File: MemPool.cc

package info (click to toggle)
squid3 3.0.PRE5-5%2Betch2
  • links: PTS
  • area: main
  • in suites: etch
  • size: 21,188 kB
  • ctags: 20,388
  • sloc: cpp: 119,851; ansic: 30,259; sh: 10,465; makefile: 3,289; perl: 1,267; awk: 84; xml: 58
file content (946 lines) | stat: -rw-r--r-- 24,519 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946

/*
 * $Id: MemPool.cc,v 1.6 2006/09/20 00:59:26 adrian Exp $
 *
 * DEBUG: section 63    Low Level Memory Pool Management
 * AUTHOR: Alex Rousskov, Andres Kroonmaa, Robert Collins
 *
 * SQUID Internet Object Cache  http://squid.nlanr.net/Squid/
 * ----------------------------------------------------------
 *
 *  Squid is the result of efforts by numerous individuals from the
 *  Internet community.  Development is led by Duane Wessels of the
 *  National Laboratory for Applied Network Research and funded by the
 *  National Science Foundation.  Squid is Copyrighted (C) 1998 by
 *  the Regents of the University of California.  Please see the
 *  COPYRIGHT file for full details.  Squid incorporates software
 *  developed and/or copyrighted by other sources.  Please see the
 *  CREDITS file for full details.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *  
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *  
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
 *
 */

/*
 * Old way:
 *   xmalloc each item separately, upon free stack into idle pool array.
 *   each item is individually malloc()ed from system, imposing libmalloc
 *   overhead, and additionally we add our overhead of pointer size per item
 *   as we keep a list of pointer to free items.
 * 
 * Chunking:
 *   xmalloc Chunk that fits at least MEM_MIN_FREE (32) items in an array, but
 *   limit Chunk size to MEM_CHUNK_MAX_SIZE (256K). Chunk size is rounded up to
 *   MEM_PAGE_SIZE (4K), trying to have chunks in multiples of VM_PAGE size.
 *   Minimum Chunk size is MEM_CHUNK_SIZE (16K).
 *   A number of items fits into a single chunk, depending on item size.
 *   Maximum number of items per chunk is limited to MEM_MAX_FREE (65535).
 * 
 *   We populate Chunk with a linkedlist, each node at first word of item,
 *   and pointing at next free item. Chunk->FreeList is pointing at first
 *   free node. Thus we stuff free housekeeping into the Chunk itself, and
 *   omit pointer overhead per item.
 * 
 *   Chunks are created on demand, and new chunks are inserted into linklist
 *   of chunks so that Chunks with smaller pointer value are placed closer
 *   to the linklist head. Head is a hotspot, servicing most of requests, so
 *   slow sorting occurs and Chunks in highest memory tend to become idle
 *   and freeable.
 * 
 *   event is registered that runs every 15 secs and checks reference time
 *   of each idle chunk. If a chunk is not referenced for 15 secs, it is
 *   released.
 * 
 *   [If mem_idle_limit is exceeded with pools, every chunk that becomes
 *   idle is immediately considered for release, unless this is the only
 *   chunk with free items in it.] (not implemented)
 * 
 *   In cachemgr output, there are new columns for chunking. Special item,
 *   Frag, is shown to estimate approximately fragmentation of chunked
 *   pools. Fragmentation is calculated by taking amount of items in use,
 *   calculating needed amount of chunks to fit all, and then comparing to
 *   actual amount of chunks in use. Frag number, in percent, is showing
 *   how many percent of chunks are in use excessively. 100% meaning that
 *   twice the needed amount of chunks are in use.
 *   "part" item shows number of chunks partially filled. This shows how
 *   badly fragmentation is spread across all chunks.
 * 
 *   Andres Kroonmaa.
 *   Copyright (c) 2003, Robert Collins <robertc@squid-cache.org>
 */

#include "config.h"
#include <assert.h>

#include "MemPool.h"

#define FLUSH_LIMIT 1000	/* Flush memPool counters to memMeters after flush limit calls */
#define MEM_MAX_MMAP_CHUNKS 2048

#if HAVE_STRING_H
#include <string.h>
#endif

/*
 * XXX This is a boundary violation between lib and src.. would be good
 * if it could be solved otherwise, but left for now.
 */
extern time_t squid_curtime;

/* local data */
static MemPoolMeter TheMeter;
static MemPoolIterator Iterator;

static int Pool_id_counter = 0;

/* local prototypes */
static int memCompChunks(MemChunk * const &, MemChunk * const &);
static int memCompObjChunks(void * const &, MemChunk * const &);

MemPools &
MemPools::GetInstance()
{
    /* Must use this idiom, as we can be double-initialised
     * if we are called during static initialisations.
     */
    if (!Instance)
	Instance = new MemPools;
    return *Instance;
}

MemPools * MemPools::Instance = NULL;

MemPoolIterator *
memPoolIterate(void)
{
    Iterator.pool = MemPools::GetInstance().pools;
    return &Iterator;
}

void
memPoolIterateDone(MemPoolIterator ** iter)
{
    assert(iter != NULL);
    Iterator.pool = NULL;
    *iter = NULL;
}

MemImplementingAllocator *
memPoolIterateNext(MemPoolIterator * iter)
{
    MemImplementingAllocator *pool;
    assert(iter != NULL);

    pool = iter->pool;
    if (!pool)
	return NULL;

    iter->pool = pool->next;
    return pool;
}

void
MemPools::setIdleLimit(size_t new_idle_limit)
{
    mem_idle_limit = new_idle_limit;
}

size_t const
MemPools::idleLimit() const
{
    return mem_idle_limit;
}

/* Compare chunks */
static int
memCompChunks(MemChunk * const &chunkA, MemChunk * const &chunkB)
{
    if (chunkA->objCache > chunkB->objCache)
	return 1;
    else if (chunkA->objCache < chunkB->objCache)
	return -1;
    else
	return 0;
}

/* Compare object to chunk */
static int 
memCompObjChunks(void *const &obj, MemChunk * const &chunk)
{
    /* object is lower in memory than the chunks arena */
    if (obj < chunk->objCache)
	return -1;
    /* object is within the pool */
    if (obj < (void *) ((char *) chunk->objCache + chunk->pool->chunk_size))
	return 0;
    /* object is above the pool */
    return 1;
}

MemChunk::MemChunk(MemPool *aPool) 
{
    /* should have a pool for this too - 
     * note that this requres:
     * allocate one chunk for the pool of chunks's first chunk
     * allocate a chunk from that pool
     * move the contents of one chunk into the other
     * free the first chunk.
     */
    inuse_count = 0;
    next = NULL;
    pool = aPool;

    objCache = xcalloc(1, pool->chunk_size);
    freeList = objCache;
    void **Free = (void **)freeList;

    for (int i = 1; i < pool->chunk_capacity; i++) {
	*Free = (void *) ((char *) Free + pool->obj_size);
	void **nextFree = (void **)*Free;
	(void) VALGRIND_MAKE_NOACCESS(Free, pool->obj_size);
	Free = nextFree;
    }
    nextFreeChunk = pool->nextFreeChunk;
    pool->nextFreeChunk = this;
    
    memMeterAdd(pool->getMeter().alloc, pool->chunk_capacity);
    memMeterAdd(pool->getMeter().idle, pool->chunk_capacity);
    pool->idle += pool->chunk_capacity;
    pool->chunkCount++;
    lastref = squid_curtime;
    pool->allChunks.insert(this, memCompChunks);
}

MemPool::MemPool(const char *aLabel, size_t aSize) : MemImplementingAllocator(aLabel, aSize)
{
    chunk_size = 0;
    chunk_capacity = 0;
    memPID = 0;
    chunkCount = 0;
    inuse = 0;
    idle = 0;
    freeCache = 0;
    nextFreeChunk = 0;
    Chunks = 0;
    next = 0;
    MemImplementingAllocator *last_pool;

    assert(aLabel != NULL && aSize);

    setChunkSize(MEM_CHUNK_SIZE);

    /* Append as Last */
    for (last_pool = MemPools::GetInstance().pools; last_pool && last_pool->next;)
	last_pool = last_pool->next;
    if (last_pool)
	last_pool->next = this;
    else
	MemPools::GetInstance().pools = this;

    memPID = ++Pool_id_counter;
}

MemChunk::~MemChunk()
{
    memMeterDel(pool->getMeter().alloc, pool->chunk_capacity);
    memMeterDel(pool->getMeter().idle, pool->chunk_capacity);
    pool->idle -= pool->chunk_capacity;
    pool->chunkCount--;
    pool->allChunks.remove(this, memCompChunks);
    xfree(objCache);
}

void
MemPool::push(void *obj)
{
    void **Free;
    /* XXX We should figure out a sane way of avoiding having to clear
     * all buffers. For example data buffers such as used by MemBuf do
     * not really need to be cleared.. There was a condition based on
     * the object size here, but such condition is not safe.
     */
    memset(obj, 0, obj_size);
    Free = (void **)obj;
    *Free = freeCache;
    freeCache = obj;
    (void) VALGRIND_MAKE_NOACCESS(obj, obj_size);
}

/*
 * Find a chunk with a free item.
 * Create new chunk on demand if no chunk with frees found.
 * Insert new chunk in front of lowest ram chunk, making it preferred in future,
 * and resulting slow compaction towards lowest ram area.
 */
void *
MemPool::get()
{
    void **Free;

    /* first, try cache */
    if (freeCache) {
	Free = (void **)freeCache;
	(void) VALGRIND_MAKE_READABLE(Free, obj_size);
	freeCache = *Free;
	*Free = NULL;
	return Free;
    }
    /* then try perchunk freelist chain */
    if (nextFreeChunk == NULL) {
	/* no chunk with frees, so create new one */
	createChunk();
    }
    /* now we have some in perchunk freelist chain */
    MemChunk *chunk = nextFreeChunk;

    Free = (void **)chunk->freeList;
    chunk->freeList = *Free;
    *Free = NULL;
    chunk->inuse_count++;
    chunk->lastref = squid_curtime;

    if (chunk->freeList == NULL) {
	/* last free in this chunk, so remove us from perchunk freelist chain */
	nextFreeChunk = chunk->nextFreeChunk;
    }
    (void) VALGRIND_MAKE_READABLE(Free, obj_size);
    return Free;
}

/* just create a new chunk and place it into a good spot in the chunk chain */
void
MemPool::createChunk()
{
    MemChunk *chunk, *newChunk;

    newChunk = new MemChunk(this);

    chunk = Chunks;
    if (chunk == NULL) {	/* first chunk in pool */
	Chunks = newChunk;
	return;
    }
    if (newChunk->objCache < chunk->objCache) {
	/* we are lowest ram chunk, insert as first chunk */
	newChunk->next = chunk;
	Chunks = newChunk;
	return;
    }
    while (chunk->next) {
	if (newChunk->objCache < chunk->next->objCache) {
	    /* new chunk is in lower ram, insert here */
	    newChunk->next = chunk->next;
	    chunk->next = newChunk;
	    return;
	}
	chunk = chunk->next;
    }
    /* we are the worst chunk in chain, add as last */
    chunk->next = newChunk;
}

/* Change the default calue of defaultIsChunked to override
 * all pools - including those used before main() starts where
 * MemPools::GetInstance().setDefaultPoolChunking() can be called.
 */
MemPools::MemPools() : pools(NULL), mem_idle_limit(2 * MB),
  poolCount (0), defaultIsChunked (!DISABLE_POOLS && !RUNNING_ON_VALGRIND)
{
    char *cfg = getenv("MEMPOOLS");
    if (cfg)
	defaultIsChunked = atoi(cfg);
#if HAVE_MALLOPT && M_MMAP_MAX
    mallopt(M_MMAP_MAX, MEM_MAX_MMAP_CHUNKS);
#endif
}

void
MemPool::setChunkSize(size_t chunksize)
{
    int cap;
    size_t csize = chunksize;

    if (Chunks)		/* unsafe to tamper */
	return;

    csize = ((csize + MEM_PAGE_SIZE - 1) / MEM_PAGE_SIZE) * MEM_PAGE_SIZE;	/* round up to page size */
    cap = csize / obj_size;

    if (cap < MEM_MIN_FREE)
	cap = MEM_MIN_FREE;
    if (cap * obj_size > MEM_CHUNK_MAX_SIZE)
	cap = MEM_CHUNK_MAX_SIZE / obj_size;
    if (cap > MEM_MAX_FREE)
	cap = MEM_MAX_FREE;
    if (cap < 1)
	cap = 1;

    csize = cap * obj_size;
    csize = ((csize + MEM_PAGE_SIZE - 1) / MEM_PAGE_SIZE) * MEM_PAGE_SIZE;	/* round up to page size */
    cap = csize / obj_size;

    chunk_capacity = cap;
    chunk_size = csize;
}

MemImplementingAllocator *
MemPools::create(const char *label, size_t obj_size)
{
    return create (label, obj_size, defaultIsChunked);
}

MemImplementingAllocator *
MemPools::create(const char *label, size_t obj_size, bool const chunked)
{
    ++poolCount;
    if (chunked)
	return new MemPool (label, obj_size);
    else
	return new MemMalloc (label, obj_size);
}

void
MemPools::setDefaultPoolChunking(bool const &aBool)
{
    defaultIsChunked = aBool;
}

/*
 * warning: we do not clean this entry from Pools assuming destruction
 * is used at the end of the program only
 */
MemPool::~MemPool()
{
    MemChunk *chunk, *fchunk;
    MemImplementingAllocator *find_pool, *prev_pool;

    flushMetersFull();
    clean(0);
    assert(inuse == 0 && "While trying to destroy pool");

    for (chunk = Chunks; (fchunk = chunk) != NULL; chunk = chunk->next)
	delete fchunk;

    assert(MemPools::GetInstance().pools != NULL && "Called MemPool::~MemPool, but no pool exists!");

    /* Pool clean, remove it from List and free */
    for (find_pool = MemPools::GetInstance().pools, prev_pool = NULL; (find_pool && this != find_pool); find_pool = find_pool->next)
	prev_pool = find_pool;
    assert(find_pool != NULL && "pool to destroy not found");

    if (prev_pool)
	prev_pool->next = next;
    else
	MemPools::GetInstance().pools = next;
    --MemPools::GetInstance().poolCount;
}

char const *
MemAllocator::objectType() const
{
    return label;
}

int
MemAllocator::inUseCount()
{
    return getInUseCount();
}

void
MemImplementingAllocator::flushMeters()
{
    size_t calls;

    calls = free_calls;
    if (calls) {
	getMeter().gb_freed.count += calls;
	memMeterDel(getMeter().inuse, calls);
	memMeterAdd(getMeter().idle, calls);
	free_calls = 0;
    }
    calls = alloc_calls;
    if (calls) {
	meter.gb_saved.count += calls;
	memMeterAdd(meter.inuse, calls);
	memMeterDel(meter.idle, calls);
	alloc_calls = 0;
    }
}

void
MemImplementingAllocator::flushMetersFull()
{
    flushMeters();
    getMeter().gb_saved.bytes = getMeter().gb_saved.count * obj_size;
    getMeter().gb_freed.bytes = getMeter().gb_freed.count * obj_size;
}

void
MemPoolMeter::flush() 
{
    alloc.level = 0;
    inuse.level = 0;
    idle.level = 0;
    gb_saved.count = 0;
    gb_saved.bytes = 0;
    gb_freed.count = 0;
    gb_freed.bytes = 0;
}
/*
 * Updates all pool counters, and recreates TheMeter totals from all pools
 */
void
MemPools::flushMeters()
{
    MemImplementingAllocator *pool;
    MemPoolIterator *iter;

    TheMeter.flush();

    iter = memPoolIterate();
    while ((pool = memPoolIterateNext(iter))) {
	pool->flushMetersFull();
	memMeterAdd(TheMeter.alloc, pool->getMeter().alloc.level * pool->obj_size);
	memMeterAdd(TheMeter.inuse, pool->getMeter().inuse.level * pool->obj_size);
	memMeterAdd(TheMeter.idle, pool->getMeter().idle.level * pool->obj_size);
	TheMeter.gb_saved.count += pool->getMeter().gb_saved.count;
	TheMeter.gb_freed.count += pool->getMeter().gb_freed.count;
	TheMeter.gb_saved.bytes += pool->getMeter().gb_saved.bytes;
	TheMeter.gb_freed.bytes += pool->getMeter().gb_freed.bytes;
    }
    memPoolIterateDone(&iter);
}

void *
MemMalloc::allocate()
{
    inuse++;
    return xcalloc(1, obj_size);
}

void
MemMalloc::deallocate(void *obj)
{
    inuse--;
    xfree(obj);
}

void *
MemImplementingAllocator::alloc()
{
    if (++alloc_calls == FLUSH_LIMIT)
	flushMeters();

    return allocate();
}

void
MemImplementingAllocator::free(void *obj)
{
    assert(obj != NULL);
    (void) VALGRIND_CHECK_WRITABLE(obj, obj_size);
    deallocate(obj);
    ++free_calls;
}

int
MemPool::getInUseCount()
{
    return inuse;
}

void *
MemPool::allocate()
{
    void *p = get();
    assert(idle);
    --idle;
    ++inuse;
    return p;
}

void
MemPool::deallocate(void *obj)
{
    push(obj);
    assert(inuse);
    --inuse;
    ++idle;
}

void
MemPool::convertFreeCacheToChunkFreeCache()
{
    void *Free;
    /*
     * OK, so we have to go through all the global freeCache and find the Chunk
     * any given Free belongs to, and stuff it into that Chunk's freelist 
     */

    while ((Free = freeCache) != NULL) {
	MemChunk *chunk = NULL;
	chunk = const_cast<MemChunk *>(*allChunks.find(Free, memCompObjChunks));
	assert(splayLastResult == 0);
	assert(chunk->inuse_count > 0);
	chunk->inuse_count--;
	(void) VALGRIND_MAKE_READABLE(Free, sizeof(void *));
	freeCache = *(void **)Free;	/* remove from global cache */
	*(void **)Free = chunk->freeList;	/* stuff into chunks freelist */
	(void) VALGRIND_MAKE_NOACCESS(Free, sizeof(void *));
	chunk->freeList = Free;
	chunk->lastref = squid_curtime;
    }

}

/* removes empty Chunks from pool */
void
MemPool::clean(time_t maxage)
{
    MemChunk *chunk, *freechunk, *listTail;
    time_t age;

    if (!this)
	return;
    if (!Chunks)
	return;

    flushMetersFull();
    convertFreeCacheToChunkFreeCache();
    /* Now we have all chunks in this pool cleared up, all free items returned to their home */
    /* We start now checking all chunks to see if we can release any */
    /* We start from Chunks->next, so first chunk is not released */
    /* Recreate nextFreeChunk list from scratch */

    chunk = Chunks;
    while ((freechunk = chunk->next) != NULL) {
	age = squid_curtime - freechunk->lastref;
	freechunk->nextFreeChunk = NULL;
	if (freechunk->inuse_count == 0)
	    if (age >= maxage) {
		chunk->next = freechunk->next;
		delete freechunk;
		freechunk = NULL;
	    }
	if (chunk->next == NULL)
	    break;
	chunk = chunk->next;
    }

    /* Recreate nextFreeChunk list from scratch */
    /* Populate nextFreeChunk list in order of "most filled chunk first" */
    /* in case of equal fill, put chunk in lower ram first */
    /* First (create time) chunk is always on top, no matter how full */

    chunk = Chunks;
    nextFreeChunk = chunk;
    chunk->nextFreeChunk = NULL;

    while (chunk->next) {
	chunk->next->nextFreeChunk = NULL;
	if (chunk->next->inuse_count < chunk_capacity) {
	    listTail = nextFreeChunk;
	    while (listTail->nextFreeChunk) {
		if (chunk->next->inuse_count > listTail->nextFreeChunk->inuse_count)
		    break;
		if ((chunk->next->inuse_count == listTail->nextFreeChunk->inuse_count) &&
		    (chunk->next->objCache < listTail->nextFreeChunk->objCache))
		    break;
		listTail = listTail->nextFreeChunk;
	    }
	    chunk->next->nextFreeChunk = listTail->nextFreeChunk;
	    listTail->nextFreeChunk = chunk->next;
	}
	chunk = chunk->next;
    }
    /* We started from 2nd chunk. If first chunk is full, remove it */
    if (nextFreeChunk->inuse_count == chunk_capacity)
	nextFreeChunk = nextFreeChunk->nextFreeChunk;

    return;
}

/* 
 * Returns all cached frees to their home chunks
 * If chunks unreferenced age is over, destroys Idle chunk
 * Flushes meters for a pool
 * If pool is not specified, iterates through all pools.
 * When used for all pools, if new_idle_limit is above -1, new
 * idle memory limit is set before Cleanup. This allows to shrink
 * memPool memory usage to specified minimum.
 */
void
MemPools::clean(time_t maxage)
{
    MemImplementingAllocator *pool;
    MemPoolIterator *iter;

    int shift = 1;
    flushMeters();
    if (TheMeter.idle.level > mem_idle_limit)
	maxage = shift = 0;

    iter = memPoolIterate();
    while ((pool = memPoolIterateNext(iter)))
	if (pool->idleTrigger(shift))
	    pool->clean(maxage);
    memPoolIterateDone(&iter);
}

bool
MemPool::idleTrigger(int shift) const
{
    return getMeter().idle.level > (chunk_capacity << shift);
}

/* Persistent Pool stats. for GlobalStats accumulation */
static MemPoolStats pp_stats;

/*
 * Update MemPoolStats struct for single pool
 */
int
MemPool::getStats(MemPoolStats * stats)
{
    MemChunk *chunk;
    int chunks_free = 0;
    int chunks_partial = 0;

    if (stats != &pp_stats)	/* need skip memset for GlobalStats accumulation */
	/* XXX Fixme */
	memset(stats, 0, sizeof(MemPoolStats));

    clean((time_t) 555555);	/* don't want to get chunks released before reporting */

    stats->pool = this;
    stats->label = objectType();
    stats->meter = &getMeter();
    stats->obj_size = obj_size;
    stats->chunk_capacity = chunk_capacity;

    /* gather stats for each Chunk */
    chunk = Chunks;
    while (chunk) {
	if (chunk->inuse_count == 0)
	    chunks_free++;
	else if (chunk->inuse_count < chunk_capacity)
	    chunks_partial++;
	chunk = chunk->next;
    }

    stats->chunks_alloc += chunkCount;
    stats->chunks_inuse += chunkCount - chunks_free;
    stats->chunks_partial += chunks_partial;
    stats->chunks_free += chunks_free;

    stats->items_alloc += getMeter().alloc.level;
    stats->items_inuse += getMeter().inuse.level;
    stats->items_idle += getMeter().idle.level;

    stats->overhead += sizeof(MemPool) + chunkCount * sizeof(MemChunk) + strlen(objectType()) + 1;

    return getMeter().inuse.level;
}

/* TODO extract common logic to MemAllocate */
int
MemMalloc::getStats(MemPoolStats * stats)
{
    if (stats != &pp_stats)	/* need skip memset for GlobalStats accumulation */
	/* XXX Fixme */
	memset(stats, 0, sizeof(MemPoolStats));

    stats->pool = this;
    stats->label = objectType();
    stats->meter = &getMeter();
    stats->obj_size = obj_size;
    stats->chunk_capacity = 0;

    stats->chunks_alloc += 0;
    stats->chunks_inuse += 0;
    stats->chunks_partial += 0;
    stats->chunks_free += 0;

    stats->items_alloc += getMeter().alloc.level;
    stats->items_inuse += getMeter().inuse.level;
    stats->items_idle += getMeter().idle.level;

    stats->overhead += sizeof(MemMalloc) + strlen(objectType()) + 1;

    return getMeter().inuse.level;
}

int
MemMalloc::getInUseCount()
{
	return inuse;
}

/*
 * Totals statistics is returned
 */
int
memPoolGetGlobalStats(MemPoolGlobalStats * stats)
{
    int pools_inuse = 0;
    MemAllocator *pool;
    MemPoolIterator *iter;

    memset(stats, 0, sizeof(MemPoolGlobalStats));
    memset(&pp_stats, 0, sizeof(MemPoolStats));

    MemPools::GetInstance().flushMeters(); /* recreate TheMeter */

    /* gather all stats for Totals */
    iter = memPoolIterate();
    while ((pool = memPoolIterateNext(iter))) {
	if (pool->getStats(&pp_stats) > 0)
	    pools_inuse++;
    }
    memPoolIterateDone(&iter);

    stats->TheMeter = &TheMeter;

    stats->tot_pools_alloc = MemPools::GetInstance().poolCount;
    stats->tot_pools_inuse = pools_inuse;
    stats->tot_pools_mempid = Pool_id_counter;

    stats->tot_chunks_alloc = pp_stats.chunks_alloc;
    stats->tot_chunks_inuse = pp_stats.chunks_inuse;
    stats->tot_chunks_partial = pp_stats.chunks_partial;
    stats->tot_chunks_free = pp_stats.chunks_free;
    stats->tot_items_alloc = pp_stats.items_alloc;
    stats->tot_items_inuse = pp_stats.items_inuse;
    stats->tot_items_idle = pp_stats.items_idle;

    stats->tot_overhead += pp_stats.overhead + MemPools::GetInstance().poolCount * sizeof(MemPool *);
    stats->mem_idle_limit = MemPools::GetInstance().mem_idle_limit;

    return pools_inuse;
}

MemAllocator::MemAllocator(char const *aLabel) : label(aLabel)
{
}

MemMalloc::MemMalloc(char const *label, size_t aSize) : MemImplementingAllocator(label, aSize) { inuse = 0; }

bool
MemMalloc::idleTrigger(int shift) const
{
    return false;
}

void
MemMalloc::clean(time_t maxage)
{
}

int
memPoolInUseCount(MemAllocator * pool)
{
    return pool->inUseCount();
}

int
memPoolsTotalAllocated(void)
{
    MemPoolGlobalStats stats;
    memPoolGetGlobalStats(&stats);
    return stats.TheMeter->alloc.level;
}

void *
MemAllocatorProxy::alloc()
{
    return getAllocator()->alloc();
}

void
MemAllocatorProxy::free(void *address)
{
    getAllocator()->free(address);
    /* TODO: check for empty, and if so, if the default type has altered,
     * switch
     */
}

MemAllocator *
MemAllocatorProxy::getAllocator() const
{
    if (!theAllocator)
	theAllocator = MemPools::GetInstance().create(objectType(), size);
    return theAllocator;
}

int
MemAllocatorProxy::inUseCount() const
{
    if (!theAllocator)
	return 0;
    else
	return memPoolInUseCount(theAllocator);
}

size_t
MemAllocatorProxy::objectSize() const
{
    return size;
}

char const *
MemAllocatorProxy::objectType() const
{
    return label;
}

MemPoolMeter const &
MemAllocatorProxy::getMeter() const
{
    return getAllocator()->getMeter();
}

int
MemAllocatorProxy::getStats(MemPoolStats * stats)
{
    return getAllocator()->getStats(stats);
}

MemImplementingAllocator::MemImplementingAllocator(char const *aLabel, size_t aSize) : MemAllocator(aLabel),
	next(NULL),
	alloc_calls(0),
	free_calls(0),
	obj_size(((aSize + sizeof(void *) - 1) / sizeof(void *)) * sizeof(void *))
{
}

MemPoolMeter const &
MemImplementingAllocator::getMeter() const
{
    return meter;
}

MemPoolMeter &
MemImplementingAllocator::getMeter()
{
    return meter;
}

size_t
MemImplementingAllocator::objectSize() const
{
    return obj_size;
}