1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
import base64
import contextlib
import csv
import enum
import hashlib
import io
import itertools
import json
import os
import sys
from . import recipes
from typing import Dict, cast, BinaryIO, Iterable, Optional, Tuple, Type
import click
try:
import pysqlite3 as sqlite3 # noqa: F401
from pysqlite3 import dbapi2 # noqa: F401
OperationalError = dbapi2.OperationalError
except ImportError:
try:
import sqlean as sqlite3 # noqa: F401
from sqlean import dbapi2 # noqa: F401
OperationalError = dbapi2.OperationalError
except ImportError:
import sqlite3 # noqa: F401
from sqlite3 import dbapi2 # noqa: F401
OperationalError = dbapi2.OperationalError
SPATIALITE_PATHS = (
"/usr/lib/x86_64-linux-gnu/mod_spatialite.so",
"/usr/lib/aarch64-linux-gnu/mod_spatialite.so",
"/usr/local/lib/mod_spatialite.dylib",
"/usr/local/lib/mod_spatialite.so",
"/opt/homebrew/lib/mod_spatialite.dylib",
)
# Mainly so we can restore it if needed in the tests:
ORIGINAL_CSV_FIELD_SIZE_LIMIT = csv.field_size_limit()
def maximize_csv_field_size_limit():
"""
Increase the CSV field size limit to the maximum possible.
"""
# https://stackoverflow.com/a/15063941
field_size_limit = sys.maxsize
while True:
try:
csv.field_size_limit(field_size_limit)
break
except OverflowError:
field_size_limit = int(field_size_limit / 10)
def find_spatialite() -> Optional[str]:
"""
The ``find_spatialite()`` function searches for the `SpatiaLite <https://www.gaia-gis.it/fossil/libspatialite/index>`__
SQLite extension in some common places. It returns a string path to the location, or ``None`` if SpatiaLite was not found.
You can use it in code like this:
.. code-block:: python
from sqlite_utils import Database
from sqlite_utils.utils import find_spatialite
db = Database("mydb.db")
spatialite = find_spatialite()
if spatialite:
db.conn.enable_load_extension(True)
db.conn.load_extension(spatialite)
# or use with db.init_spatialite like this
db.init_spatialite(find_spatialite())
"""
for path in SPATIALITE_PATHS:
if os.path.exists(path):
return path
return None
def suggest_column_types(records):
all_column_types = {}
for record in records:
for key, value in record.items():
all_column_types.setdefault(key, set()).add(type(value))
return types_for_column_types(all_column_types)
def types_for_column_types(all_column_types):
column_types = {}
for key, types in all_column_types.items():
# Ignore null values if at least one other type present:
if len(types) > 1:
types.discard(None.__class__)
if {None.__class__} == types:
t = str
elif len(types) == 1:
t = list(types)[0]
# But if it's a subclass of list / tuple / dict, use str
# instead as we will be storing it as JSON in the table
for superclass in (list, tuple, dict):
if issubclass(t, superclass):
t = str
elif {int, bool}.issuperset(types):
t = int
elif {int, float, bool}.issuperset(types):
t = float
elif {bytes, str}.issuperset(types):
t = bytes
else:
t = str
column_types[key] = t
return column_types
def column_affinity(column_type):
# Implementation of SQLite affinity rules from
# https://www.sqlite.org/datatype3.html#determination_of_column_affinity
assert isinstance(column_type, str)
column_type = column_type.upper().strip()
if column_type == "":
return str # We differ from spec, which says it should be BLOB
if "INT" in column_type:
return int
if "CHAR" in column_type or "CLOB" in column_type or "TEXT" in column_type:
return str
if "BLOB" in column_type:
return bytes
if "REAL" in column_type or "FLOA" in column_type or "DOUB" in column_type:
return float
# Default is 'NUMERIC', which we currently also treat as float
return float
def decode_base64_values(doc):
# Looks for '{"$base64": true..., "encoded": ...}' values and decodes them
to_fix = [
k
for k in doc
if isinstance(doc[k], dict)
and doc[k].get("$base64") is True
and "encoded" in doc[k]
]
if not to_fix:
return doc
return dict(doc, **{k: base64.b64decode(doc[k]["encoded"]) for k in to_fix})
class UpdateWrapper:
def __init__(self, wrapped, update):
self._wrapped = wrapped
self._update = update
def __iter__(self):
for line in self._wrapped:
self._update(len(line))
yield line
def read(self, size=-1):
data = self._wrapped.read(size)
self._update(len(data))
return data
@contextlib.contextmanager
def file_progress(file, silent=False, **kwargs):
if silent:
yield file
return
# file.fileno() throws an exception in our test suite
try:
fileno = file.fileno()
except io.UnsupportedOperation:
yield file
return
if fileno == 0: # 0 means stdin
yield file
else:
file_length = os.path.getsize(file.name)
with click.progressbar(length=file_length, **kwargs) as bar:
yield UpdateWrapper(file, bar.update)
class Format(enum.Enum):
CSV = 1
TSV = 2
JSON = 3
NL = 4
class RowsFromFileError(Exception):
pass
class RowsFromFileBadJSON(RowsFromFileError):
pass
class RowError(Exception):
pass
def _extra_key_strategy(
reader: Iterable[dict],
ignore_extras: Optional[bool] = False,
extras_key: Optional[str] = None,
) -> Iterable[dict]:
# Logic for handling CSV rows with more values than there are headings
for row in reader:
# DictReader adds a 'None' key with extra row values
if None not in row:
yield row
elif ignore_extras:
# ignoring row.pop(none) because of this issue:
# https://github.com/simonw/sqlite-utils/issues/440#issuecomment-1155358637
row.pop(None) # type: ignore
yield row
elif not extras_key:
extras = row.pop(None) # type: ignore
raise RowError(
"Row {} contained these extra values: {}".format(row, extras)
)
else:
row[extras_key] = row.pop(None) # type: ignore
yield row
def rows_from_file(
fp: BinaryIO,
format: Optional[Format] = None,
dialect: Optional[Type[csv.Dialect]] = None,
encoding: Optional[str] = None,
ignore_extras: Optional[bool] = False,
extras_key: Optional[str] = None,
) -> Tuple[Iterable[dict], Format]:
"""
Load a sequence of dictionaries from a file-like object containing one of four different formats.
.. code-block:: python
from sqlite_utils.utils import rows_from_file
import io
rows, format = rows_from_file(io.StringIO("id,name\\n1,Cleo")))
print(list(rows), format)
# Outputs [{'id': '1', 'name': 'Cleo'}] Format.CSV
This defaults to attempting to automatically detect the format of the data, or you can pass in an
explicit format using the format= option.
Returns a tuple of ``(rows_generator, format_used)`` where ``rows_generator`` can be iterated over
to return dictionaries, while ``format_used`` is a value from the ``sqlite_utils.utils.Format`` enum:
.. code-block:: python
class Format(enum.Enum):
CSV = 1
TSV = 2
JSON = 3
NL = 4
If a CSV or TSV file includes rows with more fields than are declared in the header a
``sqlite_utils.utils.RowError`` exception will be raised when you loop over the generator.
You can instead ignore the extra data by passing ``ignore_extras=True``.
Or pass ``extras_key="rest"`` to put those additional values in a list in a key called ``rest``.
:param fp: a file-like object containing binary data
:param format: the format to use - omit this to detect the format
:param dialect: the CSV dialect to use - omit this to detect the dialect
:param encoding: the character encoding to use when reading CSV/TSV data
:param ignore_extras: ignore any extra fields on rows
:param extras_key: put any extra fields in a list with this key
"""
if ignore_extras and extras_key:
raise ValueError("Cannot use ignore_extras= and extras_key= together")
if format == Format.JSON:
decoded = json.load(fp)
if isinstance(decoded, dict):
decoded = [decoded]
if not isinstance(decoded, list):
raise RowsFromFileBadJSON("JSON must be a list or a dictionary")
return decoded, Format.JSON
elif format == Format.NL:
return (json.loads(line) for line in fp if line.strip()), Format.NL
elif format == Format.CSV:
use_encoding: str = encoding or "utf-8-sig"
decoded_fp = io.TextIOWrapper(fp, encoding=use_encoding)
if dialect is not None:
reader = csv.DictReader(decoded_fp, dialect=dialect)
else:
reader = csv.DictReader(decoded_fp)
return _extra_key_strategy(reader, ignore_extras, extras_key), Format.CSV
elif format == Format.TSV:
rows = rows_from_file(
fp, format=Format.CSV, dialect=csv.excel_tab, encoding=encoding
)[0]
return _extra_key_strategy(rows, ignore_extras, extras_key), Format.TSV
elif format is None:
# Detect the format, then call this recursively
buffered = io.BufferedReader(cast(io.RawIOBase, fp), buffer_size=4096)
try:
first_bytes = buffered.peek(2048).strip()
except AttributeError:
# Likely the user passed a TextIO when this needs a BytesIO
raise TypeError(
"rows_from_file() requires a file-like object that supports peek(), such as io.BytesIO"
)
if first_bytes.startswith(b"[") or first_bytes.startswith(b"{"):
# TODO: Detect newline-JSON
return rows_from_file(buffered, format=Format.JSON)
else:
dialect = csv.Sniffer().sniff(
first_bytes.decode(encoding or "utf-8-sig", "ignore")
)
rows, _ = rows_from_file(
buffered, format=Format.CSV, dialect=dialect, encoding=encoding
)
# Make sure we return the format we detected
format = Format.TSV if dialect.delimiter == "\t" else Format.CSV
return _extra_key_strategy(rows, ignore_extras, extras_key), format
else:
raise RowsFromFileError("Bad format")
class TypeTracker:
"""
Wrap an iterator of dictionaries and keep track of which SQLite column
types are the most likely fit for each of their keys.
Example usage:
.. code-block:: python
from sqlite_utils.utils import TypeTracker
import sqlite_utils
db = sqlite_utils.Database(memory=True)
tracker = TypeTracker()
rows = [{"id": "1", "name": "Cleo", "id": "2", "name": "Cardi"}]
db["creatures"].insert_all(tracker.wrap(rows))
print(tracker.types)
# Outputs {'id': 'integer', 'name': 'text'}
db["creatures"].transform(types=tracker.types)
"""
def __init__(self):
self.trackers = {}
def wrap(self, iterator: Iterable[dict]) -> Iterable[dict]:
"""
Use this to loop through an existing iterator, tracking the column types
as part of the iteration.
:param iterator: The iterator to wrap
"""
for row in iterator:
for key, value in row.items():
tracker = self.trackers.setdefault(key, ValueTracker())
tracker.evaluate(value)
yield row
@property
def types(self) -> Dict[str, str]:
"""
A dictionary mapping column names to their detected types. This can be passed
to the ``db[table_name].transform(types=tracker.types)`` method.
"""
return {key: tracker.guessed_type for key, tracker in self.trackers.items()}
class ValueTracker:
def __init__(self):
self.couldbe = {key: getattr(self, "test_" + key) for key in self.get_tests()}
@classmethod
def get_tests(cls):
return [
key.split("test_")[-1]
for key in cls.__dict__.keys()
if key.startswith("test_")
]
def test_integer(self, value):
try:
int(value)
return True
except (ValueError, TypeError):
return False
def test_float(self, value):
try:
float(value)
return True
except (ValueError, TypeError):
return False
def __repr__(self) -> str:
return self.guessed_type + ": possibilities = " + repr(self.couldbe)
@property
def guessed_type(self):
options = set(self.couldbe.keys())
# Return based on precedence
for key in self.get_tests():
if key in options:
return key
return "text"
def evaluate(self, value):
if not value or not self.couldbe:
return
not_these = []
for name, test in self.couldbe.items():
if not test(value):
not_these.append(name)
for key in not_these:
del self.couldbe[key]
class NullProgressBar:
def __init__(self, *args):
self.args = args
def __iter__(self):
yield from self.args[0]
def update(self, value):
pass
@contextlib.contextmanager
def progressbar(*args, **kwargs):
silent = kwargs.pop("silent")
if silent:
yield NullProgressBar(*args)
else:
with click.progressbar(*args, **kwargs) as bar:
yield bar
def _compile_code(code, imports, variable="value"):
globals = {"r": recipes, "recipes": recipes}
# If user defined a convert() function, return that
try:
exec(code, globals)
return globals["convert"]
except (AttributeError, SyntaxError, NameError, KeyError, TypeError):
pass
# Try compiling their code as a function instead
body_variants = [code]
# If single line and no 'return', try adding the return
if "\n" not in code and not code.strip().startswith("return "):
body_variants.insert(0, "return {}".format(code))
code_o = None
for variant in body_variants:
new_code = ["def fn({}):".format(variable)]
for line in variant.split("\n"):
new_code.append(" {}".format(line))
try:
code_o = compile("\n".join(new_code), "<string>", "exec")
break
except SyntaxError:
# Try another variant, e.g. for 'return row["column"] = 1'
continue
if code_o is None:
raise SyntaxError("Could not compile code")
for import_ in imports:
globals[import_.split(".")[0]] = __import__(import_)
exec(code_o, globals)
return globals["fn"]
def chunks(sequence: Iterable, size: int) -> Iterable[Iterable]:
"""
Iterate over chunks of the sequence of the given size.
:param sequence: Any Python iterator
:param size: The size of each chunk
"""
iterator = iter(sequence)
for item in iterator:
yield itertools.chain([item], itertools.islice(iterator, size - 1))
def hash_record(record: Dict, keys: Optional[Iterable[str]] = None):
"""
``record`` should be a Python dictionary. Returns a sha1 hash of the
keys and values in that record.
If ``keys=`` is provided, uses just those keys to generate the hash.
Example usage::
from sqlite_utils.utils import hash_record
hashed = hash_record({"name": "Cleo", "twitter": "CleoPaws"})
# Or with the keys= option:
hashed = hash_record(
{"name": "Cleo", "twitter": "CleoPaws", "age": 7},
keys=("name", "twitter")
)
:param record: Record to generate a hash for
:param keys: Subset of keys to use for that hash
"""
to_hash = record
if keys is not None:
to_hash = {key: record[key] for key in keys}
return hashlib.sha1(
json.dumps(to_hash, separators=(",", ":"), sort_keys=True, default=repr).encode(
"utf8"
)
).hexdigest()
def _flatten(d):
for key, value in d.items():
if isinstance(value, dict):
for key2, value2 in _flatten(value):
yield key + "_" + key2, value2
else:
yield key, value
def flatten(row: dict) -> dict:
"""
Turn a nested dict e.g. ``{"a": {"b": 1}}`` into a flat dict: ``{"a_b": 1}``
:param row: A Python dictionary, optionally with nested dictionaries
"""
return dict(_flatten(row))
|