1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
# input = ST calls (including ?, *, NF)
# strip of ? and * and return (to aid aggregation in barplots)
simplifyST<-function(x) {
x<-gsub("[*]", "", x)
x<-gsub("[?]", "", x)
x
}
# calculate distance matrix indicating number of non-shared alleles between STs
# input = data matrix with samples in rows, MLST allele numbers in columns
stDist<-function(m) {
d_m<-matrix(0,ncol=nrow(m),nrow=nrow(m))
for (i in 1:(nrow(m)-1)){
for (j in (i+1):nrow(m)) {
dij<-sum(m[i,]!=m[j,])
d_m[i,j]<-dij
d_m[j,i]<-dij
}
}
colnames(d_m)<-rownames(m)
rownames(d_m)<-rownames(m)
d_m
}
# cluster data matrix on the basis of MLST data
# input = data matrix with samples in rows, MLST allele numbers in columns
clusterByST<-function(m) {
hclust(as.dist(stDist(m)),"single")
}
# extract ST profiles
# input = matrix of mlst data; samples in rows, ST in column 1, alleles in other columns
# return = matrix of STs encountered; one row per ST, ST labels in rownames, alleles in columns, sorted by ST
stProfiles<-function(m, suppressSNPs=F, suppressUncertainty=F) {
if (suppressSNPs) {
for (j in 1:ncol(m)) { m[,j]<-gsub("[*]", "", m[,j]) }
}
if (suppressUncertainty) {
for (j in 1:ncol(m)) { m[,j]<-gsub("[?]", "", m[,j]) }
}
st_profiles<-unique(data.frame(m))
st_list <- character()
for (i in 1:nrow(st_profiles)){
if (st_profiles[i,1] != "NF" & st_profiles[i,1] != "NF*" & st_profiles[i,1] != "NF*?" & st_profiles[i,1] != "NF?*") {
st<-paste0("ST",st_profiles[i,1],collapse=NULL)
}
else {st <- st_profiles[i,1]}
profile<-paste(st_profiles[i,-1],collapse="_")
rownames(st_profiles)[i] <- paste(st,profile)
st_list[i] <- st
}
st_labels <- character()
for (i in 1:nrow(m)){
if (m[i,1] != "NF" & m[i,1] != "NF*" & m[i,1] != "NF*?" & m[i,1] != "NF?*") {
st<-paste0("ST",m[i,1],collapse=NULL)
}
else {st <- as.character(m[i,1])}
profile<-paste(m[i,-1],collapse="_")
st_labels[i] <- paste(st,profile)
}
return(list(profiles=st_profiles[order(st_profiles[,1]),-1],st=st_list[order(st_profiles[,1])],sts=st_labels))
}
# generate binary matrix of gene presence/absence data
binaryMatrix<-function(m){
bm<-as.matrix(m)
b<-replace(bm, bm =="-", 0.0)
b<-replace(b, bm!="-", 1.0)
b<-replace(b, bm=="?", 0.0)
storage.mode(b)<-'integer'
rownames(b)<-rownames(m)
b
}
# calculate the relative frequency (percentage present) for each gene in each ST
# input matrix is the binary gene matrix, samples in rows
# also requires vector indicating the ST of each sample, ordered the same as rows of the matrix
geneRateMatrix<-function(m,st){
n<-length(unique(st))
gene_rates_ST<-apply(m, 2, function(x) aggregate(x~st,FUN=mean))
gene_rates_ST_matrix<-matrix(unlist(gene_rates_ST),nrow=n*2) [(n+1):(n*2),]
colnames(gene_rates_ST_matrix)<-colnames(m)
rownames(gene_rates_ST_matrix)<-gene_rates_ST[[1]][,1]
storage.mode(gene_rates_ST_matrix)<-'double'
gene_rates_ST_matrix
}
# count number of times each gene observed in each ST
# input matrix is the binary gene matrix, samples in rows
# also requires vector indicating the ST of each sample, ordered the same as rows of the matrix
geneCountMatrix<-function(m,st){
apply(m, 2, function(x) xtabs(x~st))
}
# generate ST vs gene plot (rate or count)
geneSTplot<-function(m,mlst_columns=c(2:9),gene_columns=NULL,plot_type="rate",suppressSNPs=F, suppressUncertainty=F,cluster=F, dataWidth=20, matrix.colours=colorRampPalette(c("white","yellow","blue"),space="rgb")(100)) {
if (is.null(gene_columns)) {gene_columns=13:ncol(m)} # guess
st_analysis<-stProfiles(m[,mlst_columns],suppressSNPs=suppressSNPs, suppressUncertainty=suppressUncertainty)
h<-clusterByST(st_analysis$profiles) # names are pasted profiles
b<-binaryMatrix(m[,gene_columns])
if (ncol(b)==1){
colnames(b)<-colnames(m)[gene_columns]
}
# get gene matrix
if (plot_type=="rate"){
gm<-geneRateMatrix(b,st_analysis$sts)
}
else if (plot_type=="count") {
gm<-geneCountMatrix(b,st_analysis$sts)
}
# plot
plotTreeData(as.phylo(h),matrixFile=gm,infoFile=cbind(st_analysis$st, st_analysis$profiles), freq=table(st_analysis$sts), tip.labels=F, infoCex=1, dataWidth=dataWidth, cluster=cluster, labelHeight=20, colLabelCex=1, matrix.colours=matrix.colours, freqCol=1, freqWidth=5)
}
# generate sample vs gene content plot
geneContentPlot<-function(m,mlst_columns,gene_columns,strain_names=0,suppressSNPs=F, suppressUncertainty=F,cluster=F, dataWidth=20, infoWidth=10, treeWidth=10, matrix.colours=colorRampPalette(c("white","yellow","blue"),space="rgb")(100), labelHeight=20, infoCex = 1) {
h<-clusterByST(m[,mlst_columns])
b<-binaryMatrix(m[,gene_columns])
plotTreeData(as.phylo(h),matrixFile=b,infoFile=m[,c(strain_names,mlst_columns)], tip.labels=F, infoCex=infoCex, dataWidth=dataWidth, infoWidth=infoWidth, treeWidth=treeWidth, cluster=cluster, labelHeight=labelHeight, colLabelCex=1, matrix.colours=matrix.colours, freqCol=1, freqWidth=1)
}
# generate ST barplot, split by some gene
geneSTbarPlot<-function(m,mlst_columns,gene_column,suppressSNPs=F, suppressUncertainty=F,horiz=T,las=NULL,col=1:2){
sts<-m[,mlst_columns[1]]
if (suppressSNPs) {
sts<-gsub("[*]", "", sts)
}
if (suppressUncertainty) {
sts<-gsub("[?]", "", sts)
}
b<-binaryMatrix(m[,gene_column])
colnames(b)<-colnames(m)[gene_column]
if (is.null(las)) {
if (horiz) {las<-1}
else {las<-2}
}
barplot(table(b,sts),col=col,horiz=horiz,las=las)
}
plotTreeData<-function(treeFile,matrixFile=NULL,infoFile=NULL,locFile=NULL,outputPDF=NULL,outputPNG=NULL,w,h,matrix.colours=rev(gray(seq(0,1,0.1))),matrix.legend=F,tip.labels=F,tipLabelSize=1,offset=0,tip.colour.cex=0.5,legend=T,legend.pos="bottomleft",ancestral.reconstruction=F,boundaries=c(0.5,0.75),cluster=F,locColours=NULL,lwd=1.5,axis=T,axisPos=3,edge.color="black",infoCex=0.5,colLabelCex=0.5,treeWidth=10,infoWidth=10,dataWidth=30,edgeWidth=1,labelHeight=10,mainHeight=100,freq=NULL,freqWidth=10,freqCol=2) {
require(ape)
# ladderize tree and extract tip order
if (is.character(treeFile)){
t<-read.tree(treeFile)
}
else t<-treeFile
tl<-ladderize(t)
tips<-tl$edge[,2]
tip.order<-tips[tips<=length(tl$tip.label)]
tip.label.order<-tl$tip.label[tip.order]
# prepare heatmap matrix
if (!is.null(matrixFile)) {
if (is.matrix(matrixFile)) {
x = data.frame(matrixFile,check.names=F)
}
else if (is.data.frame(matrixFile,check.names=F)) {
x = matrixFile
}
else {
x<-read.csv(matrixFile,row.names=1,check.names=F)
}
y.ordered<-x[tip.label.order,]
if (cluster) {
h<-hclust(dist(t(na.omit(y.ordered))),"ward")
y.ordered<-y.ordered[,h$order]
}
}
# prepare frequency plot
if (!is.null(freq)) {
freq<-freq[tip.label.order]
}
# prepare coloured labels for tree leaves
if (!is.null(locFile)) {
loc<-read.csv(locFile,row.names=1)
loc1<-as.matrix(loc)[row.names(loc) %in% tl$tip.label,] #vector
tipLabelSet <- character(length(loc1))
names(tipLabelSet) <- names(loc1)
groups<-table(loc1)
n<-length(groups)
groupNames<-names(groups)
if (is.null(locColours)){
colours<-rainbow(n)
}
else{
colours<-locColours
}
for (i in 1:n) {
g<-groupNames[i]
tipLabelSet[loc1==g]<-colours[i]
}
# ancestral reconstruction
if (ancestral.reconstruction) {
ancestral<-ace(loc1,tl,type="discrete")
}
else{
ancestral=NULL
}
}
else{
ancestral=NULL
}
# order additional info
if (!is.null(infoFile)) {
if (is.character(infoFile)) { ids<-read.csv(infoFile,row.names=1) }
else {ids <- infoFile}
ids.ordered<-ids[rev(tip.label.order),]
}
else {ids.ordered=NULL}
# open PDF for drawing
if (!is.null(outputPDF)) {
pdf(width=w,height=h,file=outputPDF)
}
# open PNG for drawing
if (!is.null(outputPNG)) {
png(width=w,height=h,file=outputPNG)
}
# set up layout
if (!is.null(infoFile) & !is.null(matrixFile)) {
# tree, info, data heatmap, barplot
layout(matrix(c(0,0,0,4,6,0,0,1,2,3,5,0,0,0,0,0,0,0), nrow=3, byrow=TRUE), width=c(edgeWidth,treeWidth,infoWidth,dataWidth,freqWidth,edgeWidth),height=c(labelHeight,mainHeight,edgeWidth))
}
else if (!is.null(matrixFile)) {
# tree, data heatmap, barplot
layout(matrix(c(0,0,3,5,0,0,1,2,4,0,0,0,0,0,0), nrow=3, byrow=TRUE), width=c(edgeWidth,treeWidth,dataWidth,freqWidth,edgeWidth),height=c(labelHeight,mainHeight,edgeWidth))
}
else {
# only have tree, info
layout(matrix(c(0,0,0,0,0,1,2,0,0,0,0,0), nrow=3, byrow=TRUE), width=c(edgeWidth,treeWidth,infoWidth,edgeWidth),height=c(labelHeight,mainHeight,edgeWidth))
}
# plot tree
par(mar=rep(0,4))
tlp<-plot.phylo(tl,no.margin=T,show.tip.label=tip.labels,label.offset=offset,edge.width=lwd,edge.color=edge.color,xaxs="i", yaxs="i", y.lim=c(0.5,length(tl$tip)+0.5),cex=tipLabelSize)
if (!is.null(locFile)) {
tiplabels(col= tipLabelSet[tl$tip.label],pch=16,cex=tip.colour.cex)
if (ancestral.reconstruction) {
nodelabels(pie=ancestral$lik.anc, cex=0.5, piecol=colours)
}
if (axis) {
axisPhylo(axisPos)
}
}
if (matrix.legend && ncol(y.ordered)<20) { text(labels=colnames(y.ordered),x=rep(tlp$x.lim[2]/2,ncol(y.ordered)),y=c(ncol(y.ordered):1)*10) }
if (legend && !is.null(locFile)) {
legend(legend.pos,legend=groupNames,fill=colours)
}
# plot info
if (!is.null(infoFile)) {
par(mar=rep(0,4))
plot(NA,axes=F,pch="",xlim=c(0,ncol(ids.ordered)+1.5),ylim=c(0.5,length(tl$tip)+0.5),xaxs="i",yaxs="i")
# print ST itself with more room
text(x=rep(1,nrow(ids.ordered)),y=c((nrow(ids.ordered)):1),ids.ordered[,1],cex=infoCex)
for (i in 2:ncol(ids.ordered)) {
# print allele profiles
text(x=rep(i+1,nrow(ids.ordered)+1),y=c((nrow(ids.ordered)):1),ids.ordered[,i],cex=infoCex)
# text(rep(i,nrow(ids.ordered)),c((nrow(ids.ordered)):1),ids.ordered[,i],cex=infoCex)
}
}
#else{plot(NA,ylim=c(0,1),xlim=c(0,1),axes=F)}
# plot heatmap
if (!is.null(matrixFile)) {
par(mar=rep(0,4), xpd=TRUE)
image((1:ncol(y.ordered))-0.5, (1:nrow(y.ordered))-0.5, as.matrix(t(y.ordered)),col=matrix.colours,axes=F,xaxs="i", yaxs="i", xlab="",ylab="")
# data labels for heatmap
par(mar=rep(0,4))
plot(NA, axes=F, xaxs="i", yaxs="i", ylim=c(0,2), xlim=c(0.5,ncol(y.ordered)+0.5))
text(1:ncol(y.ordered)-0.5,rep(0,ncol(x)),colnames(y.ordered), srt=90, cex=colLabelCex, pos=4)
}
# frequency barplot
if (!is.null(freq)) {
par(mar=rep(0,4))
barplot(freq, horiz=T, axes=F, xaxs="i", yaxs="i", xlab="", ylab="", ylim=c(0.25,length(freq)+0.25),xlim=c(-1,max(freq,na.rm=T)),col=freqCol,border=0,width=0.5,space=1,names.arg=NA)
# scale for freq plot
par(mar=c(2,0,0,0))
plot(NA, yaxt="n", xaxs="i", yaxs="i", xlab="", ylab="", ylim=c(0,2), xlim=c(-1,max(freq,na.rm=T)),frame.plot=F)
}
# if no freq plot
else{
plot(NA,axes=F)
plot(NA,axes=F)
}
# close drawing device
if (!is.null(outputPDF) | !is.null(outputPNG)) {
dev.off()
}
# return ordered info and ancestral reconstruction object
return(list(id=ids.ordered,anc=ancestral,mat=as.matrix(t(y.ordered))))
}
|