary key for the table consists of that
# single column.
#
# The above is tested by 4.2.1.*
#
# EVIDENCE-OF: R-31775-48204 Or, if a PRIMARY KEY clause is specified as
# a table-constraint, then the primary key of the table consists of the
# list of columns specified as part of the PRIMARY KEY clause.
#
# The above is tested by 4.2.2.*
#
do_createtable_tests 4.2 -repair {
catchsql { DROP TABLE t5 }
} -tclquery {
table_pk t5
} {
1.1 "CREATE TABLE t5(a, b INTEGER PRIMARY KEY, c)" {b}
1.2 "CREATE TABLE t5(a PRIMARY KEY, b, c)" {a}
2.1 "CREATE TABLE t5(a, b, c, PRIMARY KEY(a))" {a}
2.2 "CREATE TABLE t5(a, b, c, PRIMARY KEY(c,b,a))" {a b c}
2.3 "CREATE TABLE t5(a, b INTEGER PRIMARY KEY, c)" {b}
}
# EVIDENCE-OF: R-59124-61339 Each row in a table with a primary key must
# have a unique combination of values in its primary key columns.
#
# EVIDENCE-OF: R-06471-16287 If an INSERT or UPDATE statement attempts
# to modify the table content so that two or more rows have identical
# primary key values, that is a constraint violation.
#
drop_all_tables
do_execsql_test 4.3.0 {
CREATE TABLE t1(x PRIMARY KEY, y);
INSERT INTO t1 VALUES(0, 'zero');
INSERT INTO t1 VALUES(45.5, 'one');
INSERT INTO t1 VALUES('brambles', 'two');
INSERT INTO t1 VALUES(X'ABCDEF', 'three');
CREATE TABLE t2(x, y, PRIMARY KEY(x, y));
INSERT INTO t2 VALUES(0, 'zero');
INSERT INTO t2 VALUES(45.5, 'one');
INSERT INTO t2 VALUES('brambles', 'two');
INSERT INTO t2 VALUES(X'ABCDEF', 'three');
} {}
do_createtable_tests 4.3.1 -error {UNIQUE constraint failed: t1.x} {
1 "INSERT INTO t1 VALUES(0, 0)" {"column x is"}
2 "INSERT INTO t1 VALUES(45.5, 'abc')" {"column x is"}
3 "INSERT INTO t1 VALUES(0.0, 'abc')" {"column x is"}
4 "INSERT INTO t1 VALUES('brambles', 'abc')" {"column x is"}
5 "INSERT INTO t1 VALUES(X'ABCDEF', 'abc')" {"column x is"}
}
do_createtable_tests 4.3.1 -error {UNIQUE constraint failed: t2.x, t2.y} {
6 "INSERT INTO t2 VALUES(0, 'zero')" {"columns x, y are"}
7 "INSERT INTO t2 VALUES(45.5, 'one')" {"columns x, y are"}
8 "INSERT INTO t2 VALUES(0.0, 'zero')" {"columns x, y are"}
9 "INSERT INTO t2 VALUES('brambles', 'two')" {"columns x, y are"}
10 "INSERT INTO t2 VALUES(X'ABCDEF', 'three')" {"columns x, y are"}
}
do_createtable_tests 4.3.2 {
1 "INSERT INTO t1 VALUES(-1, 0)" {}
2 "INSERT INTO t1 VALUES(45.2, 'abc')" {}
3 "INSERT INTO t1 VALUES(0.01, 'abc')" {}
4 "INSERT INTO t1 VALUES('bramble', 'abc')" {}
5 "INSERT INTO t1 VALUES(X'ABCDEE', 'abc')" {}
6 "INSERT INTO t2 VALUES(0, 0)" {}
7 "INSERT INTO t2 VALUES(45.5, 'abc')" {}
8 "INSERT INTO t2 VALUES(0.0, 'abc')" {}
9 "INSERT INTO t2 VALUES('brambles', 'abc')" {}
10 "INSERT INTO t2 VALUES(X'ABCDEF', 'abc')" {}
}
do_createtable_tests 4.3.3 -error {UNIQUE constraint failed: t1.x} {
1 "UPDATE t1 SET x=0 WHERE y='two'" {"column x is"}
2 "UPDATE t1 SET x='brambles' WHERE y='three'" {"column x is"}
3 "UPDATE t1 SET x=45.5 WHERE y='zero'" {"column x is"}
4 "UPDATE t1 SET x=X'ABCDEF' WHERE y='one'" {"column x is"}
5 "UPDATE t1 SET x=0.0 WHERE y='three'" {"column x is"}
}
do_createtable_tests 4.3.3 -error {UNIQUE constraint failed: t2.x, t2.y} {
6 "UPDATE t2 SET x=0, y='zero' WHERE y='two'" {"columns x, y are"}
7 "UPDATE t2 SET x='brambles', y='two' WHERE y='three'"
{"columns x, y are"}
8 "UPDATE t2 SET x=45.5, y='one' WHERE y='zero'" {"columns x, y are"}
9 "UPDATE t2 SET x=X'ABCDEF', y='three' WHERE y='one'"
{"columns x, y are"}
10 "UPDATE t2 SET x=0.0, y='zero' WHERE y='three'"
{"columns x, y are"}
}
# EVIDENCE-OF: R-52572-02078 For the purposes of determining the
# uniqueness of primary key values, NULL values are considered distinct
# from all other values, including other NULLs.
#
do_createtable_tests 4.4 {
1 "INSERT INTO t1 VALUES(NULL, 0)" {}
2 "INSERT INTO t1 VALUES(NULL, 0)" {}
3 "INSERT INTO t1 VALUES(NULL, 0)" {}
4 "INSERT INTO t2 VALUES(NULL, 'zero')" {}
5 "INSERT INTO t2 VALUES(NULL, 'one')" {}
6 "INSERT INTO t2 VALUES(NULL, 'two')" {}
7 "INSERT INTO t2 VALUES(NULL, 'three')" {}
8 "INSERT INTO t2 VALUES(0, NULL)" {}
9 "INSERT INTO t2 VALUES(45.5, NULL)" {}
10 "INSERT INTO t2 VALUES(0.0, NULL)" {}
11 "INSERT INTO t2 VALUES('brambles', NULL)" {}
12 "INSERT INTO t2 VALUES(X'ABCDEF', NULL)" {}
13 "INSERT INTO t2 VALUES(NULL, NULL)" {}
14 "INSERT INTO t2 VALUES(NULL, NULL)" {}
}
# EVIDENCE-OF: R-40010-16873 Unless the column is an INTEGER PRIMARY KEY
# or the table is a WITHOUT ROWID table or a STRICT table or the column
# is declared NOT NULL, SQLite allows NULL values in a PRIMARY KEY
# column.
#
# If the column is an integer primary key, attempting to insert a NULL
# into the column triggers the auto-increment behavior. Attempting
# to use UPDATE to set an ipk column to a NULL value is an error.
#
do_createtable_tests 4.5.1 {
1 "SELECT count(*) FROM t1 WHERE x IS NULL" 3
2 "SELECT count(*) FROM t2 WHERE x IS NULL" 6
3 "SELECT count(*) FROM t2 WHERE y IS NULL" 7
4 "SELECT count(*) FROM t2 WHERE x IS NULL AND y IS NULL" 2
}
do_execsql_test 4.5.2 {
CREATE TABLE t3(s, u INTEGER PRIMARY KEY, v);
INSERT INTO t3 VALUES(1, NULL, 2);
INSERT INTO t3 VALUES('x', NULL, 'y');
SELECT u FROM t3;
} {1 2}
do_catchsql_test 4.5.3 {
INSERT INTO t3 VALUES(2, 5, 3);
UPDATE t3 SET u = NULL WHERE s = 2;
} {1 {datatype mismatch}}
do_catchsql_test 4.5.4 {
CREATE TABLE t4(s, u INT PRIMARY KEY, v) WITHOUT ROWID;
INSERT INTO t4 VALUES(1, NULL, 2);
} {1 {NOT NULL constraint failed: t4.u}}
do_catchsql_test 4.5.5 {
CREATE TABLE t5(s, u INT PRIMARY KEY NOT NULL, v);
INSERT INTO t5 VALUES(1, NULL, 2);
} {1 {NOT NULL constraint failed: t5.u}}
do_catchsql_test 4.5.6 {
CREATE TABLE t6(s INT, u INT PRIMARY KEY, v INT) STRICT;
INSERT INTO t6 VALUES(1, NULL, 2);
} {1 {NOT NULL constraint failed: t6.u}}
do_catchsql_test 4.5.7 {
CREATE TABLE t7(s INT, u INT PRIMARY KEY NOT NULL, v INT) STRICT;
INSERT INTO t7 VALUES(1, NULL, 2);
} {1 {NOT NULL constraint failed: t7.u}}
# EVIDENCE-OF: R-00227-21080 A UNIQUE constraint is similar to a PRIMARY
# KEY constraint, except that a single table may have any number of
# UNIQUE constraints.
#
drop_all_tables
do_createtable_tests 4.6 {
1 "CREATE TABLE t1(a UNIQUE, b UNIQUE)" {}
2 "CREATE TABLE t2(a UNIQUE, b, c, UNIQUE(c, b))" {}
3 "CREATE TABLE t3(a, b, c, UNIQUE(a), UNIQUE(b), UNIQUE(c))" {}
4 "CREATE TABLE t4(a, b, c, UNIQUE(a, b, c))" {}
}
# EVIDENCE-OF: R-30981-64168 For each UNIQUE constraint on the table,
# each row must contain a unique combination of values in the columns
# identified by the UNIQUE constraint.
#
# EVIDENCE-OF: R-59124-61339 Each row in a table with a primary key must
# have a unique combination of values in its primary key columns.
#
do_execsql_test 4.7.0 {
INSERT INTO t1 VALUES(1, 2);
INSERT INTO t1 VALUES(4.3, 5.5);
INSERT INTO t1 VALUES('reveal', 'variableness');
INSERT INTO t1 VALUES(X'123456', X'654321');
INSERT INTO t4 VALUES('xyx', 1, 1);
INSERT INTO t4 VALUES('xyx', 2, 1);
INSERT INTO t4 VALUES('uvw', 1, 1);
}
do_createtable_tests 4.7.1 -error {UNIQUE constraint failed: %s} {
1 "INSERT INTO t1 VALUES(1, 'one')" {{t1.a}}
2 "INSERT INTO t1 VALUES(4.3, 'two')" {{t1.a}}
3 "INSERT INTO t1 VALUES('reveal', 'three')" {{t1.a}}
4 "INSERT INTO t1 VALUES(X'123456', 'four')" {{t1.a}}
5 "UPDATE t1 SET a = 1 WHERE rowid=2" {{t1.a}}
6 "UPDATE t1 SET a = 4.3 WHERE rowid=3" {{t1.a}}
7 "UPDATE t1 SET a = 'reveal' WHERE rowid=4" {{t1.a}}
8 "UPDATE t1 SET a = X'123456' WHERE rowid=1" {{t1.a}}
9 "INSERT INTO t4 VALUES('xyx', 1, 1)" {{t4.a, t4.b, t4.c}}
10 "INSERT INTO t4 VALUES('xyx', 2, 1)" {{t4.a, t4.b, t4.c}}
11 "INSERT INTO t4 VALUES('uvw', 1, 1)" {{t4.a, t4.b, t4.c}}
12 "UPDATE t4 SET a='xyx' WHERE rowid=3" {{t4.a, t4.b, t4.c}}
13 "UPDATE t4 SET b=1 WHERE rowid=2" {{t4.a, t4.b, t4.c}}
14 "UPDATE t4 SET a=0, b=0, c=0" {{t4.a, t4.b, t4.c}}
}
# EVIDENCE-OF: R-00404-17670 For the purposes of UNIQUE constraints,
# NULL values are considered distinct from all other values, including
# other NULLs.
#
do_createtable_tests 4.8 {
1 "INSERT INTO t1 VALUES(NULL, NULL)" {}
2 "INSERT INTO t1 VALUES(NULL, NULL)" {}
3 "UPDATE t1 SET a = NULL" {}
4 "UPDATE t1 SET b = NULL" {}
5 "INSERT INTO t4 VALUES(NULL, NULL, NULL)" {}
6 "INSERT INTO t4 VALUES(NULL, NULL, NULL)" {}
7 "UPDATE t4 SET a = NULL" {}
8 "UPDATE t4 SET b = NULL" {}
9 "UPDATE t4 SET c = NULL" {}
}
# EVIDENCE-OF: R-55820-29984 In most cases, UNIQUE and PRIMARY KEY
# constraints are implemented by creating a unique index in the
# database.
do_createtable_tests 4.9 -repair drop_all_tables -query {
SELECT count(*) FROM sqlite_master WHERE type='index'
} {
1 "CREATE TABLE t1(a TEXT PRIMARY KEY, b)" 1
2 "CREATE TABLE t1(a INTEGER PRIMARY KEY, b)" 0
3 "CREATE TABLE t1(a TEXT UNIQUE, b)" 1
4 "CREATE TABLE t1(a PRIMARY KEY, b TEXT UNIQUE)" 2
5 "CREATE TABLE t1(a PRIMARY KEY, b, c, UNIQUE(c, b))" 2
}
# Obsolete: R-02252-33116 Such an index is used like any other index
# in the database to optimize queries.
#
do_execsql_test 4.10.0 {
CREATE TABLE t1(a, b PRIMARY KEY);
CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
1 "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5"
{/*SEARCH t1 USING INDEX sqlite_autoindex_t1_1 (b=?)*/}
2 "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
{/*SCAN t2 USING INDEX sqlite_autoindex_t2_1*/}
3 "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
{/*SEARCH t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?)*/}
}
# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
# column definition or specified as a table constraint. In practice it
# makes no difference.
#
# All the tests that deal with CHECK constraints below (4.11.* and
# 4.12.*) are run once for a table with the check constraint attached
# to a column definition, and once with a table where the check
# condition is specified as a table constraint.
#
# EVIDENCE-OF: R-55435-14303 Each time a new row is inserted into the
# table or an existing row is updated, the expression associated with
# each CHECK constraint is evaluated and cast to a NUMERIC value in the
# same way as a CAST expression. If the result is zero (integer value 0
# or real value 0.0), then a constraint violation has occurred.
#
drop_all_tables
do_execsql_test 4.11 {
CREATE TABLE x1(a TEXT, b INTEGER CHECK( b>0 ));
CREATE TABLE t1(a TEXT, b INTEGER, CHECK( b>0 ));
INSERT INTO x1 VALUES('x', 'xx');
INSERT INTO x1 VALUES('y', 'yy');
INSERT INTO t1 SELECT * FROM x1;
CREATE TABLE x2(a CHECK( a||b ), b);
CREATE TABLE t2(a, b, CHECK( a||b ));
INSERT INTO x2 VALUES(1, 'xx');
INSERT INTO x2 VALUES(1, 'yy');
INSERT INTO t2 SELECT * FROM x2;
}
do_createtable_tests 4.11 -error {CHECK constraint failed: %s} {
1a "INSERT INTO x1 VALUES('one', 0)" {b>0}
1b "INSERT INTO t1 VALUES('one', -4.0)" {b>0}
2a "INSERT INTO x2 VALUES('abc', 1)" {a||b}
2b "INSERT INTO t2 VALUES('abc', 1)" {a||b}
3a "INSERT INTO x2 VALUES(0, 'abc')" {a||b}
3b "INSERT INTO t2 VALUES(0, 'abc')" {a||b}
4a "UPDATE t1 SET b=-1 WHERE rowid=1" {b>0}
4b "UPDATE x1 SET b=-1 WHERE rowid=1" {b>0}
4a "UPDATE x2 SET a='' WHERE rowid=1" {a||b}
4b "UPDATE t2 SET a='' WHERE rowid=1" {a||b}
}
# EVIDENCE-OF: R-34109-39108 If the CHECK expression evaluates to NULL,
# or any other non-zero value, it is not a constraint violation.
#
do_createtable_tests 4.12 {
1a "INSERT INTO x1 VALUES('one', NULL)" {}
1b "INSERT INTO t1 VALUES('one', NULL)" {}
2a "INSERT INTO x1 VALUES('one', 2)" {}
2b "INSERT INTO t1 VALUES('one', 2)" {}
3a "INSERT INTO x2 VALUES(1, 'abc')" {}
3b "INSERT INTO t2 VALUES(1, 'abc')" {}
}
# EVIDENCE-OF: R-02060-64547 A NOT NULL constraint may only be attached
# to a column definition, not specified as a table constraint.
#
drop_all_tables
do_createtable_tests 4.13.1 {
1 "CREATE TABLE t1(a NOT NULL, b)" {}
2 "CREATE TABLE t2(a PRIMARY KEY NOT NULL, b)" {}
3 "CREATE TABLE t3(a NOT NULL, b NOT NULL, c NOT NULL UNIQUE)" {}
}
do_createtable_tests 4.13.2 -error {
near "NOT": syntax error
} {
1 "CREATE TABLE t4(a, b, NOT NULL(a))" {}
2 "CREATE TABLE t4(a PRIMARY KEY, b, NOT NULL(a))" {}
3 "CREATE TABLE t4(a, b, c UNIQUE, NOT NULL(a, b, c))" {}
}
# EVIDENCE-OF: R-31795-57643 a NOT NULL constraint dictates that the
# associated column may not contain a NULL value. Attempting to set the
# column value to NULL when inserting a new row or updating an existing
# one causes a constraint violation.
#
# These tests use the tables created by 4.13.
#
do_execsql_test 4.14.0 {
INSERT INTO t1 VALUES('x', 'y');
INSERT INTO t1 VALUES('z', NULL);
INSERT INTO t2 VALUES('x', 'y');
INSERT INTO t2 VALUES('z', NULL);
INSERT INTO t3 VALUES('x', 'y', 'z');
INSERT INTO t3 VALUES(1, 2, 3);
}
do_createtable_tests 4.14 -error {NOT NULL constraint failed: %s} {
1 "INSERT INTO t1 VALUES(NULL, 'a')" {t1.a}
2 "INSERT INTO t2 VALUES(NULL, 'b')" {t2.a}
3 "INSERT INTO t3 VALUES('c', 'd', NULL)" {t3.c}
4 "INSERT INTO t3 VALUES('e', NULL, 'f')" {t3.b}
5 "INSERT INTO t3 VALUES(NULL, 'g', 'h')" {t3.a}
}
# EVIDENCE-OF: R-34093-09213 PRIMARY KEY, UNIQUE and NOT NULL
# constraints may be explicitly assigned another default conflict
# resolution algorithm by including a conflict-clause in their
# definitions.
#
# Conflict clauses: ABORT, ROLLBACK, IGNORE, FAIL, REPLACE
#
# Test cases 4.15.*, 4.16.* and 4.17.* focus on PRIMARY KEY, NOT NULL
# and UNIQUE constraints, respectively.
#
drop_all_tables
do_execsql_test 4.15.0 {
CREATE TABLE t1_ab(a PRIMARY KEY ON CONFLICT ABORT, b);
CREATE TABLE t1_ro(a PRIMARY KEY ON CONFLICT ROLLBACK, b);
CREATE TABLE t1_ig(a PRIMARY KEY ON CONFLICT IGNORE, b);
CREATE TABLE t1_fa(a PRIMARY KEY ON CONFLICT FAIL, b);
CREATE TABLE t1_re(a PRIMARY KEY ON CONFLICT REPLACE, b);
CREATE TABLE t1_xx(a PRIMARY KEY, b);
INSERT INTO t1_ab VALUES(1, 'one');
INSERT INTO t1_ab VALUES(2, 'two');
INSERT INTO t1_ro SELECT * FROM t1_ab;
INSERT INTO t1_ig SELECT * FROM t1_ab;
INSERT INTO t1_fa SELECT * FROM t1_ab;
INSERT INTO t1_re SELECT * FROM t1_ab;
INSERT INTO t1_xx SELECT * FROM t1_ab;
CREATE TABLE t2_ab(a, b NOT NULL ON CONFLICT ABORT);
CREATE TABLE t2_ro(a, b NOT NULL ON CONFLICT ROLLBACK);
CREATE TABLE t2_ig(a, b NOT NULL ON CONFLICT IGNORE);
CREATE TABLE t2_fa(a, b NOT NULL ON CONFLICT FAIL);
CREATE TABLE t2_re(a, b NOT NULL ON CONFLICT REPLACE);
CREATE TABLE t2_xx(a, b NOT NULL);
INSERT INTO t2_ab VALUES(1, 'one');
INSERT INTO t2_ab VALUES(2, 'two');
INSERT INTO t2_ro SELECT * FROM t2_ab;
INSERT INTO t2_ig SELECT * FROM t2_ab;
INSERT INTO t2_fa SELECT * FROM t2_ab;
INSERT INTO t2_re SELECT * FROM t2_ab;
INSERT INTO t2_xx SELECT * FROM t2_ab;
CREATE TABLE t3_ab(a, b, UNIQUE(a, b) ON CONFLICT ABORT);
CREATE TABLE t3_ro(a, b, UNIQUE(a, b) ON CONFLICT ROLLBACK);
CREATE TABLE t3_ig(a, b, UNIQUE(a, b) ON CONFLICT IGNORE);
CREATE TABLE t3_fa(a, b, UNIQUE(a, b) ON CONFLICT FAIL);
CREATE TABLE t3_re(a, b, UNIQUE(a, b) ON CONFLICT REPLACE);
CREATE TABLE t3_xx(a, b, UNIQUE(a, b));
INSERT INTO t3_ab VALUES(1, 'one');
INSERT INTO t3_ab VALUES(2, 'two');
INSERT INTO t3_ro SELECT * FROM t3_ab;
INSERT INTO t3_ig SELECT * FROM t3_ab;
INSERT INTO t3_fa SELECT * FROM t3_ab;
INSERT INTO t3_re SELECT * FROM t3_ab;
INSERT INTO t3_xx SELECT * FROM t3_ab;
}
foreach {tn tbl res ac data} {
1 t1_ab {1 {UNIQUE constraint failed: t1_ab.a}} 0 {1 one 2 two 3 three}
2 t1_ro {1 {UNIQUE constraint failed: t1_ro.a}} 1 {1 one 2 two}
3 t1_fa {1 {UNIQUE constraint failed: t1_fa.a}} 0 {1 one 2 two 3 three 4 string}
4 t1_ig {0 {}} 0 {1 one 2 two 3 three 4 string 6 string}
5 t1_re {0 {}} 0 {1 one 2 two 4 string 3 string 6 string}
6 t1_xx {1 {UNIQUE constraint failed: t1_xx.a}} 0 {1 one 2 two 3 three}
} {
catchsql COMMIT
do_execsql_test 4.15.$tn.1 "BEGIN; INSERT INTO $tbl VALUES(3, 'three')"
do_catchsql_test 4.15.$tn.2 "
INSERT INTO $tbl SELECT ((a%2)*a+3), 'string' FROM $tbl;
" $res
do_test e_createtable-4.15.$tn.3 { sqlite3_get_autocommit db } $ac
do_execsql_test 4.15.$tn.4 "SELECT * FROM $tbl" $data
}
foreach {tn tbl res ac data} {
1 t2_ab {1 {NOT NULL constraint failed: t2_ab.b}} 0 {1 one 2 two 3 three}
2 t2_ro {1 {NOT NULL constraint failed: t2_ro.b}} 1 {1 one 2 two}
3 t2_fa {1 {NOT NULL constraint failed: t2_fa.b}} 0 {1 one 2 two 3 three 4 xx}
4 t2_ig {0 {}} 0 {1 one 2 two 3 three 4 xx 6 xx}
5 t2_re {1 {NOT NULL constraint failed: t2_re.b}} 0 {1 one 2 two 3 three}
6 t2_xx {1 {NOT NULL constraint failed: t2_xx.b}} 0 {1 one 2 two 3 three}
} {
catchsql COMMIT
do_execsql_test 4.16.$tn.1 "BEGIN; INSERT INTO $tbl VALUES(3, 'three')"
do_catchsql_test 4.16.$tn.2 "
INSERT INTO $tbl SELECT a+3, CASE a WHEN 2 THEN NULL ELSE 'xx' END FROM $tbl
" $res
do_test e_createtable-4.16.$tn.3 { sqlite3_get_autocommit db } $ac
do_execsql_test 4.16.$tn.4 "SELECT * FROM $tbl" $data
}
foreach {tn tbl res ac data} {
1 t3_ab {1 {UNIQUE constraint failed: t3_ab.a, t3_ab.b}}
0 {1 one 2 two 3 three}
2 t3_ro {1 {UNIQUE constraint failed: t3_ro.a, t3_ro.b}}
1 {1 one 2 two}
3 t3_fa {1 {UNIQUE constraint failed: t3_fa.a, t3_fa.b}}
0 {1 one 2 two 3 three 4 three}
4 t3_ig {0 {}} 0 {1 one 2 two 3 three 4 three 6 three}
5 t3_re {0 {}} 0 {1 one 2 two 4 three 3 three 6 three}
6 t3_xx {1 {UNIQUE constraint failed: t3_xx.a, t3_xx.b}}
0 {1 one 2 two 3 three}
} {
catchsql COMMIT
do_execsql_test 4.17.$tn.1 "BEGIN; INSERT INTO $tbl VALUES(3, 'three')"
do_catchsql_test 4.17.$tn.2 "
INSERT INTO $tbl SELECT ((a%2)*a+3), 'three' FROM $tbl
" $res
do_test e_createtable-4.17.$tn.3 { sqlite3_get_autocommit db } $ac
do_execsql_test 4.17.$tn.4 "SELECT * FROM $tbl ORDER BY rowid" $data
}
catchsql COMMIT
# EVIDENCE-OF: R-17539-59899 Or, if a constraint definition does not
# include a conflict-clause, the default conflict resolution algorithm
# is ABORT.
#
# The first half of the above is tested along with explicit ON
# CONFLICT clauses above (specifically, the tests involving t1_xx, t2_xx
# and t3_xx). The following just tests that the default conflict
# handling for CHECK constraints is ABORT.
#
do_execsql_test 4.18.1 {
CREATE TABLE t4(a, b CHECK (b!=10));
INSERT INTO t4 VALUES(1, 2);
INSERT INTO t4 VALUES(3, 4);
}
do_execsql_test 4.18.2 { BEGIN; INSERT INTO t4 VALUES(5, 6) }
do_catchsql_test 4.18.3 {
INSERT INTO t4 SELECT a+4, b+4 FROM t4
} {1 {CHECK constraint failed: b!=10}}
do_test e_createtable-4.18.4 { sqlite3_get_autocommit db } 0
do_execsql_test 4.18.5 { SELECT * FROM t4 } {1 2 3 4 5 6}
# EVIDENCE-OF: R-19114-56113 Different constraints within the same table
# may have different default conflict resolution algorithms.
#
do_execsql_test 4.19.0 {
CREATE TABLE t5(a NOT NULL ON CONFLICT IGNORE, b NOT NULL ON CONFLICT ABORT);
}
do_catchsql_test 4.19.1 { INSERT INTO t5 VALUES(NULL, 'not null') } {0 {}}
do_execsql_test 4.19.2 { SELECT * FROM t5 } {}
do_catchsql_test 4.19.3 { INSERT INTO t5 VALUES('not null', NULL) } \
{1 {NOT NULL constraint failed: t5.b}}
do_execsql_test 4.19.4 { SELECT * FROM t5 } {}
#------------------------------------------------------------------------
# Tests for INTEGER PRIMARY KEY and rowid related statements.
#
# EVIDENCE-OF: R-52584-04009 The rowid value can be accessed using one
# of the special case-independent names "rowid", "oid", or "_rowid_" in
# place of a column name.
#
# EVIDENCE-OF: R-06726-07466 A column name can be any of the names
# defined in the CREATE TABLE statement or one of the following special
# identifiers: "ROWID", "OID", or "_ROWID_".
#
drop_all_tables
do_execsql_test 5.1.0 {
CREATE TABLE t1(x, y);
INSERT INTO t1 VALUES('one', 'first');
INSERT INTO t1 VALUES('two', 'second');
INSERT INTO t1 VALUES('three', 'third');
}
do_createtable_tests 5.1 {
1 "SELECT rowid FROM t1" {1 2 3}
2 "SELECT oid FROM t1" {1 2 3}
3 "SELECT _rowid_ FROM t1" {1 2 3}
4 "SELECT ROWID FROM t1" {1 2 3}
5 "SELECT OID FROM t1" {1 2 3}
6 "SELECT _ROWID_ FROM t1" {1 2 3}
7 "SELECT RoWiD FROM t1" {1 2 3}
8 "SELECT OiD FROM t1" {1 2 3}
9 "SELECT _RoWiD_ FROM t1" {1 2 3}
}
# EVIDENCE-OF: R-26501-17306 If a table contains a user defined column
# named "rowid", "oid" or "_rowid_", then that name always refers the
# explicitly declared column and cannot be used to retrieve the integer
# rowid value.
#
# EVIDENCE-OF: R-44615-33286 The special identifiers only refer to the
# row key if the CREATE TABLE statement does not define a real column
# with the same name.
#
do_execsql_test 5.2.0 {
CREATE TABLE t2(oid, b);
CREATE TABLE t3(a, _rowid_);
CREATE TABLE t4(a, b, rowid);
INSERT INTO t2 VALUES('one', 'two');
INSERT INTO t2 VALUES('three', 'four');
INSERT INTO t3 VALUES('five', 'six');
INSERT INTO t3 VALUES('seven', 'eight');
INSERT INTO t4 VALUES('nine', 'ten', 'eleven');
INSERT INTO t4 VALUES('twelve', 'thirteen', 'fourteen');
}
do_createtable_tests 5.2 {
1 "SELECT oid, rowid, _rowid_ FROM t2" {one 1 1 three 2 2}
2 "SELECT oid, rowid, _rowid_ FROM t3" {1 1 six 2 2 eight}
3 "SELECT oid, rowid, _rowid_ FROM t4" {1 eleven 1 2 fourteen 2}
}
# Argument $tbl is the name of a table in the database. Argument $col is
# the name of one of the tables columns. Return 1 if $col is an alias for
# the rowid, or 0 otherwise.
#
proc is_integer_primary_key {tbl col} {
lindex [db eval [subst {
DELETE FROM $tbl;
INSERT INTO $tbl ($col) VALUES(0);
SELECT (rowid==$col) FROM $tbl;
DELETE FROM $tbl;
}]] 0
}
# EVIDENCE-OF: R-47901-33947 With one exception noted below, if a rowid
# table has a primary key that consists of a single column and the
# declared type of that column is "INTEGER" in any mixture of upper and
# lower case, then the column becomes an alias for the rowid.
#
# EVIDENCE-OF: R-45951-08347 if the declaration of a column with
# declared type "INTEGER" includes an "PRIMARY KEY DESC" clause, it does
# not become an alias for the rowid and is not classified as an integer
# primary key.
#
do_createtable_tests 5.3 -tclquery {
is_integer_primary_key t5 pk
} -repair {
catchsql { DROP TABLE t5 }
} {
1 "CREATE TABLE t5(pk integer primary key)" 1
2 "CREATE TABLE t5(pk integer, primary key(pk))" 1
3 "CREATE TABLE t5(pk integer, v integer, primary key(pk))" 1
4 "CREATE TABLE t5(pk integer, v integer, primary key(pk, v))" 0
5 "CREATE TABLE t5(pk int, v integer, primary key(pk, v))" 0
6 "CREATE TABLE t5(pk int, v integer, primary key(pk))" 0
7 "CREATE TABLE t5(pk int primary key, v integer)" 0
8 "CREATE TABLE t5(pk inTEger primary key)" 1
9 "CREATE TABLE t5(pk inteGEr, primary key(pk))" 1
10 "CREATE TABLE t5(pk INTEGER, v integer, primary key(pk))" 1
}
# EVIDENCE-OF: R-41444-49665 Other integer type names like "INT" or
# "BIGINT" or "SHORT INTEGER" or "UNSIGNED INTEGER" causes the primary
# key column to behave as an ordinary table column with integer affinity
# and a unique index, not as an alias for the rowid.
#
do_execsql_test 5.4.1 {
CREATE TABLE t6(pk INT primary key);
CREATE TABLE t7(pk BIGINT primary key);
CREATE TABLE t8(pk SHORT INTEGER primary key);
CREATE TABLE t9(pk UNSIGNED INTEGER primary key);
}
do_test e_createtable-5.4.2.1 { is_integer_primary_key t6 pk } 0
do_test e_createtable-5.4.2.2 { is_integer_primary_key t7 pk } 0
do_test e_createtable-5.4.2.3 { is_integer_primary_key t8 pk } 0
do_test e_createtable-5.4.2.4 { is_integer_primary_key t9 pk } 0
do_execsql_test 5.4.3 {
INSERT INTO t6 VALUES('2.0');
INSERT INTO t7 VALUES('2.0');
INSERT INTO t8 VALUES('2.0');
INSERT INTO t9 VALUES('2.0');
SELECT typeof(pk), pk FROM t6;
SELECT typeof(pk), pk FROM t7;
SELECT typeof(pk), pk FROM t8;
SELECT typeof(pk), pk FROM t9;
} {integer 2 integer 2 integer 2 integer 2}
do_catchsql_test 5.4.4.1 {
INSERT INTO t6 VALUES(2)
} {1 {UNIQUE constraint failed: t6.pk}}
do_catchsql_test 5.4.4.2 {
INSERT INTO t7 VALUES(2)
} {1 {UNIQUE constraint failed: t7.pk}}
do_catchsql_test 5.4.4.3 {
INSERT INTO t8 VALUES(2)
} {1 {UNIQUE constraint failed: t8.pk}}
do_catchsql_test 5.4.4.4 {
INSERT INTO t9 VALUES(2)
} {1 {UNIQUE constraint failed: t9.pk}}
# EVIDENCE-OF: R-56094-57830 the following three table declarations all
# cause the column "x" to be an alias for the rowid (an integer primary
# key): CREATE TABLE t(x INTEGER PRIMARY KEY ASC, y, z); CREATE TABLE
# t(x INTEGER, y, z, PRIMARY KEY(x ASC)); CREATE TABLE t(x INTEGER, y,
# z, PRIMARY KEY(x DESC));
#
# EVIDENCE-OF: R-20149-25884 the following declaration does not result
# in "x" being an alias for the rowid: CREATE TABLE t(x INTEGER PRIMARY
# KEY DESC, y, z);
#
do_createtable_tests 5 -tclquery {
is_integer_primary_key t x
} -repair {
catchsql { DROP TABLE t }
} {
5.1 "CREATE TABLE t(x INTEGER PRIMARY KEY ASC, y, z)" 1
5.2 "CREATE TABLE t(x INTEGER, y, z, PRIMARY KEY(x ASC))" 1
5.3 "CREATE TABLE t(x INTEGER, y, z, PRIMARY KEY(x DESC))" 1
6.1 "CREATE TABLE t(x INTEGER PRIMARY KEY DESC, y, z)" 0
}
# EVIDENCE-OF: R-03733-29734 Rowid values may be modified using an
# UPDATE statement in the same way as any other column value can, either
# using one of the built-in aliases ("rowid", "oid" or "_rowid_") or by
# using an alias created by an integer primary key.
#
do_execsql_test 5.7.0 {
CREATE TABLE t10(a, b);
INSERT INTO t10 VALUES('ten', 10);
CREATE TABLE t11(a, b INTEGER PRIMARY KEY);
INSERT INTO t11 VALUES('ten', 10);
}
do_createtable_tests 5.7.1 -query {
SELECT rowid, _rowid_, oid FROM t10;
} {
1 "UPDATE t10 SET rowid = 5" {5 5 5}
2 "UPDATE t10 SET _rowid_ = 6" {6 6 6}
3 "UPDATE t10 SET oid = 7" {7 7 7}
}
do_createtable_tests 5.7.2 -query {
SELECT rowid, _rowid_, oid, b FROM t11;
} {
1 "UPDATE t11 SET rowid = 5" {5 5 5 5}
2 "UPDATE t11 SET _rowid_ = 6" {6 6 6 6}
3 "UPDATE t11 SET oid = 7" {7 7 7 7}
4 "UPDATE t11 SET b = 8" {8 8 8 8}
}
# EVIDENCE-OF: R-58706-14229 Similarly, an INSERT statement may provide
# a value to use as the rowid for each row inserted.
#
do_createtable_tests 5.8.1 -query {
SELECT rowid, _rowid_, oid FROM t10;
} -repair {
execsql { DELETE FROM t10 }
} {
1 "INSERT INTO t10(oid) VALUES(15)" {15 15 15}
2 "INSERT INTO t10(rowid) VALUES(16)" {16 16 16}
3 "INSERT INTO t10(_rowid_) VALUES(17)" {17 17 17}
4 "INSERT INTO t10(a, b, oid) VALUES(1,2,3)" {3 3 3}
}
do_createtable_tests 5.8.2 -query {
SELECT rowid, _rowid_, oid, b FROM t11;
} -repair {
execsql { DELETE FROM t11 }
} {
1 "INSERT INTO t11(oid) VALUES(15)" {15 15 15 15}
2 "INSERT INTO t11(rowid) VALUES(16)" {16 16 16 16}
3 "INSERT INTO t11(_rowid_) VALUES(17)" {17 17 17 17}
4 "INSERT INTO t11(a, b) VALUES(1,2)" {2 2 2 2}
}
# EVIDENCE-OF: R-32326-44592 Unlike normal SQLite columns, an integer
# primary key or rowid column must contain integer values. Integer
# primary key or rowid columns are not able to hold floating point
# values, strings, BLOBs, or NULLs.
#
# This is considered by the tests for the following 3 statements,
# which show that:
#
# 1. Attempts to UPDATE a rowid column to a non-integer value fail,
# 2. Attempts to INSERT a real, string or blob value into a rowid
# column fail, and
# 3. Attempting to INSERT a NULL value into a rowid column causes the
# system to automatically select an integer value to use.
#
# EVIDENCE-OF: R-64224-62578 If an UPDATE statement attempts to set an
# integer primary key or rowid column to a NULL or blob value, or to a
# string or real value that cannot be losslessly converted to an
# integer, a "datatype mismatch" error occurs and the statement is
# aborted.
#
drop_all_tables
do_execsql_test 5.9.0 {
CREATE TABLE t12(x INTEGER PRIMARY KEY, y);
INSERT INTO t12 VALUES(5, 'five');
}
do_createtable_tests 5.9.1 -query { SELECT typeof(x), x FROM t12 } {
1 "UPDATE t12 SET x = 4" {integer 4}
2 "UPDATE t12 SET x = 10.0" {integer 10}
3 "UPDATE t12 SET x = '12.0'" {integer 12}
4 "UPDATE t12 SET x = '-15.0'" {integer -15}
}
do_createtable_tests 5.9.2 -error {
datatype mismatch
} {
1 "UPDATE t12 SET x = 4.1" {}
2 "UPDATE t12 SET x = 'hello'" {}
3 "UPDATE t12 SET x = NULL" {}
4 "UPDATE t12 SET x = X'ABCD'" {}
5 "UPDATE t12 SET x = X'3900'" {}
6 "UPDATE t12 SET x = X'39'" {}
}
# EVIDENCE-OF: R-05734-13629 If an INSERT statement attempts to insert a
# blob value, or a string or real value that cannot be losslessly
# converted to an integer into an integer primary key or rowid column, a
# "datatype mismatch" error occurs and the statement is aborted.
#
do_execsql_test 5.10.0 { DELETE FROM t12 }
do_createtable_tests 5.10.1 -error {
datatype mismatch
} {
1 "INSERT INTO t12(x) VALUES(4.1)" {}
2 "INSERT INTO t12(x) VALUES('hello')" {}
3 "INSERT INTO t12(x) VALUES(X'ABCD')" {}
4 "INSERT INTO t12(x) VALUES(X'3900')" {}
5 "INSERT INTO t12(x) VALUES(X'39')" {}
}
do_createtable_tests 5.10.2 -query {
SELECT typeof(x), x FROM t12
} -repair {
execsql { DELETE FROM t12 }
} {
1 "INSERT INTO t12(x) VALUES(4)" {integer 4}
2 "INSERT INTO t12(x) VALUES(10.0)" {integer 10}
3 "INSERT INTO t12(x) VALUES('12.0')" {integer 12}
4 "INSERT INTO t12(x) VALUES('4e3')" {integer 4000}
5 "INSERT INTO t12(x) VALUES('-14.0')" {integer -14}
}
# EVIDENCE-OF: R-07986-46024 If an INSERT statement attempts to insert a
# NULL value into a rowid or integer primary key column, the system
# chooses an integer value to use as the rowid automatically.
#
do_execsql_test 5.11.0 { DELETE FROM t12 }
do_createtable_tests 5.11 -query {
SELECT typeof(x), x FROM t12 WHERE y IS (SELECT max(y) FROM t12)
} {
1 "INSERT INTO t12 DEFAULT VALUES" {integer 1}
2 "INSERT INTO t12(y) VALUES(5)" {integer 2}
3 "INSERT INTO t12(x,y) VALUES(NULL, 10)" {integer 3}
4 "INSERT INTO t12(x,y) SELECT NULL, 15 FROM t12"
{integer 4 integer 5 integer 6}
5 "INSERT INTO t12(y) SELECT 20 FROM t12 LIMIT 3"
{integer 7 integer 8 integer 9}
}
finish_test
|