1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|

SQLGlot is a no-dependency SQL parser, transpiler, optimizer, and engine. It can be used to format SQL or translate between [31 different dialects](https://github.com/tobymao/sqlglot/blob/main/sqlglot/dialects/__init__.py) like [DuckDB](https://duckdb.org/), [Presto](https://prestodb.io/) / [Trino](https://trino.io/), [Spark](https://spark.apache.org/) / [Databricks](https://www.databricks.com/), [Snowflake](https://www.snowflake.com/en/), and [BigQuery](https://cloud.google.com/bigquery/). It aims to read a wide variety of SQL inputs and output syntactically and semantically correct SQL in the targeted dialects.
It is a very comprehensive generic SQL parser with a robust [test suite](https://github.com/tobymao/sqlglot/blob/main/tests/). It is also quite [performant](#benchmarks), while being written purely in Python.
You can easily [customize](#custom-dialects) the parser, [analyze](#metadata) queries, traverse expression trees, and programmatically [build](#build-and-modify-sql) SQL.
SQLGlot can detect a variety of [syntax errors](#parser-errors), such as unbalanced parentheses, incorrect usage of reserved keywords, and so on. These errors are highlighted and dialect incompatibilities can warn or raise depending on configurations.
Learn more about SQLGlot in the API [documentation](https://sqlglot.com/) and the expression tree [primer](https://github.com/tobymao/sqlglot/blob/main/posts/ast_primer.md).
Contributions are very welcome in SQLGlot; read the [contribution guide](https://github.com/tobymao/sqlglot/blob/main/CONTRIBUTING.md) and the [onboarding document](https://github.com/tobymao/sqlglot/blob/main/posts/onboarding.md) to get started!
## Table of Contents
* [Install](#install)
* [Versioning](#versioning)
* [Get in Touch](#get-in-touch)
* [FAQ](#faq)
* [Examples](#examples)
* [Formatting and Transpiling](#formatting-and-transpiling)
* [Metadata](#metadata)
* [Parser Errors](#parser-errors)
* [Unsupported Errors](#unsupported-errors)
* [Build and Modify SQL](#build-and-modify-sql)
* [SQL Optimizer](#sql-optimizer)
* [AST Introspection](#ast-introspection)
* [AST Diff](#ast-diff)
* [Custom Dialects](#custom-dialects)
* [SQL Execution](#sql-execution)
* [Used By](#used-by)
* [Documentation](#documentation)
* [Run Tests and Lint](#run-tests-and-lint)
* [Benchmarks](#benchmarks)
* [Optional Dependencies](#optional-dependencies)
* [Supported Dialects](#supported-dialects)
## Install
From PyPI:
```bash
pip3 install "sqlglot[rs]"
# Without Rust tokenizer (slower):
# pip3 install sqlglot
```
Or with a local checkout:
```
# Optionally prefix with UV=1 to use uv for the installation
make install
```
Requirements for development (optional):
```
# Optionally prefix with UV=1 to use uv for the installation
make install-dev
```
## Versioning
Given a version number `MAJOR`.`MINOR`.`PATCH`, SQLGlot uses the following versioning strategy:
- The `PATCH` version is incremented when there are backwards-compatible fixes or feature additions.
- The `MINOR` version is incremented when there are backwards-incompatible fixes or feature additions.
- The `MAJOR` version is incremented when there are significant backwards-incompatible fixes or feature additions.
## Get in Touch
We'd love to hear from you. Join our community [Slack channel](https://tobikodata.com/slack)!
## FAQ
I tried to parse SQL that should be valid but it failed, why did that happen?
* Most of the time, issues like this occur because the "source" dialect is omitted during parsing. For example, this is how to correctly parse a SQL query written in Spark SQL: `parse_one(sql, dialect="spark")` (alternatively: `read="spark"`). If no dialect is specified, `parse_one` will attempt to parse the query according to the "SQLGlot dialect", which is designed to be a superset of all supported dialects. If you tried specifying the dialect and it still doesn't work, please file an issue.
I tried to output SQL but it's not in the correct dialect!
* Like parsing, generating SQL also requires the target dialect to be specified, otherwise the SQLGlot dialect will be used by default. For example, to transpile a query from Spark SQL to DuckDB, do `parse_one(sql, dialect="spark").sql(dialect="duckdb")` (alternatively: `transpile(sql, read="spark", write="duckdb")`).
What happened to sqlglot.dataframe?
* The PySpark dataframe api was moved to a standalone library called [SQLFrame](https://github.com/eakmanrq/sqlframe) in v24. It now allows you to run queries as opposed to just generate SQL.
## Examples
### Formatting and Transpiling
Easily translate from one dialect to another. For example, date/time functions vary between dialects and can be hard to deal with:
```python
import sqlglot
sqlglot.transpile("SELECT EPOCH_MS(1618088028295)", read="duckdb", write="hive")[0]
```
```sql
'SELECT FROM_UNIXTIME(1618088028295 / POW(10, 3))'
```
SQLGlot can even translate custom time formats:
```python
import sqlglot
sqlglot.transpile("SELECT STRFTIME(x, '%y-%-m-%S')", read="duckdb", write="hive")[0]
```
```sql
"SELECT DATE_FORMAT(x, 'yy-M-ss')"
```
Identifier delimiters and data types can be translated as well:
```python
import sqlglot
# Spark SQL requires backticks (`) for delimited identifiers and uses `FLOAT` over `REAL`
sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""
# Translates the query into Spark SQL, formats it, and delimits all of its identifiers
print(sqlglot.transpile(sql, write="spark", identify=True, pretty=True)[0])
```
```sql
WITH `baz` AS (
SELECT
`a`,
`c`
FROM `foo`
WHERE
`a` = 1
)
SELECT
`f`.`a`,
`b`.`b`,
`baz`.`c`,
CAST(`b`.`a` AS FLOAT) AS `d`
FROM `foo` AS `f`
JOIN `bar` AS `b`
ON `f`.`a` = `b`.`a`
LEFT JOIN `baz`
ON `f`.`a` = `baz`.`a`
```
Comments are also preserved on a best-effort basis:
```python
sql = """
/* multi
line
comment
*/
SELECT
tbl.cola /* comment 1 */ + tbl.colb /* comment 2 */,
CAST(x AS SIGNED), # comment 3
y -- comment 4
FROM
bar /* comment 5 */,
tbl # comment 6
"""
# Note: MySQL-specific comments (`#`) are converted into standard syntax
print(sqlglot.transpile(sql, read='mysql', pretty=True)[0])
```
```sql
/* multi
line
comment
*/
SELECT
tbl.cola /* comment 1 */ + tbl.colb /* comment 2 */,
CAST(x AS INT), /* comment 3 */
y /* comment 4 */
FROM bar /* comment 5 */, tbl /* comment 6 */
```
### Metadata
You can explore SQL with expression helpers to do things like find columns and tables in a query:
```python
from sqlglot import parse_one, exp
# print all column references (a and b)
for column in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Column):
print(column.alias_or_name)
# find all projections in select statements (a and c)
for select in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Select):
for projection in select.expressions:
print(projection.alias_or_name)
# find all tables (x, y, z)
for table in parse_one("SELECT * FROM x JOIN y JOIN z").find_all(exp.Table):
print(table.name)
```
Read the [ast primer](https://github.com/tobymao/sqlglot/blob/main/posts/ast_primer.md) to learn more about SQLGlot's internals.
### Parser Errors
When the parser detects an error in the syntax, it raises a `ParseError`:
```python
import sqlglot
sqlglot.transpile("SELECT foo FROM (SELECT baz FROM t")
```
```
sqlglot.errors.ParseError: Expecting ). Line 1, Col: 34.
SELECT foo FROM (SELECT baz FROM t
~
```
Structured syntax errors are accessible for programmatic use:
```python
import sqlglot.errors
try:
sqlglot.transpile("SELECT foo FROM (SELECT baz FROM t")
except sqlglot.errors.ParseError as e:
print(e.errors)
```
```python
[{
'description': 'Expecting )',
'line': 1,
'col': 34,
'start_context': 'SELECT foo FROM (SELECT baz FROM ',
'highlight': 't',
'end_context': '',
'into_expression': None
}]
```
### Unsupported Errors
It may not be possible to translate some queries between certain dialects. For these cases, SQLGlot may emit a warning and will proceed to do a best-effort translation by default:
```python
import sqlglot
sqlglot.transpile("SELECT APPROX_DISTINCT(a, 0.1) FROM foo", read="presto", write="hive")
```
```sql
APPROX_COUNT_DISTINCT does not support accuracy
'SELECT APPROX_COUNT_DISTINCT(a) FROM foo'
```
This behavior can be changed by setting the [`unsupported_level`](https://github.com/tobymao/sqlglot/blob/b0e8dc96ba179edb1776647b5bde4e704238b44d/sqlglot/errors.py#L9) attribute. For example, we can set it to either `RAISE` or `IMMEDIATE` to ensure an exception is raised instead:
```python
import sqlglot
sqlglot.transpile("SELECT APPROX_DISTINCT(a, 0.1) FROM foo", read="presto", write="hive", unsupported_level=sqlglot.ErrorLevel.RAISE)
```
```
sqlglot.errors.UnsupportedError: APPROX_COUNT_DISTINCT does not support accuracy
```
There are queries that require additional information to be accurately transpiled, such as the schemas of the tables referenced in them. This is because certain transformations are type-sensitive, meaning that type inference is needed in order to understand their semantics. Even though the `qualify` and `annotate_types` optimizer [rules](https://github.com/tobymao/sqlglot/tree/main/sqlglot/optimizer) can help with this, they are not used by default because they add significant overhead and complexity.
Transpilation is generally a hard problem, so SQLGlot employs an "incremental" approach to solving it. This means that there may be dialect pairs that currently lack support for some inputs, but this is expected to improve over time. We highly appreciate well-documented and tested issues or PRs, so feel free to [reach out](#get-in-touch) if you need guidance!
### Build and Modify SQL
SQLGlot supports incrementally building SQL expressions:
```python
from sqlglot import select, condition
where = condition("x=1").and_("y=1")
select("*").from_("y").where(where).sql()
```
```sql
'SELECT * FROM y WHERE x = 1 AND y = 1'
```
It's possible to modify a parsed tree:
```python
from sqlglot import parse_one
parse_one("SELECT x FROM y").from_("z").sql()
```
```sql
'SELECT x FROM z'
```
Parsed expressions can also be transformed recursively by applying a mapping function to each node in the tree:
```python
from sqlglot import exp, parse_one
expression_tree = parse_one("SELECT a FROM x")
def transformer(node):
if isinstance(node, exp.Column) and node.name == "a":
return parse_one("FUN(a)")
return node
transformed_tree = expression_tree.transform(transformer)
transformed_tree.sql()
```
```sql
'SELECT FUN(a) FROM x'
```
### SQL Optimizer
SQLGlot can rewrite queries into an "optimized" form. It performs a variety of [techniques](https://github.com/tobymao/sqlglot/blob/main/sqlglot/optimizer/optimizer.py) to create a new canonical AST. This AST can be used to standardize queries or provide the foundations for implementing an actual engine. For example:
```python
import sqlglot
from sqlglot.optimizer import optimize
print(
optimize(
sqlglot.parse_one("""
SELECT A OR (B OR (C AND D))
FROM x
WHERE Z = date '2021-01-01' + INTERVAL '1' month OR 1 = 0
"""),
schema={"x": {"A": "INT", "B": "INT", "C": "INT", "D": "INT", "Z": "STRING"}}
).sql(pretty=True)
)
```
```sql
SELECT
(
"x"."a" <> 0 OR "x"."b" <> 0 OR "x"."c" <> 0
)
AND (
"x"."a" <> 0 OR "x"."b" <> 0 OR "x"."d" <> 0
) AS "_col_0"
FROM "x" AS "x"
WHERE
CAST("x"."z" AS DATE) = CAST('2021-02-01' AS DATE)
```
### AST Introspection
You can see the AST version of the parsed SQL by calling `repr`:
```python
from sqlglot import parse_one
print(repr(parse_one("SELECT a + 1 AS z")))
```
```python
Select(
expressions=[
Alias(
this=Add(
this=Column(
this=Identifier(this=a, quoted=False)),
expression=Literal(this=1, is_string=False)),
alias=Identifier(this=z, quoted=False))])
```
### AST Diff
SQLGlot can calculate the semantic difference between two expressions and output changes in a form of a sequence of actions needed to transform a source expression into a target one:
```python
from sqlglot import diff, parse_one
diff(parse_one("SELECT a + b, c, d"), parse_one("SELECT c, a - b, d"))
```
```python
[
Remove(expression=Add(
this=Column(
this=Identifier(this=a, quoted=False)),
expression=Column(
this=Identifier(this=b, quoted=False)))),
Insert(expression=Sub(
this=Column(
this=Identifier(this=a, quoted=False)),
expression=Column(
this=Identifier(this=b, quoted=False)))),
Keep(
source=Column(this=Identifier(this=a, quoted=False)),
target=Column(this=Identifier(this=a, quoted=False))),
...
]
```
See also: [Semantic Diff for SQL](https://github.com/tobymao/sqlglot/blob/main/posts/sql_diff.md).
### Custom Dialects
[Dialects](https://github.com/tobymao/sqlglot/tree/main/sqlglot/dialects) can be added by subclassing `Dialect`:
```python
from sqlglot import exp
from sqlglot.dialects.dialect import Dialect
from sqlglot.generator import Generator
from sqlglot.tokens import Tokenizer, TokenType
class Custom(Dialect):
class Tokenizer(Tokenizer):
QUOTES = ["'", '"']
IDENTIFIERS = ["`"]
KEYWORDS = {
**Tokenizer.KEYWORDS,
"INT64": TokenType.BIGINT,
"FLOAT64": TokenType.DOUBLE,
}
class Generator(Generator):
TRANSFORMS = {exp.Array: lambda self, e: f"[{self.expressions(e)}]"}
TYPE_MAPPING = {
exp.DataType.Type.TINYINT: "INT64",
exp.DataType.Type.SMALLINT: "INT64",
exp.DataType.Type.INT: "INT64",
exp.DataType.Type.BIGINT: "INT64",
exp.DataType.Type.DECIMAL: "NUMERIC",
exp.DataType.Type.FLOAT: "FLOAT64",
exp.DataType.Type.DOUBLE: "FLOAT64",
exp.DataType.Type.BOOLEAN: "BOOL",
exp.DataType.Type.TEXT: "STRING",
}
print(Dialect["custom"])
```
```
<class '__main__.Custom'>
```
### SQL Execution
SQLGlot is able to interpret SQL queries, where the tables are represented as Python dictionaries. The engine is not supposed to be fast, but it can be useful for unit testing and running SQL natively across Python objects. Additionally, the foundation can be easily integrated with fast compute kernels, such as [Arrow](https://arrow.apache.org/docs/index.html) and [Pandas](https://pandas.pydata.org/).
The example below showcases the execution of a query that involves aggregations and joins:
```python
from sqlglot.executor import execute
tables = {
"sushi": [
{"id": 1, "price": 1.0},
{"id": 2, "price": 2.0},
{"id": 3, "price": 3.0},
],
"order_items": [
{"sushi_id": 1, "order_id": 1},
{"sushi_id": 1, "order_id": 1},
{"sushi_id": 2, "order_id": 1},
{"sushi_id": 3, "order_id": 2},
],
"orders": [
{"id": 1, "user_id": 1},
{"id": 2, "user_id": 2},
],
}
execute(
"""
SELECT
o.user_id,
SUM(s.price) AS price
FROM orders o
JOIN order_items i
ON o.id = i.order_id
JOIN sushi s
ON i.sushi_id = s.id
GROUP BY o.user_id
""",
tables=tables
)
```
```python
user_id price
1 4.0
2 3.0
```
See also: [Writing a Python SQL engine from scratch](https://github.com/tobymao/sqlglot/blob/main/posts/python_sql_engine.md).
## Used By
* [SQLMesh](https://github.com/TobikoData/sqlmesh)
* [Apache Superset](https://github.com/apache/superset)
* [Dagster](https://github.com/dagster-io/dagster)
* [Fugue](https://github.com/fugue-project/fugue)
* [Ibis](https://github.com/ibis-project/ibis)
* [dlt](https://github.com/dlt-hub/dlt)
* [mysql-mimic](https://github.com/kelsin/mysql-mimic)
* [Querybook](https://github.com/pinterest/querybook)
* [Quokka](https://github.com/marsupialtail/quokka)
* [Splink](https://github.com/moj-analytical-services/splink)
* [SQLFrame](https://github.com/eakmanrq/sqlframe)
## Documentation
SQLGlot uses [pdoc](https://pdoc.dev/) to serve its API documentation.
A hosted version is on the [SQLGlot website](https://sqlglot.com/), or you can build locally with:
```
make docs-serve
```
## Run Tests and Lint
```
make style # Only linter checks
make unit # Only unit tests (or unit-rs, to use the Rust tokenizer)
make test # Unit and integration tests (or test-rs, to use the Rust tokenizer)
make check # Full test suite & linter checks
```
## Benchmarks
[Benchmarks](https://github.com/tobymao/sqlglot/blob/main/benchmarks/bench.py) run on Python 3.10.12 in seconds.
| Query | sqlglot | sqlglotrs | sqlfluff | sqltree | sqlparse | moz_sql_parser | sqloxide |
| --------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- |
| tpch | 0.00944 (1.0) | 0.00590 (0.625) | 0.32116 (33.98) | 0.00693 (0.734) | 0.02858 (3.025) | 0.03337 (3.532) | 0.00073 (0.077) |
| short | 0.00065 (1.0) | 0.00044 (0.687) | 0.03511 (53.82) | 0.00049 (0.759) | 0.00163 (2.506) | 0.00234 (3.601) | 0.00005 (0.073) |
| long | 0.00889 (1.0) | 0.00572 (0.643) | 0.36982 (41.56) | 0.00614 (0.690) | 0.02530 (2.844) | 0.02931 (3.294) | 0.00059 (0.066) |
| crazy | 0.02918 (1.0) | 0.01991 (0.682) | 1.88695 (64.66) | 0.02003 (0.686) | 7.46894 (255.9) | 0.64994 (22.27) | 0.00327 (0.112) |
```
make bench # Run parsing benchmark
make bench-optimize # Run optimization benchmark
```
## Optional Dependencies
SQLGlot uses [dateutil](https://github.com/dateutil/dateutil) to simplify literal timedelta expressions. The optimizer will not simplify expressions like the following if the module cannot be found:
```sql
x + interval '1' month
```
## Supported Dialects
| Dialect | Support Level |
|---------|---------------|
| Athena | Official |
| BigQuery | Official |
| ClickHouse | Official |
| Databricks | Official |
| Doris | Community |
| Dremio | Community |
| Drill | Community |
| Druid | Community |
| DuckDB | Official |
| Exasol | Community |
| Fabric | Community |
| Hive | Official |
| Materialize | Community |
| MySQL | Official |
| Oracle | Official |
| Postgres | Official |
| Presto | Official |
| PRQL | Community |
| Redshift | Official |
| RisingWave | Community |
| SingleStore | Community |
| Snowflake | Official |
| Solr | Community |
| Spark | Official |
| SQLite | Official |
| StarRocks | Official |
| Tableau | Official |
| Teradata | Community |
| Trino | Official |
| TSQL | Official |
**Official Dialects** are maintained by the core SQLGlot team with higher priority for bug fixes and feature additions.
**Community Dialects** are developed and maintained primarily through community contributions. These are fully functional but may receive lower priority for issue resolution compared to officially supported dialects. We welcome and encourage community contributions to improve these dialects.
|