File: plotSRST2data.R

package info (click to toggle)
srst2 0.2.0-14
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,072 kB
  • sloc: python: 3,115; sh: 50; makefile: 25
file content (305 lines) | stat: -rw-r--r-- 10,543 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# input = ST calls (including ?, *, NF)
# strip of ? and * and return (to aid aggregation in barplots)
simplifyST<-function(x) {
x<-gsub("[*]", "", x)
x<-gsub("[?]", "", x)
x
}

# calculate distance matrix indicating number of non-shared alleles between STs
# input = data matrix with samples in rows, MLST allele numbers in columns
stDist<-function(m) {
d_m<-matrix(0,ncol=nrow(m),nrow=nrow(m))
for (i in 1:(nrow(m)-1)){
for (j in (i+1):nrow(m)) {
dij<-sum(m[i,]!=m[j,])
d_m[i,j]<-dij
d_m[j,i]<-dij
}
}
colnames(d_m)<-rownames(m)
rownames(d_m)<-rownames(m)
d_m
}

# cluster data matrix on the basis of MLST data
# input = data matrix with samples in rows, MLST allele numbers in columns
clusterByST<-function(m) {
hclust(as.dist(stDist(m)),"single")
}

# extract ST profiles
# input = matrix of mlst data; samples in rows, ST in column 1, alleles in other columns
# return = matrix of STs encountered; one row per ST, ST labels in rownames, alleles in columns, sorted by ST
stProfiles<-function(m, suppressSNPs=F, suppressUncertainty=F) {
if (suppressSNPs) {
for (j in 1:ncol(m)) { m[,j]<-gsub("[*]", "", m[,j]) }
}
if (suppressUncertainty) {
for (j in 1:ncol(m)) { m[,j]<-gsub("[?]", "", m[,j]) }
}
st_profiles<-unique(data.frame(m))
st_list <- character()
for (i in 1:nrow(st_profiles)){
if (st_profiles[i,1] != "NF" & st_profiles[i,1] != "NF*" & st_profiles[i,1] != "NF*?" & st_profiles[i,1] != "NF?*") {
st<-paste0("ST",st_profiles[i,1],collapse=NULL)
}
else {st <- st_profiles[i,1]}
profile<-paste(st_profiles[i,-1],collapse="_")
rownames(st_profiles)[i] <- paste(st,profile)
st_list[i] <- st
}
st_labels <- character()
for (i in 1:nrow(m)){
if (m[i,1] != "NF" & m[i,1] != "NF*" & m[i,1] != "NF*?" & m[i,1] != "NF?*") {
st<-paste0("ST",m[i,1],collapse=NULL)
}
else {st <- as.character(m[i,1])}
profile<-paste(m[i,-1],collapse="_")
st_labels[i] <- paste(st,profile)
}
return(list(profiles=st_profiles[order(st_profiles[,1]),-1],st=st_list[order(st_profiles[,1])],sts=st_labels))
}


# generate binary matrix of gene presence/absence data
binaryMatrix<-function(m){
bm<-as.matrix(m)
b<-replace(bm, bm =="-", 0.0)
b<-replace(b, bm!="-", 1.0)
b<-replace(b, bm=="?", 0.0)
storage.mode(b)<-'integer'
rownames(b)<-rownames(m)
b
}

# calculate the relative frequency (percentage present) for each gene in each ST
# input matrix is the binary gene matrix, samples in rows
# also requires vector indicating the ST of each sample, ordered the same as rows of the matrix
geneRateMatrix<-function(m,st){
n<-length(unique(st))
gene_rates_ST<-apply(m, 2, function(x) aggregate(x~st,FUN=mean))
gene_rates_ST_matrix<-matrix(unlist(gene_rates_ST),nrow=n*2) [(n+1):(n*2),]
colnames(gene_rates_ST_matrix)<-colnames(m)
rownames(gene_rates_ST_matrix)<-gene_rates_ST[[1]][,1]
storage.mode(gene_rates_ST_matrix)<-'double'
gene_rates_ST_matrix
}

# count number of times each gene observed in each ST
# input matrix is the binary gene matrix, samples in rows
# also requires vector indicating the ST of each sample, ordered the same as rows of the matrix
geneCountMatrix<-function(m,st){
apply(m, 2, function(x) xtabs(x~st))
}


# generate ST vs gene plot (rate or count)
geneSTplot<-function(m,mlst_columns=c(2:9),gene_columns=NULL,plot_type="rate",suppressSNPs=F, suppressUncertainty=F,cluster=F, dataWidth=20, matrix.colours=colorRampPalette(c("white","yellow","blue"),space="rgb")(100)) {
if (is.null(gene_columns)) {gene_columns=13:ncol(m)} # guess
st_analysis<-stProfiles(m[,mlst_columns],suppressSNPs=suppressSNPs, suppressUncertainty=suppressUncertainty)
h<-clusterByST(st_analysis$profiles) # names are pasted profiles
b<-binaryMatrix(m[,gene_columns])
if (ncol(b)==1){
colnames(b)<-colnames(m)[gene_columns]
}
# get gene matrix
if (plot_type=="rate"){
gm<-geneRateMatrix(b,st_analysis$sts)
}
else if (plot_type=="count") {
gm<-geneCountMatrix(b,st_analysis$sts)
}
# plot
plotTreeData(as.phylo(h),matrixFile=gm,infoFile=cbind(st_analysis$st, st_analysis$profiles), freq=table(st_analysis$sts), tip.labels=F, infoCex=1, dataWidth=dataWidth, cluster=cluster, labelHeight=20, colLabelCex=1, matrix.colours=matrix.colours, freqCol=1, freqWidth=5)
}

# generate sample vs gene content plot
geneContentPlot<-function(m,mlst_columns,gene_columns,strain_names=0,suppressSNPs=F, suppressUncertainty=F,cluster=F, dataWidth=20, infoWidth=10, treeWidth=10, matrix.colours=colorRampPalette(c("white","yellow","blue"),space="rgb")(100), labelHeight=20, infoCex = 1) {
h<-clusterByST(m[,mlst_columns])
b<-binaryMatrix(m[,gene_columns])
plotTreeData(as.phylo(h),matrixFile=b,infoFile=m[,c(strain_names,mlst_columns)], tip.labels=F, infoCex=infoCex, dataWidth=dataWidth, infoWidth=infoWidth, treeWidth=treeWidth, cluster=cluster, labelHeight=labelHeight, colLabelCex=1, matrix.colours=matrix.colours, freqCol=1, freqWidth=1)
}

# generate ST barplot, split by some gene
geneSTbarPlot<-function(m,mlst_columns,gene_column,suppressSNPs=F, suppressUncertainty=F,horiz=T,las=NULL,col=1:2){
sts<-m[,mlst_columns[1]]
if (suppressSNPs) {
sts<-gsub("[*]", "", sts)
}
if (suppressUncertainty) {
sts<-gsub("[?]", "", sts)
}
b<-binaryMatrix(m[,gene_column])
colnames(b)<-colnames(m)[gene_column]
if (is.null(las)) {
if (horiz) {las<-1}
else {las<-2}
}
barplot(table(b,sts),col=col,horiz=horiz,las=las)
}

plotTreeData<-function(treeFile,matrixFile=NULL,infoFile=NULL,locFile=NULL,outputPDF=NULL,outputPNG=NULL,w,h,matrix.colours=rev(gray(seq(0,1,0.1))),matrix.legend=F,tip.labels=F,tipLabelSize=1,offset=0,tip.colour.cex=0.5,legend=T,legend.pos="bottomleft",ancestral.reconstruction=F,boundaries=c(0.5,0.75),cluster=F,locColours=NULL,lwd=1.5,axis=T,axisPos=3,edge.color="black",infoCex=0.5,colLabelCex=0.5,treeWidth=10,infoWidth=10,dataWidth=30,edgeWidth=1,labelHeight=10,mainHeight=100,freq=NULL,freqWidth=10,freqCol=2) {
require(ape)
# ladderize tree and extract tip order
if (is.character(treeFile)){
t<-read.tree(treeFile)
}
else t<-treeFile
tl<-ladderize(t)
tips<-tl$edge[,2]
tip.order<-tips[tips<=length(tl$tip.label)]
tip.label.order<-tl$tip.label[tip.order]

# prepare heatmap matrix
if (!is.null(matrixFile)) {
if (is.matrix(matrixFile)) {
x = data.frame(matrixFile,check.names=F)
}
else if (is.data.frame(matrixFile,check.names=F)) {
x = matrixFile
}
else {
x<-read.csv(matrixFile,row.names=1,check.names=F)
}
y.ordered<-x[tip.label.order,]
if (cluster) {
h<-hclust(dist(t(na.omit(y.ordered))),"ward")
y.ordered<-y.ordered[,h$order]
}
}

# prepare frequency plot
if (!is.null(freq)) {
freq<-freq[tip.label.order]
}

# prepare coloured labels for tree leaves
if (!is.null(locFile)) { 
loc<-read.csv(locFile,row.names=1)
loc1<-as.matrix(loc)[row.names(loc) %in% tl$tip.label,] #vector
tipLabelSet <- character(length(loc1))
names(tipLabelSet) <- names(loc1)
groups<-table(loc1)
n<-length(groups)
groupNames<-names(groups)
if (is.null(locColours)){
colours<-rainbow(n)
}
else{
colours<-locColours
}
for (i in 1:n) {
g<-groupNames[i]
tipLabelSet[loc1==g]<-colours[i]
}
# ancestral reconstruction
if (ancestral.reconstruction) {
ancestral<-ace(loc1,tl,type="discrete")
}
else{
ancestral=NULL
}
}
else{
ancestral=NULL
}

# order additional info
if (!is.null(infoFile)) {
if (is.character(infoFile)) { ids<-read.csv(infoFile,row.names=1) }
else {ids <- infoFile}
ids.ordered<-ids[rev(tip.label.order),]
}
else {ids.ordered=NULL}

# open PDF for drawing
if (!is.null(outputPDF)) {
pdf(width=w,height=h,file=outputPDF)
}
# open PNG for drawing
if (!is.null(outputPNG)) {
png(width=w,height=h,file=outputPNG)
}

# set up layout
if (!is.null(infoFile) & !is.null(matrixFile)) {
# tree, info, data heatmap, barplot
layout(matrix(c(0,0,0,4,6,0,0,1,2,3,5,0,0,0,0,0,0,0), nrow=3, byrow=TRUE), width=c(edgeWidth,treeWidth,infoWidth,dataWidth,freqWidth,edgeWidth),height=c(labelHeight,mainHeight,edgeWidth))
}
else if (!is.null(matrixFile)) {
# tree, data heatmap, barplot
layout(matrix(c(0,0,3,5,0,0,1,2,4,0,0,0,0,0,0), nrow=3, byrow=TRUE), width=c(edgeWidth,treeWidth,dataWidth,freqWidth,edgeWidth),height=c(labelHeight,mainHeight,edgeWidth))
}
else {
# only have tree, info
layout(matrix(c(0,0,0,0,0,1,2,0,0,0,0,0), nrow=3, byrow=TRUE), width=c(edgeWidth,treeWidth,infoWidth,edgeWidth),height=c(labelHeight,mainHeight,edgeWidth))
}

# plot tree
par(mar=rep(0,4))
tlp<-plot.phylo(tl,no.margin=T,show.tip.label=tip.labels,label.offset=offset,edge.width=lwd,edge.color=edge.color,xaxs="i", yaxs="i", y.lim=c(0.5,length(tl$tip)+0.5),cex=tipLabelSize)
if (!is.null(locFile)) { 
tiplabels(col= tipLabelSet[tl$tip.label],pch=16,cex=tip.colour.cex) 
if (ancestral.reconstruction) {
nodelabels(pie=ancestral$lik.anc, cex=0.5, piecol=colours)
}
if (axis) {
axisPhylo(axisPos)
}
}
if (matrix.legend && ncol(y.ordered)<20) { text(labels=colnames(y.ordered),x=rep(tlp$x.lim[2]/2,ncol(y.ordered)),y=c(ncol(y.ordered):1)*10) }
if (legend && !is.null(locFile)) {
legend(legend.pos,legend=groupNames,fill=colours)
}

# plot info
if (!is.null(infoFile)) {
par(mar=rep(0,4))
plot(NA,axes=F,pch="",xlim=c(0,ncol(ids.ordered)+1.5),ylim=c(0.5,length(tl$tip)+0.5),xaxs="i",yaxs="i")
# print ST itself with more room
text(x=rep(1,nrow(ids.ordered)),y=c((nrow(ids.ordered)):1),ids.ordered[,1],cex=infoCex)
for (i in 2:ncol(ids.ordered)) {
# print allele profiles
text(x=rep(i+1,nrow(ids.ordered)+1),y=c((nrow(ids.ordered)):1),ids.ordered[,i],cex=infoCex)
# text(rep(i,nrow(ids.ordered)),c((nrow(ids.ordered)):1),ids.ordered[,i],cex=infoCex)
}
}
#else{plot(NA,ylim=c(0,1),xlim=c(0,1),axes=F)}

# plot heatmap
if (!is.null(matrixFile)) {

par(mar=rep(0,4), xpd=TRUE)
image((1:ncol(y.ordered))-0.5, (1:nrow(y.ordered))-0.5, as.matrix(t(y.ordered)),col=matrix.colours,axes=F,xaxs="i", yaxs="i", xlab="",ylab="")

# data labels for heatmap
par(mar=rep(0,4))
plot(NA, axes=F, xaxs="i", yaxs="i", ylim=c(0,2), xlim=c(0.5,ncol(y.ordered)+0.5))
text(1:ncol(y.ordered)-0.5,rep(0,ncol(x)),colnames(y.ordered), srt=90, cex=colLabelCex, pos=4)
}

# frequency barplot
if (!is.null(freq)) {
par(mar=rep(0,4))
barplot(freq, horiz=T, axes=F, xaxs="i", yaxs="i", xlab="", ylab="", ylim=c(0.25,length(freq)+0.25),xlim=c(-1,max(freq,na.rm=T)),col=freqCol,border=0,width=0.5,space=1,names.arg=NA)

# scale for freq plot
par(mar=c(2,0,0,0))
plot(NA, yaxt="n", xaxs="i", yaxs="i", xlab="", ylab="", ylim=c(0,2), xlim=c(-1,max(freq,na.rm=T)),frame.plot=F)
}

# if no freq plot
else{
plot(NA,axes=F)
plot(NA,axes=F)
}

# close drawing device
if (!is.null(outputPDF) | !is.null(outputPNG)) {
dev.off()
}

# return ordered info and ancestral reconstruction object
return(list(id=ids.ordered,anc=ancestral,mat=as.matrix(t(y.ordered))))
}