1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
import struct
import math
import json
import traceback
from functools import wraps
def register_functions(conn):
"Registers these custom functions against an SQLite connection"
conn.create_function("rank_score", 1, rank_score)
conn.create_function("decode_matchinfo", 1, decode_matchinfo_str)
conn.create_function("annotate_matchinfo", 2, annotate_matchinfo)
conn.create_function("rank_bm25", 1, rank_bm25)
def wrap_sqlite_function_in_error_logger(fn):
# Because SQLite swallows exceptions inside custom functions
@wraps(fn)
def wrapper(*args, **kwargs):
try:
return fn(*args, **kwargs)
except Exception:
traceback.print_exc()
raise
return wrapper
def decode_matchinfo_str(buf):
return str(list(decode_matchinfo(buf)))
def decode_matchinfo(buf):
# buf is a bytestring of unsigned integers, each 4 bytes long
return struct.unpack("@" + ("I" * (len(buf) // 4)), buf)
def _error(m):
return {"error": m}
@wrap_sqlite_function_in_error_logger
def annotate_matchinfo(buf, format_string):
return json.dumps(_annotate_matchinfo(buf, format_string), indent=2)
def _annotate_matchinfo(buf, format_string):
# See https://www.sqlite.org/fts3.html#matchinfo for detailed specification
matchinfo = list(decode_matchinfo(buf))
if not matchinfo:
return {}
matchinfo_index = 0
p_num_phrases = None
c_num_columns = None
def _next():
nonlocal matchinfo_index
value = matchinfo[matchinfo_index]
matchinfo_index += 1
return value, matchinfo_index - 1
results = {}
for ch in format_string:
if ch == "p":
p_num_phrases, idx = _next()
results["p"] = {
"value": p_num_phrases,
"title": "Number of matchable phrases in the query",
"idx": idx,
}
elif ch == "c":
c_num_columns, idx = _next()
results["c"] = {
"value": c_num_columns,
"title": "Number of user defined columns in the FTS table",
"idx": idx,
}
elif ch == "x":
# Depends on p and c
if None in (p_num_phrases, c_num_columns):
return _error("'x' must be preceded by 'p' and 'c'")
info = []
results["x"] = {
"value": info,
"title": "Details for each phrase/column combination",
}
# 3 * c_num_columns * p_num_phrases
for phrase_index in range(p_num_phrases):
for column_index in range(c_num_columns):
hits_this_column_this_row, idx1 = _next()
hits_this_column_all_rows, idx2 = _next()
docs_with_hits, idx3 = _next()
info.append(
{
"phrase_index": phrase_index,
"column_index": column_index,
"hits_this_column_this_row": hits_this_column_this_row,
"hits_this_column_all_rows": hits_this_column_all_rows,
"docs_with_hits": docs_with_hits,
"idxs": [idx1, idx2, idx3],
}
)
elif ch == "y":
if None in (p_num_phrases, c_num_columns):
return _error("'y' must be preceded by 'p' and 'c'")
info = []
results["y"] = {
"value": info,
"title": "Usable phrase matches for each phrase/column combination",
}
for phrase_index in range(p_num_phrases):
for column_index in range(c_num_columns):
hits_for_phrase_in_col, idx = _next()
info.append(
{
"phrase_index": phrase_index,
"column_index": column_index,
"hits_for_phrase_in_col": hits_for_phrase_in_col,
"idx": idx,
}
)
elif ch == "b":
if None in (p_num_phrases, c_num_columns):
return _error("'b' must be preceded by 'p' and 'c'")
values = []
# We get back one integer for each 32 columns for each phrase
num_32_column_chunks = (c_num_columns + 31) // 32
decoded = {}
for phrase_index in range(p_num_phrases):
current_phrase_chunks = []
for _ in range(num_32_column_chunks):
v = _next()[0]
values.append(v)
current_phrase_chunks.append(v)
decoded["phrase_{}".format(phrase_index)] = "".join(
[
"{:032b}".format(unsigned_integer)[::-1]
for unsigned_integer in current_phrase_chunks
]
)
results["b"] = {
"title": "Bitfield showing which phrases occur in which columns",
"value": values,
# Each integer is a 32bit unsigned integer, least significant
# bit is column 0, then column 1, then so on
"decoded": decoded,
}
elif ch == "n":
value, idx = _next()
results["n"] = {
"value": value,
"title": "Number of rows in the FTS4 table",
"idx": idx,
}
elif ch == "a":
if c_num_columns is None:
return _error("'a' must be preceded by 'c'")
values = []
for i in range(c_num_columns):
value, idx = _next()
values.append(
{"column_index": i, "average_num_tokens": value, "idx": idx}
)
results["a"] = {
"title": "Average number of tokens in each column across the whole table",
"value": values,
}
elif ch == "l":
if c_num_columns is None:
return _error("'l' must be preceded by 'c'")
values = []
for i in range(c_num_columns):
value, idx = _next()
values.append({"column_index": i, "num_tokens": value, "idx": idx})
results["l"] = {
"title": "Number of tokens in each column of the current row of the FTS4 table",
"value": values,
}
elif ch == "s":
if c_num_columns is None:
return _error("'s' must be preceded by 'c'")
values = []
for i in range(c_num_columns):
value, idx = _next()
values.append(
{
"column_index": i,
"length_phrase_subsequence_match": value,
"idx": idx,
}
)
results["s"] = {
"title": "Length of longest subsequence of phrase matching each column",
"value": values,
}
return results
@wrap_sqlite_function_in_error_logger
def rank_score(raw_matchinfo):
# Score using matchinfo called w/default args 'pcx' - based on example rank
# function http://sqlite.org/fts3.html#appendix_a
# The overall relevancy returned is the sum of the relevancies of each
# column value in the FTS table. The relevancy of a column value is the
# sum of the following for each reportable phrase in the FTS query:
# (<hit count > / <global hit count>)
if not raw_matchinfo:
return None
matchinfo = _annotate_matchinfo(raw_matchinfo, "pcx")
score = 0.0
x_phrase_column_details = matchinfo["x"]["value"]
for details in x_phrase_column_details:
hits_this_column_this_row = details["hits_this_column_this_row"]
hits_this_column_all_rows = details["hits_this_column_all_rows"]
if hits_this_column_this_row > 0:
score += float(hits_this_column_this_row) / hits_this_column_all_rows
return -score
@wrap_sqlite_function_in_error_logger
def rank_bm25(raw_match_info):
"Must be called with output of matchinfo 'pcnalx'"
if not raw_match_info:
return None
match_info = _annotate_matchinfo(raw_match_info, "pcnalx")
# How much should multiple matches in the same document increase the score?
k = 1.2
# How much should document length affect the score? (shorter docs = higher score)
b = 0.75
score = 0.0
phrase_count = match_info["p"]["value"]
column_count = match_info["c"]["value"]
total_row_count = match_info["n"]["value"]
for phrase_index in range(phrase_count):
for column_index in range(column_count):
average_num_tokens = match_info["a"]["value"][column_index][
"average_num_tokens"
]
num_tokens = match_info["l"]["value"][column_index]["num_tokens"]
if average_num_tokens == 0:
d = 0
else:
d = 1 - b + (b * (float(num_tokens) / float(average_num_tokens)))
phrase_column_x = [
v
for v in match_info["x"]["value"]
if v["column_index"] == column_index
and v["phrase_index"] == phrase_index
][0]
term_frequency = float(phrase_column_x["hits_this_column_this_row"])
docs_with_hits = float(phrase_column_x["docs_with_hits"])
# idf = inverse document frequency: is this term rare or common
# across our entire corpus?
idf = max(
math.log(
(total_row_count - docs_with_hits + 0.5) / (docs_with_hits + 0.5)
),
0,
)
denom = term_frequency + (k * d)
if denom == 0:
rhs = 0
else:
rhs = (term_frequency * (k + 1)) / denom
score += idf * rhs
return -score
|