1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
|
/*
* SRT - Secure, Reliable, Transport
* Copyright (c) 2019 Haivision Systems Inc.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#pragma once
#ifndef INC_SRT_SYNC_H
#define INC_SRT_SYNC_H
#include "platform_sys.h"
#include <cstdlib>
#include <limits>
#ifdef ENABLE_STDCXX_SYNC
#include <chrono>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <atomic>
#define SRT_SYNC_CLOCK SRT_SYNC_CLOCK_STDCXX_STEADY
#define SRT_SYNC_CLOCK_STR "STDCXX_STEADY"
#else
#include <pthread.h>
// Defile clock type to use
#ifdef IA32
#define SRT_SYNC_CLOCK SRT_SYNC_CLOCK_IA32_RDTSC
#define SRT_SYNC_CLOCK_STR "IA32_RDTSC"
#elif defined(IA64)
#define SRT_SYNC_CLOCK SRT_SYNC_CLOCK_IA64_ITC
#define SRT_SYNC_CLOCK_STR "IA64_ITC"
#elif defined(AMD64)
#define SRT_SYNC_CLOCK SRT_SYNC_CLOCK_AMD64_RDTSC
#define SRT_SYNC_CLOCK_STR "AMD64_RDTSC"
#elif defined(_WIN32)
#define SRT_SYNC_CLOCK SRT_SYNC_CLOCK_WINQPC
#define SRT_SYNC_CLOCK_STR "WINQPC"
#elif TARGET_OS_MAC
#define SRT_SYNC_CLOCK SRT_SYNC_CLOCK_MACH_ABSTIME
#define SRT_SYNC_CLOCK_STR "MACH_ABSTIME"
#elif defined(ENABLE_MONOTONIC_CLOCK)
#define SRT_SYNC_CLOCK SRT_SYNC_CLOCK_GETTIME_MONOTONIC
#define SRT_SYNC_CLOCK_STR "GETTIME_MONOTONIC"
#else
#define SRT_SYNC_CLOCK SRT_SYNC_CLOCK_POSIX_GETTIMEOFDAY
#define SRT_SYNC_CLOCK_STR "POSIX_GETTIMEOFDAY"
#endif
#endif // ENABLE_STDCXX_SYNC
#include "srt.h"
#include "utilities.h"
#include "srt_attr_defs.h"
namespace srt
{
class CUDTException; // defined in common.h
namespace sync
{
///////////////////////////////////////////////////////////////////////////////
//
// Duration class
//
///////////////////////////////////////////////////////////////////////////////
#if ENABLE_STDCXX_SYNC
template <class Clock>
using Duration = std::chrono::duration<Clock>;
#else
/// Class template srt::sync::Duration represents a time interval.
/// It consists of a count of ticks of _Clock.
/// It is a wrapper of system timers in case of non-C++11 chrono build.
template <class Clock>
class Duration
{
public:
Duration()
: m_duration(0)
{
}
explicit Duration(int64_t d)
: m_duration(d)
{
}
public:
inline int64_t count() const { return m_duration; }
static Duration zero() { return Duration(); }
public: // Relational operators
inline bool operator>=(const Duration& rhs) const { return m_duration >= rhs.m_duration; }
inline bool operator>(const Duration& rhs) const { return m_duration > rhs.m_duration; }
inline bool operator==(const Duration& rhs) const { return m_duration == rhs.m_duration; }
inline bool operator!=(const Duration& rhs) const { return m_duration != rhs.m_duration; }
inline bool operator<=(const Duration& rhs) const { return m_duration <= rhs.m_duration; }
inline bool operator<(const Duration& rhs) const { return m_duration < rhs.m_duration; }
public: // Assignment operators
inline void operator*=(const int64_t mult) { m_duration = static_cast<int64_t>(m_duration * mult); }
inline void operator+=(const Duration& rhs) { m_duration += rhs.m_duration; }
inline void operator-=(const Duration& rhs) { m_duration -= rhs.m_duration; }
inline Duration operator+(const Duration& rhs) const { return Duration(m_duration + rhs.m_duration); }
inline Duration operator-(const Duration& rhs) const { return Duration(m_duration - rhs.m_duration); }
inline Duration operator*(const int64_t& rhs) const { return Duration(m_duration * rhs); }
inline Duration operator/(const int64_t& rhs) const { return Duration(m_duration / rhs); }
private:
// int64_t range is from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
int64_t m_duration;
};
#endif // ENABLE_STDCXX_SYNC
///////////////////////////////////////////////////////////////////////////////
//
// TimePoint and steadt_clock classes
//
///////////////////////////////////////////////////////////////////////////////
#if ENABLE_STDCXX_SYNC
using steady_clock = std::chrono::steady_clock;
template <class Clock, class Duration = typename Clock::duration>
using time_point = std::chrono::time_point<Clock, Duration>;
template <class Clock>
using TimePoint = std::chrono::time_point<Clock>;
template <class Clock, class Duration = typename Clock::duration>
inline bool is_zero(const time_point<Clock, Duration> &tp)
{
return tp.time_since_epoch() == Clock::duration::zero();
}
inline bool is_zero(const steady_clock::time_point& t)
{
return t == steady_clock::time_point();
}
#else
template <class Clock>
class TimePoint;
class steady_clock
{
public:
typedef Duration<steady_clock> duration;
typedef TimePoint<steady_clock> time_point;
public:
static time_point now();
};
/// Represents a point in time
template <class Clock>
class TimePoint
{
public:
TimePoint()
: m_timestamp(0)
{
}
explicit TimePoint(uint64_t tp)
: m_timestamp(tp)
{
}
TimePoint(const TimePoint<Clock>& other)
: m_timestamp(other.m_timestamp)
{
}
TimePoint(const Duration<Clock>& duration_since_epoch)
: m_timestamp(duration_since_epoch.count())
{
}
~TimePoint() {}
public: // Relational operators
inline bool operator<(const TimePoint<Clock>& rhs) const { return m_timestamp < rhs.m_timestamp; }
inline bool operator<=(const TimePoint<Clock>& rhs) const { return m_timestamp <= rhs.m_timestamp; }
inline bool operator==(const TimePoint<Clock>& rhs) const { return m_timestamp == rhs.m_timestamp; }
inline bool operator!=(const TimePoint<Clock>& rhs) const { return m_timestamp != rhs.m_timestamp; }
inline bool operator>=(const TimePoint<Clock>& rhs) const { return m_timestamp >= rhs.m_timestamp; }
inline bool operator>(const TimePoint<Clock>& rhs) const { return m_timestamp > rhs.m_timestamp; }
public: // Arithmetic operators
inline Duration<Clock> operator-(const TimePoint<Clock>& rhs) const
{
return Duration<Clock>(m_timestamp - rhs.m_timestamp);
}
inline TimePoint operator+(const Duration<Clock>& rhs) const { return TimePoint(m_timestamp + rhs.count()); }
inline TimePoint operator-(const Duration<Clock>& rhs) const { return TimePoint(m_timestamp - rhs.count()); }
public: // Assignment operators
inline void operator=(const TimePoint<Clock>& rhs) { m_timestamp = rhs.m_timestamp; }
inline void operator+=(const Duration<Clock>& rhs) { m_timestamp += rhs.count(); }
inline void operator-=(const Duration<Clock>& rhs) { m_timestamp -= rhs.count(); }
public: //
static inline ATR_CONSTEXPR TimePoint min() { return TimePoint(std::numeric_limits<uint64_t>::min()); }
static inline ATR_CONSTEXPR TimePoint max() { return TimePoint(std::numeric_limits<uint64_t>::max()); }
public:
Duration<Clock> time_since_epoch() const;
private:
uint64_t m_timestamp;
};
template <>
srt::sync::Duration<srt::sync::steady_clock> srt::sync::TimePoint<srt::sync::steady_clock>::time_since_epoch() const;
inline Duration<steady_clock> operator*(const int& lhs, const Duration<steady_clock>& rhs)
{
return rhs * lhs;
}
#endif // ENABLE_STDCXX_SYNC
// NOTE: Moved the following class definitions to "atomic_clock.h"
// template <class Clock>
// class AtomicDuration;
// template <class Clock>
// class AtomicClock;
///////////////////////////////////////////////////////////////////////////////
//
// Duration and timepoint conversions
//
///////////////////////////////////////////////////////////////////////////////
/// Function return number of decimals in a subsecond precision.
/// E.g. for a microsecond accuracy of steady_clock the return would be 6.
/// For a nanosecond accuracy of the steady_clock the return value would be 9.
int clockSubsecondPrecision();
#if ENABLE_STDCXX_SYNC
inline long long count_microseconds(const steady_clock::duration &t)
{
return std::chrono::duration_cast<std::chrono::microseconds>(t).count();
}
inline long long count_microseconds(const steady_clock::time_point tp)
{
return std::chrono::duration_cast<std::chrono::microseconds>(tp.time_since_epoch()).count();
}
inline long long count_milliseconds(const steady_clock::duration &t)
{
return std::chrono::duration_cast<std::chrono::milliseconds>(t).count();
}
inline long long count_seconds(const steady_clock::duration &t)
{
return std::chrono::duration_cast<std::chrono::seconds>(t).count();
}
inline steady_clock::duration microseconds_from(int64_t t_us)
{
return std::chrono::microseconds(t_us);
}
inline steady_clock::duration milliseconds_from(int64_t t_ms)
{
return std::chrono::milliseconds(t_ms);
}
inline steady_clock::duration seconds_from(int64_t t_s)
{
return std::chrono::seconds(t_s);
}
#else
int64_t count_microseconds(const steady_clock::duration& t);
int64_t count_milliseconds(const steady_clock::duration& t);
int64_t count_seconds(const steady_clock::duration& t);
Duration<steady_clock> microseconds_from(int64_t t_us);
Duration<steady_clock> milliseconds_from(int64_t t_ms);
Duration<steady_clock> seconds_from(int64_t t_s);
inline bool is_zero(const TimePoint<steady_clock>& t)
{
return t == TimePoint<steady_clock>();
}
#endif // ENABLE_STDCXX_SYNC
///////////////////////////////////////////////////////////////////////////////
//
// Mutex section
//
///////////////////////////////////////////////////////////////////////////////
#if ENABLE_STDCXX_SYNC
using Mutex = std::mutex;
using UniqueLock = std::unique_lock<std::mutex>;
using ScopedLock = std::lock_guard<std::mutex>;
#else
/// Mutex is a class wrapper, that should mimic the std::chrono::mutex class.
/// At the moment the extra function ref() is temporally added to allow calls
/// to pthread_cond_timedwait(). Will be removed by introducing CEvent.
class SRT_ATTR_CAPABILITY("mutex") Mutex
{
friend class SyncEvent;
public:
Mutex();
~Mutex();
public:
int lock() SRT_ATTR_ACQUIRE();
int unlock() SRT_ATTR_RELEASE();
/// @return true if the lock was acquired successfully, otherwise false
bool try_lock() SRT_ATTR_TRY_ACQUIRE(true);
// TODO: To be removed with introduction of the CEvent.
pthread_mutex_t& ref() { return m_mutex; }
private:
pthread_mutex_t m_mutex;
};
/// A pthread version of std::scoped_lock (or lock_guard for C++11).
class SRT_ATTR_SCOPED_CAPABILITY ScopedLock
{
public:
SRT_ATTR_ACQUIRE(m)
explicit ScopedLock(Mutex& m)
: m_mutex(m)
{
m_mutex.lock();
}
SRT_ATTR_RELEASE()
~ScopedLock() { m_mutex.unlock(); }
private:
Mutex& m_mutex;
};
/// A pthread version of std::chrono::unique_lock<mutex>
class SRT_ATTR_SCOPED_CAPABILITY UniqueLock
{
friend class SyncEvent;
int m_iLocked;
Mutex& m_Mutex;
public:
SRT_ATTR_ACQUIRE(m)
explicit UniqueLock(Mutex &m);
SRT_ATTR_RELEASE()
~UniqueLock();
public:
SRT_ATTR_ACQUIRE()
void lock();
SRT_ATTR_RELEASE()
void unlock();
SRT_ATTR_RETURN_CAPABILITY(m_Mutex)
Mutex* mutex(); // reflects C++11 unique_lock::mutex()
};
#endif // ENABLE_STDCXX_SYNC
inline void enterCS(Mutex& m) SRT_ATTR_EXCLUDES(m) SRT_ATTR_ACQUIRE(m) { m.lock(); }
inline bool tryEnterCS(Mutex& m) SRT_ATTR_EXCLUDES(m) SRT_ATTR_TRY_ACQUIRE(true, m) { return m.try_lock(); }
inline void leaveCS(Mutex& m) SRT_ATTR_REQUIRES(m) SRT_ATTR_RELEASE(m) { m.unlock(); }
class InvertedLock
{
Mutex& m_mtx;
public:
SRT_ATTR_REQUIRES(m) SRT_ATTR_RELEASE(m)
InvertedLock(Mutex& m)
: m_mtx(m)
{
m_mtx.unlock();
}
SRT_ATTR_ACQUIRE(m_mtx)
~InvertedLock()
{
m_mtx.lock();
}
};
inline void setupMutex(Mutex&, const char*) {}
inline void releaseMutex(Mutex&) {}
////////////////////////////////////////////////////////////////////////////////
//
// Condition section
//
////////////////////////////////////////////////////////////////////////////////
class Condition
{
public:
Condition();
~Condition();
public:
/// These functions do not align with C++11 version. They are here hopefully as a temporal solution
/// to avoud issues with static initialization of CV on windows.
void init();
void destroy();
public:
/// Causes the current thread to block until the condition variable is notified
/// or a spurious wakeup occurs.
///
/// @param lock Corresponding mutex locked by UniqueLock
void wait(UniqueLock& lock);
/// Atomically releases lock, blocks the current executing thread,
/// and adds it to the list of threads waiting on *this.
/// The thread will be unblocked when notify_all() or notify_one() is executed,
/// or when the relative timeout rel_time expires.
/// It may also be unblocked spuriously. When unblocked, regardless of the reason,
/// lock is reacquired and wait_for() exits.
///
/// @returns false if the relative timeout specified by rel_time expired,
/// true otherwise (signal or spurious wake up).
///
/// @note Calling this function if lock.mutex()
/// is not locked by the current thread is undefined behavior.
/// Calling this function if lock.mutex() is not the same mutex as the one
/// used by all other threads that are currently waiting on the same
/// condition variable is undefined behavior.
bool wait_for(UniqueLock& lock, const steady_clock::duration& rel_time);
/// Causes the current thread to block until the condition variable is notified,
/// a specific time is reached, or a spurious wakeup occurs.
///
/// @param[in] lock an object of type UniqueLock, which must be locked by the current thread
/// @param[in] timeout_time an object of type time_point representing the time when to stop waiting
///
/// @returns false if the relative timeout specified by timeout_time expired,
/// true otherwise (signal or spurious wake up).
bool wait_until(UniqueLock& lock, const steady_clock::time_point& timeout_time);
/// Calling notify_one() unblocks one of the waiting threads,
/// if any threads are waiting on this CV.
void notify_one();
/// Unblocks all threads currently waiting for this CV.
void notify_all();
private:
#if ENABLE_STDCXX_SYNC
std::condition_variable m_cv;
#else
pthread_cond_t m_cv;
#endif
};
inline void setupCond(Condition& cv, const char*) { cv.init(); }
inline void releaseCond(Condition& cv) { cv.destroy(); }
///////////////////////////////////////////////////////////////////////////////
//
// Shared Mutex section
//
///////////////////////////////////////////////////////////////////////////////
/// Implementation of a read-write mutex.
/// This allows multiple readers at a time, or a single writer.
/// TODO: The class can be improved if needed to give writer a preference
/// by adding additional m_iWritersWaiting member variable (counter).
/// TODO: The m_iCountRead could be made atomic to make unlok_shared() faster and lock-free.
class SharedMutex
{
public:
SharedMutex();
~SharedMutex();
public:
/// Acquire the lock for writting purposes. Only one thread can acquire this lock at a time
/// Once it is locked, no reader can acquire it
void lock();
bool try_lock();
void unlock();
/// Acquire the lock if no writter already has it. For read purpose only
/// Several readers can lock this at the same time.
void lock_shared();
bool try_lock_shared();
void unlock_shared();
int getReaderCount() const;
protected:
Condition m_LockWriteCond;
Condition m_LockReadCond;
mutable Mutex m_Mutex;
int m_iCountRead;
bool m_bWriterLocked;
};
/// A version of std::scoped_lock<std::shared_mutex> (or lock_guard for C++11).
/// We could have used the srt::sync::ScopedLock making it a template-based class.
/// But in that case all usages would have to be specificed like ScopedLock<Mutex> in C++03.
class SRT_ATTR_SCOPED_CAPABILITY ExclusiveLock
{
public:
SRT_ATTR_ACQUIRE(m)
explicit ExclusiveLock(SharedMutex& m)
: m_mutex(m)
{
m_mutex.lock();
}
SRT_ATTR_RELEASE(m_mutex)
~ExclusiveLock() { m_mutex.unlock(); }
private:
SharedMutex& m_mutex;
};
/// A reduced implementation of the std::shared_lock functionality (available in C++14).
class SRT_ATTR_SCOPED_CAPABILITY SharedLock
{
public:
SRT_ATTR_ACQUIRE_SHARED(m)
explicit SharedLock(SharedMutex& m)
: m_mtx(m)
{
m_mtx.lock_shared();
}
SRT_ATTR_RELEASE_SHARED(m_mtx)
~SharedLock() { m_mtx.unlock_shared(); }
private:
SharedMutex& m_mtx;
};
/// A class template for a shared object. It is a wrapper around a pointer to an object
/// and a shared mutex. It allows multiple readers to access the object at the same time,
/// but only one writer can access the object at a time.
template <class T>
class CSharedObjectPtr : public SharedMutex
{
public:
CSharedObjectPtr()
: m_pObj(NULL)
{
}
bool set(T* pObj)
{
ExclusiveLock lock(*this);
if (m_pObj)
return false;
m_pObj = pObj;
return true;
}
bool clearIf(const T* pObj)
{
ExclusiveLock lock(*this);
if (m_pObj != pObj)
return false;
m_pObj = NULL;
return true;
}
T* getPtrNoLock() const { return m_pObj; }
private:
T* m_pObj;
};
///////////////////////////////////////////////////////////////////////////////
//
// Event (CV) section
//
///////////////////////////////////////////////////////////////////////////////
// This class is used for condition variable combined with mutex by different ways.
// This should provide a cleaner API around locking with debug-logging inside.
class CSync
{
protected:
Condition* m_cond;
UniqueLock* m_locker;
public:
// Locked version: must be declared only after the declaration of UniqueLock,
// which has locked the mutex. On this delegate you should call only
// signal_locked() and pass the UniqueLock variable that should remain locked.
// Also wait() and wait_for() can be used only with this socket.
CSync(Condition& cond, UniqueLock& g)
: m_cond(&cond), m_locker(&g)
{
// XXX it would be nice to check whether the owner is also current thread
// but this can't be done portable way.
// When constructed by this constructor, the user is expected
// to only call signal_locked() function. You should pass the same guard
// variable that you have used for construction as its argument.
}
// COPY CONSTRUCTOR: DEFAULT!
// Wait indefinitely, until getting a signal on CV.
void wait()
{
m_cond->wait(*m_locker);
}
/// Block the call until either @a timestamp time achieved
/// or the conditional is signaled.
/// @param [in] delay Maximum time to wait since the moment of the call
/// @retval false if the relative timeout specified by rel_time expired,
/// @retval true if condition is signaled or spurious wake up.
bool wait_for(const steady_clock::duration& delay)
{
return m_cond->wait_for(*m_locker, delay);
}
// Wait until the given time is achieved.
/// @param [in] exptime The target time to wait until.
/// @retval false if the target wait time is reached.
/// @retval true if condition is signal or spurious wake up.
bool wait_until(const steady_clock::time_point& exptime)
{
return m_cond->wait_until(*m_locker, exptime);
}
// Static ad-hoc version
static void lock_notify_one(Condition& cond, Mutex& m)
{
ScopedLock lk(m); // XXX with thread logging, don't use ScopedLock directly!
cond.notify_one();
}
static void lock_notify_all(Condition& cond, Mutex& m)
{
ScopedLock lk(m); // XXX with thread logging, don't use ScopedLock directly!
cond.notify_all();
}
void notify_one_locked(UniqueLock& lk SRT_ATR_UNUSED)
{
// EXPECTED: lk.mutex() is LOCKED.
m_cond->notify_one();
}
void notify_all_locked(UniqueLock& lk SRT_ATR_UNUSED)
{
// EXPECTED: lk.mutex() is LOCKED.
m_cond->notify_all();
}
// The *_relaxed functions are to be used in case when you don't care
// whether the associated mutex is locked or not (you accept the case that
// a mutex isn't locked and the condition notification gets effectively
// missed), or you somehow know that the mutex is locked, but you don't
// have access to the associated UniqueLock object. This function, although
// it does the same thing as CSync::notify_one_locked etc. here for the
// user to declare explicitly that notifying is done without being
// prematurely certain that the associated mutex is locked.
//
// It is then expected that whenever these functions are used, an extra
// comment is provided to explain, why the use of the relaxed notification
// is correctly used.
void notify_one_relaxed() { notify_one_relaxed(*m_cond); }
static void notify_one_relaxed(Condition& cond) { cond.notify_one(); }
static void notify_all_relaxed(Condition& cond) { cond.notify_all(); }
};
////////////////////////////////////////////////////////////////////////////////
//
// CEvent class
//
////////////////////////////////////////////////////////////////////////////////
// XXX Do not use this class now, there's an unknown issue
// connected to object management with the use of release* functions.
// Until this is solved, stay with separate *Cond and *Lock fields.
class CEvent
{
public:
CEvent();
~CEvent();
public:
Mutex& mutex() { return m_lock; }
Condition& cond() { return m_cond; }
public:
/// Causes the current thread to block until
/// a specific time is reached.
///
/// @return true if condition occurred or spuriously woken up
/// false on timeout
bool lock_wait_until(const steady_clock::time_point& tp);
/// Blocks the current executing thread,
/// and adds it to the list of threads waiting on* this.
/// The thread will be unblocked when notify_all() or notify_one() is executed,
/// or when the relative timeout rel_time expires.
/// It may also be unblocked spuriously.
/// Uses internal mutex to lock.
///
/// @return true if condition occurred or spuriously woken up
/// false on timeout
bool lock_wait_for(const steady_clock::duration& rel_time);
/// Atomically releases lock, blocks the current executing thread,
/// and adds it to the list of threads waiting on* this.
/// The thread will be unblocked when notify_all() or notify_one() is executed,
/// or when the relative timeout rel_time expires.
/// It may also be unblocked spuriously.
/// When unblocked, regardless of the reason, lock is reacquiredand wait_for() exits.
///
/// @return true if condition occurred or spuriously woken up
/// false on timeout
bool wait_for(UniqueLock& lk, const steady_clock::duration& rel_time);
void lock_wait();
void wait(UniqueLock& lk);
void notify_one();
void notify_all();
void lock_notify_one()
{
ScopedLock lk(m_lock); // XXX with thread logging, don't use ScopedLock directly!
m_cond.notify_one();
}
void lock_notify_all()
{
ScopedLock lk(m_lock); // XXX with thread logging, don't use ScopedLock directly!
m_cond.notify_all();
}
private:
Mutex m_lock;
Condition m_cond;
};
// This class binds together the functionality of
// UniqueLock and CSync. It provides a simple interface of CSync
// while having already the UniqueLock applied in the scope,
// so a safe statement can be made about the mutex being locked
// when signalling or waiting.
class CUniqueSync: public CSync
{
UniqueLock m_ulock;
public:
UniqueLock& locker() { return m_ulock; }
SRT_ATTR_ACQUIRE(this->m_ulock.mutex())
CUniqueSync(Mutex& mut, Condition& cnd)
: CSync(cnd, m_ulock)
, m_ulock(mut)
{
}
CUniqueSync(CEvent& event)
: CSync(event.cond(), m_ulock)
, m_ulock(event.mutex())
{
}
SRT_ATTR_RELEASE(this->m_ulock.mutex())
~CUniqueSync() {}
// These functions can be used safely because
// this whole class guarantees that whatever happens
// while its object exists is that the mutex is locked.
void notify_one()
{
m_cond->notify_one();
}
void notify_all()
{
m_cond->notify_all();
}
};
class CTimer
{
public:
CTimer();
~CTimer();
public:
/// Causes the current thread to block until
/// the specified time is reached.
/// Sleep can be interrupted by calling interrupt()
/// or woken up to recheck the scheduled time by tick()
/// @param tp target time to sleep until
///
/// @return true if the specified time was reached
/// false should never happen
bool sleep_until(steady_clock::time_point tp);
/// Resets target wait time and interrupts waiting
/// in sleep_until(..)
void interrupt();
/// Wakes up waiting thread (sleep_until(..)) without
/// changing the target waiting time to force a recheck
/// of the current time in comparisson to the target time.
void tick();
private:
CEvent m_event;
steady_clock::time_point m_tsSchedTime;
};
/// Print steady clock timepoint in a human readable way.
/// days HH:MM:SS.us [STD]
/// Example: 1D 02:12:56.123456
///
/// @param [in] steady clock timepoint
/// @returns a string with a formatted time representation
std::string FormatTime(const steady_clock::time_point& time);
/// Print steady clock timepoint relative to the current system time
/// Date HH:MM:SS.us [SYS]
/// @param [in] steady clock timepoint
/// @returns a string with a formatted time representation
std::string FormatTimeSys(const steady_clock::time_point& time);
enum eDurationUnit {DUNIT_S, DUNIT_MS, DUNIT_US};
template <eDurationUnit u>
struct DurationUnitName;
template<>
struct DurationUnitName<DUNIT_US>
{
static const char* name() { return "us"; }
static double count(const steady_clock::duration& dur) { return static_cast<double>(count_microseconds(dur)); }
};
template<>
struct DurationUnitName<DUNIT_MS>
{
static const char* name() { return "ms"; }
static double count(const steady_clock::duration& dur) { return static_cast<double>(count_microseconds(dur))/1000.0; }
};
template<>
struct DurationUnitName<DUNIT_S>
{
static const char* name() { return "s"; }
static double count(const steady_clock::duration& dur) { return static_cast<double>(count_microseconds(dur))/1000000.0; }
};
template<eDurationUnit UNIT>
inline std::string FormatDuration(const steady_clock::duration& dur)
{
return Sprint(std::fixed, DurationUnitName<UNIT>::count(dur)) + DurationUnitName<UNIT>::name();
}
inline std::string FormatDuration(const steady_clock::duration& dur)
{
return FormatDuration<DUNIT_US>(dur);
}
////////////////////////////////////////////////////////////////////////////////
//
// CGlobEvent class
//
////////////////////////////////////////////////////////////////////////////////
class CGlobEvent
{
public:
/// Triggers the event and notifies waiting threads.
/// Simply calls notify_one().
static void triggerEvent();
/// Waits for the event to be triggered with 10ms timeout.
/// Simply calls wait_for().
static bool waitForEvent();
};
////////////////////////////////////////////////////////////////////////////////
//
// CThread class
//
////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_STDCXX_SYNC
typedef std::system_error CThreadException;
using CThread = std::thread;
namespace this_thread = std::this_thread;
#else // pthreads wrapper version
typedef CUDTException CThreadException;
class CThread
{
public:
CThread();
/// @throws std::system_error if the thread could not be started.
CThread(void *(*start_routine) (void *), void *arg);
#if HAVE_FULL_CXX11
CThread& operator=(CThread &other) = delete;
CThread& operator=(CThread &&other);
#else
CThread& operator=(CThread &other);
/// To be used only in StartThread function.
/// Creates a new stread and assigns to this.
/// @throw CThreadException
void create_thread(void *(*start_routine) (void *), void *arg);
#endif
public: // Observers
/// Checks if the CThread object identifies an active thread of execution.
/// A default constructed thread is not joinable.
/// A thread that has finished executing code, but has not yet been joined
/// is still considered an active thread of execution and is therefore joinable.
bool joinable() const;
struct id
{
explicit id(const pthread_t t)
: value(t)
{}
const pthread_t value;
inline bool operator==(const id& second) const
{
return pthread_equal(value, second.value) != 0;
}
};
/// Returns the id of the current thread.
/// In this implementation the ID is the pthread_t.
const id get_id() const { return id(m_thread); }
public:
/// Blocks the current thread until the thread identified by *this finishes its execution.
/// If that thread has already terminated, then join() returns immediately.
///
/// @throws std::system_error if an error occurs
void join();
public: // Internal
/// Calls pthread_create, throws exception on failure.
/// @throw CThreadException
void create(void *(*start_routine) (void *), void *arg);
private:
pthread_t m_thread;
};
template <class Stream>
inline Stream& operator<<(Stream& str, const CThread::id& cid)
{
#if defined(_WIN32) && (defined(PTW32_VERSION) || defined (__PTW32_VERSION))
// This is a version specific for pthread-win32 implementation
// Here pthread_t type is a structure that is not convertible
// to a number at all.
return str << pthread_getw32threadid_np(cid.value);
#else
return str << cid.value;
#endif
}
namespace this_thread
{
const inline CThread::id get_id() { return CThread::id (pthread_self()); }
inline void sleep_for(const steady_clock::duration& t)
{
#if !defined(_WIN32)
usleep(count_microseconds(t)); // microseconds
#else
Sleep((DWORD) count_milliseconds(t));
#endif
}
}
#endif
/// StartThread function should be used to do CThread assignments:
/// @code
/// CThread a();
/// a = CThread(func, args);
/// @endcode
///
/// @returns true if thread was started successfully,
/// false on failure
///
#ifdef ENABLE_STDCXX_SYNC
typedef void* (&ThreadFunc) (void*);
bool StartThread(CThread& th, ThreadFunc&& f, void* args, const std::string& name);
#else
bool StartThread(CThread& th, void* (*f) (void*), void* args, const std::string& name);
#endif
////////////////////////////////////////////////////////////////////////////////
//
// CThreadError class - thread local storage wrapper
//
////////////////////////////////////////////////////////////////////////////////
/// Set thread local error
/// @param e new CUDTException
void SetThreadLocalError(const CUDTException& e);
/// Get thread local error
/// @returns CUDTException pointer
CUDTException& GetThreadLocalError();
////////////////////////////////////////////////////////////////////////////////
//
// Random distribution functions.
//
////////////////////////////////////////////////////////////////////////////////
/// Generate a uniform-distributed random integer from [minVal; maxVal].
/// If HAVE_CXX11, uses std::uniform_distribution(std::random_device).
/// @param[in] minVal minimum allowed value of the resulting random number.
/// @param[in] maxVal maximum allowed value of the resulting random number.
int genRandomInt(int minVal, int maxVal);
} // namespace sync
} // namespace srt
#include "atomic_clock.h"
#endif // INC_SRT_SYNC_H
|