1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
#!/usr/bin/python3
# Python3 Version
#
# Basic analysis of SRST2 output
# Authors - Kathryn Holt (kholt@unimelb.edu.au)
#
# Dependencies:
# R
from argparse import (ArgumentParser, FileType)
import logging
from subprocess import call, check_output, CalledProcessError, STDOUT
import os, sys, re, collections, operator
from scipy.stats import binom_test, linregress
from math import log
from itertools import groupby
from operator import itemgetter
from collections import OrderedDict
def parse_args():
"Parse the input arguments, use '-h' for help"
parser = ArgumentParser(description='Basic analysis of SRST2 output')
# options
parser.add_argument('--prev_output', nargs='+', type=str, required=False, help='SRST2 results files to compile')
parser.add_argument('--sample_metadata', nargs='+', type=str, required=False, help='Sample metadata to merge into table (tab delimited)')
parser.add_argument('--output', type=str, required=True, help='Prefix for the output files')
parser.add_argument('--log', action="store_true", required=False, help='Switch on logging to file (otherwise log to stdout)')
return parser.parse_args()
# take list of mlst results dictionaries and/or list of gene results dictionaries
# print table of mlst results + gene results for all samples
def compile_results(args,mlst_results,db_results,sample_metadata_hashes,compiled_output_file):
o = file(compiled_output_file,"w")
# get list of all samples and genes present in these datasets
sample_list = [] # each entry is a sample present in at least one db
gene_list = [] # genes read from gene db results
variable_list = [] # metadata variables
mlst_cols = 0
mlst_header_string = ""
blank_mlst_section = ""
mlst_results_master = {} # compilation of all MLST results
db_results_master = collections.defaultdict(dict) # compilation of all gene results
metadata_master = collections.defaultdict(dict) # compilation of all metadata
st_counts = {} # key = ST, value = count
# store mlst data from dict (as string)
if len(mlst_results) > 0:
for mlst_result in mlst_results:
# check length of the mlst string
if "Sample" in mlst_result:
test_string = mlst_result["Sample"]
if mlst_cols == 0:
mlst_header_string = test_string
else:
test_string = mlst_result[list(mlst_result.keys())[0]] # no header line?
test_string_split = test_string.split("\t")
this_mlst_cols = len(test_string)
if (mlst_cols == 0) or (mlst_cols == this_mlst_cols):
mlst_cols = this_mlst_cols
blank_mlst_section = "\t" * (mlst_cols-1) # blank MLST string in case some samples missing
# use this data
for sample in mlst_result:
mlst_results_master[sample] = mlst_result[sample]
if sample not in sample_list:
sample_list.append(sample)
elif mlst_cols != this_mlst_cols:
# don't process this data further
logging.info("Problem reconciling MLST data from, first MLST results encountered had " + str(mlst_cols) + " columns, this one has " + str(this_mlst_cols) + " columns?")
if args.mlst_db:
logging.info("Compiled report will contain only the MLST data from this run, not previous outputs")
else:
logging.info("Compiled report will contain only the data from the first MLST result set provided")
# store gene data from dict (as dict of dicts)
if len(db_results) > 0:
for results in db_results:
for sample in results:
if sample not in sample_list:
sample_list.append(sample)
for gene in results[sample]:
if gene != "failed":
db_results_master[sample][gene] = results[sample][gene]
if gene not in gene_list:
gene_list.append(gene)
# store metadata from dict (as dict of dicts)
if len(sample_metadata_hashes) > 0:
for results in sample_metadata_hashes:
for sample in results:
if sample not in sample_list:
sample_list.append(sample)
for variable in results[sample]:
# print metadata_master
# metadata_master[sample] = results[sample][variable]
metadata_master[sample][variable] = results[sample][variable]
if variable not in variable_list:
variable_list.append(variable)
print(variable_list)
if "Sample" in sample_list:
sample_list.remove("Sample")
sample_list.sort()
gene_list.sort()
# print header
header_elements = []
if len(mlst_results) > 0:
header_elements.append(mlst_header_string) # mlst column headings
else:
header_elements.append("Sample")
if len(variable_list) > 0:
header_elements += variable_list # metadata column headings
if len(gene_list) > 0:
header_elements += gene_list # gene column headings
o.write("\t".join(header_elements)+"\n")
# print results for all samples
for sample in sample_list:
sample_info = [] # first entry is mlst string OR sample name, rest are metadata or genes
# print mlst if provided, otherwise just print sample name
if len(mlst_results_master) > 0:
if sample in mlst_results_master:
sample_info.append(mlst_results_master[sample])
this_st = mlst_results_master[sample].split("\t")[1]
else:
sample_info.append(sample+blank_mlst_section)
this_st = "unknown"
# record the MLST result
if this_st in st_counts:
st_counts[this_st] += 1
else:
st_counts[this_st] = 1
else:
sample_info.append(sample)
# get metadata if provided
if sample in metadata_master:
for variable in variable_list:
if variable in metadata_master[sample]:
sample_info.append(metadata_master[sample][variable])
else:
sample_info.append("-")
else:
for variable in variable_list:
sample_info.append("?") # record no gene data on this strain
# get gene info if provided
if sample in db_results_master:
for gene in gene_list:
if gene in db_results_master[sample]:
sample_info.append(db_results_master[sample][gene])
else:
sample_info.append("-")
else:
for gene in gene_list:
sample_info.append("?") # record no gene data on this strain
o.write("\t".join(sample_info)+"\n")
o.close()
logging.info("Compiled data on " + str(len(sample_list)) + " samples printed to: " + compiled_output_file)
# log ST counts
if len(mlst_results_master) > 0:
logging.info("Detected " + str(len(list(st_counts.keys()))) + " STs: ")
sts = list(st_counts.keys())
sts.sort()
for st in sts:
logging.info("ST" + st + "\t" + str(st_counts[st]))
return True
# read data from file into dict
def read_results_from_file(infile,metadata):
if metadata:
# process as with a genes table
results = collections.defaultdict(dict) # key1 = sample, key2 = gene, value = allele
with open(infile) as f:
header = []
for line in f:
line_split = line.rstrip().split("\t")
if len(header) == 0:
header = line_split
else:
sample = line_split[0]
for i in range(1,len(line_split)):
variable = header[i]
results[sample][variable] = line_split[i]
dbtype = "metadata"
dbname = infile
logging.info("Reading metadata from: " + infile)
else:
results_info = infile.split("__")
if len(results_info) > 1:
if results_info[-1] == "compiledResults.txt":
dbtype = "compiled"
dbname = results_info[0] # output identifier
else:
dbtype = results_info[1] # mlst or genes
dbname = results_info[2] # database
logging.info("Processing " + dbtype + " results from file " + infile)
if dbtype == "genes":
results = collections.defaultdict(dict) # key1 = sample, key2 = gene, value = allele
with open(infile) as f:
header = []
for line in f:
line_split = line.rstrip().split("\t")
if len(header) == 0:
header = line_split
else:
sample = line_split[0]
for i in range(1,len(line_split)):
gene = header[i]
results[sample][gene] = line_split[i]
elif dbtype == "mlst":
results = {} # key = sample, value = MLST string
with open(infile) as f:
for line in f:
results[line.split("\t")[0]] = line.rstrip() # store header line too (index "Sample")
elif dbtype == "compiled":
results = collections.defaultdict(dict) # key1 = sample, key2 = gene, value = allele
with open(infile) as f:
header = []
mlst_cols = 0 # INDEX of the last mlst column
n_cols = 0
for line in f:
line_split = line.rstrip().split("\t")
if len(header) == 0:
header = line_split
n_cols = len(header)
if header[1] == "ST":
# there is mlst data reported
mlst_cols = 2 # first locus column
while header[mlst_cols] != "depth":
mlst_cols += 1
results["Sample"]["mlst"] = "\t".join(line_split[0:(mlst_cols+1)])
else:
sample = line_split[0]
if mlst_cols > 0:
results[sample]["mlst"] = "\t".join(line_split[0:(mlst_cols+1)])
if n_cols > mlst_cols:
# read genes component
for i in range(mlst_cols+1,n_cols):
# note i=1 if mlst_cols==0, ie we are reading all
gene = header[i]
if len(line_split) > i:
results[sample][gene] = line_split[i]
else:
results[sample][gene] = "-"
else:
results = False
dbtype = False
dbname = False
logging.info("Couldn't decide what to do with file results file provided: " + infile)
return results, dbtype, dbname
def main():
args = parse_args()
if args.log is True:
logfile = args.output + ".log"
else:
logfile = None
logging.basicConfig(
filename=logfile,
level=logging.DEBUG,
filemode='w',
format='%(asctime)s %(message)s',
datefmt='%m/%d/%Y %H:%M:%S')
logging.info('program started')
logging.info('command line: {0}'.format(' '.join(sys.argv)))
# vars to store results
mlst_results_hashes = [] # dict (sample->MLST result string) for each MLST output files created/read
gene_result_hashes = [] # dict (sample->gene->result) for each gene typing output files created/read
sample_metadata_hashes = [] # dict (sample->variable->value) for each variable read from metadata file
# read in results from prior results files
if args.prev_output:
unique_results_files = list(OrderedDict.fromkeys(args.prev_output))
for results_file in unique_results_files:
results, dbtype, dbname = read_results_from_file(results_file, False)
if dbtype == "mlst":
mlst_results_hashes.append(results)
elif dbtype == "genes":
gene_result_hashes.append(results)
elif dbtype == "compiled":
# store mlst in its own db
mlst_results = {}
for sample in results:
if "mlst" in results[sample]:
mlst_results[sample] = results[sample]["mlst"]
del results[sample]["mlst"]
mlst_results_hashes.append(mlst_results)
gene_result_hashes.append(results)
# read in metadata from file
if args.sample_metadata:
for metadata_file in args.sample_metadata:
results, dbtype, dbname = read_results_from_file(metadata_file, True)
sample_metadata_hashes.append(results)
# compile results if multiple databases or datasets provided
if ( (len(gene_result_hashes) + len(mlst_results_hashes) + len(sample_metadata_hashes)) > 1 ):
compiled_output_file = args.output + "__compiledResults.txt"
compile_results(args,mlst_results_hashes,gene_result_hashes,sample_metadata_hashes,compiled_output_file)
elif args.prev_output:
logging.info('One previous output file was provided, but there is no other data to compile with.')
logging.info('SRST2 has finished.')
if __name__ == '__main__':
main()
|