File: spot_assembly.hpp

package info (click to toggle)
sra-sdk 3.0.3%2Bdfsg-6~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 165,852 kB
  • sloc: ansic: 374,775; cpp: 232,734; perl: 8,959; java: 6,253; sh: 6,032; python: 3,890; makefile: 1,046; yacc: 703; xml: 310; lex: 235
file content (783 lines) | stat: -rw-r--r-- 26,015 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
#ifndef __SPOT_ASSEMBLY_HPP_
#define __SPOT_ASSEMBLY_HPP_

/*  
 * ===========================================================================
 *
 *                            PUBLIC DOMAIN NOTICE
 *               National Center for Biotechnology Information
 *
 *  This software/database is a "United States Government Work" under the
 *  terms of the United States Copyright Act.  It was written as part of
 *  the author's official duties as a United States Government employee and
 *  thus cannot be copyrighted.  This software/database is freely available
 *  to the public for use. The National Library of Medicine and the U.S.
 *  Government have not placed any restriction on its use or reproduction.
 *
 *  Although all reasonable efforts have been taken to ensure the accuracy
 *  and reliability of the software and data, the NLM and the U.S.
 *  Government do not and cannot warrant the performance or results that
 *  may be obtained by using this software or data. The NLM and the U.S.
 *  Government disclaim all warranties, express or implied, including
 *  warranties of performance, merchantability or fitness for any particular
 *  purpose.
 *
 *  Please cite the author in any work or product based on this material.
 *
 * ===========================================================================
 *
 * Authors:  Andrei Shkeda
 *
 * File Description:
 *
 */
#include "hashing.hpp"
#include "data_frame.hpp"
#include <tsl/array_map.h>
#include <bm/bm.h>
#include <bm/bmsparsevec.h>
#include <bm/bmstrsparsevec.h>
#include <bm/bmsparsevec_algo.h>
#include <bm/bmsparsevec_serial.h>
#include <bm/bmsparsevec_compr.h>
#include <bm/bmintervals.h>
#include <bm/bmdbg.h>


#include <vector>
#include <ostream>
#include <memory>
#include <algorithm>
#include <variant>

using namespace std;



typedef tsl::array_map<char, uint32_t, 
hashing::fnv_1a_hash, 
tsl::ah::str_equal<char>,
true,
std::uint16_t,
std::uint32_t,
tsl::ah::prime_growth_policy> array_map_t;

typedef bm::bvector<> bvector_type;
typedef bm::str_sparse_vector<char, bvector_type, 32> str_sv_type;
typedef bm::sparse_vector<uint32_t, bm::bvector<> > svector_u32;



/**
 * @brief BAM Alignment succinct metadata
 * 
 * 
 */
class metadata_t : public CDataFrame
{
public:    
    enum {
        e_primaryId1, //uint64
        e_primaryId2, //uint64
        e_spotId,     //uint64
        e_fragmentId, //uint32 
        e_fragment_len1, //uint32
        e_fragment_len2, //uint32
        e_alignmentCount1, //uint32
        e_alignmentCount2, //uint32
        e_platform,  //uint16
        e_unmated, //bit
        e_pcr_dup, //bit
        e_unaligned_1, //bit
        e_unaligned_2, //bit
        e_hardclipped, //bit
        e_primary_is_set //bit
    };

    metadata_t() {
        static initializer_list<EDF_ColumnType> cols = {
            eDF_Uint64,  // e_primaryId1
            eDF_Uint64,  // e_primaryId2
            eDF_Uint64,  // e_spotId
            eDF_Uint32,  // e_fragmentId
            eDF_Uint16,  // e_fragment_len1
            eDF_Uint16,  // e_fragment_len2
            eDF_Uint16,  // e_alignmentCount1
            eDF_Uint16,  // e_alignmentCount2
            eDF_Uint16,  // e_platform
            eDF_Bit,     // e_unmated
            eDF_Bit,     // e_pcr_dup
            eDF_Bit,     // e_unaligned_1
            eDF_Bit,     // e_unaligned_2
            eDF_Bit,     // e_hardclipped
            eDF_Bit     // e_primary_is_set
        };
        CreateColumns(cols);
    }
    bool need_optimize{false};  ///< Flag to indicate if metadata need to be optimized (compressed)
    size_t memory_used{0};      ///< Used memory in bytes

    static constexpr std::array<int, 2> E_PRIM_ID = {metadata_t::e_primaryId1, metadata_t::e_primaryId2};
    static constexpr std::array<int, 2> E_FRAG_LEN = {metadata_t::e_fragment_len1, metadata_t::e_fragment_len2};
    static constexpr std::array<int, 2> E_ALN_COUNT = {metadata_t::e_alignmentCount1, metadata_t::e_alignmentCount2};

};


/**
 * @brief Volume of compressed spot names and corresponding metadata
 * 
 * Volume has two states: hot and cold. While it's hot (m_use_scanner == false), 
 * m_pack_job is running and the spot search is using m_spot_map.
 * Once m_pack_job is finished (m_data_ready == true), 
 * the search is switched (m_use_scanner == false) to use svector scanner (m_scanner)
 * and m_spot_map memory is released
 * The switch is done by spot_assembly instance which handles the list of spot_batches and their states
 * 
 */
struct spot_batch 
{
    typedef bm::sparse_vector_scanner<str_sv_type, 64> scanner_t;
    unique_ptr<array_map_t> m_spot_map;  ///< 'hot' spot name map while pack_job is running
    size_t m_offset = 0;                 ///< Metadata global offset
    size_t m_batch_size = 0;             ///< Number of spots in the batch 
    unique_ptr<str_sv_type> m_data;      ///< sorted succinct spot names 
    unique_ptr<svector_u32> m_index;     ///< succinct spot name index
    unique_ptr<scanner_t> m_scanner;     ///< scanner implements binary search in m_data
    tf::Future<void> m_pack_job;         ///< Pack job future
    atomic<bool> m_data_ready{false};    ///< Flag to indicate the end of the pack job
    bool m_use_scanner{false};           ///< Flag to indicate which search to use (scanner or spot_map)
    size_t m_memory_used = 0;            ///< Memory used by metadata (for diagnostics) 
    unique_ptr<metadata_t> m_metadata;   ///< Pointer to metadata
    bool m_data_saved{false};

    /**
     * @brief Construct a new spot batch object
     * 
     * @param offset 
     * @param batch_size 
     */
    spot_batch(size_t offset, size_t batch_size) 
        : m_offset(offset)
        , m_batch_size(batch_size)
    {

    }

    /**
     * @brief Release memory related to spot name searches, keep metadata
     * 
     */
    void release_search_memory() 
    {
        if (m_pack_job.valid())
            m_pack_job.get();
        m_spot_map.reset(nullptr);
        m_data.reset(nullptr);
        m_index.reset(nullptr);
        m_scanner.reset(nullptr);
        m_memory_used = 0;
    }

};

/**
 * @brief Implements spot assembly
 * 
 * find() is the main method that finds or else adds a new spot and returns its metadata
 * 
 * @tparam metadata_t 
 */

struct spot_assembly 
{
    tf::Executor& m_executor;           ///< Taskflow executor (initialized in constructor)
    tf::Taskflow m_taskflow;            ///< taskflow used for searches
    shared_ptr<spot_name_filter> m_key_filter; ///< Spot name bloom filter
    const unsigned m_group_id;           ///< unique spot assembly (or reporting)
    unique_ptr<array_map_t> m_spot_map;  ///< Current search map
    unique_ptr<metadata_t> m_metadata;   ///< Current metdata

    vector<unique_ptr<spot_batch>> m_batches; ///< List of search batches
    size_t m_offset = 0;                 ///< Current data offset  
    size_t m_curr_row = 0;               ///< Current row 
    size_t m_total_spots = 0;            ///< Total number of spots 
    unsigned m_platform = 0;             ///< Assembly platform 
    atomic<bool> m_stop_packing{false};  ///< Flag to interrupt bach packing jobs
    atomic<bool> m_search_done;          ///< Flag to interrupt the current search 
    
    size_t m_key_filter_total = 0;
    size_t m_key_filter_miss = 0;

    /**
     * @brief Construct a new spot assembly object
     * 
     * @param executor -- TaskFlow executor
     * @param key_filter -- Bloom filter
     * @param group_id -- numeric cgroup_id
     * @param batch_size -- default batch size
     */
    spot_assembly(tf::Executor& executor, shared_ptr<spot_name_filter> key_filter, unsigned group_id, size_t batch_size); 

    /**
     * @brief Destroy the spot assembly object
     * 
     */
    ~spot_assembly(); 
    

    /**
     * @brief Release memory related to spot name searches, keep metadata
    */
    void release_search_memory();

    /**
     * @brief Add batch and run background packing job
     * 
     */
    void pack_batch();

    /**
     * @brief report batch memory usage 
     * 
     * @return size_t - used memory in bytes
     */
    size_t memory_used();

    /**
     * @brief Structure for teh search results 
     * 
     */
    typedef struct {
        size_t pos{0}; // Global spot index
        bool wasInserted{true}; ///< Indicates if spot inserted (new spot)
        metadata_t* metadata{nullptr}; ///< Metadata for the spot
        size_t row_id{0}; ///< Metadata row
    } spot_rec_t;

    spot_rec_t m_rec;

    /**
     * @brief Implements spot search and returns populate spot_rec_t
     * 
     * @param name 
     * @param namelen 
     * @return const spot_rec_t& 
     */
    const spot_rec_t& find(const char* name, int namelen);

    /**
     * @brief Applies F to all metadata in the group
     * 
     * @tparam F 
     * @param f - Visitor (metadata_t& metadata, unsigned group_id, size_t offset) 
     *        params: metadata's group id and metadata's offset
     *        for row_id in 0 >= row_id < metadata.size()
     *        global keyId can be generated using the following formula
     *        ((uint64_t)group_id << GROUPID_SHIFT) | (offset + row_id);
     */

    template<typename F>
    void visit_metadata(F&& f, unsigned group_id);

#if defined(HAS_CTX_VALUE)
    //**
     * @brief Apply F to all keyId
     * 
     * @tparam F 
     * @param f 
     * @param group_id 
     * @param GROUPID_SHIFT 
     * @param col_index 
     */
    template<typename F>
    void visit_keyId(F&& f, unsigned group_id, unsigned GROUPID_SHIFT, unsigned col_index);
#endif


    /**
     * @brief Apply F to each spot name 
     * 
     * @tparam F 
     * @param f 
     */
    template<typename F>
    void visit_spots(F&& f);


    /**
     * @brief Clears specific metadata column memory
     * 
     * @tparam T 
     * @param col_index -- Column index
     */
    template<typename T>
    void clear_column(unsigned col_index);


    /**
     * @brief Extracts all values from 64-bit column into 32 and 8 bit arrays
     * 
     * @param col_index -- column index
     * @param values - 32-bit part of the value
     * @param ext -- 8-bit part of the value
     * @param clear -- if true clears column after extraction 
     */
    void extract_64bit_column(unsigned col_index, vector<uint32_t>& values, vector<uint8_t>& ext, bool clear = false);


    /**
     * @brief Extracts all values from 16-bit column into unit8_t array 
     * 
     * @param col_index -- column index
     * @param values - unit_8 array 
     * @param clear -- if true clears column after extraction 
     */
    void extract_16bit_column(unsigned col_index, vector<uint8_t>& values, bool clear = false);


    /**
     * @brief Finds metadata by global KeyId (expected to always find it)
     * 
     * @param keyId 
     * @return pair<metadata_t*, size_t> 
     */
    pair<metadata_t*, size_t> metadata_by_key(uint64_t keyId);

};

void spot_assembly::release_search_memory() 
{
    m_stop_packing = true;
    for (auto& batch : m_batches) {
        batch->release_search_memory();
    }
    m_spot_map.reset(nullptr);
}



void spot_assembly::pack_batch() 
{
    m_batches.push_back(make_unique<spot_batch>(m_offset, m_curr_row));

    string batch_idx = fmt::format("{}.{}", m_group_id, m_batches.size());
    auto batch = m_batches.back().get();
    batch->m_spot_map.swap(m_spot_map); 
    m_spot_map.reset(new array_map_t);
    m_spot_map->max_load_factor(64.);
    assert(m_curr_row > 0);
    m_spot_map->reserve(ceil((float)m_curr_row/10e6) * 10e6);

    m_offset += m_curr_row;
    m_curr_row = 0;

    batch->m_metadata.swap(m_metadata);
    batch->m_metadata->need_optimize = true;
    m_metadata.reset(new metadata_t);
    batch->m_pack_job = m_executor.async([this, batch, batch_idx]() {
        auto& new_batch = *batch;
        spdlog::stopwatch sw1;
        spdlog::stopwatch sw;
        // Get the list of current spot name and sort them
        vector<const char*> sss;
        sss.reserve(new_batch.m_spot_map->size());
        for(auto it = new_batch.m_spot_map->begin(); it != new_batch.m_spot_map->end(); ++it) {
            sss.push_back(it.key());
        }
        if (m_stop_packing)
            return;
        spdlog::info("{} Batch insert: {:.3}, {:L} reads", batch_idx, sw, new_batch.m_spot_map->size()); 
        sw.reset();
        tf::Taskflow taskflow;
        taskflow.sort(sss.begin(), sss.end(), [](const char* s1, const char* s2) {
            return strcmp(s1, s2) < 0;
        });
        m_executor.run_and_wait(taskflow);
        if (m_stop_packing)
            return;
        spdlog::info("{} Batch sort: {:.3}", batch_idx, sw); 
        sw.reset();
        // Populate succinct data and index with sorted spot names
        new_batch.m_data.reset(new str_sv_type); 
        new_batch.m_index.reset(new svector_u32); 
        {
            str_sv_type::back_insert_iterator sv_it = new_batch.m_data->get_back_inserter();
            svector_u32::back_insert_iterator idx_it = new_batch.m_index->get_back_inserter();
            for (auto& s : sss) {
                sv_it = s;
                idx_it = (uint32_t)new_batch.m_spot_map->at(s);
            }
            idx_it.flush();
            sv_it.flush();
        }
        
        sss.clear(); // We don't need spot_names anymore
        sss.shrink_to_fit();
        spdlog::info("{} Batch vector insert: {:.3}", batch_idx, sw); 
        sw.reset();

        new_batch.m_data->remap(); // Remap to optimize spot_name alphabet
        spdlog::info("{} Batch vector remap: {:.3}", batch_idx, sw); 
        sw.reset();
        if (m_stop_packing)
            return;
        // optimize and freeze succinct structures
        BM_DECLARE_TEMP_BLOCK(TB) // BitMagic Temporary block
        str_sv_type::statistics st1;
        new_batch.m_data->optimize(TB);
        new_batch.m_data->calc_stat(&st1);
        new_batch.m_memory_used = st1.memory_used;
        svector_u32::statistics st2;
        new_batch.m_index->optimize(TB, bm::bvector<>::opt_compress, &st2);
        new_batch.m_memory_used += st2.memory_used;

        spdlog::info("{} Batch vector optimize: {:.3}, sv {:L}, idx: {:L}", batch_idx, sw, st1.memory_used, st2.memory_used); 
        if (m_stop_packing)
            return;
        new_batch.m_data->freeze();
        new_batch.m_index->freeze();
        if (m_stop_packing)
            return;
        // Create and link scanner to spot_name vector    
        new_batch.m_scanner.reset(new spot_batch::scanner_t);
        new_batch.m_scanner->bind(*new_batch.m_data, true);
        new_batch.m_data_ready = true;
        spdlog::info("{} Batch done in : {:.3}", batch_idx, sw1); 
        
    });
} 

size_t spot_assembly::memory_used() 
{
    size_t m = 0;
    for (auto& b : m_batches) {
        m += b->m_memory_used;
        m += b->m_metadata->memory_used;
    }
    return m;
}


spot_assembly::spot_assembly(tf::Executor& executor, shared_ptr<spot_name_filter> key_filter, unsigned group_id, size_t batch_size ) 
    : m_executor{executor}
    , m_key_filter(key_filter)
    , m_group_id(group_id)
{
    m_batches.reserve(256);
    m_spot_map.reset(new array_map_t);
    m_spot_map->max_load_factor(64.);
    m_spot_map->reserve(batch_size);
    m_metadata.reset(new metadata_t);
}

spot_assembly::~spot_assembly() 
{
    m_stop_packing = true;
    for_each(m_batches.begin(), m_batches.end(), [] (auto& batch) { 
        if (batch->m_pack_job.valid())
            batch->m_pack_job.get();
    });
}

const spot_assembly::spot_rec_t& spot_assembly::find(const char* name, int namelen) 
{
#if defined (COLLECT_STATS)    
    static size_t count = 0;
    static size_t new_rec = 0;
    static size_t bloom_collisions = 0;
    static size_t hot_found = 0;
    static size_t batch_found = 0;
#endif    
    m_rec.wasInserted = true;
    if (m_key_filter->seen_before(name, namelen)) {
        auto it = m_spot_map->find_ks(name, namelen, m_key_filter->get_name_hash());

        if (it != m_spot_map->end()) {
#if defined (COLLECT_STATS)    
            ++hot_found;
#endif            
            m_rec.wasInserted = false;
            m_rec.row_id = *it;
            m_rec.pos = m_rec.row_id + m_offset;
            m_rec.metadata = m_metadata.get();
            return m_rec;
        } else if (m_batches.size() > 1) {
            m_taskflow.clear();
            m_search_done = false;
            m_taskflow.for_each(m_batches.rbegin(), m_batches.rend(), [this, &name, &namelen] (auto& batch) { 
                if (m_search_done)
                    return;
                if (batch->m_use_scanner) {
                    str_sv_type::size_type pos = 0;
                    if (batch->m_scanner->bfind_eq_str(name, namelen, pos)) { 
                        m_search_done = true;
                        m_rec.wasInserted = false;
                        m_rec.row_id = batch->m_index->get(pos);
                        m_rec.pos = m_rec.row_id + batch->m_offset;
                        m_rec.metadata = batch->m_metadata.get();
                    } 

                } else {
                    auto it = batch->m_spot_map->find_ks(name, namelen, m_key_filter->get_name_hash());
                    if (it != batch->m_spot_map->end()) {
                        m_search_done = true;
                        m_rec.wasInserted = false;
                        m_rec.row_id = *it;
                        m_rec.pos = m_rec.row_id + batch->m_offset;
                        m_rec.metadata = batch->m_metadata.get();
                    } 
                    if (batch->m_data_ready) {
                        batch->m_use_scanner = true;
                        batch->m_spot_map.reset();
                    }
                } 
            });
            m_executor.run(m_taskflow).wait();
    #if defined (COLLECT_STATS)    
                if (m_search_done)
                    ++batch_found;
    #endif                    
        } else if (m_batches.size() == 1) {
            auto& b = *m_batches.front();
            if (b.m_use_scanner) {
                str_sv_type::size_type pos = 0;
                if (b.m_scanner->bfind_eq_str(name, namelen,  pos)) { 
                    m_rec.wasInserted = false;
                    m_rec.row_id = b.m_index->get(pos);
                    m_rec.pos = m_rec.row_id + b.m_offset;
                    m_rec.metadata = b.m_metadata.get();
                    return m_rec;
                } 
            } else {
                auto it = b.m_spot_map->find_ks(name, namelen, m_key_filter->get_name_hash());
                if (it != b.m_spot_map->end()) {
                    m_rec.wasInserted = false;
                    m_rec.row_id = *it;
                    m_rec.pos = m_rec.row_id + b.m_offset;
                    m_rec.metadata = b.m_metadata.get();
                } 
                if (b.m_data_ready) {
                    b.m_use_scanner = true;
                    b.m_spot_map.reset();
                }
            } 
        }
#if defined (COLLECT_STATS)    
        if (rec.wasInserted) 
            ++bloom_collisions;
#endif            
    } 
    if (m_rec.wasInserted) {
        m_spot_map->insert_ks_hash(m_key_filter->get_name_hash(), name, namelen, m_curr_row); 
        m_rec.row_id = m_curr_row;
        m_rec.pos = m_curr_row + m_offset;
        m_rec.metadata = m_metadata.get();
        ++m_total_spots;
        ++m_curr_row;
#if defined (COLLECT_STATS)    
        ++new_rec;
#endif        
    }
#if defined (COLLECT_STATS)    
    if (++count % 10000000 == 0) {
        spdlog::info("New: {:L}, collisions: {:L}, found hot: {:L}, found batch: {:L}", new_rec, bloom_collisions, hot_found, batch_found);
        new_rec = bloom_collisions = hot_found = batch_found = 0;
    }
#endif    
    return m_rec;
}


template<typename F>
void spot_assembly::visit_metadata(F&& f, unsigned group_id) 
{
    if (m_metadata) {
        f(*m_metadata, group_id, m_offset);
    }
    for (auto& b : m_batches) {
        assert(b->m_metadata);
        if (b->m_metadata) {
            f(*b->m_metadata, group_id, b->m_offset);
        }
    }
}
#if defined(HAS_CTX_VALUE)

template<typename F>
void spot_assembly::visit_keyId(F&& f, unsigned group_id, unsigned GROUPID_SHIFT, unsigned col_index) 
{
    if (m_metadata) {
        auto sz = m_metadata->template get<u32_t>(col_index).size();
        for (auto row_id = 0; row_id < sz; ++row_id) {
            uint64_t keyId = (((uint64_t)group_id) << GROUPID_SHIFT) | (row_id + m_offset);
            f(keyId);
        }
    }
    for (auto& b : m_batches) {
        assert(b->m_metadata);
        if (b->m_metadata) {
            auto sz = b->m_metadata->template get<u32_t>(col_index).size();
            for (auto row_id = 0; row_id < sz; ++row_id) {
                uint64_t keyId = (((uint64_t)group_id) << GROUPID_SHIFT) | (row_id + b->m_offset);
                f(keyId);
            }
        }
    }
}
#endif


template<typename F>
void spot_assembly::visit_spots(F&& f) 
{
    for(auto it = m_spot_map->begin(); it != m_spot_map->end(); ++it) {
        f(it.key());
    }
    for (auto& b : m_batches) {
        if (b->m_use_scanner) {
            auto data_it = b->m_data->begin();
            while (data_it.valid()) {
                f(data_it.value());
                data_it.advance();
            }
        } else {
            for(auto it = b->m_spot_map->begin(); it != b->m_spot_map->end(); ++it) {
                f(it.key());
            }
        }
    }

}


//template<typename metadata_t>
//template<typename T>
//void spot_assembly<metadata_t>::clear_column(unsigned col_index) 
template<typename T>
void spot_assembly::clear_column(unsigned col_index) 
{
    if (m_metadata) {
        auto md = m_metadata->template get<T>(col_index);
        md.clear();
    }
    for (auto& b : m_batches) {
        assert(b->m_metadata);
        if (!b->m_metadata) 
            continue;
        auto md = b->m_metadata->template get<T>(col_index);
        md.clear();
    }
}


//template<typename metadata_t>
//void spot_assembly<metadata_t>::extract_64bit_column(unsigned col_index, vector<uint32_t>& values, vector<uint8_t>& ext, bool clear) 
void spot_assembly::extract_64bit_column(unsigned col_index, vector<uint32_t>& values, vector<uint8_t>& ext, bool clear) 
{
    values.resize(m_total_spots);
    ext.resize(m_total_spots);
    vector<u64_t::value_type> buffer;
    size_t offset = 0;
    for (auto& b : m_batches) {
        assert(b->m_metadata);
        if (!b->m_metadata) 
            continue;
        auto md = b->m_metadata->template get<u64_t>(col_index);
        assert(offset == b->m_offset);
        buffer.resize(b->m_batch_size);
        md.extract(buffer.data(), b->m_batch_size, 0);
        for (size_t i = 0; i < b->m_batch_size; ++i) {
            values[b->m_offset + i] = uint32_t(buffer[i]);
            ext[b->m_offset + i] = uint8_t(buffer[i] >> 32);
        }
        //md.extract(&data[b->m_offset], b->m_batch_size, 0);
        offset += b->m_batch_size;
        if (clear)
            md.clear();
    }
    if (m_metadata) {
        auto md = m_metadata->template get<u64_t>(col_index);
        assert(offset == m_offset);
        buffer.resize(m_curr_row);
        md.extract(buffer.data(), m_curr_row, 0);
        for (size_t i = 0; i < m_curr_row; ++i) {
            values[m_offset + i] = uint32_t(buffer[i]);
            ext[m_offset + i] = uint8_t(buffer[i] >> 32);
        }
        //md.extract(&data[m_offset], m_curr_row, 0);
        offset += m_curr_row;
        if (clear)
            md.clear();
    }

    if (offset != m_total_spots)
        spdlog::error("col: {}, offset != m_total_spots, {} != {}", col_index, offset, m_total_spots);
}


//template<typename metadata_t>
//void spot_assembly<metadata_t>::extract_16bit_column(unsigned col_index, vector<uint8_t>& values, bool clear) 
void spot_assembly::extract_16bit_column(unsigned col_index, vector<uint8_t>& values, bool clear) 
{
    values.resize(m_total_spots);
    vector<u16_t::value_type> buffer;
    size_t offset = 0;
    for (auto& b : m_batches) {
        assert(b->m_metadata);
        if (!b->m_metadata) 
            continue;
        auto md = b->m_metadata->template get<u16_t>(col_index);
        assert(offset == b->m_offset);
        buffer.resize(b->m_batch_size);
        md.extract(buffer.data(), b->m_batch_size, 0);
        for (size_t i = 0; i < b->m_batch_size; ++i) {
            values[b->m_offset + i] = uint8_t(buffer[i]);
        }
        //md.extract(&data[b->m_offset], b->m_batch_size, 0);
        offset += b->m_batch_size;
        if (clear)
            md.clear();
    }
    if (m_metadata) {
        auto md = m_metadata->template get<u16_t>(col_index);
        assert(offset == m_offset);
        buffer.resize(m_curr_row);
        md.extract(buffer.data(), m_curr_row, 0);
        for (size_t i = 0; i < m_curr_row; ++i) {
            values[m_offset + i] = uint8_t(buffer[i]);
        }
        //md.extract(&data[m_offset], m_curr_row, 0);
        offset += m_curr_row;
        if (clear)
            md.clear();
    }

    if (offset != m_total_spots)
        spdlog::error("col: {}, offset != m_total_spots, {} != {}", col_index, offset, m_total_spots);
}

//template<typename metadata_t>
//pair<metadata_t*, size_t> spot_assembly<metadata_t>::metadata_by_key(uint64_t keyId) 
pair<metadata_t*, size_t> spot_assembly::metadata_by_key(uint64_t keyId) 
{
    //keyId &= KEYID_MASK;
    if (keyId >= m_offset) {
        return make_pair<metadata_t*, size_t>(m_metadata.get(), keyId - m_offset);
    }
    auto it = m_batches.rbegin();
    auto it_end = m_batches.rend();
    while (it != it_end) {
        if (keyId >= (*it)->m_offset) {
            return make_pair<metadata_t*, size_t>((*it)->m_metadata.get(), keyId - (*it)->m_offset);
        }
        ++it;
    }
    assert(false);
    return make_pair<metadata_t*, size_t>(nullptr, 0);

}


#endif /* __SPOT_ASSEMBLY_HPP_ */