1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  
     | 
    
      # sqlite-utils
[](https://pypi.org/project/sqlite-utils/)
[](https://sqlite-utils.datasette.io/en/stable/changelog.html)
[](https://pypi.org/project/sqlite-utils/)
[](https://github.com/simonw/sqlite-utils/actions?query=workflow%3ATest)
[](http://sqlite-utils.datasette.io/en/stable/?badge=stable)
[](https://codecov.io/gh/simonw/sqlite-utils)
[](https://github.com/simonw/sqlite-utils/blob/main/LICENSE)
[](https://discord.gg/Ass7bCAMDw)
Python CLI utility and library for manipulating SQLite databases.
## Some feature highlights
- [Pipe JSON](https://sqlite-utils.datasette.io/en/stable/cli.html#inserting-json-data) (or [CSV or TSV](https://sqlite-utils.datasette.io/en/stable/cli.html#inserting-csv-or-tsv-data)) directly into a new SQLite database file, automatically creating a table with the appropriate schema
- [Run in-memory SQL queries](https://sqlite-utils.datasette.io/en/stable/cli.html#querying-data-directly-using-an-in-memory-database), including joins, directly against data in CSV, TSV or JSON files and view the results
- [Configure SQLite full-text search](https://sqlite-utils.datasette.io/en/stable/cli.html#configuring-full-text-search) against your database tables and run search queries against them, ordered by relevance
- Run [transformations against your tables](https://sqlite-utils.datasette.io/en/stable/cli.html#transforming-tables) to make schema changes that SQLite `ALTER TABLE` does not directly support, such as changing the type of a column
- [Extract columns](https://sqlite-utils.datasette.io/en/stable/cli.html#extracting-columns-into-a-separate-table) into separate tables to better normalize your existing data
- [Install plugins](https://sqlite-utils.datasette.io/en/stable/plugins.html) to add custom SQL functions and additional features
Read more on my blog, in this series of posts on [New features in sqlite-utils](https://simonwillison.net/series/sqlite-utils-features/) and other [entries tagged sqliteutils](https://simonwillison.net/tags/sqliteutils/).
## Installation
    pip install sqlite-utils
Or if you use [Homebrew](https://brew.sh/) for macOS:
    brew install sqlite-utils
## Using as a CLI tool
Now you can do things with the CLI utility like this:
    $ sqlite-utils memory dogs.csv "select * from t"
    [{"id": 1, "age": 4, "name": "Cleo"},
     {"id": 2, "age": 2, "name": "Pancakes"}]
    $ sqlite-utils insert dogs.db dogs dogs.csv --csv
    [####################################]  100%
    $ sqlite-utils tables dogs.db --counts
    [{"table": "dogs", "count": 2}]
    $ sqlite-utils dogs.db "select id, name from dogs"
    [{"id": 1, "name": "Cleo"},
     {"id": 2, "name": "Pancakes"}]
    $ sqlite-utils dogs.db "select * from dogs" --csv
    id,age,name
    1,4,Cleo
    2,2,Pancakes
    $ sqlite-utils dogs.db "select * from dogs" --table
      id    age  name
    ----  -----  --------
       1      4  Cleo
       2      2  Pancakes
You can import JSON data into a new database table like this:
    $ curl https://api.github.com/repos/simonw/sqlite-utils/releases \
        | sqlite-utils insert releases.db releases - --pk id
Or for data in a CSV file:
    $ sqlite-utils insert dogs.db dogs dogs.csv --csv
`sqlite-utils memory` lets you import CSV or JSON data into an in-memory database and run SQL queries against it in a single command:
    $ cat dogs.csv | sqlite-utils memory - "select name, age from stdin"
See the [full CLI documentation](https://sqlite-utils.datasette.io/en/stable/cli.html) for comprehensive coverage of many more commands.
## Using as a library
You can also `import sqlite_utils` and use it as a Python library like this:
```python
import sqlite_utils
db = sqlite_utils.Database("demo_database.db")
# This line creates a "dogs" table if one does not already exist:
db["dogs"].insert_all([
    {"id": 1, "age": 4, "name": "Cleo"},
    {"id": 2, "age": 2, "name": "Pancakes"}
], pk="id")
```
Check out the [full library documentation](https://sqlite-utils.datasette.io/en/stable/python-api.html) for everything else you can do with the Python library.
## Related projects
* [Datasette](https://datasette.io/): A tool for exploring and publishing data
* [csvs-to-sqlite](https://github.com/simonw/csvs-to-sqlite): Convert CSV files into a SQLite database
* [db-to-sqlite](https://github.com/simonw/db-to-sqlite): CLI tool for exporting a MySQL or PostgreSQL database as a SQLite file
* [dogsheep](https://dogsheep.github.io/): A family of tools for personal analytics, built on top of `sqlite-utils`
 
     |