File: datatype3.html

package info (click to toggle)
sqlite3 3.7.13-1%2Bdeb7u2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 33,340 kB
  • sloc: ansic: 128,216; sh: 9,500; tcl: 8,265; makefile: 1,216; yacc: 1,029; awk: 187
file content (772 lines) | stat: -rw-r--r-- 28,463 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html><head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>Datatypes In SQLite Version 3</title>
<style type="text/css">
body {
    margin: auto;
    font-family: Verdana, sans-serif;
    padding: 8px 1%;
}

a { color: #044a64 }
a:visited { color: #734559 }

.logo { position:absolute; margin:3px; }
.tagline {
  float:right;
  text-align:right;
  font-style:italic;
  width:300px;
  margin:12px;
  margin-top:58px;
}

.toolbar {
  text-align: center;
  line-height: 1.6em;
  margin: 0;
  padding: 0px 8px;
}
.toolbar a { color: white; text-decoration: none; padding: 6px 12px; }
.toolbar a:visited { color: white; }
.toolbar a:hover { color: #044a64; background: white; }

.content    { margin: 5%; }
.content dt { font-weight:bold; }
.content dd { margin-bottom: 25px; margin-left:20%; }
.content ul { padding:0px; padding-left: 15px; margin:0px; }

/* rounded corners */
.se  { background: url(images/se.gif) 100% 100% no-repeat #044a64}
.sw  { background: url(images/sw.gif) 0% 100% no-repeat }
.ne  { background: url(images/ne.gif) 100% 0% no-repeat }
.nw  { background: url(images/nw.gif) 0% 0% no-repeat }

/* Things for "fancyformat" documents start here. */
.fancy img+p {font-style:italic}
.fancy .codeblock i { color: darkblue; }
.fancy h1,.fancy h2,.fancy h3,.fancy h4 {font-weight:normal;color:#044a64}
.fancy h2 { margin-left: 10px }
.fancy h3 { margin-left: 20px }
.fancy h4 { margin-left: 30px }
.fancy th {white-space:nowrap;text-align:left;border-bottom:solid 1px #444}
.fancy th, .fancy td {padding: 0.2em 1ex; vertical-align:top}
.fancy #toc a        { color: darkblue ; text-decoration: none }
.fancy .todo         { color: #AA3333 ; font-style : italic }
.fancy .todo:before  { content: 'TODO:' }
.fancy p.todo        { border: solid #AA3333 1px; padding: 1ex }
.fancy img { display:block; }
.fancy :link:hover, .fancy :visited:hover { background: wheat }
.fancy p,.fancy ul,.fancy ol { margin: 1em 5ex }
.fancy li p { margin: 1em 0 }
/* End of "fancyformat" specific rules. */

</style>
  
</head>
<body>
<div><!-- container div to satisfy validator -->

<a href="index.html">
<img class="logo" src="images/sqlite370_banner.gif" alt="SQLite Logo"
 border="0"></a>
<div><!-- IE hack to prevent disappearing logo--></div>
<div class="tagline">Small. Fast. Reliable.<br>Choose any three.</div>

<table width=100% style="clear:both"><tr><td>
  <div class="se"><div class="sw"><div class="ne"><div class="nw">
  <table width=100% style="padding:0;margin:0;cell-spacing:0"><tr>
  <td width=100%>
  <div class="toolbar">
    <a href="about.html">About</a>
    <a href="sitemap.html">Sitemap</a>
    <a href="docs.html">Documentation</a>
    <a href="download.html">Download</a>
    <a href="copyright.html">License</a>
    <a href="news.html">News</a>
    <a href="support.html">Support</a>
  </div>
<script>
  gMsg = "Search SQLite Docs..."
  function entersearch() {
    var q = document.getElementById("q");
    if( q.value == gMsg ) { q.value = "" }
    q.style.color = "black"
    q.style.fontStyle = "normal"
  }
  function leavesearch() {
    var q = document.getElementById("q");
    if( q.value == "" ) { 
      q.value = gMsg
      q.style.color = "#044a64"
      q.style.fontStyle = "italic"
    }
  }
</script>
<td>
    <div style="padding:0 1em 0px 0;white-space:nowrap">
    <form name=f method="GET" action="http://www.sqlite.org/search">
      <input id=q name=q type=text
       onfocus="entersearch()" onblur="leavesearch()" style="width:24ex;padding:1px 1ex; border:solid white 1px; font-size:0.9em ; font-style:italic;color:#044a64;" value="Search SQLite Docs...">
      <input type=submit value="Go" style="border:solid white 1px;background-color:#044a64;color:white;font-size:0.9em;padding:0 1ex">
    </form>
    </div>
  </table>
</div></div></div></div>
</td></tr></table>
<div class=startsearch></div>
  



<h1 align=center>Datatypes In SQLite Version 3</h1>

<p>Most SQL database engines (every SQL database engine other than SQLite,
as far as we know) uses static, rigid typing.  With static typing, the datatype
of a value is determined by its container - the particular column in
which the value is stored.</p>

<p>SQLite uses a more general dynamic type system.  In SQLite, the datatype
of a value is associated with the value itself, not with its container.
The dynamic type system of SQLite is backwards
compatible with the more common static type systems of other database engines
in the sense that SQL statement that work on statically typed databases should
work the same way in SQLite.  However, the dynamic typing in SQLite allows
it to do things which are not possible in traditional rigidly typed
databases.</p>

<a name="storageclasses"></a>

<h2>1.0 Storage Classes and Datatypes</h2>

<p>Each value stored in an SQLite database (or manipulated by the
database engine) has one of the following storage classes:</p>
<ul>
  <li><p><B>NULL</B>.
  The value is a NULL value.</p>

  <li><p><B>INTEGER</B>. The value is a signed integer, stored in 1,
  2, 3, 4, 6, or 8 bytes depending on the magnitude of the value.</p>

  <li><p><B>REAL</B>. The value is a floating point value, stored as
  an 8-byte IEEE floating point number.</p>

  <li><p><B>TEXT</B>. The value is a text string, stored using the
  database encoding (UTF-8, UTF-16BE or UTF-16LE).</p>

  <li><p><B>BLOB</B>. The value is a blob of data, stored exactly as
  it was input.</p>
</ul>

<p>Note that a storage class is slightly more general than a datatype.
The INTEGER storage class, for example, includes 6 different integer
datatypes of different lengths.  This makes a difference on disk.  But
as soon as INTEGER values are read off of disk and into memory for processing,
they are converted to the most general datatype (8-byte signed integer).
And so for the most part, "storage class" is indistinguishable from 
"datatype" and the two terms can be used interchangeably.</p>

<p>Any column in an SQLite version 3 database,
except an <a href="lang_createtable.html#rowid">INTEGER PRIMARY KEY</a> column, may be used to store a value 
of any storage class.</p>

<p>All values in SQL statements, whether they are literals embedded in SQL
statement text or <a href="lang_expr.html#varparam">parameters</a> bound to 
<a href="c3ref/stmt.html">precompiled SQL statements</a>
have an implicit storage class.
Under circumstances described below, the
database engine may convert values between numeric storage classes
(INTEGER and REAL) and TEXT during query execution. 
</p>

<a name="boolean"></a>

<h3>1.1 Boolean Datatype</h3>

<p>SQLite does not have a separate Boolean storage class.
Instead, Boolean values are stored as integers 0 (false) and 1 (true).</p>

<a name="datetime"></a>

<h3>1.2 Date and Time Datatype</h3>

<p>SQLite does not have a storage class set aside for storing
dates and/or times.
Instead, the built-in <a href="lang_datefunc.html">Date And Time Functions</a> of SQLite are capable of 
storing dates and times as TEXT, REAL, or INTEGER values:</p>

<ul>
<li><b>TEXT</b> as ISO8601 strings ("YYYY-MM-DD HH:MM:SS.SSS").
<li><b>REAL</b> as Julian day numbers, the number of days since
noon in Greenwich on November 24, 4714 B.C. according to the
proleptic Gregorian calendar.
<li><b>INTEGER</b> as Unix Time, the number of seconds since
1970-01-01 00:00:00 UTC.
</ul>

<p>Applications can chose to store dates and times in any of these
formats and freely convert between formats using the built-in date
and time functions.</p>


<a name="affinity"></a>

<h2>2.0 Type Affinity</h2>

<p>
In order to maximize compatibility between SQLite and other database
engines, SQLite supports the concept of "type affinity" on columns.
The type affinity of a column is the recommended type for data stored
in that column.  The important idea here is that the type is recommended, not
required.  Any column can still store any type of data.
It is just that some columns, given the choice, will prefer to use
one storage class over another.  The preferred storage class for
a column is called its "affinity".
</p>

<p>Each column in an SQLite 3 database is assigned one of the
following type affinities:</p>
<ul>
	<li>TEXT</LI>
	<li>NUMERIC</LI>
	<li>INTEGER</LI>
        <li>REAL</li>
	<li>NONE</LI>
</ul>

<p>A column with TEXT affinity stores all data using storage classes
NULL, TEXT or BLOB. If numerical data is inserted into a column with
TEXT affinity it is converted into text form before being stored.</p>

<p>A column with NUMERIC affinity may contain values using all five
storage classes.  When text data is inserted into a NUMERIC column, the
storage class of the text is converted to INTEGER or REAL (in order of
preference) if such conversion is lossless and reversible.
For conversions between TEXT and REAL storage classes, SQLite considers
the conversion to be lossless and reversible if the first 15 significant
decimal digits of the number are preserved.
If the lossless conversion of TEXT to INTEGER or REAL is not possible then
the value is stored using the TEXT storage class. No
attempt is made to convert NULL or BLOB values.</p>

<p>A string might look like a floating-point literal with
a decimal point and/or exponent notation but as long as
the value can be expressed as an integer, the NUMERIC affinity will convert
it into an integer. Hence, the string '3.0e+5' is stored in a
column with NUMERIC affinity as the integer 300000, not as the floating
point value 300000.0.</p>

<p>A column that uses INTEGER affinity behaves the same as a column
with NUMERIC affinity.  The difference between INTEGER and NUMERIC affinity
is only evident in a <a href="lang_expr.html#castexpr">CAST expression</a>.</p>

<p>A column with REAL affinity behaves like a column with NUMERIC
affinity except that it forces integer values into floating point
representation.  (As an internal optimization, small floating point
values with no fractional component and stored in columns with REAL
affinity are written to disk as integers in order to take up less 
space and are automatically converted back into floating point as
the value is read out.
This optimization is completely invisible at the SQL level and can only
be detected by examining the raw bits of the database file.)</p>

<p>A column with affinity NONE does not prefer one storage class over
another and no attempt is made to coerce data from one storage class into
another.</p>

<a name="affname"></a>

<h3>2.1 Determination Of Column Affinity</h3>

<p>The affinity of a column is determined by the declared type
of the column, according to the following rules in the order shown:</p>

<ol>
  <li><p>If the declared type contains the string "INT" then it
  is assigned INTEGER affinity.</p>

  <li><p>If the declared type of the column contains any of the strings
  "CHAR", "CLOB", or "TEXT" then that
  column has TEXT affinity.  Notice that the type VARCHAR contains the
  string "CHAR" and is thus assigned TEXT affinity.</p>

  <li><p>If the declared type for a column
  contains the string "BLOB" or if
  no type is specified then the column has affinity NONE.</p>

  <li><p>If the declared type for a column
  contains any of the strings "REAL", "FLOA",
  or "DOUB" then the column has REAL affinity.</p>

  <li><p>Otherwise, the affinity is NUMERIC.</p>
</ol>

<p>Note that the order of the rules for determining column affinity
is important.  A column whose declared type is "CHARINT" will match
both rules 1 and 2 but the first rule takes precedence and so the 
column affinity will be INTEGER.</p>

<h3>2.2 Affinity Name Examples</h3>

<p>The following table shows how many common datatype names from
more traditional SQL implementations are converted into affinities by the five rules of the
previous section.  This table shows only a small subset of the
datatype names that SQLite will accept.  Note that numeric arguments
in parentheses that following the type name (ex: "VARCHAR(255)") are
ignored by SQLite - SQLite does not impose any length restrictions
(other than the large global <a href="limits.html#max_length">SQLITE_MAX_LENGTH</a> limit) on the length of
strings, BLOBs or numeric values.</p>

<blockquote> 
<table border="1" cellpadding="5">
<tr><th>Example Typenames From The<br>CREATE TABLE Statement<br>
        or CAST Expression
    <th>Resulting Affinity
    <th>Rule Used To Determine Affinity

<tr><td align="center" valign="top">
  INT<br>
  INTEGER<br>
  TINYINT<br>
  SMALLINT<br>
  MEDIUMINT<br>
  BIGINT<br>
  UNSIGNED BIG INT<br>
  INT2<br>
  INT8
<td align="center">INTEGER
<td align="center">1

<tr><td align="center" valign="top">
  CHARACTER(20)<br>
  VARCHAR(255)<br>
  VARYING CHARACTER(255)<br>
  NCHAR(55)<br>
  NATIVE CHARACTER(70)<br>
  NVARCHAR(100)<br>
  TEXT<br>
  CLOB
<td align="center">TEXT
<td align="center">2

<tr><td align="center" valign="top">
  BLOB<br>
  <i>no datatype specified</i>
<td align="center">NONE
<td align="center">3

<tr><td align="center" valign="top">
  REAL<br>
  DOUBLE<br>
  DOUBLE PRECISION<br>
  FLOAT
<td align="center">REAL
<td align="center">4

<tr><td align="center" valign="top">
  NUMERIC<br>
  DECIMAL(10,5)<br>
  BOOLEAN<br>
  DATE<br>
  DATETIME
<td align="center">NUMERIC
<td align="center">5
</table>
</blockquote>

<p>Note that a declared type of "FLOATING POINT" would give INTEGER
affinity, not REAL affinity, due to the "INT" at the end of "POINT".
And the declared type of "STRING" has an affinity of NUMERIC, not TEXT.

<h3>2.3 Column Affinity Behavior Example</h3>

<p>The following SQL demonstrates how SQLite uses column affinity
to do type conversions when values are inserted into a table.</p>

<blockquote>
<pre>
CREATE TABLE t1(
    t  TEXT,     -- text affinity by rule 2
    nu NUMERIC,  -- numeric affinity by rule 5
    i  INTEGER,  -- integer affinity by rule 1
    r  REAL,     -- real affinity by rule 4
    no BLOB      -- no affinity by rule 3
);

-- Values stored as TEXT, INTEGER, INTEGER, REAL, TEXT.
INSERT INTO t1 VALUES('500.0', '500.0', '500.0', '500.0', '500.0');
SELECT typeof(t), typeof(nu), typeof(i), typeof(r), typeof(no) FROM t1;
text|integer|integer|real|text

-- Values stored as TEXT, INTEGER, INTEGER, REAL, REAL.
DELETE FROM t1;
INSERT INTO t1 VALUES(500.0, 500.0, 500.0, 500.0, 500.0);
SELECT typeof(t), typeof(nu), typeof(i), typeof(r), typeof(no) FROM t1;
text|integer|integer|real|real

-- Values stored as TEXT, INTEGER, INTEGER, REAL, INTEGER.
DELETE FROM t1;
INSERT INTO t1 VALUES(500, 500, 500, 500, 500);
SELECT typeof(t), typeof(nu), typeof(i), typeof(r), typeof(no) FROM t1;
text|integer|integer|real|integer

-- BLOBs are always stored as BLOBs regardless of column affinity.
DELETE FROM t1;
INSERT INTO t1 VALUES(x'0500', x'0500', x'0500', x'0500', x'0500');
SELECT typeof(t), typeof(nu), typeof(i), typeof(r), typeof(no) FROM t1;
blob|blob|blob|blob|blob

-- NULLs are also unaffected by affinity
DELETE FROM t1;
INSERT INTO t1 VALUES(NULL,NULL,NULL,NULL,NULL);
SELECT typeof(t), typeof(nu), typeof(i), typeof(r), typeof(no) FROM t1;
null|null|null|null|null
</pre>
</blockquote>

<a name="comparisons"></a>

<h2>3.0 Comparison Expressions</h2>

<p>SQLite version 3 has the usual set of SQL comparison operators
including "=", "==", "&lt;", "&lt;=", "&gt;", "&gt;=", "!=", "<>",
"IN", "NOT IN", "BETWEEN", "IS", and "IS NOT", .

<h3>3.1 Sort Order</h3>

<p>The results of a comparison depend on the storage classes of the
operands, according to the following rules:</p>
<ul>
  <li><p>A value with storage class NULL is considered less than any
  other value (including another value with storage class NULL).</p>

  <li><p>An INTEGER or REAL value is less than any TEXT or BLOB value.
  When an INTEGER or REAL is compared to another INTEGER or REAL, a
  numerical comparison is performed.</p>

  <li><p>A TEXT value is less than a BLOB value.  When two TEXT values
  are compared an appropriate collating sequence is used to determine 
  the result.  </p>

  <li><p>When two BLOB values are compared, the result is
  determined using memcmp().</p>
</ul>

<a name="expraff"></a>

<h3>3.2 Affinity Of Comparison Operands</h3>

<p>SQLite may attempt to convert values between the storage classes
INTEGER, REAL, and/or TEXT before performing a comparison.
Whether or not any conversions are attempted before the comparison takes
place depends on the affinity of the operands.
Operand affinity is determined by the following rules:

<ul>
  <li><p>An expression that is a simple reference to a column value
  has the same affinity as the column.
  Note that if X and Y.Z 
  are column names, then +X and +Y.Z are considered expressions for the
  purpose of determining affinity.</p>

  <li><p>An expression of the form "CAST(<i>expr</i> AS <i>type</i>)"
  has an affinity that is the same as a column with a declared
  type of "<i>type</i>".

  <li><p>Otherwise, an expression has NONE affinity.
</ul>

<a name="compaff"></a>

<h3>3.3 Type Conversions Prior To Comparison</h3>

<p>To "apply affinity" means to convert an operand to a particular storage
class if and only if the conversion is lossless and reversible.
Affinity is applied to operands of a comparison operator prior to
the comparison according to the following rules in the order shown:</p>

<ul>
<li><p>If one operand has INTEGER, REAL or NUMERIC affinity
and the other operand as TEXT or NONE affinity
then NUMERIC affinity is applied to other operand.

<li><p>If one operand has TEXT affinity and the other has NONE affinity,
then TEXT affinity is applied to the other operand.

<li><p>Otherwise, no affinity is applied and both operands are compared
as is.</p>
</ul>

<p>The expression "a BETWEEN b AND c" is treated as two separate
binary comparisons "a &gt;= b AND a &lt;= c", even if that means
different affinities are applied to 'a' in each of the comparisons.
Datatype conversions in comparisons of the
form "x IN (SELECT y ...)" are handled is if
the comparison were really "x=y".
The expression "a IN (x, y, z, ...)" is equivalent to "a = +x OR
a = +y OR a = +z OR ...".  
In other words, the values to the right of the IN operator (the "x", "y",
and "z" values in this example) are considered to have no affinity, 
even if they happen to be column values or CAST expressions.  
</p>

<h3>3.4 Comparison Example</h3>

<blockquote>
<pre>
CREATE TABLE t1(
    a TEXT,      -- text affinity
    b NUMERIC,   -- numeric affinity
    c BLOB,      -- no affinity
    d            -- no affinity
);

-- Values will be stored as TEXT, INTEGER, TEXT, and INTEGER respectively
INSERT INTO t1 VALUES('500', '500', '500', 500);
SELECT typeof(a), typeof(b), typeof(c), typeof(d) FROM t1;
text|integer|text|integer

-- Because column "a" has text affinity, numeric values on the
-- right-hand side of the comparisons are converted to text before
-- the comparison occurs.
SELECT a &lt; 40,   a &lt; 60,   a &lt; 600 FROM t1;
0|1|1

-- Text affinity is applied to the right-hand operands but since
-- they are already TEXT this is a no-op; no conversions occur.
SELECT a &lt; '40', a &lt; '60', a &lt; '600' FROM t1;
0|1|1

-- Column "b" has numeric affinity and so numeric affinity is applied
-- to the operands on the right.  Since the operands are already numeric,
-- the application of affinity is a no-op; no conversions occur.  All
-- values are compared numerically.
SELECT b &lt; 40,   b &lt; 60,   b &lt; 600 FROM t1;
0|0|1

-- Numeric affinity is applied to operands on the right, converting them
-- from text to integers.  Then a numeric comparison occurs.
SELECT b &lt; '40', b &lt; '60', b &lt; '600' FROM t1;
0|0|1

-- No affinity conversions occur.  Right-hand side values all have
-- storage class INTEGER which are always less than the TEXT values
-- on the left.
SELECT c &lt; 40,   c &lt; 60,   c &lt; 600 FROM t1;
0|0|0

-- No affinity conversions occur.  Values are compared as TEXT.
SELECT c &lt; '40', c &lt; '60', c &lt; '600' FROM t1;
0|1|1

-- No affinity conversions occur.  Right-hand side values all have
-- storage class INTEGER which compare numerically with the INTEGER
-- values on the left.
SELECT d &lt; 40,   d &lt; 60,   d &lt; 600 FROM t1;
0|0|1

-- No affinity conversions occur.  INTEGER values on the left are
-- always less than TEXT values on the right.
SELECT d &lt; '40', d &lt; '60', d &lt; '600' FROM t1;
1|1|1
</pre>
</blockquote>

<p>All of the result in the example are the same if the comparisons are
commuted - if expressions of the form "a&lt;40" are rewritten
as "40&gt;a".

<h2>4.0 Operators</h2>

<p>All mathematical operators (+, -, *, /, %, &lt;&lt;, &gt;&gt;,
&amp;, and |)
cast both operands to the NUMERIC storage class prior to being carried out.
The cast is carried through even if it is lossy and irreversible.
A NULL operand on a mathematical operator yields a NULL result.
An operand on a mathematical operator that does not look in any way
numeric and is not NULL is converted to 0 or 0.0.
</p>

<h2>5.0 Sorting, Grouping and Compound SELECTs</h2>

<p>When query results are sorted by an ORDER BY clause, values with storage
class NULL come first, followed by INTEGER and REAL values
interspersed in numeric order, followed by TEXT values in collating
sequence order, and finally BLOB values in memcmp() order.  No storage
class conversions occur before the sort.</p>

<p>When grouping values with the GROUP BY clause values with
different storage classes are considered distinct, except for INTEGER
and REAL values which are considered equal if they are numerically
equal. No affinities are applied to any values as the result of a
GROUP by clause.</p>

<p>The compound SELECT operators UNION,
INTERSECT and EXCEPT perform implicit comparisons between values.
No affinity is applied to comparison operands for the implicit
comparisons associated with UNION, INTERSECT, or EXCEPT - the values
are compared as is.</p>

<a name="collation"></a>

<h2>6.0 Collating Sequences</h2>

<p>When SQLite compares two strings, it uses a collating sequence or
collating function (two words for the same thing) to determine which
string is greater or if the two strings are equal.
SQLite has three built-in collating functions:  BINARY, NOCASE, and 
RTRIM.</p>

<ul>
<li><b>BINARY</b> - Compares string data using memcmp(), regardless
                   of text encoding.</li>
<li><b>NOCASE</b> - The same as binary, except the 26 upper case
     characters of ASCII are folded to their lower case equivalents before
     the comparison is performed.  Note that only ASCII characters
     are case folded.  SQLite does not attempt to do full
     UTF case folding due to the size of the tables required.</li>

<li><b>RTRIM</b> - The same as binary, except that trailing space
     characters are ignored.</li>
</ul>

<p>An application can register additional collating functions using
the <a href="c3ref/create_collation.html">sqlite3_create_collation()</a> interface.</p>

<h3>6.1 Assigning Collating Sequences from SQL</h3>

<p>
Every column of every
table has an associated collating function.  If no collating function
is explicitly defined, then the collating function defaults to BINARY.
The COLLATE clause of the <a href="lang_createtable.html#tablecoldef">column definition</a> is used
to define alternative collating functions for a column.
</p>  

<p>
The rules for determining which collating function to use for a
binary comparison operator (=, &lt;, &gt;, &lt;=, &gt;=, !=, IS, and
IS NOT) are as follows and in the order shown:

<ol>
<li><p>If either operand has an explicit collating function assignment
using the postfix <a href="lang_expr.html#collateop">COLLATE operator</a>, then the explicit collating function
is used for comparison, with precedence to the collating function of the
left operand.</p></li>

<li><p>If either operand is a column, then the collating function of
that column is used with precedence to the left operand.
For the purposes of the previous sentence, a column name
preceded by one or more unary "+" operators is still considered a column name.
</p></li>

<li><p>Otherwise, the BINARY collating function is used for comparison.
</p></li>
</ol>

<p>
An operand of a comparison is considered to have an explicit
collating function assignment (rule 1 above) 
if any subexpression of the operand uses
the postfix <a href="lang_expr.html#collateop">COLLATE operator</a>.  Thus, if a <a href="lang_expr.html#collateop">COLLATE operator</a> is used
anywhere in a comparision expression, the collating function defined
by that operator is used for string comparison regardless of what 
table columns might be a part of that expression.  If two or more
<a href="lang_expr.html#collateop">COLLATE operator</a> subexpressions appear anywhere in a comparison, the 
left most explicit collating function is used regardless of how deeply the
COLLATE operators are nested in the expression and regardless of
how the expression is parenthesized.
</p>

<p>
The expression "x BETWEEN y and z" is logically
equivalent to two comparisons "x &gt;= y AND x &lt;= z" and works with
respect to collating functions as if it were two separate comparisons.
The expression "x IN (SELECT y ...)" is handled in the same way as the
expression "x = y" for the purposes of determining the collating sequence.
The collating sequence used for expressions of the form 
"x IN (y, z, ...)" is the collating sequence of x.
</p>  

<p>
Terms of the ORDER BY clause that is part of a <a href="lang_select.html">SELECT</a>
statement may be assigned a collating sequence using the 
<a href="lang_expr.html#collateop">COLLATE operator</a>, in which case the specified collating function is
used for sorting.
Otherwise, if the expression sorted by an ORDER BY clause is
a column, then the collating sequence of the column is used to
determine sort order. If the expression is not a column and has no
COLLATE clause, then the BINARY collating sequence is used.
</p>  

<h3>6.2 Collation Sequence Examples</h3>
<p>
The examples below identify the collating sequences that would be used to
determine the results of text comparisons that may be performed by various
SQL statements. Note that a text comparison may not be required, and no
collating sequence used, in the case of numeric, blob or NULL values.
</p>
<blockquote>
<pre>
CREATE TABLE t1(
    x INTEGER PRIMARY KEY,
    a,                 /* collating sequence BINARY */
    b COLLATE BINARY,  /* collating sequence BINARY */
    c COLLATE RTRIM,   /* collating sequence RTRIM  */
    d COLLATE NOCASE   /* collating sequence NOCASE */
);
                   /* x   a     b     c       d */
INSERT INTO t1 VALUES(1,'abc','abc', 'abc  ','abc');
INSERT INTO t1 VALUES(2,'abc','abc', 'abc',  'ABC');
INSERT INTO t1 VALUES(3,'abc','abc', 'abc ', 'Abc');
INSERT INTO t1 VALUES(4,'abc','abc ','ABC',  'abc');
 
/* Text comparison a=b is performed using the BINARY collating sequence. */
SELECT x FROM t1 WHERE a = b ORDER BY x;
--result 1 2 3

/* Text comparison a=b is performed using the RTRIM collating sequence. */
SELECT x FROM t1 WHERE a = b COLLATE RTRIM ORDER BY x;
--result 1 2 3 4

/* Text comparison d=a is performed using the NOCASE collating sequence. */
SELECT x FROM t1 WHERE d = a ORDER BY x;
--result 1 2 3 4

/* Text comparison a=d is performed using the BINARY collating sequence. */
SELECT x FROM t1 WHERE a = d ORDER BY x;
--result 1 4

/* Text comparison 'abc'=c is performed using the RTRIM collating sequence. */
SELECT x FROM t1 WHERE 'abc' = c ORDER BY x;
--result 1 2 3

/* Text comparison c='abc' is performed using the RTRIM collating sequence. */
SELECT x FROM t1 WHERE c = 'abc' ORDER BY x;
--result 1 2 3

/* Grouping is performed using the NOCASE collating sequence (Values
** 'abc', 'ABC', and 'Abc' are placed in the same group). */
SELECT count(*) FROM t1 GROUP BY d ORDER BY 1;
--result 4

/* Grouping is performed using the BINARY collating sequence.  'abc' and
** 'ABC' and 'Abc' form different groups */
SELECT count(*) FROM t1 GROUP BY (d || '') ORDER BY 1;
--result 1 1 2

/* Sorting or column c is performed using the RTRIM collating sequence. */
SELECT x FROM t1 ORDER BY c, x;
--result 4 1 2 3

/* Sorting of (c||'') is performed using the BINARY collating sequence. */
SELECT x FROM t1 ORDER BY (c||''), x;
--result 4 2 3 1

/* Sorting of column c is performed using the NOCASE collating sequence. */
SELECT x FROM t1 ORDER BY c COLLATE NOCASE, x;
--result 2 4 3 1
</pre>
</blockquote>