1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
|
/*
* Copyright (C) 1996-2025 The Squid Software Foundation and contributors
*
* Squid software is distributed under GPLv2+ license and includes
* contributions from numerous individuals and organizations.
* Please see the COPYING and CONTRIBUTORS files for details.
*/
/*
* Copyright (c) 1988, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)radix.c 8.4 (Berkeley) 11/2/94
*/
/*
* DEBUG: section 53 Radix Tree data structure implementation
*/
#include "squid.h"
#include "radix.h"
#include "util.h"
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#if HAVE_STDLIB_H
#include <stdlib.h>
#endif
#if HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#if HAVE_CTYPE_H
#include <ctype.h>
#endif
#if HAVE_ERRNO_H
#include <errno.h>
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#endif
#if HAVE_GRP_H
#include <grp.h>
#endif
#if HAVE_GNUMALLOC_H
#include <gnumalloc.h>
#elif HAVE_MALLOC_H
#include <malloc.h>
#endif
#if HAVE_MEMORY_H
#include <memory.h>
#endif
#if HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#if HAVE_ASSERT_H
#include <assert.h>
#endif
int squid_max_keylen;
struct squid_radix_mask *squid_rn_mkfreelist;
struct squid_radix_node_head *squid_mask_rnhead;
static char *addmask_key;
static unsigned char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xFF};
static char *rn_zeros, *rn_ones;
/* aliases */
#define rn_masktop (squid_mask_rnhead->rnh_treetop)
#define rn_dupedkey rn_u.rn_leaf.rn_Dupedkey
#define rn_off rn_u.rn_node.rn_Off
#define rn_l rn_u.rn_node.rn_L
#define rn_r rn_u.rn_node.rn_R
#define rm_mask rm_rmu.rmu_mask
#define rm_leaf rm_rmu.rmu_leaf /* extra field would make 32 bytes */
/* Helper macros */
#define squid_R_Malloc(p, t, n) (p = (t) xmalloc((unsigned int)(n)))
#define squid_Free(p) xfree((char *)p)
#define squid_MKGet(m) {\
if (squid_rn_mkfreelist) {\
m = squid_rn_mkfreelist; \
squid_rn_mkfreelist = (m)->rm_mklist; \
} else \
squid_R_Malloc(m, struct squid_radix_mask *, sizeof (*(m)));\
}
#define squid_MKFree(m) { (m)->rm_mklist = squid_rn_mkfreelist; squid_rn_mkfreelist = (m);}
#ifndef min
#define min(x,y) ((x)<(y)? (x) : (y))
#endif
/*
* The data structure for the keys is a radix tree with one way
* branching removed. The index rn_b at an internal node n represents a bit
* position to be tested. The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_b - 1.
* (We say the index of n is rn_b.)
*
* There is at least one descendant which has a one bit at position rn_b,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask. We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route to associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_b, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
*
* Similar logic shows that a non-normal mask m such that
* index(m) <= index(n) could potentially apply to many children of n.
* Thus, for each non-host route, we attach its mask to a list at an internal
* node as high in the tree as we can go.
*
* The present version of the code makes use of normal routes in short-
* circuiting an explicit mask and compare operation when testing whether
* a key satisfies a normal route, and also in remembering the unique leaf
* that governs a subtree.
*/
struct squid_radix_node *
squid_rn_search(void *v_arg, struct squid_radix_node *head) {
register struct squid_radix_node *x;
register char *v;
for (x = head, v = v_arg; x->rn_b >= 0;) {
if (x->rn_bmask & v[x->rn_off])
x = x->rn_r;
else
x = x->rn_l;
}
return (x);
}
struct squid_radix_node *
squid_rn_search_m(void *v_arg, struct squid_radix_node *head, void *m_arg) {
register struct squid_radix_node *x;
register char *v = v_arg, *m = m_arg;
for (x = head; x->rn_b >= 0;) {
if ((x->rn_bmask & m[x->rn_off]) &&
(x->rn_bmask & v[x->rn_off]))
x = x->rn_r;
else
x = x->rn_l;
}
return x;
}
int
squid_rn_refines(void *m_arg, void *n_arg)
{
register char *m = m_arg, *n = n_arg;
register char *lim, *lim2 = lim = n + *(u_char *) n;
int longer = (*(u_char *) n++) - (int) (*(u_char *) m++);
int masks_are_equal = 1;
if (longer > 0)
lim -= longer;
while (n < lim) {
if (*n & ~(*m))
return 0;
if (*n++ != *m++)
masks_are_equal = 0;
}
while (n < lim2)
if (*n++)
return 0;
if (masks_are_equal && (longer < 0))
for (lim2 = m - longer; m < lim2;)
if (*m++)
return 1;
return (!masks_are_equal);
}
struct squid_radix_node *
squid_rn_lookup(void *v_arg, void *m_arg, struct squid_radix_node_head *head) {
register struct squid_radix_node *x;
char *netmask = NULL;
if (m_arg) {
if ((x = squid_rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
return (0);
netmask = x->rn_key;
}
x = squid_rn_match(v_arg, head);
if (x && netmask) {
while (x && x->rn_mask != netmask)
x = x->rn_dupedkey;
}
return x;
}
static int
rn_satsifies_leaf(char *trial, register struct squid_radix_node *leaf, int skip)
{
register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
char *cplim;
int length = min(*(u_char *) cp, *(u_char *) cp2);
if (cp3 == 0)
cp3 = rn_ones;
else
length = min(length, *(u_char *) cp3);
cplim = cp + length;
cp3 += skip;
cp2 += skip;
for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
if ((*cp ^ *cp2) & *cp3)
return 0;
return 1;
}
struct squid_radix_node *
squid_rn_match(void *v_arg, struct squid_radix_node_head *head) {
char *v = v_arg;
register struct squid_radix_node *t = head->rnh_treetop, *x;
register char *cp = v, *cp2;
char *cplim;
struct squid_radix_node *saved_t, *top = t;
int off = t->rn_off, vlen = *(u_char *) cp, matched_off;
register int test, b, rn_b;
/*
* Open code squid_rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/
for (; t->rn_b >= 0;) {
if (t->rn_bmask & cp[t->rn_off])
t = t->rn_r;
else
t = t->rn_l;
}
/*
* See if we match exactly as a host destination
* or at least learn how many bits match, for normal mask finesse.
*
* It doesn't hurt us to limit how many bytes to check
* to the length of the mask, since if it matches we had a genuine
* match and the leaf we have is the most specific one anyway;
* if it didn't match with a shorter length it would fail
* with a long one. This wins big for class B&C netmasks which
* are probably the most common case...
*/
if (t->rn_mask)
vlen = *(u_char *) t->rn_mask;
cp += off;
cp2 = t->rn_key + off;
cplim = v + vlen;
for (; cp < cplim; cp++, cp2++)
if (*cp != *cp2)
goto on1;
/*
* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
*/
if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
t = t->rn_dupedkey;
return t;
on1:
test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
for (b = 7; (test >>= 1) > 0;)
b--;
matched_off = cp - v;
b += matched_off << 3;
rn_b = -1 - b;
/*
* If there is a host route in a duped-key chain, it will be first.
*/
if ((saved_t = t)->rn_mask == 0)
t = t->rn_dupedkey;
for (; t; t = t->rn_dupedkey)
/*
* Even if we don't match exactly as a host,
* we may match if the leaf we wound up at is
* a route to a net.
*/
if (t->rn_flags & RNF_NORMAL) {
if (rn_b <= t->rn_b)
return t;
} else if (rn_satsifies_leaf(v, t, matched_off))
return t;
t = saved_t;
/* start searching up the tree */
do {
register struct squid_radix_mask *m;
t = t->rn_p;
if ((m = t->rn_mklist)) {
/*
* If non-contiguous masks ever become important
* we can restore the masking and open coding of
* the search and satisfaction test and put the
* calculation of "off" back before the "do".
*/
do {
if (m->rm_flags & RNF_NORMAL) {
if (rn_b <= m->rm_b)
return (m->rm_leaf);
} else {
off = min(t->rn_off, matched_off);
x = squid_rn_search_m(v, t, m->rm_mask);
while (x && x->rn_mask != m->rm_mask)
x = x->rn_dupedkey;
if (x && rn_satsifies_leaf(v, x, off))
return x;
}
} while ((m = m->rm_mklist));
}
} while (t != top);
return 0;
}
struct squid_radix_node *
squid_rn_newpair(void *v, int b, struct squid_radix_node nodes[2]) {
register struct squid_radix_node *tt = nodes, *t = tt + 1;
t->rn_b = b;
t->rn_bmask = 0x80 >> (b & 7);
t->rn_l = tt;
t->rn_off = b >> 3;
tt->rn_b = -1;
tt->rn_key = (char *) v;
tt->rn_p = t;
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
return t;
}
struct squid_radix_node *
squid_rn_insert(void *v_arg, struct squid_radix_node_head *head, int *dupentry, struct squid_radix_node nodes[2]) {
char *v = v_arg;
struct squid_radix_node *top = head->rnh_treetop;
int head_off = top->rn_off, vlen = (int) *((u_char *) v);
register struct squid_radix_node *t = squid_rn_search(v_arg, top);
register char *cp = v + head_off;
register int b;
struct squid_radix_node *tt;
/*
* Find first bit at which v and t->rn_key differ
*/
{
register char *cp2 = t->rn_key + head_off;
register int cmp_res;
char *cplim = v + vlen;
while (cp < cplim)
if (*cp2++ != *cp++)
goto on1;
*dupentry = 1;
return t;
on1:
*dupentry = 0;
cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
for (b = (cp - v) << 3; cmp_res; b--)
cmp_res >>= 1;
}
{
register struct squid_radix_node *p, *x = top;
cp = v;
do {
p = x;
if (cp[x->rn_off] & x->rn_bmask)
x = x->rn_r;
else
x = x->rn_l;
} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
t = squid_rn_newpair(v_arg, b, nodes);
tt = t->rn_l;
if ((cp[p->rn_off] & p->rn_bmask) == 0)
p->rn_l = t;
else
p->rn_r = t;
x->rn_p = t;
t->rn_p = p; /* frees x, p as temp vars below */
if ((cp[t->rn_off] & t->rn_bmask) == 0) {
t->rn_r = x;
} else {
t->rn_r = tt;
t->rn_l = x;
}
}
return (tt);
}
struct squid_radix_node *
squid_rn_addmask(void *n_arg, int search, int skip) {
char *netmask = (char *) n_arg;
register struct squid_radix_node *x;
register char *cp, *cplim;
register int b = 0, mlen, j;
int maskduplicated, m0, isnormal;
struct squid_radix_node *saved_x;
static int last_zeroed = 0;
if ((mlen = *(u_char *) netmask) > squid_max_keylen)
mlen = squid_max_keylen;
if (skip == 0)
skip = 1;
if (mlen <= skip)
return (squid_mask_rnhead->rnh_nodes);
if (skip > 1)
memcpy(addmask_key + 1, rn_ones + 1, skip - 1);
if ((m0 = mlen) > skip)
memcpy(addmask_key + skip, netmask + skip, mlen - skip);
/*
* Trim trailing zeroes.
*/
for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
cp--;
mlen = cp - addmask_key;
if (mlen <= skip) {
if (m0 >= last_zeroed)
last_zeroed = mlen;
return (squid_mask_rnhead->rnh_nodes);
}
if (m0 < last_zeroed)
memset(addmask_key + m0, '\0', last_zeroed - m0);
*addmask_key = last_zeroed = mlen;
x = squid_rn_search(addmask_key, rn_masktop);
if (memcmp(addmask_key, x->rn_key, mlen) != 0)
x = 0;
if (x || search)
return (x);
squid_R_Malloc(x, struct squid_radix_node *, squid_max_keylen + 2 * sizeof(*x));
if ((saved_x = x) == 0)
return (0);
memset(x, '\0', squid_max_keylen + 2 * sizeof(*x));
netmask = cp = (char *) (x + 2);
memcpy(cp, addmask_key, mlen);
x = squid_rn_insert(cp, squid_mask_rnhead, &maskduplicated, x);
if (maskduplicated) {
fprintf(stderr, "squid_rn_addmask: mask impossibly already in tree");
squid_Free(saved_x);
return (x);
}
/*
* Calculate index of mask, and check for normalcy.
*/
cplim = netmask + mlen;
isnormal = 1;
for (cp = netmask + skip; (cp < cplim) && *(u_char *) cp == 0xff;)
cp++;
if (cp != cplim) {
for (j = 0x80; (j & *cp) != 0; j >>= 1)
b++;
if (*cp != normal_chars[b] || cp != (cplim - 1))
isnormal = 0;
}
b += (cp - netmask) << 3;
x->rn_b = -1 - b;
if (isnormal)
x->rn_flags |= RNF_NORMAL;
return (x);
}
static int /* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(void *m_arg, void *n_arg)
{
register u_char *mp = m_arg, *np = n_arg, *lim;
if (*mp > *np)
return 1; /* not really, but need to check longer one first */
if (*mp == *np)
for (lim = mp + *mp; mp < lim;)
if (*mp++ > *np++)
return 1;
return 0;
}
static struct squid_radix_mask *
rn_new_radix_mask(struct squid_radix_node *tt, struct squid_radix_mask *next) {
register struct squid_radix_mask *m;
squid_MKGet(m);
if (m == 0) {
fprintf(stderr, "Mask for route not entered\n");
return (0);
}
memset(m, '\0', sizeof *m);
m->rm_b = tt->rn_b;
m->rm_flags = tt->rn_flags;
if (tt->rn_flags & RNF_NORMAL)
m->rm_leaf = tt;
else
m->rm_mask = tt->rn_mask;
m->rm_mklist = next;
tt->rn_mklist = m;
return m;
}
struct squid_radix_node *
squid_rn_addroute(void *v_arg, void *n_arg, struct squid_radix_node_head *head, struct squid_radix_node treenodes[2]) {
char *v = (char *) v_arg, *netmask = (char *) n_arg;
register struct squid_radix_node *t, *x = NULL, *tt;
struct squid_radix_node *saved_tt, *top = head->rnh_treetop;
short b = 0, b_leaf = 0;
int keyduplicated;
char *mmask;
struct squid_radix_mask *m, **mp;
/*
* In dealing with non-contiguous masks, there may be
* many different routes which have the same mask.
* We will find it useful to have a unique pointer to
* the mask to speed avoiding duplicate references at
* nodes and possibly save time in calculating indices.
*/
if (netmask) {
if ((x = squid_rn_addmask(netmask, 0, top->rn_off)) == 0)
return (0);
b_leaf = x->rn_b;
b = -1 - x->rn_b;
netmask = x->rn_key;
}
/*
* Deal with duplicated keys: attach node to previous instance
*/
saved_tt = tt = squid_rn_insert(v, head, &keyduplicated, treenodes);
if (keyduplicated) {
for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
if (tt->rn_mask == netmask)
return (0);
if (netmask == 0 ||
(tt->rn_mask &&
((b_leaf < tt->rn_b) || /* index(netmask) > node */
squid_rn_refines(netmask, tt->rn_mask) ||
rn_lexobetter(netmask, tt->rn_mask))))
break;
}
/*
* If the mask is not duplicated, we wouldn't
* find it among possible duplicate key entries
* anyway, so the above test doesn't hurt.
*
* We sort the masks for a duplicated key the same way as
* in a masklist -- most specific to least specific.
* This may require the unfortunate nuisance of relocating
* the head of the list.
*/
if (tt == saved_tt) {
struct squid_radix_node *xx = x;
/* link in at head of list */
tt = treenodes;
tt->rn_dupedkey = t;
tt->rn_flags = t->rn_flags;
tt->rn_p = x = t->rn_p;
if (x->rn_l == t)
x->rn_l = tt;
else
x->rn_r = tt;
saved_tt = tt;
x = xx;
} else {
tt = treenodes;
tt->rn_dupedkey = t->rn_dupedkey;
t->rn_dupedkey = tt;
}
tt->rn_key = (char *) v;
tt->rn_b = -1;
tt->rn_flags = RNF_ACTIVE;
}
/*
* Put mask in tree.
*/
if (netmask) {
tt->rn_mask = netmask;
tt->rn_b = x->rn_b;
tt->rn_flags |= x->rn_flags & RNF_NORMAL;
}
t = saved_tt->rn_p;
if (keyduplicated)
goto on2;
b_leaf = -1 - t->rn_b;
if (t->rn_r == saved_tt)
x = t->rn_l;
else
x = t->rn_r;
/* Promote general routes from below */
if (x->rn_b < 0) {
for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
if ((*mp = m = rn_new_radix_mask(x, 0)))
mp = &m->rm_mklist;
}
} else if (x->rn_mklist) {
/*
* Skip over masks whose index is > that of new node
*/
for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
if (m->rm_b >= b_leaf)
break;
t->rn_mklist = m;
*mp = 0;
}
on2:
/* Add new route to highest possible ancestor's list */
if ((netmask == 0) || (b > t->rn_b))
return tt; /* can't lift at all */
b_leaf = tt->rn_b;
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
/*
* Search through routes associated with node to
* insert new route according to index.
* Need same criteria as when sorting dupedkeys to avoid
* double loop on deletion.
*/
for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
if (m->rm_b < b_leaf)
continue;
if (m->rm_b > b_leaf)
break;
if (m->rm_flags & RNF_NORMAL) {
mmask = m->rm_leaf->rn_mask;
if (tt->rn_flags & RNF_NORMAL) {
fprintf(stderr,
"Non-unique normal route, mask not entered");
return tt;
}
} else
mmask = m->rm_mask;
if (mmask == netmask) {
m->rm_refs++;
tt->rn_mklist = m;
return tt;
}
if (squid_rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
break;
}
*mp = rn_new_radix_mask(tt, *mp);
return tt;
}
struct squid_radix_node *
squid_rn_delete(void *v_arg, void *netmask_arg, struct squid_radix_node_head *head) {
register struct squid_radix_node *t, *p, *x, *tt;
struct squid_radix_mask *m, *saved_m, **mp;
struct squid_radix_node *dupedkey, *saved_tt, *top;
char *v, *netmask;
int b, head_off, vlen;
v = v_arg;
netmask = netmask_arg;
x = head->rnh_treetop;
tt = squid_rn_search(v, x);
head_off = x->rn_off;
vlen = *(u_char *) v;
saved_tt = tt;
top = x;
if (tt == 0 ||
memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
return (0);
/*
* Delete our route from mask lists.
*/
if (netmask) {
if ((x = squid_rn_addmask(netmask, 1, head_off)) == 0)
return (0);
netmask = x->rn_key;
while (tt->rn_mask != netmask)
if ((tt = tt->rn_dupedkey) == 0)
return (0);
}
if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
goto on1;
if (tt->rn_flags & RNF_NORMAL) {
if (m->rm_leaf != tt || m->rm_refs > 0) {
fprintf(stderr, "squid_rn_delete: inconsistent annotation\n");
return 0; /* dangling ref could cause disaster */
}
} else {
if (m->rm_mask != tt->rn_mask) {
fprintf(stderr, "squid_rn_delete: inconsistent annotation\n");
goto on1;
}
if (--m->rm_refs >= 0)
goto on1;
}
b = -1 - tt->rn_b;
t = saved_tt->rn_p;
if (b > t->rn_b)
goto on1; /* Wasn't lifted at all */
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
if (m == saved_m) {
*mp = m->rm_mklist;
squid_MKFree(m);
break;
}
if (m == 0) {
fprintf(stderr, "squid_rn_delete: couldn't find our annotation\n");
if (tt->rn_flags & RNF_NORMAL)
return (0); /* Dangling ref to us */
}
on1:
/*
* Eliminate us from tree
*/
if (tt->rn_flags & RNF_ROOT)
return (0);
t = tt->rn_p;
if ((dupedkey = saved_tt->rn_dupedkey)) {
if (tt == saved_tt) {
x = dupedkey;
x->rn_p = t;
if (t->rn_l == tt)
t->rn_l = x;
else
t->rn_r = x;
} else {
for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
p = p->rn_dupedkey;
if (p)
p->rn_dupedkey = tt->rn_dupedkey;
else
fprintf(stderr, "squid_rn_delete: couldn't find us\n");
}
t = tt + 1;
if (t->rn_flags & RNF_ACTIVE) {
*++x = *t;
p = t->rn_p;
if (p->rn_l == t)
p->rn_l = x;
else
p->rn_r = x;
x->rn_l->rn_p = x;
x->rn_r->rn_p = x;
}
goto out;
}
if (t->rn_l == tt)
x = t->rn_r;
else
x = t->rn_l;
p = t->rn_p;
if (p->rn_r == t)
p->rn_r = x;
else
p->rn_l = x;
x->rn_p = p;
/*
* Demote routes attached to us.
*/
if (t->rn_mklist) {
if (x->rn_b >= 0) {
for (mp = &x->rn_mklist; (m = *mp);)
mp = &m->rm_mklist;
*mp = t->rn_mklist;
} else {
/* If there are any key,mask pairs in a sibling
* duped-key chain, some subset will appear sorted
* in the same order attached to our mklist */
for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
if (m == x->rn_mklist) {
struct squid_radix_mask *mm = m->rm_mklist;
x->rn_mklist = 0;
if (--(m->rm_refs) < 0)
squid_MKFree(m);
m = mm;
}
assert(m == NULL);
}
}
/*
* We may be holding an active internal node in the tree.
*/
x = tt + 1;
if (t != x) {
*t = *x;
t->rn_l->rn_p = t;
t->rn_r->rn_p = t;
p = x->rn_p;
if (p->rn_l == x)
p->rn_l = t;
else
p->rn_r = t;
}
out:
tt->rn_flags &= ~RNF_ACTIVE;
tt[1].rn_flags &= ~RNF_ACTIVE;
return (tt);
}
int
squid_rn_walktree(struct squid_radix_node_head *h, int (*f) (struct squid_radix_node *, void *), void *w)
{
int error;
struct squid_radix_node *base, *next;
register struct squid_radix_node *rn = h->rnh_treetop;
/*
* This gets complicated because we may delete the node
* while applying the function f to it, so we need to calculate
* the successor node in advance.
*/
/* First time through node, go left */
while (rn->rn_b >= 0)
rn = rn->rn_l;
for (;;) {
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
rn = rn->rn_p;
/* Find the next *leaf* since next node might vanish, too */
for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
rn = rn->rn_l;
next = rn;
/* Process leaves */
while ((rn = base)) {
base = rn->rn_dupedkey;
if (!(rn->rn_flags & RNF_ROOT) && (error = (*f) (rn, w)))
return (error);
}
rn = next;
if (rn->rn_flags & RNF_ROOT)
return (0);
}
/* NOTREACHED */
}
int
squid_rn_inithead(struct squid_radix_node_head **head, int off)
{
register struct squid_radix_node_head *rnh;
register struct squid_radix_node *t, *tt, *ttt;
if (*head)
return (1);
squid_R_Malloc(rnh, struct squid_radix_node_head *, sizeof(*rnh));
if (rnh == 0)
return (0);
memset(rnh, '\0', sizeof(*rnh));
*head = rnh;
t = squid_rn_newpair(rn_zeros, off, rnh->rnh_nodes);
ttt = rnh->rnh_nodes + 2;
t->rn_r = ttt;
t->rn_p = t;
tt = t->rn_l;
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
tt->rn_b = -1 - off;
*ttt = *tt;
ttt->rn_key = rn_ones;
rnh->rnh_addaddr = squid_rn_addroute;
rnh->rnh_deladdr = squid_rn_delete;
rnh->rnh_matchaddr = squid_rn_match;
rnh->rnh_lookup = squid_rn_lookup;
rnh->rnh_walktree = squid_rn_walktree;
rnh->rnh_treetop = t;
return (1);
}
void
squid_rn_init(void)
{
char *cp, *cplim;
#ifdef KERNEL
struct domain *dom;
for (dom = domains; dom; dom = dom->dom_next)
if (dom->dom_maxrtkey > squid_max_keylen)
squid_max_keylen = dom->dom_maxrtkey;
#endif
if (squid_max_keylen == 0) {
fprintf(stderr,
"squid_rn_init: radix functions require squid_max_keylen be set\n");
return;
}
squid_R_Malloc(rn_zeros, char *, 3 * squid_max_keylen);
if (rn_zeros == NULL) {
fprintf(stderr, "squid_rn_init failed.\n");
exit(-1);
}
memset(rn_zeros, '\0', 3 * squid_max_keylen);
rn_ones = cp = rn_zeros + squid_max_keylen;
addmask_key = cplim = rn_ones + squid_max_keylen;
while (cp < cplim)
*cp++ = -1;
if (squid_rn_inithead(&squid_mask_rnhead, 0) == 0) {
fprintf(stderr, "rn_init2 failed.\n");
exit(-1);
}
}
|