File: utils.py

package info (click to toggle)
sqlite-utils 3.38-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,544 kB
  • sloc: python: 14,245; makefile: 33; ansic: 26; javascript: 21; sh: 5
file content (545 lines) | stat: -rw-r--r-- 17,099 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import base64
import contextlib
import csv
import enum
import hashlib
import io
import itertools
import json
import os
import sys
from . import recipes
from typing import Dict, cast, BinaryIO, Iterable, Optional, Tuple, Type

import click

try:
    import pysqlite3 as sqlite3  # noqa: F401
    from pysqlite3 import dbapi2  # noqa: F401

    OperationalError = dbapi2.OperationalError
except ImportError:
    try:
        import sqlean as sqlite3  # noqa: F401
        from sqlean import dbapi2  # noqa: F401

        OperationalError = dbapi2.OperationalError
    except ImportError:
        import sqlite3  # noqa: F401
        from sqlite3 import dbapi2  # noqa: F401

        OperationalError = dbapi2.OperationalError


SPATIALITE_PATHS = (
    "/usr/lib/x86_64-linux-gnu/mod_spatialite.so",
    "/usr/lib/aarch64-linux-gnu/mod_spatialite.so",
    "/usr/local/lib/mod_spatialite.dylib",
    "/usr/local/lib/mod_spatialite.so",
    "/opt/homebrew/lib/mod_spatialite.dylib",
)

# Mainly so we can restore it if needed in the tests:
ORIGINAL_CSV_FIELD_SIZE_LIMIT = csv.field_size_limit()


def maximize_csv_field_size_limit():
    """
    Increase the CSV field size limit to the maximum possible.
    """
    # https://stackoverflow.com/a/15063941
    field_size_limit = sys.maxsize

    while True:
        try:
            csv.field_size_limit(field_size_limit)
            break
        except OverflowError:
            field_size_limit = int(field_size_limit / 10)


def find_spatialite() -> Optional[str]:
    """
    The ``find_spatialite()`` function searches for the `SpatiaLite <https://www.gaia-gis.it/fossil/libspatialite/index>`__
    SQLite extension in some common places. It returns a string path to the location, or ``None`` if SpatiaLite was not found.

    You can use it in code like this:

    .. code-block:: python

        from sqlite_utils import Database
        from sqlite_utils.utils import find_spatialite

        db = Database("mydb.db")
        spatialite = find_spatialite()
        if spatialite:
            db.conn.enable_load_extension(True)
            db.conn.load_extension(spatialite)

        # or use with db.init_spatialite like this
        db.init_spatialite(find_spatialite())

    """
    for path in SPATIALITE_PATHS:
        if os.path.exists(path):
            return path
    return None


def suggest_column_types(records):
    all_column_types = {}
    for record in records:
        for key, value in record.items():
            all_column_types.setdefault(key, set()).add(type(value))
    return types_for_column_types(all_column_types)


def types_for_column_types(all_column_types):
    column_types = {}
    for key, types in all_column_types.items():
        # Ignore null values if at least one other type present:
        if len(types) > 1:
            types.discard(None.__class__)
        if {None.__class__} == types:
            t = str
        elif len(types) == 1:
            t = list(types)[0]
            # But if it's a subclass of list / tuple / dict, use str
            # instead as we will be storing it as JSON in the table
            for superclass in (list, tuple, dict):
                if issubclass(t, superclass):
                    t = str
        elif {int, bool}.issuperset(types):
            t = int
        elif {int, float, bool}.issuperset(types):
            t = float
        elif {bytes, str}.issuperset(types):
            t = bytes
        else:
            t = str
        column_types[key] = t
    return column_types


def column_affinity(column_type):
    # Implementation of SQLite affinity rules from
    # https://www.sqlite.org/datatype3.html#determination_of_column_affinity
    assert isinstance(column_type, str)
    column_type = column_type.upper().strip()
    if column_type == "":
        return str  # We differ from spec, which says it should be BLOB
    if "INT" in column_type:
        return int
    if "CHAR" in column_type or "CLOB" in column_type or "TEXT" in column_type:
        return str
    if "BLOB" in column_type:
        return bytes
    if "REAL" in column_type or "FLOA" in column_type or "DOUB" in column_type:
        return float
    # Default is 'NUMERIC', which we currently also treat as float
    return float


def decode_base64_values(doc):
    # Looks for '{"$base64": true..., "encoded": ...}' values and decodes them
    to_fix = [
        k
        for k in doc
        if isinstance(doc[k], dict)
        and doc[k].get("$base64") is True
        and "encoded" in doc[k]
    ]
    if not to_fix:
        return doc
    return dict(doc, **{k: base64.b64decode(doc[k]["encoded"]) for k in to_fix})


class UpdateWrapper:
    def __init__(self, wrapped, update):
        self._wrapped = wrapped
        self._update = update

    def __iter__(self):
        for line in self._wrapped:
            self._update(len(line))
            yield line

    def read(self, size=-1):
        data = self._wrapped.read(size)
        self._update(len(data))
        return data


@contextlib.contextmanager
def file_progress(file, silent=False, **kwargs):
    if silent:
        yield file
        return
    # file.fileno() throws an exception in our test suite
    try:
        fileno = file.fileno()
    except io.UnsupportedOperation:
        yield file
        return
    if fileno == 0:  # 0 means stdin
        yield file
    else:
        file_length = os.path.getsize(file.name)
        with click.progressbar(length=file_length, **kwargs) as bar:
            yield UpdateWrapper(file, bar.update)


class Format(enum.Enum):
    CSV = 1
    TSV = 2
    JSON = 3
    NL = 4


class RowsFromFileError(Exception):
    pass


class RowsFromFileBadJSON(RowsFromFileError):
    pass


class RowError(Exception):
    pass


def _extra_key_strategy(
    reader: Iterable[dict],
    ignore_extras: Optional[bool] = False,
    extras_key: Optional[str] = None,
) -> Iterable[dict]:
    # Logic for handling CSV rows with more values than there are headings
    for row in reader:
        # DictReader adds a 'None' key with extra row values
        if None not in row:
            yield row
        elif ignore_extras:
            # ignoring row.pop(none) because of this issue:
            # https://github.com/simonw/sqlite-utils/issues/440#issuecomment-1155358637
            row.pop(None)  # type: ignore
            yield row
        elif not extras_key:
            extras = row.pop(None)  # type: ignore
            raise RowError(
                "Row {} contained these extra values: {}".format(row, extras)
            )
        else:
            row[extras_key] = row.pop(None)  # type: ignore
            yield row


def rows_from_file(
    fp: BinaryIO,
    format: Optional[Format] = None,
    dialect: Optional[Type[csv.Dialect]] = None,
    encoding: Optional[str] = None,
    ignore_extras: Optional[bool] = False,
    extras_key: Optional[str] = None,
) -> Tuple[Iterable[dict], Format]:
    """
    Load a sequence of dictionaries from a file-like object containing one of four different formats.

    .. code-block:: python

        from sqlite_utils.utils import rows_from_file
        import io

        rows, format = rows_from_file(io.StringIO("id,name\\n1,Cleo")))
        print(list(rows), format)
        # Outputs [{'id': '1', 'name': 'Cleo'}] Format.CSV

    This defaults to attempting to automatically detect the format of the data, or you can pass in an
    explicit format using the format= option.

    Returns a tuple of ``(rows_generator, format_used)`` where ``rows_generator`` can be iterated over
    to return dictionaries, while ``format_used`` is a value from the ``sqlite_utils.utils.Format`` enum:

    .. code-block:: python

        class Format(enum.Enum):
            CSV = 1
            TSV = 2
            JSON = 3
            NL = 4

    If a CSV or TSV file includes rows with more fields than are declared in the header a
    ``sqlite_utils.utils.RowError`` exception will be raised when you loop over the generator.

    You can instead ignore the extra data by passing ``ignore_extras=True``.

    Or pass ``extras_key="rest"`` to put those additional values in a list in a key called ``rest``.

    :param fp: a file-like object containing binary data
    :param format: the format to use - omit this to detect the format
    :param dialect: the CSV dialect to use - omit this to detect the dialect
    :param encoding: the character encoding to use when reading CSV/TSV data
    :param ignore_extras: ignore any extra fields on rows
    :param extras_key: put any extra fields in a list with this key
    """
    if ignore_extras and extras_key:
        raise ValueError("Cannot use ignore_extras= and extras_key= together")
    if format == Format.JSON:
        decoded = json.load(fp)
        if isinstance(decoded, dict):
            decoded = [decoded]
        if not isinstance(decoded, list):
            raise RowsFromFileBadJSON("JSON must be a list or a dictionary")
        return decoded, Format.JSON
    elif format == Format.NL:
        return (json.loads(line) for line in fp if line.strip()), Format.NL
    elif format == Format.CSV:
        use_encoding: str = encoding or "utf-8-sig"
        decoded_fp = io.TextIOWrapper(fp, encoding=use_encoding)
        if dialect is not None:
            reader = csv.DictReader(decoded_fp, dialect=dialect)
        else:
            reader = csv.DictReader(decoded_fp)
        return _extra_key_strategy(reader, ignore_extras, extras_key), Format.CSV
    elif format == Format.TSV:
        rows = rows_from_file(
            fp, format=Format.CSV, dialect=csv.excel_tab, encoding=encoding
        )[0]
        return _extra_key_strategy(rows, ignore_extras, extras_key), Format.TSV
    elif format is None:
        # Detect the format, then call this recursively
        buffered = io.BufferedReader(cast(io.RawIOBase, fp), buffer_size=4096)
        try:
            first_bytes = buffered.peek(2048).strip()
        except AttributeError:
            # Likely the user passed a TextIO when this needs a BytesIO
            raise TypeError(
                "rows_from_file() requires a file-like object that supports peek(), such as io.BytesIO"
            )
        if first_bytes.startswith(b"[") or first_bytes.startswith(b"{"):
            # TODO: Detect newline-JSON
            return rows_from_file(buffered, format=Format.JSON)
        else:
            dialect = csv.Sniffer().sniff(
                first_bytes.decode(encoding or "utf-8-sig", "ignore")
            )
            rows, _ = rows_from_file(
                buffered, format=Format.CSV, dialect=dialect, encoding=encoding
            )
            # Make sure we return the format we detected
            format = Format.TSV if dialect.delimiter == "\t" else Format.CSV
            return _extra_key_strategy(rows, ignore_extras, extras_key), format
    else:
        raise RowsFromFileError("Bad format")


class TypeTracker:
    """
    Wrap an iterator of dictionaries and keep track of which SQLite column
    types are the most likely fit for each of their keys.

    Example usage:

    .. code-block:: python

        from sqlite_utils.utils import TypeTracker
        import sqlite_utils

        db = sqlite_utils.Database(memory=True)
        tracker = TypeTracker()
        rows = [{"id": "1", "name": "Cleo", "id": "2", "name": "Cardi"}]
        db["creatures"].insert_all(tracker.wrap(rows))
        print(tracker.types)
        # Outputs {'id': 'integer', 'name': 'text'}
        db["creatures"].transform(types=tracker.types)
    """

    def __init__(self):
        self.trackers = {}

    def wrap(self, iterator: Iterable[dict]) -> Iterable[dict]:
        """
        Use this to loop through an existing iterator, tracking the column types
        as part of the iteration.

        :param iterator: The iterator to wrap
        """
        for row in iterator:
            for key, value in row.items():
                tracker = self.trackers.setdefault(key, ValueTracker())
                tracker.evaluate(value)
            yield row

    @property
    def types(self) -> Dict[str, str]:
        """
        A dictionary mapping column names to their detected types. This can be passed
        to the ``db[table_name].transform(types=tracker.types)`` method.
        """
        return {key: tracker.guessed_type for key, tracker in self.trackers.items()}


class ValueTracker:
    def __init__(self):
        self.couldbe = {key: getattr(self, "test_" + key) for key in self.get_tests()}

    @classmethod
    def get_tests(cls):
        return [
            key.split("test_")[-1]
            for key in cls.__dict__.keys()
            if key.startswith("test_")
        ]

    def test_integer(self, value):
        try:
            int(value)
            return True
        except (ValueError, TypeError):
            return False

    def test_float(self, value):
        try:
            float(value)
            return True
        except (ValueError, TypeError):
            return False

    def __repr__(self) -> str:
        return self.guessed_type + ": possibilities = " + repr(self.couldbe)

    @property
    def guessed_type(self):
        options = set(self.couldbe.keys())
        # Return based on precedence
        for key in self.get_tests():
            if key in options:
                return key
        return "text"

    def evaluate(self, value):
        if not value or not self.couldbe:
            return
        not_these = []
        for name, test in self.couldbe.items():
            if not test(value):
                not_these.append(name)
        for key in not_these:
            del self.couldbe[key]


class NullProgressBar:
    def __init__(self, *args):
        self.args = args

    def __iter__(self):
        yield from self.args[0]

    def update(self, value):
        pass


@contextlib.contextmanager
def progressbar(*args, **kwargs):
    silent = kwargs.pop("silent")
    if silent:
        yield NullProgressBar(*args)
    else:
        with click.progressbar(*args, **kwargs) as bar:
            yield bar


def _compile_code(code, imports, variable="value"):
    globals = {"r": recipes, "recipes": recipes}
    # If user defined a convert() function, return that
    try:
        exec(code, globals)
        return globals["convert"]
    except (AttributeError, SyntaxError, NameError, KeyError, TypeError):
        pass

    # Try compiling their code as a function instead
    body_variants = [code]
    # If single line and no 'return', try adding the return
    if "\n" not in code and not code.strip().startswith("return "):
        body_variants.insert(0, "return {}".format(code))

    code_o = None
    for variant in body_variants:
        new_code = ["def fn({}):".format(variable)]
        for line in variant.split("\n"):
            new_code.append("    {}".format(line))
        try:
            code_o = compile("\n".join(new_code), "<string>", "exec")
            break
        except SyntaxError:
            # Try another variant, e.g. for 'return row["column"] = 1'
            continue

    if code_o is None:
        raise SyntaxError("Could not compile code")

    for import_ in imports:
        globals[import_.split(".")[0]] = __import__(import_)
    exec(code_o, globals)
    return globals["fn"]


def chunks(sequence: Iterable, size: int) -> Iterable[Iterable]:
    """
    Iterate over chunks of the sequence of the given size.

    :param sequence: Any Python iterator
    :param size: The size of each chunk
    """
    iterator = iter(sequence)
    for item in iterator:
        yield itertools.chain([item], itertools.islice(iterator, size - 1))


def hash_record(record: Dict, keys: Optional[Iterable[str]] = None):
    """
    ``record`` should be a Python dictionary. Returns a sha1 hash of the
    keys and values in that record.

    If ``keys=`` is provided, uses just those keys to generate the hash.

    Example usage::

        from sqlite_utils.utils import hash_record

        hashed = hash_record({"name": "Cleo", "twitter": "CleoPaws"})
        # Or with the keys= option:
        hashed = hash_record(
            {"name": "Cleo", "twitter": "CleoPaws", "age": 7},
            keys=("name", "twitter")
        )

    :param record: Record to generate a hash for
    :param keys: Subset of keys to use for that hash
    """
    to_hash = record
    if keys is not None:
        to_hash = {key: record[key] for key in keys}
    return hashlib.sha1(
        json.dumps(to_hash, separators=(",", ":"), sort_keys=True, default=repr).encode(
            "utf8"
        )
    ).hexdigest()


def _flatten(d):
    for key, value in d.items():
        if isinstance(value, dict):
            for key2, value2 in _flatten(value):
                yield key + "_" + key2, value2
        else:
            yield key, value


def flatten(row: dict) -> dict:
    """
    Turn a nested dict e.g. ``{"a": {"b": 1}}`` into a flat dict: ``{"a_b": 1}``

    :param row: A Python dictionary, optionally with nested dictionaries
    """
    return dict(_flatten(row))