File: sync.cpp

package info (click to toggle)
srt 1.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,804 kB
  • sloc: cpp: 52,175; ansic: 5,746; tcl: 1,183; sh: 318; python: 99; makefile: 38
file content (454 lines) | stat: -rw-r--r-- 11,576 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/*
 * SRT - Secure, Reliable, Transport
 * Copyright (c) 2019 Haivision Systems Inc.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 */
#include "platform_sys.h"

#include <iomanip>
#include <stdexcept>
#include <cmath>
#include "sync.h"
#include "srt.h"
#include "srt_compat.h"
#include "logging.h"
#include "common.h"

// HAVE_CXX11 is defined in utilities.h, included with common.h. 
// The following conditional inclusion must go after common.h.
#if HAVE_CXX11 
#include <random>
#endif

namespace srt_logging
{
    extern Logger inlog;
}
using namespace srt_logging;
using namespace std;

namespace srt
{
namespace sync
{

std::string FormatTime(const steady_clock::time_point& timestamp)
{
    if (is_zero(timestamp))
    {
        // Use special string for 0
        return "00:00:00.000000 [STDY]";
    }

    const int decimals = clockSubsecondPrecision();
    const uint64_t total_sec = count_seconds(timestamp.time_since_epoch());
    const uint64_t days = total_sec / (60 * 60 * 24);
    const uint64_t hours = total_sec / (60 * 60) - days * 24;
    const uint64_t minutes = total_sec / 60 - (days * 24 * 60) - hours * 60;
    const uint64_t seconds = total_sec - (days * 24 * 60 * 60) - hours * 60 * 60 - minutes * 60;
    ostringstream out;
    if (days)
        out << days << "D ";
    out << setfill('0') << setw(2) << hours << ":"
        << setfill('0') << setw(2) << minutes << ":"
        << setfill('0') << setw(2) << seconds << "."
        << setfill('0') << setw(decimals) << (timestamp - seconds_from(total_sec)).time_since_epoch().count() << " [STDY]";
    return out.str();
}

std::string FormatTimeSys(const steady_clock::time_point& timestamp)
{
    const time_t                   now_s         = ::time(NULL); // get current time in seconds
    const steady_clock::time_point now_timestamp = steady_clock::now();
    const int64_t                  delta_us      = count_microseconds(timestamp - now_timestamp);
    const int64_t                  delta_s =
        static_cast<int64_t>(floor((static_cast<double>(count_microseconds(now_timestamp.time_since_epoch()) % 1000000) + delta_us) / 1000000.0));
    const time_t tt = now_s + delta_s;
    struct tm    tm = SysLocalTime(tt); // in seconds
    char         tmp_buf[512];
    strftime(tmp_buf, 512, "%X.", &tm);

    ostringstream out;
    out << tmp_buf << setfill('0') << setw(6) << (count_microseconds(timestamp.time_since_epoch()) % 1000000) << " [SYST]";
    return out.str();
}


#ifdef ENABLE_STDCXX_SYNC
bool StartThread(CThread& th, ThreadFunc&& f, void* args, const string& name)
#else
bool StartThread(CThread& th, void* (*f) (void*), void* args, const string& name)
#endif
{
    ThreadName tn(name);
    try
    {
#if HAVE_FULL_CXX11 || defined(ENABLE_STDCXX_SYNC)
        th = CThread(f, args);
#else
        // No move semantics in C++03, therefore using a dedicated function
        th.create_thread(f, args);
#endif
    }
#if ENABLE_HEAVY_LOGGING
    catch (const CThreadException& e)
#else
    catch (const CThreadException&)
#endif
    {
        HLOGC(inlog.Debug, log << name << ": failed to start thread. " << e.what());
        return false;
    }
    return true;
}

} // namespace sync
} // namespace srt

////////////////////////////////////////////////////////////////////////////////
//
// CEvent class
//
////////////////////////////////////////////////////////////////////////////////

srt::sync::CEvent::CEvent()
{
#ifndef _WIN32
    m_cond.init();
#endif
}

srt::sync::CEvent::~CEvent()
{
#ifndef _WIN32
    m_cond.destroy();
#endif
}

bool srt::sync::CEvent::lock_wait_until(const TimePoint<steady_clock>& tp)
{
    UniqueLock lock(m_lock);
    return m_cond.wait_until(lock, tp);
}

void srt::sync::CEvent::notify_one()
{
    return m_cond.notify_one();
}

void srt::sync::CEvent::notify_all()
{
    return m_cond.notify_all();
}

bool srt::sync::CEvent::lock_wait_for(const steady_clock::duration& rel_time)
{
    UniqueLock lock(m_lock);
    return m_cond.wait_for(lock, rel_time);
}

bool srt::sync::CEvent::wait_for(UniqueLock& lock, const steady_clock::duration& rel_time)
{
    return m_cond.wait_for(lock, rel_time);
}

void srt::sync::CEvent::lock_wait()
{
    UniqueLock lock(m_lock);
    return wait(lock);
}

void srt::sync::CEvent::wait(UniqueLock& lock)
{
    return m_cond.wait(lock);
}

namespace srt {
namespace sync {

srt::sync::CEvent g_Sync;

} // namespace sync
} // namespace srt

////////////////////////////////////////////////////////////////////////////////
//
// Timer
//
////////////////////////////////////////////////////////////////////////////////

srt::sync::CTimer::CTimer()
{
}


srt::sync::CTimer::~CTimer()
{
}


bool srt::sync::CTimer::sleep_until(TimePoint<steady_clock> tp)
{
    // The class member m_sched_time can be used to interrupt the sleep.
    // Refer to Timer::interrupt().
    enterCS(m_event.mutex());
    m_tsSchedTime = tp;
    leaveCS(m_event.mutex());

#if USE_BUSY_WAITING
#if defined(_WIN32)
    // 10 ms on Windows: bad accuracy of timers
    const steady_clock::duration
        td_threshold = milliseconds_from(10);
#else
    // 1 ms on non-Windows platforms
    const steady_clock::duration
        td_threshold = milliseconds_from(1);
#endif
#endif // USE_BUSY_WAITING

    TimePoint<steady_clock> cur_tp = steady_clock::now();
    
    while (cur_tp < m_tsSchedTime)
    {
#if USE_BUSY_WAITING
        steady_clock::duration td_wait = m_tsSchedTime - cur_tp;
        if (td_wait <= 2 * td_threshold)
            break;

        td_wait -= td_threshold;
        m_event.lock_wait_for(td_wait);
#else
        m_event.lock_wait_until(m_tsSchedTime);
#endif // USE_BUSY_WAITING

        cur_tp = steady_clock::now();
    }

#if USE_BUSY_WAITING
    while (cur_tp < m_tsSchedTime)
    {
#ifdef IA32
        __asm__ volatile ("pause; rep; nop; nop; nop; nop; nop;");
#elif IA64
        __asm__ volatile ("nop 0; nop 0; nop 0; nop 0; nop 0;");
#elif AMD64
        __asm__ volatile ("nop; nop; nop; nop; nop;");
#elif defined(_WIN32) && !defined(__MINGW32__)
        __nop();
        __nop();
        __nop();
        __nop();
        __nop();
#endif

        cur_tp = steady_clock::now();
    }
#endif // USE_BUSY_WAITING

    return cur_tp >= m_tsSchedTime;
}


void srt::sync::CTimer::interrupt()
{
    UniqueLock lck(m_event.mutex());
    m_tsSchedTime = steady_clock::now();
    m_event.notify_all();
}


void srt::sync::CTimer::tick()
{
    m_event.notify_one();
}


void srt::sync::CGlobEvent::triggerEvent()
{
    return g_Sync.notify_one();
}

bool srt::sync::CGlobEvent::waitForEvent()
{
    return g_Sync.lock_wait_for(milliseconds_from(10));
}

////////////////////////////////////////////////////////////////////////////////
//
// Random
//
////////////////////////////////////////////////////////////////////////////////

namespace srt
{
#if HAVE_CXX11
static std::mt19937& randomGen()
{
    static std::random_device s_RandomDevice;
    static std::mt19937 s_GenMT19937(s_RandomDevice());
    return s_GenMT19937;
}
#elif defined(_WIN32) && defined(__MINGW32__)
static void initRandSeed()
{
    const int64_t seed = sync::steady_clock::now().time_since_epoch().count();
    srand((unsigned int) seed);
}
static pthread_once_t s_InitRandSeedOnce = PTHREAD_ONCE_INIT;
#else

static unsigned int genRandSeed()
{
    // Duration::count() does not depend on any global objects,
    // therefore it is preferred over count_microseconds(..).
    const int64_t seed = sync::steady_clock::now().time_since_epoch().count();
    return (unsigned int) seed;
}

static unsigned int* getRandSeed()
{
    static unsigned int s_uRandSeed = genRandSeed();
    return &s_uRandSeed;
}

#endif
}

int srt::sync::genRandomInt(int minVal, int maxVal)
{
    // This Meyers singleton initialization is thread-safe since C++11, but is not thread-safe in C++03.
    // A mutex to protect simultaneous access to the random device.
    // Thread-local storage could be used here instead to store the seed / random device.
    // However the generator is not used often (Initial Socket ID, Initial sequence number, FileCC),
    // so sharing a single seed among threads should not impact the performance.
    static sync::Mutex s_mtxRandomDevice;
    sync::ScopedLock lck(s_mtxRandomDevice);
#if HAVE_CXX11
    uniform_int_distribution<> dis(minVal, maxVal); 
    return dis(randomGen());
#else
#if defined(__MINGW32__)
    // No rand_r(..) for MinGW.
    pthread_once(&s_InitRandSeedOnce, initRandSeed);
    // rand() returns a pseudo-random integer in the range 0 to RAND_MAX inclusive
    // (i.e., the mathematical range [0, RAND_MAX]). 
    // Therefore, rand_0_1 belongs to [0.0, 1.0].
    const double rand_0_1 = double(rand()) / RAND_MAX;
#else // not __MINGW32__
    // rand_r(..) returns a pseudo-random integer in the range 0 to RAND_MAX inclusive
    // (i.e., the mathematical range [0, RAND_MAX]). 
    // Therefore, rand_0_1 belongs to [0.0, 1.0].
    const double rand_0_1 = double(rand_r(getRandSeed())) / RAND_MAX;
#endif

    // Map onto [minVal, maxVal].
    // Note. There is a minuscule probablity to get maxVal+1 as the result.
    // So we have to use long long to handle cases when maxVal = INT32_MAX.
    // Also we must check 'res' does not exceed maxVal,
    // which may happen if rand_0_1 = 1, even though the chances are low.
    const long long llMaxVal = maxVal;
    const int res = minVal + static_cast<int>((llMaxVal + 1 - minVal) * rand_0_1);
    return min(res, maxVal);
#endif // HAVE_CXX11
}


////////////////////////////////////////////////////////////////////////////////
//
// Shared Mutex 
//
////////////////////////////////////////////////////////////////////////////////

srt::sync::SharedMutex::SharedMutex()
    : m_LockWriteCond()
    , m_LockReadCond()
    , m_Mutex()
    , m_iCountRead(0)
    , m_bWriterLocked(false)
{
    setupCond(m_LockReadCond, "SharedMutex::m_pLockReadCond");
    setupCond(m_LockWriteCond, "SharedMutex::m_pLockWriteCond");
    setupMutex(m_Mutex, "SharedMutex::m_pMutex");
}

srt::sync::SharedMutex::~SharedMutex()
{
    releaseMutex(m_Mutex);
    releaseCond(m_LockWriteCond);
    releaseCond(m_LockReadCond);
}

void srt::sync::SharedMutex::lock()
{
    UniqueLock l1(m_Mutex);
    while (m_bWriterLocked)
        m_LockWriteCond.wait(l1);

    m_bWriterLocked = true;
    
    while (m_iCountRead)
        m_LockReadCond.wait(l1);
}

bool srt::sync::SharedMutex::try_lock()
{
    UniqueLock l1(m_Mutex);
    if (m_bWriterLocked || m_iCountRead > 0)
        return false;
    
    m_bWriterLocked = true;
    return true;
}

void srt::sync::SharedMutex::unlock()
{
    ScopedLock lk(m_Mutex);
    m_bWriterLocked = false;

    m_LockWriteCond.notify_all();
}

void srt::sync::SharedMutex::lock_shared()
{
    UniqueLock lk(m_Mutex);
    while (m_bWriterLocked)
        m_LockWriteCond.wait(lk);

    m_iCountRead++;
}

bool srt::sync::SharedMutex::try_lock_shared()
{
    UniqueLock lk(m_Mutex);
    if (m_bWriterLocked)
        return false;

    m_iCountRead++;
    return true;
}

void srt::sync::SharedMutex::unlock_shared()
{
    ScopedLock lk(m_Mutex);
    
    m_iCountRead--;

    SRT_ASSERT(m_iCountRead >= 0);
    if (m_iCountRead < 0)
        m_iCountRead = 0;
    
    if (m_bWriterLocked && m_iCountRead == 0)
        m_LockReadCond.notify_one();
    
}

int srt::sync::SharedMutex::getReaderCount() const
{
    ScopedLock lk(m_Mutex);
    return m_iCountRead;
}