1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
|
/*
** 2015-04-06
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a utility program that computes the differences in content
** between two SQLite databases.
**
** To compile, simply link against SQLite. (Windows builds must also link
** against ext/consio/console_io.c.)
**
** See the showHelp() routine below for a brief description of how to
** run the utility.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>
#include "sqlite3.h"
/* Output function substitutions that cause UTF8 characters to be rendered
** correctly on Windows:
**
** fprintf() -> Wfprintf()
**
*/
#if defined(_WIN32)
# include "console_io.h"
# define Wfprintf fPrintfUtf8
#else
# define Wfprintf fprintf
#endif
/*
** All global variables are gathered into the "g" singleton.
*/
struct GlobalVars {
const char *zArgv0; /* Name of program */
int bSchemaOnly; /* Only show schema differences */
int bSchemaPK; /* Use the schema-defined PK, not the true PK */
int bHandleVtab; /* Handle fts3, fts4, fts5 and rtree vtabs */
unsigned fDebug; /* Debug flags */
int bSchemaCompare; /* Doing single-table sqlite_schema compare */
sqlite3 *db; /* The database connection */
} g;
/*
** Allowed values for g.fDebug
*/
#define DEBUG_COLUMN_NAMES 0x000001
#define DEBUG_DIFF_SQL 0x000002
/*
** Clear and free an sqlite3_str object
*/
static void strFree(sqlite3_str *pStr){
sqlite3_free(sqlite3_str_finish(pStr));
}
/*
** Print an error resulting from faulting command-line arguments and
** abort the program.
*/
static void cmdlineError(const char *zFormat, ...){
sqlite3_str *pOut = sqlite3_str_new(0);
va_list ap;
va_start(ap, zFormat);
sqlite3_str_vappendf(pOut, zFormat, ap);
va_end(ap);
Wfprintf(stderr, "%s: %s\n", g.zArgv0, sqlite3_str_value(pOut));
strFree(pOut);
Wfprintf(stderr, "\"%s --help\" for more help\n", g.zArgv0);
exit(1);
}
/*
** Print an error message for an error that occurs at runtime, then
** abort the program.
*/
static void runtimeError(const char *zFormat, ...){
sqlite3_str *pOut = sqlite3_str_new(0);
va_list ap;
va_start(ap, zFormat);
sqlite3_str_vappendf(pOut, zFormat, ap);
va_end(ap);
Wfprintf(stderr, "%s: %s\n", g.zArgv0, sqlite3_str_value(pOut));
strFree(pOut);
exit(1);
}
/* Safely quote an SQL identifier. Use the minimum amount of transformation
** necessary to allow the string to be used with %s.
**
** Space to hold the returned string is obtained from sqlite3_malloc(). The
** caller is responsible for ensuring this space is freed when no longer
** needed.
*/
static char *safeId(const char *zId){
int i, x;
char c;
if( zId[0]==0 ) return sqlite3_mprintf("\"\"");
for(i=x=0; (c = zId[i])!=0; i++){
if( !isalpha(c) && c!='_' ){
if( i>0 && isdigit(c) ){
x++;
}else{
return sqlite3_mprintf("\"%w\"", zId);
}
}
}
if( x || !sqlite3_keyword_check(zId,i) ){
return sqlite3_mprintf("%s", zId);
}
return sqlite3_mprintf("\"%w\"", zId);
}
/*
** Prepare a new SQL statement. Print an error and abort if anything
** goes wrong.
*/
static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){
char *zSql;
int rc;
sqlite3_stmt *pStmt;
zSql = sqlite3_vmprintf(zFormat, ap);
if( zSql==0 ) runtimeError("out of memory");
rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0);
if( rc ){
runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db),
zSql);
}
sqlite3_free(zSql);
return pStmt;
}
static sqlite3_stmt *db_prepare(const char *zFormat, ...){
va_list ap;
sqlite3_stmt *pStmt;
va_start(ap, zFormat);
pStmt = db_vprepare(zFormat, ap);
va_end(ap);
return pStmt;
}
/*
** Free a list of strings
*/
static void namelistFree(char **az){
if( az ){
int i;
for(i=0; az[i]; i++) sqlite3_free(az[i]);
sqlite3_free(az);
}
}
/*
** Return a list of column names [a] for the table zDb.zTab. Space to
** hold the list is obtained from sqlite3_malloc() and should released
** using namelistFree() when no longer needed.
**
** Primary key columns are listed first, followed by data columns.
** The number of columns in the primary key is returned in *pnPkey.
**
** Normally [a], the "primary key" in the previous sentence is the true
** primary key - the rowid or INTEGER PRIMARY KEY for ordinary tables
** or the declared PRIMARY KEY for WITHOUT ROWID tables. However, if
** the g.bSchemaPK flag is set, then the schema-defined PRIMARY KEY is
** used in all cases. In that case, entries that have NULL values in
** any of their primary key fields will be excluded from the analysis.
**
** If the primary key for a table is the rowid but rowid is inaccessible,
** then this routine returns a NULL pointer.
**
** [a. If the lone, named table is "sqlite_schema", "rootpage" column is
** omitted and the "type" and "name" columns are made to be the PK.]
**
** Examples:
** CREATE TABLE t1(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(c));
** *pnPKey = 1;
** az = { "rowid", "a", "b", "c", 0 } // Normal case
** az = { "c", "a", "b", 0 } // g.bSchemaPK==1
**
** CREATE TABLE t2(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(b));
** *pnPKey = 1;
** az = { "b", "a", "c", 0 }
**
** CREATE TABLE t3(x,y,z,PRIMARY KEY(y,z));
** *pnPKey = 1 // Normal case
** az = { "rowid", "x", "y", "z", 0 } // Normal case
** *pnPKey = 2 // g.bSchemaPK==1
** az = { "y", "x", "z", 0 } // g.bSchemaPK==1
**
** CREATE TABLE t4(x,y,z,PRIMARY KEY(y,z)) WITHOUT ROWID;
** *pnPKey = 2
** az = { "y", "z", "x", 0 }
**
** CREATE TABLE t5(rowid,_rowid_,oid);
** az = 0 // The rowid is not accessible
*/
static char **columnNames(
const char *zDb, /* Database ("main" or "aux") to query */
const char *zTab, /* Name of table to return details of */
int *pnPKey, /* OUT: Number of PK columns */
int *pbRowid /* OUT: True if PK is an implicit rowid */
){
char **az = 0; /* List of column names to be returned */
int naz = 0; /* Number of entries in az[] */
sqlite3_stmt *pStmt; /* SQL statement being run */
char *zPkIdxName = 0; /* Name of the PRIMARY KEY index */
int truePk = 0; /* PRAGMA table_info indentifies the PK to use */
int nPK = 0; /* Number of PRIMARY KEY columns */
int i, j; /* Loop counters */
if( g.bSchemaPK==0 ){
/* Normal case: Figure out what the true primary key is for the table.
** * For WITHOUT ROWID tables, the true primary key is the same as
** the schema PRIMARY KEY, which is guaranteed to be present.
** * For rowid tables with an INTEGER PRIMARY KEY, the true primary
** key is the INTEGER PRIMARY KEY.
** * For all other rowid tables, the rowid is the true primary key.
*/
pStmt = db_prepare("PRAGMA %s.index_list=%Q", zDb, zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
if( sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,3),"pk")==0 ){
zPkIdxName = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
break;
}
}
sqlite3_finalize(pStmt);
if( zPkIdxName ){
int nKey = 0;
int nCol = 0;
truePk = 0;
pStmt = db_prepare("PRAGMA %s.index_xinfo=%Q", zDb, zPkIdxName);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
nCol++;
if( sqlite3_column_int(pStmt,5) ){ nKey++; continue; }
if( sqlite3_column_int(pStmt,1)>=0 ) truePk = 1;
}
if( nCol==nKey ) truePk = 1;
if( truePk ){
nPK = nKey;
}else{
nPK = 1;
}
sqlite3_finalize(pStmt);
sqlite3_free(zPkIdxName);
}else{
truePk = 1;
nPK = 1;
}
pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
}else{
/* The g.bSchemaPK==1 case: Use whatever primary key is declared
** in the schema. The "rowid" will still be used as the primary key
** if the table definition does not contain a PRIMARY KEY.
*/
nPK = 0;
pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
if( sqlite3_column_int(pStmt,5)>0 ) nPK++;
}
sqlite3_reset(pStmt);
if( nPK==0 ) nPK = 1;
truePk = 1;
}
if( g.bSchemaCompare ){
assert( sqlite3_stricmp(zTab,"sqlite_schema")==0
|| sqlite3_stricmp(zTab,"sqlite_master")==0 );
/* For sqlite_schema, will use type and name as the PK. */
nPK = 2;
truePk = 0;
}
*pnPKey = nPK;
naz = nPK;
az = sqlite3_malloc( sizeof(char*)*(nPK+1) );
if( az==0 ) runtimeError("out of memory");
memset(az, 0, sizeof(char*)*(nPK+1));
if( g.bSchemaCompare ){
az[0] = sqlite3_mprintf("%s", "type");
az[1] = sqlite3_mprintf("%s", "name");
}
while( SQLITE_ROW==sqlite3_step(pStmt) ){
char * sid = safeId((char*)sqlite3_column_text(pStmt,1));
int iPKey;
if( truePk && (iPKey = sqlite3_column_int(pStmt,5))>0 ){
az[iPKey-1] = sid;
}else{
if( !g.bSchemaCompare
|| !(strcmp(sid,"rootpage")==0
||strcmp(sid,"name")==0
||strcmp(sid,"type")==0)){
az = sqlite3_realloc(az, sizeof(char*)*(naz+2) );
if( az==0 ) runtimeError("out of memory");
az[naz++] = sid;
}
}
}
sqlite3_finalize(pStmt);
if( az ) az[naz] = 0;
/* If it is non-NULL, set *pbRowid to indicate whether or not the PK of
** this table is an implicit rowid (*pbRowid==1) or not (*pbRowid==0). */
if( pbRowid ) *pbRowid = (az[0]==0);
/* If this table has an implicit rowid for a PK, figure out how to refer
** to it. There are usually three options - "rowid", "_rowid_" and "oid".
** Any of these will work, unless the table has an explicit column of the
** same name or the sqlite_schema tables are to be compared. In the latter
** case, pretend that the "true" primary key is the name column, which
** avoids extraneous diffs against the schemas due to rowid variance. */
if( az[0]==0 ){
const char *azRowid[] = { "rowid", "_rowid_", "oid" };
for(i=0; i<sizeof(azRowid)/sizeof(azRowid[0]); i++){
for(j=1; j<naz; j++){
if( sqlite3_stricmp(az[j], azRowid[i])==0 ) break;
}
if( j>=naz ){
az[0] = sqlite3_mprintf("%s", azRowid[i]);
break;
}
}
if( az[0]==0 ){
for(i=1; i<naz; i++) sqlite3_free(az[i]);
sqlite3_free(az);
az = 0;
}
}
return az;
}
/*
** Print the sqlite3_value X as an SQL literal.
*/
static void printQuoted(FILE *out, sqlite3_value *X){
switch( sqlite3_value_type(X) ){
case SQLITE_FLOAT: {
double r1;
char zBuf[50];
r1 = sqlite3_value_double(X);
sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
fprintf(out, "%s", zBuf);
break;
}
case SQLITE_INTEGER: {
fprintf(out, "%lld", sqlite3_value_int64(X));
break;
}
case SQLITE_BLOB: {
const unsigned char *zBlob = sqlite3_value_blob(X);
int nBlob = sqlite3_value_bytes(X);
if( zBlob ){
int i;
fprintf(out, "x'");
for(i=0; i<nBlob; i++){
fprintf(out, "%02x", zBlob[i]);
}
fprintf(out, "'");
}else{
/* Could be an OOM, could be a zero-byte blob */
fprintf(out, "X''");
}
break;
}
case SQLITE_TEXT: {
const unsigned char *zArg = sqlite3_value_text(X);
if( zArg==0 ){
fprintf(out, "NULL");
}else{
int inctl = 0;
int i, j;
fprintf(out, "'");
for(i=j=0; zArg[i]; i++){
char c = zArg[i];
int ctl = iscntrl(c);
if( ctl>inctl ){
inctl = ctl;
fprintf(out, "%.*s'||X'%02x", i-j, &zArg[j], c);
j = i+1;
}else if( ctl ){
fprintf(out, "%02x", c);
j = i+1;
}else{
if( inctl ){
inctl = 0;
fprintf(out, "'\n||'");
}
if( c=='\'' ){
fprintf(out, "%.*s'", i-j+1, &zArg[j]);
j = i+1;
}
}
}
fprintf(out, "%s'", &zArg[j]);
}
break;
}
case SQLITE_NULL: {
fprintf(out, "NULL");
break;
}
}
}
/*
** Output SQL that will recreate the aux.zTab table.
*/
static void dump_table(const char *zTab, FILE *out){
char *zId = safeId(zTab); /* Name of the table */
char **az = 0; /* List of columns */
int nPk; /* Number of true primary key columns */
int nCol; /* Number of data columns */
int i; /* Loop counter */
sqlite3_stmt *pStmt; /* SQL statement */
const char *zSep; /* Separator string */
sqlite3_str *pIns; /* Beginning of the INSERT statement */
pStmt = db_prepare("SELECT sql FROM aux.sqlite_schema WHERE name=%Q", zTab);
if( SQLITE_ROW==sqlite3_step(pStmt) ){
fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
}
sqlite3_finalize(pStmt);
if( !g.bSchemaOnly ){
az = columnNames("aux", zTab, &nPk, 0);
pIns = sqlite3_str_new(0);
if( az==0 ){
pStmt = db_prepare("SELECT * FROM aux.%s", zId);
sqlite3_str_appendf(pIns,"INSERT INTO %s VALUES", zId);
}else{
sqlite3_str *pSql = sqlite3_str_new(0);
zSep = "SELECT";
for(i=0; az[i]; i++){
sqlite3_str_appendf(pSql, "%s %s", zSep, az[i]);
zSep = ",";
}
sqlite3_str_appendf(pSql," FROM aux.%s", zId);
zSep = " ORDER BY";
for(i=1; i<=nPk; i++){
sqlite3_str_appendf(pSql, "%s %d", zSep, i);
zSep = ",";
}
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
strFree(pSql);
sqlite3_str_appendf(pIns, "INSERT INTO %s", zId);
zSep = "(";
for(i=0; az[i]; i++){
sqlite3_str_appendf(pIns, "%s%s", zSep, az[i]);
zSep = ",";
}
sqlite3_str_appendf(pIns,") VALUES");
namelistFree(az);
}
nCol = sqlite3_column_count(pStmt);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
Wfprintf(out, "%s",sqlite3_str_value(pIns));
zSep = "(";
for(i=0; i<nCol; i++){
Wfprintf(out, "%s",zSep);
printQuoted(out, sqlite3_column_value(pStmt,i));
zSep = ",";
}
Wfprintf(out, ");\n");
}
sqlite3_finalize(pStmt);
strFree(pIns);
} /* endif !g.bSchemaOnly */
pStmt = db_prepare("SELECT sql FROM aux.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q AND sql IS NOT NULL",
zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
Wfprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
}
sqlite3_finalize(pStmt);
sqlite3_free(zId);
}
/*
** Compute all differences for a single table, except if the
** table name is sqlite_schema, ignore the rootpage column.
*/
static void diff_one_table(const char *zTab, FILE *out){
char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
char **az = 0; /* Columns in main */
char **az2 = 0; /* Columns in aux */
int nPk; /* Primary key columns in main */
int nPk2; /* Primary key columns in aux */
int n = 0; /* Number of columns in main */
int n2; /* Number of columns in aux */
int nQ; /* Number of output columns in the diff query */
int i; /* Loop counter */
const char *zSep; /* Separator string */
sqlite3_str *pSql; /* Comparison query */
sqlite3_stmt *pStmt; /* Query statement to do the diff */
const char *zLead = /* Becomes line-comment for sqlite_schema */
(g.bSchemaCompare)? "-- " : "";
pSql = sqlite3_str_new(0);
if( g.fDebug==DEBUG_COLUMN_NAMES ){
/* Simply run columnNames() on all tables of the origin
** database and show the results. This is used for testing
** and debugging of the columnNames() function.
*/
az = columnNames("aux",zTab, &nPk, 0);
if( az==0 ){
Wfprintf(stdout, "Rowid not accessible for %s\n", zId);
}else{
Wfprintf(stdout, "%s:", zId);
for(i=0; az[i]; i++){
Wfprintf(stdout, " %s", az[i]);
if( i+1==nPk ) Wfprintf(stdout, " *");
}
Wfprintf(stdout, "\n");
}
goto end_diff_one_table;
}
if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
/* Table missing from second database. */
if( g.bSchemaCompare )
Wfprintf(out, "-- 2nd DB has no %s table\n", zTab);
else
Wfprintf(out, "DROP TABLE %s;\n", zId);
}
goto end_diff_one_table;
}
if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
/* Table missing from source */
if( g.bSchemaCompare ){
Wfprintf(out, "-- 1st DB has no %s table\n", zTab);
}else{
dump_table(zTab, out);
}
goto end_diff_one_table;
}
az = columnNames("main", zTab, &nPk, 0);
az2 = columnNames("aux", zTab, &nPk2, 0);
if( az && az2 ){
for(n=0; az[n] && az2[n]; n++){
if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
}
}
if( az==0
|| az2==0
|| nPk!=nPk2
|| az[n]
){
/* Schema mismatch */
Wfprintf(out, "%sDROP TABLE %s; -- due to schema mismatch\n", zLead, zId);
dump_table(zTab, out);
goto end_diff_one_table;
}
/* Build the comparison query */
for(n2=n; az2[n2]; n2++){
char *zNTab = safeId(az2[n2]);
Wfprintf(out, "ALTER TABLE %s ADD COLUMN %s;\n", zId, zNTab);
sqlite3_free(zNTab);
}
nQ = nPk2+1+2*(n2-nPk2);
if( n2>nPk2 ){
zSep = "SELECT ";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%sB.%s", zSep, az[i]);
zSep = ", ";
}
sqlite3_str_appendf(pSql, ", 1 /* changed row */");
while( az[i] ){
sqlite3_str_appendf(pSql, ", A.%s IS NOT B.%s, B.%s",
az[i], az2[i], az2[i]);
i++;
}
while( az2[i] ){
sqlite3_str_appendf(pSql, ", B.%s IS NOT NULL, B.%s",
az2[i], az2[i]);
i++;
}
sqlite3_str_appendf(pSql, "\n FROM main.%s A, aux.%s B\n", zId, zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
zSep = "\n AND (";
while( az[i] ){
sqlite3_str_appendf(pSql, "%sA.%s IS NOT B.%s%s\n",
zSep, az[i], az2[i], az2[i+1]==0 ? ")" : "");
zSep = " OR ";
i++;
}
while( az2[i] ){
sqlite3_str_appendf(pSql, "%sB.%s IS NOT NULL%s\n",
zSep, az2[i], az2[i+1]==0 ? ")" : "");
zSep = " OR ";
i++;
}
sqlite3_str_appendf(pSql, " UNION ALL\n");
}
zSep = "SELECT ";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%sA.%s", zSep, az[i]);
zSep = ", ";
}
sqlite3_str_appendf(pSql, ", 2 /* deleted row */");
while( az2[i] ){
sqlite3_str_appendf(pSql, ", NULL, NULL");
i++;
}
sqlite3_str_appendf(pSql, "\n FROM main.%s A\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n");
zSep = " UNION ALL\nSELECT ";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%sB.%s", zSep, az[i]);
zSep = ", ";
}
sqlite3_str_appendf(pSql, ", 3 /* inserted row */");
while( az2[i] ){
sqlite3_str_appendf(pSql, ", 1, B.%s", az2[i]);
i++;
}
sqlite3_str_appendf(pSql, "\n FROM aux.%s B\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n ORDER BY");
zSep = " ";
for(i=1; i<=nPk; i++){
sqlite3_str_appendf(pSql, "%s%d", zSep, i);
zSep = ", ";
}
sqlite3_str_appendf(pSql, ";\n");
if( g.fDebug & DEBUG_DIFF_SQL ){
printf("SQL for %s:\n%s\n", zId, sqlite3_str_value(pSql));
goto end_diff_one_table;
}
/* Drop indexes that are missing in the destination */
pStmt = db_prepare(
"SELECT name FROM main.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q"
" AND sql IS NOT NULL"
" AND sql NOT IN (SELECT sql FROM aux.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q"
" AND sql IS NOT NULL)",
zTab, zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
char *z = safeId((const char*)sqlite3_column_text(pStmt,0));
fprintf(out, "DROP INDEX %s;\n", z);
sqlite3_free(z);
}
sqlite3_finalize(pStmt);
/* Run the query and output differences */
if( !g.bSchemaOnly ){
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
while( SQLITE_ROW==sqlite3_step(pStmt) ){
int iType = sqlite3_column_int(pStmt, nPk);
if( iType==1 || iType==2 ){
if( iType==1 ){ /* Change the content of a row */
fprintf(out, "%sUPDATE %s", zLead, zId);
zSep = " SET";
for(i=nPk+1; i<nQ; i+=2){
if( sqlite3_column_int(pStmt,i)==0 ) continue;
fprintf(out, "%s %s=", zSep, az2[(i+nPk-1)/2]);
zSep = ",";
printQuoted(out, sqlite3_column_value(pStmt,i+1));
}
}else{ /* Delete a row */
fprintf(out, "%sDELETE FROM %s", zLead, zId);
}
zSep = " WHERE";
for(i=0; i<nPk; i++){
fprintf(out, "%s %s=", zSep, az2[i]);
printQuoted(out, sqlite3_column_value(pStmt,i));
zSep = " AND";
}
fprintf(out, ";\n");
}else{ /* Insert a row */
fprintf(out, "%sINSERT INTO %s(%s", zLead, zId, az2[0]);
for(i=1; az2[i]; i++) fprintf(out, ",%s", az2[i]);
fprintf(out, ") VALUES");
zSep = "(";
for(i=0; i<nPk2; i++){
fprintf(out, "%s", zSep);
zSep = ",";
printQuoted(out, sqlite3_column_value(pStmt,i));
}
for(i=nPk2+2; i<nQ; i+=2){
fprintf(out, ",");
printQuoted(out, sqlite3_column_value(pStmt,i));
}
fprintf(out, ");\n");
}
}
sqlite3_finalize(pStmt);
} /* endif !g.bSchemaOnly */
/* Create indexes that are missing in the source */
pStmt = db_prepare(
"SELECT sql FROM aux.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q"
" AND sql IS NOT NULL"
" AND sql NOT IN (SELECT sql FROM main.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q"
" AND sql IS NOT NULL)",
zTab, zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
}
sqlite3_finalize(pStmt);
end_diff_one_table:
strFree(pSql);
sqlite3_free(zId);
namelistFree(az);
namelistFree(az2);
return;
}
/*
** Check that table zTab exists and has the same schema in both the "main"
** and "aux" databases currently opened by the global db handle. If they
** do not, output an error message on stderr and exit(1). Otherwise, if
** the schemas do match, return control to the caller.
*/
static void checkSchemasMatch(const char *zTab){
sqlite3_stmt *pStmt = db_prepare(
"SELECT A.sql=B.sql FROM main.sqlite_schema A, aux.sqlite_schema B"
" WHERE A.name=%Q AND B.name=%Q", zTab, zTab
);
if( SQLITE_ROW==sqlite3_step(pStmt) ){
if( sqlite3_column_int(pStmt,0)==0 ){
runtimeError("schema changes for table %s", safeId(zTab));
}
}else{
runtimeError("table %s missing from one or both databases", safeId(zTab));
}
sqlite3_finalize(pStmt);
}
/**************************************************************************
** The following code is copied from fossil. It is used to generate the
** fossil delta blobs sometimes used in RBU update records.
*/
typedef unsigned short u16;
typedef unsigned int u32;
typedef unsigned char u8;
/*
** The width of a hash window in bytes. The algorithm only works if this
** is a power of 2.
*/
#define NHASH 16
/*
** The current state of the rolling hash.
**
** z[] holds the values that have been hashed. z[] is a circular buffer.
** z[i] is the first entry and z[(i+NHASH-1)%NHASH] is the last entry of
** the window.
**
** Hash.a is the sum of all elements of hash.z[]. Hash.b is a weighted
** sum. Hash.b is z[i]*NHASH + z[i+1]*(NHASH-1) + ... + z[i+NHASH-1]*1.
** (Each index for z[] should be module NHASH, of course. The %NHASH operator
** is omitted in the prior expression for brevity.)
*/
typedef struct hash hash;
struct hash {
u16 a, b; /* Hash values */
u16 i; /* Start of the hash window */
char z[NHASH]; /* The values that have been hashed */
};
/*
** Initialize the rolling hash using the first NHASH characters of z[]
*/
static void hash_init(hash *pHash, const char *z){
u16 a, b, i;
a = b = 0;
for(i=0; i<NHASH; i++){
a += z[i];
b += (NHASH-i)*z[i];
pHash->z[i] = z[i];
}
pHash->a = a & 0xffff;
pHash->b = b & 0xffff;
pHash->i = 0;
}
/*
** Advance the rolling hash by a single character "c"
*/
static void hash_next(hash *pHash, int c){
u16 old = pHash->z[pHash->i];
pHash->z[pHash->i] = (char)c;
pHash->i = (pHash->i+1)&(NHASH-1);
pHash->a = pHash->a - old + (char)c;
pHash->b = pHash->b - NHASH*old + pHash->a;
}
/*
** Return a 32-bit hash value
*/
static u32 hash_32bit(hash *pHash){
return (pHash->a & 0xffff) | (((u32)(pHash->b & 0xffff))<<16);
}
/*
** Write an base-64 integer into the given buffer.
*/
static void putInt(unsigned int v, char **pz){
static const char zDigits[] =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~";
/* 123456789 123456789 123456789 123456789 123456789 123456789 123 */
int i, j;
char zBuf[20];
if( v==0 ){
*(*pz)++ = '0';
return;
}
for(i=0; v>0; i++, v>>=6){
zBuf[i] = zDigits[v&0x3f];
}
for(j=i-1; j>=0; j--){
*(*pz)++ = zBuf[j];
}
}
/*
** Return the number digits in the base-64 representation of a positive integer
*/
static int digit_count(int v){
unsigned int i, x;
for(i=1, x=64; (unsigned int)v>=x; i++, x <<= 6){}
return i;
}
/*
** Compute a 32-bit checksum on the N-byte buffer. Return the result.
*/
static unsigned int checksum(const char *zIn, size_t N){
const unsigned char *z = (const unsigned char *)zIn;
unsigned sum0 = 0;
unsigned sum1 = 0;
unsigned sum2 = 0;
unsigned sum3 = 0;
while(N >= 16){
sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
z += 16;
N -= 16;
}
while(N >= 4){
sum0 += z[0];
sum1 += z[1];
sum2 += z[2];
sum3 += z[3];
z += 4;
N -= 4;
}
sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
switch(N){
case 3: sum3 += (z[2] << 8);
case 2: sum3 += (z[1] << 16);
case 1: sum3 += (z[0] << 24);
default: ;
}
return sum3;
}
/*
** Create a new delta.
**
** The delta is written into a preallocated buffer, zDelta, which
** should be at least 60 bytes longer than the target file, zOut.
** The delta string will be NUL-terminated, but it might also contain
** embedded NUL characters if either the zSrc or zOut files are
** binary. This function returns the length of the delta string
** in bytes, excluding the final NUL terminator character.
**
** Output Format:
**
** The delta begins with a base64 number followed by a newline. This
** number is the number of bytes in the TARGET file. Thus, given a
** delta file z, a program can compute the size of the output file
** simply by reading the first line and decoding the base-64 number
** found there. The delta_output_size() routine does exactly this.
**
** After the initial size number, the delta consists of a series of
** literal text segments and commands to copy from the SOURCE file.
** A copy command looks like this:
**
** NNN@MMM,
**
** where NNN is the number of bytes to be copied and MMM is the offset
** into the source file of the first byte (both base-64). If NNN is 0
** it means copy the rest of the input file. Literal text is like this:
**
** NNN:TTTTT
**
** where NNN is the number of bytes of text (base-64) and TTTTT is the text.
**
** The last term is of the form
**
** NNN;
**
** In this case, NNN is a 32-bit bigendian checksum of the output file
** that can be used to verify that the delta applied correctly. All
** numbers are in base-64.
**
** Pure text files generate a pure text delta. Binary files generate a
** delta that may contain some binary data.
**
** Algorithm:
**
** The encoder first builds a hash table to help it find matching
** patterns in the source file. 16-byte chunks of the source file
** sampled at evenly spaced intervals are used to populate the hash
** table.
**
** Next we begin scanning the target file using a sliding 16-byte
** window. The hash of the 16-byte window in the target is used to
** search for a matching section in the source file. When a match
** is found, a copy command is added to the delta. An effort is
** made to extend the matching section to regions that come before
** and after the 16-byte hash window. A copy command is only issued
** if the result would use less space that just quoting the text
** literally. Literal text is added to the delta for sections that
** do not match or which can not be encoded efficiently using copy
** commands.
*/
static int rbuDeltaCreate(
const char *zSrc, /* The source or pattern file */
unsigned int lenSrc, /* Length of the source file */
const char *zOut, /* The target file */
unsigned int lenOut, /* Length of the target file */
char *zDelta /* Write the delta into this buffer */
){
unsigned int i, base;
char *zOrigDelta = zDelta;
hash h;
int nHash; /* Number of hash table entries */
int *landmark; /* Primary hash table */
int *collide; /* Collision chain */
int lastRead = -1; /* Last byte of zSrc read by a COPY command */
/* Add the target file size to the beginning of the delta
*/
putInt(lenOut, &zDelta);
*(zDelta++) = '\n';
/* If the source file is very small, it means that we have no
** chance of ever doing a copy command. Just output a single
** literal segment for the entire target and exit.
*/
if( lenSrc<=NHASH ){
putInt(lenOut, &zDelta);
*(zDelta++) = ':';
memcpy(zDelta, zOut, lenOut);
zDelta += lenOut;
putInt(checksum(zOut, lenOut), &zDelta);
*(zDelta++) = ';';
return (int)(zDelta - zOrigDelta);
}
/* Compute the hash table used to locate matching sections in the
** source file.
*/
nHash = lenSrc/NHASH;
collide = sqlite3_malloc( nHash*2*sizeof(int) );
landmark = &collide[nHash];
memset(landmark, -1, nHash*sizeof(int));
memset(collide, -1, nHash*sizeof(int));
for(i=0; i<lenSrc-NHASH; i+=NHASH){
int hv;
hash_init(&h, &zSrc[i]);
hv = hash_32bit(&h) % nHash;
collide[i/NHASH] = landmark[hv];
landmark[hv] = i/NHASH;
}
/* Begin scanning the target file and generating copy commands and
** literal sections of the delta.
*/
base = 0; /* We have already generated everything before zOut[base] */
while( base+NHASH<lenOut ){
int iSrc, iBlock;
int bestCnt, bestOfst=0, bestLitsz=0;
hash_init(&h, &zOut[base]);
i = 0; /* Trying to match a landmark against zOut[base+i] */
bestCnt = 0;
while( 1 ){
int hv;
int limit = 250;
hv = hash_32bit(&h) % nHash;
iBlock = landmark[hv];
while( iBlock>=0 && (limit--)>0 ){
/*
** The hash window has identified a potential match against
** landmark block iBlock. But we need to investigate further.
**
** Look for a region in zOut that matches zSrc. Anchor the search
** at zSrc[iSrc] and zOut[base+i]. Do not include anything prior to
** zOut[base] or after zOut[outLen] nor anything after zSrc[srcLen].
**
** Set cnt equal to the length of the match and set ofst so that
** zSrc[ofst] is the first element of the match. litsz is the number
** of characters between zOut[base] and the beginning of the match.
** sz will be the overhead (in bytes) needed to encode the copy
** command. Only generate copy command if the overhead of the
** copy command is less than the amount of literal text to be copied.
*/
int cnt, ofst, litsz;
int j, k, x, y;
int sz;
/* Beginning at iSrc, match forwards as far as we can. j counts
** the number of characters that match */
iSrc = iBlock*NHASH;
for(
j=0, x=iSrc, y=base+i;
(unsigned int)x<lenSrc && (unsigned int)y<lenOut;
j++, x++, y++
){
if( zSrc[x]!=zOut[y] ) break;
}
j--;
/* Beginning at iSrc-1, match backwards as far as we can. k counts
** the number of characters that match */
for(k=1; k<iSrc && (unsigned int)k<=i; k++){
if( zSrc[iSrc-k]!=zOut[base+i-k] ) break;
}
k--;
/* Compute the offset and size of the matching region */
ofst = iSrc-k;
cnt = j+k+1;
litsz = i-k; /* Number of bytes of literal text before the copy */
/* sz will hold the number of bytes needed to encode the "insert"
** command and the copy command, not counting the "insert" text */
sz = digit_count(i-k)+digit_count(cnt)+digit_count(ofst)+3;
if( cnt>=sz && cnt>bestCnt ){
/* Remember this match only if it is the best so far and it
** does not increase the file size */
bestCnt = cnt;
bestOfst = iSrc-k;
bestLitsz = litsz;
}
/* Check the next matching block */
iBlock = collide[iBlock];
}
/* We have a copy command that does not cause the delta to be larger
** than a literal insert. So add the copy command to the delta.
*/
if( bestCnt>0 ){
if( bestLitsz>0 ){
/* Add an insert command before the copy */
putInt(bestLitsz,&zDelta);
*(zDelta++) = ':';
memcpy(zDelta, &zOut[base], bestLitsz);
zDelta += bestLitsz;
base += bestLitsz;
}
base += bestCnt;
putInt(bestCnt, &zDelta);
*(zDelta++) = '@';
putInt(bestOfst, &zDelta);
*(zDelta++) = ',';
if( bestOfst + bestCnt -1 > lastRead ){
lastRead = bestOfst + bestCnt - 1;
}
bestCnt = 0;
break;
}
/* If we reach this point, it means no match is found so far */
if( base+i+NHASH>=lenOut ){
/* We have reached the end of the file and have not found any
** matches. Do an "insert" for everything that does not match */
putInt(lenOut-base, &zDelta);
*(zDelta++) = ':';
memcpy(zDelta, &zOut[base], lenOut-base);
zDelta += lenOut-base;
base = lenOut;
break;
}
/* Advance the hash by one character. Keep looking for a match */
hash_next(&h, zOut[base+i+NHASH]);
i++;
}
}
/* Output a final "insert" record to get all the text at the end of
** the file that does not match anything in the source file.
*/
if( base<lenOut ){
putInt(lenOut-base, &zDelta);
*(zDelta++) = ':';
memcpy(zDelta, &zOut[base], lenOut-base);
zDelta += lenOut-base;
}
/* Output the final checksum record. */
putInt(checksum(zOut, lenOut), &zDelta);
*(zDelta++) = ';';
sqlite3_free(collide);
return (int)(zDelta - zOrigDelta);
}
/*
** End of code copied from fossil.
**************************************************************************/
static void strPrintfArray(
sqlite3_str *pStr, /* String object to append to */
const char *zSep, /* Separator string */
const char *zFmt, /* Format for each entry */
char **az, int n /* Array of strings & its size (or -1) */
){
int i;
for(i=0; az[i] && (i<n || n<0); i++){
if( i!=0 ) sqlite3_str_appendf(pStr, "%s", zSep);
sqlite3_str_appendf(pStr, zFmt, az[i], az[i], az[i]);
}
}
static void getRbudiffQuery(
const char *zTab,
char **azCol,
int nPK,
int bOtaRowid,
sqlite3_str *pSql
){
int i;
/* First the newly inserted rows: **/
sqlite3_str_appendf(pSql, "SELECT ");
strPrintfArray(pSql, ", ", "%s", azCol, -1);
sqlite3_str_appendf(pSql, ", 0, "); /* Set ota_control to 0 for an insert */
strPrintfArray(pSql, ", ", "NULL", azCol, -1);
sqlite3_str_appendf(pSql, " FROM aux.%Q AS n WHERE NOT EXISTS (\n", zTab);
sqlite3_str_appendf(pSql, " SELECT 1 FROM ", zTab);
sqlite3_str_appendf(pSql, " main.%Q AS o WHERE ", zTab);
strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
sqlite3_str_appendf(pSql, "\n) AND ");
strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK);
/* Deleted rows: */
sqlite3_str_appendf(pSql, "\nUNION ALL\nSELECT ");
strPrintfArray(pSql, ", ", "%s", azCol, nPK);
if( azCol[nPK] ){
sqlite3_str_appendf(pSql, ", ");
strPrintfArray(pSql, ", ", "NULL", &azCol[nPK], -1);
}
sqlite3_str_appendf(pSql, ", 1, "); /* Set ota_control to 1 for a delete */
strPrintfArray(pSql, ", ", "NULL", azCol, -1);
sqlite3_str_appendf(pSql, " FROM main.%Q AS n WHERE NOT EXISTS (\n", zTab);
sqlite3_str_appendf(pSql, " SELECT 1 FROM ", zTab);
sqlite3_str_appendf(pSql, " aux.%Q AS o WHERE ", zTab);
strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
sqlite3_str_appendf(pSql, "\n) AND ");
strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK);
/* Updated rows. If all table columns are part of the primary key, there
** can be no updates. In this case this part of the compound SELECT can
** be omitted altogether. */
if( azCol[nPK] ){
sqlite3_str_appendf(pSql, "\nUNION ALL\nSELECT ");
strPrintfArray(pSql, ", ", "n.%s", azCol, nPK);
sqlite3_str_appendf(pSql, ",\n");
strPrintfArray(pSql, " ,\n",
" CASE WHEN n.%s IS o.%s THEN NULL ELSE n.%s END", &azCol[nPK], -1
);
if( bOtaRowid==0 ){
sqlite3_str_appendf(pSql, ", '");
strPrintfArray(pSql, "", ".", azCol, nPK);
sqlite3_str_appendf(pSql, "' ||\n");
}else{
sqlite3_str_appendf(pSql, ",\n");
}
strPrintfArray(pSql, " ||\n",
" CASE WHEN n.%s IS o.%s THEN '.' ELSE 'x' END", &azCol[nPK], -1
);
sqlite3_str_appendf(pSql, "\nAS ota_control, ");
strPrintfArray(pSql, ", ", "NULL", azCol, nPK);
sqlite3_str_appendf(pSql, ",\n");
strPrintfArray(pSql, " ,\n",
" CASE WHEN n.%s IS o.%s THEN NULL ELSE o.%s END", &azCol[nPK], -1
);
sqlite3_str_appendf(pSql, "\nFROM main.%Q AS o, aux.%Q AS n\nWHERE ",
zTab, zTab);
strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
sqlite3_str_appendf(pSql, " AND ota_control LIKE '%%x%%'");
}
/* Now add an ORDER BY clause to sort everything by PK. */
sqlite3_str_appendf(pSql, "\nORDER BY ");
for(i=1; i<=nPK; i++) sqlite3_str_appendf(pSql, "%s%d", ((i>1)?", ":""), i);
}
static void rbudiff_one_table(const char *zTab, FILE *out){
int bOtaRowid; /* True to use an ota_rowid column */
int nPK; /* Number of primary key columns in table */
char **azCol; /* NULL terminated array of col names */
int i;
int nCol;
sqlite3_str *pCt; /* The "CREATE TABLE data_xxx" statement */
sqlite3_str *pSql; /* Query to find differences */
sqlite3_str *pInsert; /* First part of output INSERT statement */
sqlite3_stmt *pStmt = 0;
int nRow = 0; /* Total rows in data_xxx table */
/* --rbu mode must use real primary keys. */
g.bSchemaPK = 1;
pCt = sqlite3_str_new(0);
pSql = sqlite3_str_new(0);
pInsert = sqlite3_str_new(0);
/* Check that the schemas of the two tables match. Exit early otherwise. */
checkSchemasMatch(zTab);
/* Grab the column names and PK details for the table(s). If no usable PK
** columns are found, bail out early. */
azCol = columnNames("main", zTab, &nPK, &bOtaRowid);
if( azCol==0 ){
runtimeError("table %s has no usable PK columns", zTab);
}
for(nCol=0; azCol[nCol]; nCol++);
/* Build and output the CREATE TABLE statement for the data_xxx table */
sqlite3_str_appendf(pCt, "CREATE TABLE IF NOT EXISTS 'data_%q'(", zTab);
if( bOtaRowid ) sqlite3_str_appendf(pCt, "rbu_rowid, ");
strPrintfArray(pCt, ", ", "%s", &azCol[bOtaRowid], -1);
sqlite3_str_appendf(pCt, ", rbu_control);");
/* Get the SQL for the query to retrieve data from the two databases */
getRbudiffQuery(zTab, azCol, nPK, bOtaRowid, pSql);
/* Build the first part of the INSERT statement output for each row
** in the data_xxx table. */
sqlite3_str_appendf(pInsert, "INSERT INTO 'data_%q' (", zTab);
if( bOtaRowid ) sqlite3_str_appendf(pInsert, "rbu_rowid, ");
strPrintfArray(pInsert, ", ", "%s", &azCol[bOtaRowid], -1);
sqlite3_str_appendf(pInsert, ", rbu_control) VALUES(");
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
while( sqlite3_step(pStmt)==SQLITE_ROW ){
/* If this is the first row output, print out the CREATE TABLE
** statement first. And reset pCt so that it will not be
** printed again. */
if( sqlite3_str_length(pCt) ){
fprintf(out, "%s\n", sqlite3_str_value(pCt));
sqlite3_str_reset(pCt);
}
/* Output the first part of the INSERT statement */
fprintf(out, "%s", sqlite3_str_value(pInsert));
nRow++;
if( sqlite3_column_type(pStmt, nCol)==SQLITE_INTEGER ){
for(i=0; i<=nCol; i++){
if( i>0 ) fprintf(out, ", ");
printQuoted(out, sqlite3_column_value(pStmt, i));
}
}else{
char *zOtaControl;
int nOtaControl = sqlite3_column_bytes(pStmt, nCol);
zOtaControl = (char*)sqlite3_malloc(nOtaControl+1);
memcpy(zOtaControl, sqlite3_column_text(pStmt, nCol), nOtaControl+1);
for(i=0; i<nCol; i++){
int bDone = 0;
if( i>=nPK
&& sqlite3_column_type(pStmt, i)==SQLITE_BLOB
&& sqlite3_column_type(pStmt, nCol+1+i)==SQLITE_BLOB
){
const char *aSrc = sqlite3_column_blob(pStmt, nCol+1+i);
int nSrc = sqlite3_column_bytes(pStmt, nCol+1+i);
const char *aFinal = sqlite3_column_blob(pStmt, i);
int nFinal = sqlite3_column_bytes(pStmt, i);
char *aDelta;
int nDelta;
aDelta = sqlite3_malloc(nFinal + 60);
nDelta = rbuDeltaCreate(aSrc, nSrc, aFinal, nFinal, aDelta);
if( nDelta<nFinal ){
int j;
fprintf(out, "x'");
for(j=0; j<nDelta; j++) fprintf(out, "%02x", (u8)aDelta[j]);
fprintf(out, "'");
zOtaControl[i-bOtaRowid] = 'f';
bDone = 1;
}
sqlite3_free(aDelta);
}
if( bDone==0 ){
printQuoted(out, sqlite3_column_value(pStmt, i));
}
fprintf(out, ", ");
}
fprintf(out, "'%s'", zOtaControl);
sqlite3_free(zOtaControl);
}
/* And the closing bracket of the insert statement */
fprintf(out, ");\n");
}
sqlite3_finalize(pStmt);
if( nRow>0 ){
sqlite3_str *pCnt = sqlite3_str_new(0);
sqlite3_str_appendf(pCnt,
"INSERT INTO rbu_count VALUES('data_%q', %d);", zTab, nRow);
fprintf(out, "%s\n", sqlite3_str_value(pCnt));
strFree(pCnt);
}
strFree(pCt);
strFree(pSql);
strFree(pInsert);
}
/*
** Display a summary of differences between two versions of the same
** table table.
**
** * Number of rows changed
** * Number of rows added
** * Number of rows deleted
** * Number of identical rows
*/
static void summarize_one_table(const char *zTab, FILE *out){
char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
char **az = 0; /* Columns in main */
char **az2 = 0; /* Columns in aux */
int nPk; /* Primary key columns in main */
int nPk2; /* Primary key columns in aux */
int n = 0; /* Number of columns in main */
int n2; /* Number of columns in aux */
int i; /* Loop counter */
const char *zSep; /* Separator string */
sqlite3_str *pSql; /* Comparison query */
sqlite3_stmt *pStmt; /* Query statement to do the diff */
sqlite3_int64 nUpdate; /* Number of updated rows */
sqlite3_int64 nUnchanged; /* Number of unmodified rows */
sqlite3_int64 nDelete; /* Number of deleted rows */
sqlite3_int64 nInsert; /* Number of inserted rows */
pSql = sqlite3_str_new(0);
if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
/* Table missing from second database. */
Wfprintf(out, "%s: missing from second database\n", zTab);
}
goto end_summarize_one_table;
}
if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
/* Table missing from source */
Wfprintf(out, "%s: missing from first database\n", zTab);
goto end_summarize_one_table;
}
az = columnNames("main", zTab, &nPk, 0);
az2 = columnNames("aux", zTab, &nPk2, 0);
if( az && az2 ){
for(n=0; az[n]; n++){
if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
}
}
if( az==0
|| az2==0
|| nPk!=nPk2
|| az[n]
){
/* Schema mismatch */
Wfprintf(out, "%s: incompatible schema\n", zTab);
goto end_summarize_one_table;
}
/* Build the comparison query */
for(n2=n; az[n2]; n2++){}
sqlite3_str_appendf(pSql, "SELECT 1, count(*)");
if( n2==nPk2 ){
sqlite3_str_appendf(pSql, ", 0\n");
}else{
zSep = ", sum(";
for(i=nPk; az[i]; i++){
sqlite3_str_appendf(pSql, "%sA.%s IS NOT B.%s", zSep, az[i], az[i]);
zSep = " OR ";
}
sqlite3_str_appendf(pSql, ")\n");
}
sqlite3_str_appendf(pSql, " FROM main.%s A, aux.%s B\n", zId, zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, " UNION ALL\n");
sqlite3_str_appendf(pSql, "SELECT 2, count(*), 0\n");
sqlite3_str_appendf(pSql, " FROM main.%s A\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B ", zId);
zSep = "WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n");
sqlite3_str_appendf(pSql, " UNION ALL\n");
sqlite3_str_appendf(pSql, "SELECT 3, count(*), 0\n");
sqlite3_str_appendf(pSql, " FROM aux.%s B\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A ", zId);
zSep = "WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n ORDER BY 1;\n");
if( (g.fDebug & DEBUG_DIFF_SQL)!=0 ){
Wfprintf(stdout, "SQL for %s:\n%s\n", zId, sqlite3_str_value(pSql));
goto end_summarize_one_table;
}
/* Run the query and output difference summary */
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
nUpdate = 0;
nInsert = 0;
nDelete = 0;
nUnchanged = 0;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
switch( sqlite3_column_int(pStmt,0) ){
case 1:
nUpdate = sqlite3_column_int64(pStmt,2);
nUnchanged = sqlite3_column_int64(pStmt,1) - nUpdate;
break;
case 2:
nDelete = sqlite3_column_int64(pStmt,1);
break;
case 3:
nInsert = sqlite3_column_int64(pStmt,1);
break;
}
}
sqlite3_finalize(pStmt);
Wfprintf(out,
"%s: %lld changes, %lld inserts, %lld deletes, %lld unchanged\n",
zTab, nUpdate, nInsert, nDelete, nUnchanged);
end_summarize_one_table:
strFree(pSql);
sqlite3_free(zId);
namelistFree(az);
namelistFree(az2);
return;
}
/*
** Write a 64-bit signed integer as a varint onto out
*/
static void putsVarint(FILE *out, sqlite3_uint64 v){
int i, n;
unsigned char p[12];
if( v & (((sqlite3_uint64)0xff000000)<<32) ){
p[8] = (unsigned char)v;
v >>= 8;
for(i=7; i>=0; i--){
p[i] = (unsigned char)((v & 0x7f) | 0x80);
v >>= 7;
}
fwrite(p, 8, 1, out);
}else{
n = 9;
do{
p[n--] = (unsigned char)((v & 0x7f) | 0x80);
v >>= 7;
}while( v!=0 );
p[9] &= 0x7f;
fwrite(p+n+1, 9-n, 1, out);
}
}
/*
** Write an SQLite value onto out.
*/
static void putValue(FILE *out, sqlite3_stmt *pStmt, int k){
int iDType = sqlite3_column_type(pStmt, k);
sqlite3_int64 iX;
double rX;
sqlite3_uint64 uX;
int j;
putc(iDType, out);
switch( iDType ){
case SQLITE_INTEGER:
iX = sqlite3_column_int64(pStmt, k);
memcpy(&uX, &iX, 8);
for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
break;
case SQLITE_FLOAT:
rX = sqlite3_column_double(pStmt, k);
memcpy(&uX, &rX, 8);
for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
break;
case SQLITE_TEXT:
iX = sqlite3_column_bytes(pStmt, k);
putsVarint(out, (sqlite3_uint64)iX);
fwrite(sqlite3_column_text(pStmt, k),1,(size_t)iX,out);
break;
case SQLITE_BLOB:
iX = sqlite3_column_bytes(pStmt, k);
putsVarint(out, (sqlite3_uint64)iX);
fwrite(sqlite3_column_blob(pStmt, k),1,(size_t)iX,out);
break;
case SQLITE_NULL:
break;
}
}
/*
** Generate a CHANGESET for all differences from main.zTab to aux.zTab.
*/
static void changeset_one_table(const char *zTab, FILE *out){
sqlite3_stmt *pStmt; /* SQL statment */
char *zId = safeId(zTab); /* Escaped name of the table */
char **azCol = 0; /* List of escaped column names */
int nCol = 0; /* Number of columns */
int *aiFlg = 0; /* 0 if column is not part of PK */
int *aiPk = 0; /* Column numbers for each PK column */
int nPk = 0; /* Number of PRIMARY KEY columns */
sqlite3_str *pSql; /* SQL for the diff query */
int i, k; /* Loop counters */
const char *zSep; /* List separator */
/* Check that the schemas of the two tables match. Exit early otherwise. */
checkSchemasMatch(zTab);
pSql = sqlite3_str_new(0);
pStmt = db_prepare("PRAGMA main.table_info=%Q", zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
nCol++;
azCol = sqlite3_realloc(azCol, sizeof(char*)*nCol);
if( azCol==0 ) runtimeError("out of memory");
aiFlg = sqlite3_realloc(aiFlg, sizeof(int)*nCol);
if( aiFlg==0 ) runtimeError("out of memory");
azCol[nCol-1] = safeId((const char*)sqlite3_column_text(pStmt,1));
aiFlg[nCol-1] = i = sqlite3_column_int(pStmt,5);
if( i>0 ){
if( i>nPk ){
nPk = i;
aiPk = sqlite3_realloc(aiPk, sizeof(int)*nPk);
if( aiPk==0 ) runtimeError("out of memory");
}
aiPk[i-1] = nCol-1;
}
}
sqlite3_finalize(pStmt);
if( nPk==0 ) goto end_changeset_one_table;
if( nCol>nPk ){
sqlite3_str_appendf(pSql, "SELECT %d", SQLITE_UPDATE);
for(i=0; i<nCol; i++){
if( aiFlg[i] ){
sqlite3_str_appendf(pSql, ",\n A.%s", azCol[i]);
}else{
sqlite3_str_appendf(pSql, ",\n A.%s IS NOT B.%s, A.%s, B.%s",
azCol[i], azCol[i], azCol[i], azCol[i]);
}
}
sqlite3_str_appendf(pSql,"\n FROM main.%s A, aux.%s B\n", zId, zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s",
zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
zSep = " AND";
}
zSep = "\n AND (";
for(i=0; i<nCol; i++){
if( aiFlg[i] ) continue;
sqlite3_str_appendf(pSql, "%sA.%s IS NOT B.%s", zSep, azCol[i], azCol[i]);
zSep = " OR\n ";
}
sqlite3_str_appendf(pSql,")\n UNION ALL\n");
}
sqlite3_str_appendf(pSql, "SELECT %d", SQLITE_DELETE);
for(i=0; i<nCol; i++){
if( aiFlg[i] ){
sqlite3_str_appendf(pSql, ",\n A.%s", azCol[i]);
}else{
sqlite3_str_appendf(pSql, ",\n 1, A.%s, NULL", azCol[i]);
}
}
sqlite3_str_appendf(pSql, "\n FROM main.%s A\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s",
zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n UNION ALL\n");
sqlite3_str_appendf(pSql, "SELECT %d", SQLITE_INSERT);
for(i=0; i<nCol; i++){
if( aiFlg[i] ){
sqlite3_str_appendf(pSql, ",\n B.%s", azCol[i]);
}else{
sqlite3_str_appendf(pSql, ",\n 1, NULL, B.%s", azCol[i]);
}
}
sqlite3_str_appendf(pSql, "\n FROM aux.%s B\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s",
zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n");
sqlite3_str_appendf(pSql, " ORDER BY");
zSep = " ";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s %d", zSep, aiPk[i]+2);
zSep = ",";
}
sqlite3_str_appendf(pSql, ";\n");
if( g.fDebug & DEBUG_DIFF_SQL ){
Wfprintf(stdout, "SQL for %s:\n%s\n", zId, sqlite3_str_value(pSql));
goto end_changeset_one_table;
}
putc('T', out);
putsVarint(out, (sqlite3_uint64)nCol);
for(i=0; i<nCol; i++) putc(aiFlg[i], out);
fwrite(zTab, 1, strlen(zTab), out);
putc(0, out);
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
while( SQLITE_ROW==sqlite3_step(pStmt) ){
int iType = sqlite3_column_int(pStmt,0);
putc(iType, out);
putc(0, out);
switch( sqlite3_column_int(pStmt,0) ){
case SQLITE_UPDATE: {
for(k=1, i=0; i<nCol; i++){
if( aiFlg[i] ){
putValue(out, pStmt, k);
k++;
}else if( sqlite3_column_int(pStmt,k) ){
putValue(out, pStmt, k+1);
k += 3;
}else{
putc(0, out);
k += 3;
}
}
for(k=1, i=0; i<nCol; i++){
if( aiFlg[i] ){
putc(0, out);
k++;
}else if( sqlite3_column_int(pStmt,k) ){
putValue(out, pStmt, k+2);
k += 3;
}else{
putc(0, out);
k += 3;
}
}
break;
}
case SQLITE_INSERT: {
for(k=1, i=0; i<nCol; i++){
if( aiFlg[i] ){
putValue(out, pStmt, k);
k++;
}else{
putValue(out, pStmt, k+2);
k += 3;
}
}
break;
}
case SQLITE_DELETE: {
for(k=1, i=0; i<nCol; i++){
if( aiFlg[i] ){
putValue(out, pStmt, k);
k++;
}else{
putValue(out, pStmt, k+1);
k += 3;
}
}
break;
}
}
}
sqlite3_finalize(pStmt);
end_changeset_one_table:
while( nCol>0 ) sqlite3_free(azCol[--nCol]);
sqlite3_free(azCol);
sqlite3_free(aiPk);
sqlite3_free(zId);
sqlite3_free(aiFlg);
strFree(pSql);
}
/*
** Return true if the ascii character passed as the only argument is a
** whitespace character. Otherwise return false.
*/
static int is_whitespace(char x){
return (x==' ' || x=='\t' || x=='\n' || x=='\r');
}
/*
** Extract the next SQL keyword or quoted string from buffer zIn and copy it
** (or a prefix of it if it will not fit) into buffer zBuf, size nBuf bytes.
** Return a pointer to the character within zIn immediately following
** the token or quoted string just extracted.
*/
static const char *gobble_token(const char *zIn, char *zBuf, int nBuf){
const char *p = zIn;
char *pOut = zBuf;
char *pEnd = &pOut[nBuf-1];
char q = 0; /* quote character, if any */
if( p==0 ) return 0;
while( is_whitespace(*p) ) p++;
switch( *p ){
case '"': q = '"'; break;
case '\'': q = '\''; break;
case '`': q = '`'; break;
case '[': q = ']'; break;
}
if( q ){
p++;
while( *p && pOut<pEnd ){
if( *p==q ){
p++;
if( *p!=q ) break;
}
if( pOut<pEnd ) *pOut++ = *p;
p++;
}
}else{
while( *p && !is_whitespace(*p) && *p!='(' ){
if( pOut<pEnd ) *pOut++ = *p;
p++;
}
}
*pOut = '\0';
return p;
}
/*
** This function is the implementation of SQL scalar function "module_name":
**
** module_name(SQL)
**
** The only argument should be an SQL statement of the type that may appear
** in the sqlite_schema table. If the statement is a "CREATE VIRTUAL TABLE"
** statement, then the value returned is the name of the module that it
** uses. Otherwise, if the statement is not a CVT, NULL is returned.
*/
static void module_name_func(
sqlite3_context *pCtx,
int nVal, sqlite3_value **apVal
){
const char *zSql;
char zToken[32];
assert( nVal==1 );
zSql = (const char*)sqlite3_value_text(apVal[0]);
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 || sqlite3_stricmp(zToken, "create") ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 || sqlite3_stricmp(zToken, "virtual") ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 || sqlite3_stricmp(zToken, "table") ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 || sqlite3_stricmp(zToken, "using") ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
sqlite3_result_text(pCtx, zToken, -1, SQLITE_TRANSIENT);
}
/*
** Return the text of an SQL statement that itself returns the list of
** tables to process within the database.
*/
const char *all_tables_sql(){
if( g.bHandleVtab ){
int rc;
rc = sqlite3_exec(g.db,
"CREATE TEMP TABLE tblmap(module COLLATE nocase, postfix);"
"INSERT INTO temp.tblmap VALUES"
"('fts3', '_content'), ('fts3', '_segments'), ('fts3', '_segdir'),"
"('fts4', '_content'), ('fts4', '_segments'), ('fts4', '_segdir'),"
"('fts4', '_docsize'), ('fts4', '_stat'),"
"('fts5', '_data'), ('fts5', '_idx'), ('fts5', '_content'),"
"('fts5', '_docsize'), ('fts5', '_config'),"
"('rtree', '_node'), ('rtree', '_rowid'), ('rtree', '_parent');"
, 0, 0, 0
);
assert( rc==SQLITE_OK );
rc = sqlite3_create_function(
g.db, "module_name", 1, SQLITE_UTF8, 0, module_name_func, 0, 0
);
assert( rc==SQLITE_OK );
return
"SELECT name FROM main.sqlite_schema\n"
" WHERE type='table' AND (\n"
" module_name(sql) IS NULL OR \n"
" module_name(sql) IN (SELECT module FROM temp.tblmap)\n"
" ) AND name NOT IN (\n"
" SELECT a.name || b.postfix \n"
"FROM main.sqlite_schema AS a, temp.tblmap AS b \n"
"WHERE module_name(a.sql) = b.module\n"
" )\n"
"UNION \n"
"SELECT name FROM aux.sqlite_schema\n"
" WHERE type='table' AND (\n"
" module_name(sql) IS NULL OR \n"
" module_name(sql) IN (SELECT module FROM temp.tblmap)\n"
" ) AND name NOT IN (\n"
" SELECT a.name || b.postfix \n"
"FROM aux.sqlite_schema AS a, temp.tblmap AS b \n"
"WHERE module_name(a.sql) = b.module\n"
" )\n"
" ORDER BY name";
}else{
return
"SELECT name FROM main.sqlite_schema\n"
" WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
" UNION\n"
"SELECT name FROM aux.sqlite_schema\n"
" WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
" ORDER BY name";
}
}
/*
** Print sketchy documentation for this utility program
*/
static void showHelp(void){
Wfprintf(stdout, "Usage: %s [options] DB1 DB2\n", g.zArgv0);
Wfprintf(stdout,
"Output SQL text that would transform DB1 into DB2.\n"
"Options:\n"
" --changeset FILE Write a CHANGESET into FILE\n"
" -L|--lib LIBRARY Load an SQLite extension library\n"
" --primarykey Use schema-defined PRIMARY KEYs\n"
" --rbu Output SQL to create/populate RBU table(s)\n"
" --schema Show only differences in the schema\n"
" --summary Show only a summary of the differences\n"
" --table TAB Show only differences in table TAB\n"
" --transaction Show SQL output inside a transaction\n"
" --vtab Handle fts3, fts4, fts5 and rtree tables\n"
"See https://sqlite.org/sqldiff.html for detailed explanation.\n"
);
}
int main(int argc, char **argv){
const char *zDb1 = 0;
const char *zDb2 = 0;
int i;
int rc;
char *zErrMsg = 0;
char *zSql;
sqlite3_stmt *pStmt;
char *zTab = 0;
FILE *out = stdout;
void (*xDiff)(const char*,FILE*) = diff_one_table;
#ifndef SQLITE_OMIT_LOAD_EXTENSION
int nExt = 0;
char **azExt = 0;
#endif
int useTransaction = 0;
int neverUseTransaction = 0;
g.zArgv0 = argv[0];
sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
for(i=1; i<argc; i++){
const char *z = argv[i];
if( z[0]=='-' ){
z++;
if( z[0]=='-' ) z++;
if( strcmp(z,"changeset")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
out = fopen(argv[++i], "wb");
if( out==0 ) cmdlineError("cannot open: %s", argv[i]);
xDiff = changeset_one_table;
neverUseTransaction = 1;
}else
if( strcmp(z,"debug")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
g.fDebug = strtol(argv[++i], 0, 0);
}else
if( strcmp(z,"help")==0 ){
showHelp();
return 0;
}else
#ifndef SQLITE_OMIT_LOAD_EXTENSION
if( strcmp(z,"lib")==0 || strcmp(z,"L")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
azExt = realloc(azExt, sizeof(azExt[0])*(nExt+1));
if( azExt==0 ) cmdlineError("out of memory");
azExt[nExt++] = argv[++i];
}else
#endif
if( strcmp(z,"primarykey")==0 ){
g.bSchemaPK = 1;
}else
if( strcmp(z,"rbu")==0 ){
xDiff = rbudiff_one_table;
}else
if( strcmp(z,"schema")==0 ){
g.bSchemaOnly = 1;
}else
if( strcmp(z,"summary")==0 ){
xDiff = summarize_one_table;
}else
if( strcmp(z,"table")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
zTab = argv[++i];
g.bSchemaCompare =
sqlite3_stricmp(zTab, "sqlite_schema")==0
|| sqlite3_stricmp(zTab, "sqlite_master")==0;
}else
if( strcmp(z,"transaction")==0 ){
useTransaction = 1;
}else
if( strcmp(z,"vtab")==0 ){
g.bHandleVtab = 1;
}else
{
cmdlineError("unknown option: %s", argv[i]);
}
}else if( zDb1==0 ){
zDb1 = argv[i];
}else if( zDb2==0 ){
zDb2 = argv[i];
}else{
cmdlineError("unknown argument: %s", argv[i]);
}
}
if( zDb2==0 ){
cmdlineError("two database arguments required");
}
if( g.bSchemaOnly && g.bSchemaCompare ){
cmdlineError("The --schema option is useless with --table %s .", zTab);
}
rc = sqlite3_open(zDb1, &g.db);
if( rc ){
cmdlineError("cannot open database file \"%s\"", zDb1);
}
rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_schema", 0, 0, &zErrMsg);
if( rc || zErrMsg ){
cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb1);
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
sqlite3_enable_load_extension(g.db, 1);
for(i=0; i<nExt; i++){
rc = sqlite3_load_extension(g.db, azExt[i], 0, &zErrMsg);
if( rc || zErrMsg ){
cmdlineError("error loading %s: %s", azExt[i], zErrMsg);
}
}
free(azExt);
#endif
zSql = sqlite3_mprintf("ATTACH %Q as aux;", zDb2);
rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg);
sqlite3_free(zSql);
zSql = 0;
if( rc || zErrMsg ){
cmdlineError("cannot attach database \"%s\"", zDb2);
}
rc = sqlite3_exec(g.db, "SELECT * FROM aux.sqlite_schema", 0, 0, &zErrMsg);
if( rc || zErrMsg ){
cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb2);
}
if( neverUseTransaction ) useTransaction = 0;
if( useTransaction ) Wfprintf(out, "BEGIN TRANSACTION;\n");
if( xDiff==rbudiff_one_table ){
Wfprintf(out, "CREATE TABLE IF NOT EXISTS rbu_count"
"(tbl TEXT PRIMARY KEY COLLATE NOCASE, cnt INTEGER) "
"WITHOUT ROWID;\n"
);
}
if( zTab ){
xDiff(zTab, out);
}else{
/* Handle tables one by one */
pStmt = db_prepare("%s", all_tables_sql() );
while( SQLITE_ROW==sqlite3_step(pStmt) ){
xDiff((const char*)sqlite3_column_text(pStmt,0), out);
}
sqlite3_finalize(pStmt);
}
if( useTransaction ) Wfprintf(stdout,"COMMIT;\n");
/* TBD: Handle trigger differences */
/* TBD: Handle view differences */
sqlite3_close(g.db);
return 0;
}
|