1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
|
/*
* SRT - Secure, Reliable, Transport
* Copyright (c) 2018 Haivision Systems Inc.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Written by:
* Haivision Systems Inc.
*/
#include <thread>
#include <condition_variable>
#include <mutex>
#include <gtest/gtest.h>
#include "test_env.h"
#include "srt.h"
#include "sync.h"
enum PEER_TYPE
{
PEER_CALLER = 0,
PEER_LISTENER = 1,
PEER_COUNT = 2, // Number of peers
};
enum CHECK_SOCKET_TYPE
{
CHECK_SOCKET_CALLER = 0,
CHECK_SOCKET_ACCEPTED = 1,
CHECK_SOCKET_COUNT = 2, // Number of peers
};
enum TEST_CASE
{
TEST_CASE_A_1 = 0,
TEST_CASE_A_2,
TEST_CASE_A_3,
TEST_CASE_A_4,
TEST_CASE_A_5,
TEST_CASE_B_1,
TEST_CASE_B_2,
TEST_CASE_B_3,
TEST_CASE_B_4,
TEST_CASE_B_5,
TEST_CASE_C_1,
TEST_CASE_C_2,
TEST_CASE_C_3,
TEST_CASE_C_4,
TEST_CASE_C_5,
TEST_CASE_D_1,
TEST_CASE_D_2,
TEST_CASE_D_3,
TEST_CASE_D_4,
TEST_CASE_D_5,
};
struct TestResultNonBlocking
{
int connect_ret;
int accept_ret;
int epoll_wait_ret;
int epoll_event;
int socket_state[CHECK_SOCKET_COUNT];
int km_state [CHECK_SOCKET_COUNT];
};
struct TestResultBlocking
{
int connect_ret;
int accept_ret;
int socket_state[CHECK_SOCKET_COUNT];
int km_state[CHECK_SOCKET_COUNT];
};
template<typename TResult>
struct TestCase
{
bool enforcedenc [PEER_COUNT];
const std::string (&password)[PEER_COUNT];
TResult expected_result;
};
typedef TestCase<TestResultNonBlocking> TestCaseNonBlocking;
typedef TestCase<TestResultBlocking> TestCaseBlocking;
static const std::string s_pwd_a ("s!t@r#i$c^t");
static const std::string s_pwd_b ("s!t@r#i$c^tu");
static const std::string s_pwd_no("");
/*
* TESTING SCENARIO
* Both peers exchange HandShake v5.
* Listener is sender in a non-blocking mode
* Caller is receiver in a non-blocking mode
* Cases B.2-B.4 are specific. Here we have incompatible password settings, but
* listener accepts it, while caller rejects it. In this case we have a short-living
* confusion state: The connection is accepted on the listener side, and the listener
* sends back the conclusion handshake, but caller will reject it.
*
* Because of that, we should ignore what will happen in the listener as this is
* just a matter of luck: if the listener thread is lucky, it will report the socket
* to accept, so epoll will signal it and accept will report it, and moreover, further
* good luck on this socket would make the state check return SRTS_CONNECTED. Without
* this good luck, the caller might be quick enough to reject the handshake and send
* the UMSG_SHUTDOWN packet to the peer. If it gets with it before acceptance, it will
* withdraw the socket before it could be reported by accept.
*
* Still, we check predictable things here, so we accept two possibilities:
* - The accepted socket wasn't reported at all
* - The accepted socket was reported, and after `srt_connect` is done, it should turn to SRTS_BROKEN.
*
* This embraces both cases when the accepted socket was broken in the beginning, and when it was CONNECTED
* in the beginning, but broke soon thereafter.
*
* This behavior is predicted and accepted - it's also the reason that setting ENFORCEDENC to false is
* NOT RECOMMENDED on a listener socket that isn't intended to accept only connections from known callers
* that are known to have set this flag also to false.
*
* In the cases C.2-C.4 it is the listener who rejects the connection, so we don't have an accepted socket
* and the situation is always the same and clear in the beginning. The caller cannot continue with the
* connection after listener accepted it, even if it tolerates incompatible password settings.
*/
const int IGNORE_EPOLL = -2;
const int IGNORE_SRTS = -1;
const TestCaseNonBlocking g_test_matrix_non_blocking[] =
{
// ENFORCEDENC | Password | | EPoll wait | socket_state | KM State
// caller | listener | caller | listener | connect_ret accept_ret | ret | event | caller accepted | caller listener
/*A.1 */ { {true, true }, {s_pwd_a, s_pwd_a}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_SECURED, SRT_KM_S_SECURED}}},
/*A.2 */ { {true, true }, {s_pwd_a, s_pwd_b}, { SRT_SUCCESS, SRT_INVALID_SOCK, 0, 0, {SRTS_BROKEN, IGNORE_SRTS}, {SRT_KM_S_UNSECURED, IGNORE_SRTS}}},
/*A.3 */ { {true, true }, {s_pwd_a, s_pwd_no}, { SRT_SUCCESS, SRT_INVALID_SOCK, 0, 0, {SRTS_BROKEN, IGNORE_SRTS}, {SRT_KM_S_UNSECURED, IGNORE_SRTS}}},
/*A.4 */ { {true, true }, {s_pwd_no, s_pwd_b}, { SRT_SUCCESS, SRT_INVALID_SOCK, 0, 0, {SRTS_BROKEN, IGNORE_SRTS}, {SRT_KM_S_UNSECURED, IGNORE_SRTS}}},
/*A.5 */ { {true, true }, {s_pwd_no, s_pwd_no}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*B.1 */ { {true, false }, {s_pwd_a, s_pwd_a}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_SECURED, SRT_KM_S_SECURED}}},
/*B.2 */ { {true, false }, {s_pwd_a, s_pwd_b}, { SRT_SUCCESS, 0, IGNORE_EPOLL, 0, {SRTS_CONNECTING, SRTS_BROKEN}, {SRT_KM_S_BADSECRET, SRT_KM_S_BADSECRET}}},
/*B.3 */ { {true, false }, {s_pwd_a, s_pwd_no}, { SRT_SUCCESS, 0, IGNORE_EPOLL, 0, {SRTS_CONNECTING, SRTS_BROKEN}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*B.4 */ { {true, false }, {s_pwd_no, s_pwd_b}, { SRT_SUCCESS, 0, IGNORE_EPOLL, 0, {SRTS_CONNECTING, SRTS_BROKEN}, {SRT_KM_S_UNSECURED, SRT_KM_S_NOSECRET}}},
/*B.5 */ { {true, false }, {s_pwd_no, s_pwd_no}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*C.1 */ { {false, true }, {s_pwd_a, s_pwd_a}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_SECURED, SRT_KM_S_SECURED}}},
/*C.2 */ { {false, true }, {s_pwd_a, s_pwd_b}, { SRT_SUCCESS, SRT_INVALID_SOCK, 0, 0, {SRTS_BROKEN, IGNORE_SRTS}, {SRT_KM_S_UNSECURED, IGNORE_SRTS}}},
/*C.3 */ { {false, true }, {s_pwd_a, s_pwd_no}, { SRT_SUCCESS, SRT_INVALID_SOCK, 0, 0, {SRTS_BROKEN, IGNORE_SRTS}, {SRT_KM_S_UNSECURED, IGNORE_SRTS}}},
/*C.4 */ { {false, true }, {s_pwd_no, s_pwd_b}, { SRT_SUCCESS, SRT_INVALID_SOCK, 0, 0, {SRTS_BROKEN, IGNORE_SRTS}, {SRT_KM_S_UNSECURED, IGNORE_SRTS}}},
/*C.5 */ { {false, true }, {s_pwd_no, s_pwd_no}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*D.1 */ { {false, false }, {s_pwd_a, s_pwd_a}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_SECURED, SRT_KM_S_SECURED}}},
/*D.2 */ { {false, false }, {s_pwd_a, s_pwd_b}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_BADSECRET, SRT_KM_S_BADSECRET}}},
/*D.3 */ { {false, false }, {s_pwd_a, s_pwd_no}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*D.4 */ { {false, false }, {s_pwd_no, s_pwd_b}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_NOSECRET, SRT_KM_S_NOSECRET}}},
/*D.5 */ { {false, false }, {s_pwd_no, s_pwd_no}, { SRT_SUCCESS, 0, 1, SRT_EPOLL_IN, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
};
/*
* TESTING SCENARIO
* Both peers exchange HandShake v5.
* Listener is sender in a blocking mode
* Caller is receiver in a blocking mode
*
* In the cases B.2-B.4 the caller will reject the connection due to the enforced encryption check
* of the HS response from the listener on the stage of the KM response check.
* While the listener accepts the connection with the connected state. So the caller sends UMSG_SHUTDOWN
* to notify the listener that it has closed the connection. The accepted socket gets the SRTS_BROKEN states.
* For these cases a special accept_ret = -2 is used, that allows the accepted socket to be broken or already closed.
*
* In the cases C.2-C.4 it is the listener who rejects the connection, so we don't have an accepted socket.
*/
const TestCaseBlocking g_test_matrix_blocking[] =
{
// ENFORCEDENC | Password | | socket_state | KM State
// caller | listener | caller | listener | connect_ret accept_ret | caller accepted | caller listener
/*A.1 */ { {true, true }, {s_pwd_a, s_pwd_a}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_SECURED, SRT_KM_S_SECURED}}},
/*A.2 */ { {true, true }, {s_pwd_a, s_pwd_b}, { SRT_INVALID_SOCK, SRT_INVALID_SOCK, {SRTS_OPENED, -1}, {SRT_KM_S_UNSECURED, -1}}},
/*A.3 */ { {true, true }, {s_pwd_a, s_pwd_no}, { SRT_INVALID_SOCK, SRT_INVALID_SOCK, {SRTS_OPENED, -1}, {SRT_KM_S_UNSECURED, -1}}},
/*A.4 */ { {true, true }, {s_pwd_no, s_pwd_b}, { SRT_INVALID_SOCK, SRT_INVALID_SOCK, {SRTS_OPENED, -1}, {SRT_KM_S_UNSECURED, -1}}},
/*A.5 */ { {true, true }, {s_pwd_no, s_pwd_no}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*B.1 */ { {true, false }, {s_pwd_a, s_pwd_a}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_SECURED, SRT_KM_S_SECURED}}},
/*B.2 */ { {true, false }, {s_pwd_a, s_pwd_b}, { SRT_INVALID_SOCK, -2, {SRTS_OPENED, SRTS_BROKEN}, {SRT_KM_S_BADSECRET, SRT_KM_S_BADSECRET}}},
/*B.3 */ { {true, false }, {s_pwd_a, s_pwd_no}, { SRT_INVALID_SOCK, -2, {SRTS_OPENED, SRTS_BROKEN}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*B.4 */ { {true, false }, {s_pwd_no, s_pwd_b}, { SRT_INVALID_SOCK, -2, {SRTS_OPENED, SRTS_BROKEN}, {SRT_KM_S_UNSECURED, SRT_KM_S_NOSECRET}}},
/*B.5 */ { {true, false }, {s_pwd_no, s_pwd_no}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*C.1 */ { {false, true }, {s_pwd_a, s_pwd_a}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_SECURED, SRT_KM_S_SECURED}}},
/*C.2 */ { {false, true }, {s_pwd_a, s_pwd_b}, { SRT_INVALID_SOCK, SRT_INVALID_SOCK, {SRTS_OPENED, -1}, {SRT_KM_S_UNSECURED, -1}}},
/*C.3 */ { {false, true }, {s_pwd_a, s_pwd_no}, { SRT_INVALID_SOCK, SRT_INVALID_SOCK, {SRTS_OPENED, -1}, {SRT_KM_S_UNSECURED, -1}}},
/*C.4 */ { {false, true }, {s_pwd_no, s_pwd_b}, { SRT_INVALID_SOCK, SRT_INVALID_SOCK, {SRTS_OPENED, -1}, {SRT_KM_S_UNSECURED, -1}}},
/*C.5 */ { {false, true }, {s_pwd_no, s_pwd_no}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*D.1 */ { {false, false }, {s_pwd_a, s_pwd_a}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_SECURED, SRT_KM_S_SECURED}}},
/*D.2 */ { {false, false }, {s_pwd_a, s_pwd_b}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_BADSECRET, SRT_KM_S_BADSECRET}}},
/*D.3 */ { {false, false }, {s_pwd_a, s_pwd_no}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
/*D.4 */ { {false, false }, {s_pwd_no, s_pwd_b}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_NOSECRET, SRT_KM_S_NOSECRET}}},
/*D.5 */ { {false, false }, {s_pwd_no, s_pwd_no}, { SRT_SUCCESS, 0, {SRTS_CONNECTED, SRTS_CONNECTED}, {SRT_KM_S_UNSECURED, SRT_KM_S_UNSECURED}}},
};
class TestEnforcedEncryption
: public srt::Test
{
protected:
TestEnforcedEncryption()
{
// initialization code here
}
~TestEnforcedEncryption()
{
// cleanup any pending stuff, but no exceptions allowed
}
protected:
// SetUp() is run immediately before a test starts.
void setup() override
{
m_pollid = srt_epoll_create();
ASSERT_GE(m_pollid, 0);
m_caller_socket = srt_create_socket();
ASSERT_NE(m_caller_socket, SRT_INVALID_SOCK);
ASSERT_NE(srt_setsockflag(m_caller_socket, SRTO_SENDER, &s_yes, sizeof s_yes), SRT_ERROR);
ASSERT_NE(srt_setsockopt (m_caller_socket, 0, SRTO_TSBPDMODE, &s_yes, sizeof s_yes), SRT_ERROR);
m_listener_socket = srt_create_socket();
ASSERT_NE(m_listener_socket, SRT_INVALID_SOCK);
ASSERT_NE(srt_setsockflag(m_listener_socket, SRTO_SENDER, &s_no, sizeof s_no), SRT_ERROR);
ASSERT_NE(srt_setsockopt (m_listener_socket, 0, SRTO_TSBPDMODE, &s_yes, sizeof s_yes), SRT_ERROR);
// Will use this epoll to wait for srt_accept(...)
const int epoll_out = SRT_EPOLL_IN | SRT_EPOLL_ERR;
ASSERT_NE(srt_epoll_add_usock(m_pollid, m_listener_socket, &epoll_out), SRT_ERROR);
}
void teardown() override
{
// Code here will be called just after the test completes.
// OK to throw exceptions from here if needed.
if (m_caller_socket != SRT_INVALID_SOCK)
{
EXPECT_NE(srt_close(m_caller_socket), SRT_ERROR) << srt_getlasterror_str();
}
if (m_listener_socket != SRT_INVALID_SOCK)
{
EXPECT_NE(srt_close(m_listener_socket), SRT_ERROR) << srt_getlasterror_str();
}
}
public:
int SetEnforcedEncryption(PEER_TYPE peer, bool value)
{
const SRTSOCKET &socket = peer == PEER_CALLER ? m_caller_socket : m_listener_socket;
return srt_setsockopt(socket, 0, SRTO_ENFORCEDENCRYPTION, value ? &s_yes : &s_no, sizeof s_yes);
}
bool GetEnforcedEncryption(PEER_TYPE peer_type)
{
const SRTSOCKET socket = peer_type == PEER_CALLER ? m_caller_socket : m_listener_socket;
bool optval;
int optlen = sizeof optval;
EXPECT_EQ(srt_getsockopt(socket, 0, SRTO_ENFORCEDENCRYPTION, (void*)&optval, &optlen), SRT_SUCCESS);
return optval ? true : false;
}
int SetPassword(PEER_TYPE peer_type, const std::basic_string<char> &pwd)
{
const SRTSOCKET socket = peer_type == PEER_CALLER ? m_caller_socket : m_listener_socket;
return srt_setsockopt(socket, 0, SRTO_PASSPHRASE, pwd.c_str(), (int) pwd.size());
}
int GetKMState(SRTSOCKET socket)
{
int km_state = 0;
int opt_size = sizeof km_state;
EXPECT_EQ(srt_getsockopt(socket, 0, SRTO_KMSTATE, reinterpret_cast<void*>(&km_state), &opt_size), SRT_SUCCESS);
return km_state;
}
int GetSocetkOption(SRTSOCKET socket, SRT_SOCKOPT opt)
{
int val = 0;
int size = sizeof val;
EXPECT_EQ(srt_getsockopt(socket, 0, opt, reinterpret_cast<void*>(&val), &size), SRT_SUCCESS);
return val;
}
template<typename TResult>
int WaitOnEpoll(const TResult &expect);
template<typename TResult>
const TestCase<TResult>& GetTestMatrix(TEST_CASE test_case) const;
template<typename TResult>
void TestConnect(TEST_CASE test_case/*, bool is_blocking*/)
{
const bool is_blocking = std::is_same<TResult, TestResultBlocking>::value;
if (is_blocking)
{
ASSERT_NE(srt_setsockopt( m_caller_socket, 0, SRTO_RCVSYN, &s_yes, sizeof s_yes), SRT_ERROR);
ASSERT_NE(srt_setsockopt( m_caller_socket, 0, SRTO_SNDSYN, &s_yes, sizeof s_yes), SRT_ERROR);
ASSERT_NE(srt_setsockopt(m_listener_socket, 0, SRTO_RCVSYN, &s_yes, sizeof s_yes), SRT_ERROR);
ASSERT_NE(srt_setsockopt(m_listener_socket, 0, SRTO_SNDSYN, &s_yes, sizeof s_yes), SRT_ERROR);
}
else
{
ASSERT_NE(srt_setsockopt( m_caller_socket, 0, SRTO_RCVSYN, &s_no, sizeof s_no), SRT_ERROR); // non-blocking mode
ASSERT_NE(srt_setsockopt( m_caller_socket, 0, SRTO_SNDSYN, &s_no, sizeof s_no), SRT_ERROR); // non-blocking mode
ASSERT_NE(srt_setsockopt(m_listener_socket, 0, SRTO_RCVSYN, &s_no, sizeof s_no), SRT_ERROR); // non-blocking mode
ASSERT_NE(srt_setsockopt(m_listener_socket, 0, SRTO_SNDSYN, &s_no, sizeof s_no), SRT_ERROR); // non-blocking mode
}
// Prepare input state
const TestCase<TResult> &test = GetTestMatrix<TResult>(test_case);
ASSERT_EQ(SetEnforcedEncryption(PEER_CALLER, test.enforcedenc[PEER_CALLER]), SRT_SUCCESS);
ASSERT_EQ(SetEnforcedEncryption(PEER_LISTENER, test.enforcedenc[PEER_LISTENER]), SRT_SUCCESS);
ASSERT_EQ(SetPassword(PEER_CALLER, test.password[PEER_CALLER]), SRT_SUCCESS);
ASSERT_EQ(SetPassword(PEER_LISTENER, test.password[PEER_LISTENER]), SRT_SUCCESS);
// Determine the subcase for the KLUDGE (check the behavior of the decryption failure)
const bool case_pw_failure = test.password[PEER_CALLER] != test.password[PEER_LISTENER];
const bool case_both_relaxed = !test.enforcedenc[PEER_LISTENER] && !test.enforcedenc[PEER_CALLER];
const bool case_sender_enc = test.password[PEER_CALLER] != "";
const TResult &expect = test.expected_result;
// Start testing
srt::sync::atomic<bool> caller_done;
sockaddr_in sa;
memset(&sa, 0, sizeof sa);
sa.sin_family = AF_INET;
sa.sin_port = htons(5200);
ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);
sockaddr* psa = (sockaddr*)&sa;
ASSERT_NE(srt_bind(m_listener_socket, psa, sizeof sa), SRT_ERROR);
ASSERT_NE(srt_listen(m_listener_socket, 4), SRT_ERROR);
SRTSOCKET accepted_socket = -1;
auto accepting_thread = std::thread([&] {
const int epoll_event = WaitOnEpoll(expect);
// In a blocking mode we expect a socket returned from srt_accept() if the srt_connect succeeded.
// In a non-blocking mode we expect a socket returned from srt_accept() if the srt_connect succeeded,
// otherwise SRT_INVALID_SOCKET after the listening socket is closed.
sockaddr_in client_address;
int length = sizeof(sockaddr_in);
if (epoll_event == SRT_EPOLL_IN)
{
accepted_socket = srt_accept(m_listener_socket, (sockaddr*)&client_address, &length);
std::cout << "ACCEPT: done, result=" << accepted_socket << std::endl;
}
else
{
std::cout << "ACCEPT: NOT done\n";
}
if (accepted_socket == SRT_INVALID_SOCK)
{
std::cerr << "[T] ACCEPT ERROR: " << srt_getlasterror_str() << std::endl;
}
else
{
std::cerr << "[T] ACCEPT SUCCEEDED: @" << accepted_socket << "\n";
}
EXPECT_NE(accepted_socket, 0);
if (expect.accept_ret == SRT_INVALID_SOCK)
{
EXPECT_EQ(accepted_socket, SRT_INVALID_SOCK);
}
else if (expect.accept_ret != -2)
{
EXPECT_NE(accepted_socket, SRT_INVALID_SOCK);
}
if (accepted_socket != SRT_INVALID_SOCK && expect.socket_state[CHECK_SOCKET_ACCEPTED] != IGNORE_SRTS)
{
if (m_is_tracing)
{
std::cerr << "EARLY Socket state accepted: " << m_socket_state[srt_getsockstate(accepted_socket)]
<< " (expected: " << m_socket_state[expect.socket_state[CHECK_SOCKET_ACCEPTED]] << ")\n";
std::cerr << "KM State accepted: " << m_km_state[GetKMState(accepted_socket)] << '\n';
std::cerr << "RCV KM State accepted: " << m_km_state[GetSocetkOption(accepted_socket, SRTO_RCVKMSTATE)] << '\n';
std::cerr << "SND KM State accepted: " << m_km_state[GetSocetkOption(accepted_socket, SRTO_SNDKMSTATE)] << '\n';
}
// We have to wait some time for the socket to be able to process the HS response from the caller.
// In test cases B2 - B4 the socket is expected to change its state from CONNECTED to BROKEN
// due to KM mismatches
do
{
std::this_thread::sleep_for(std::chrono::milliseconds(50));
} while (!caller_done);
// Special case when the expected state is "broken": if so, tolerate every possible
// socket state, just NOT LESS than SRTS_BROKEN, and also don't read any flags on that socket.
if (expect.socket_state[CHECK_SOCKET_ACCEPTED] == SRTS_BROKEN)
{
EXPECT_GE(srt_getsockstate(accepted_socket), SRTS_BROKEN);
}
else
{
EXPECT_EQ(srt_getsockstate(accepted_socket), expect.socket_state[CHECK_SOCKET_ACCEPTED]);
EXPECT_EQ(GetSocetkOption(accepted_socket, SRTO_SNDKMSTATE), expect.km_state[CHECK_SOCKET_ACCEPTED]);
}
if (m_is_tracing)
{
const SRT_SOCKSTATUS status = srt_getsockstate(accepted_socket);
std::cerr << "LATE Socket state accepted: " << m_socket_state[status]
<< " (expected: " << m_socket_state[expect.socket_state[CHECK_SOCKET_ACCEPTED]] << ")\n";
}
}
});
const int connect_ret = srt_connect(m_caller_socket, psa, sizeof sa);
EXPECT_EQ(connect_ret, expect.connect_ret);
if (connect_ret == SRT_ERROR && connect_ret != expect.connect_ret)
{
std::cerr << "UNEXPECTED! srt_connect returned error: "
<< srt_getlasterror_str() << " (code " << srt_getlasterror(NULL) << ")\n";
}
caller_done = true;
if (is_blocking == false)
accepting_thread.join();
if (m_is_tracing)
{
std::cerr << "Socket state caller: " << m_socket_state[srt_getsockstate(m_caller_socket)] << "\n";
std::cerr << "Socket state listener: " << m_socket_state[srt_getsockstate(m_listener_socket)] << "\n";
std::cerr << "KM State caller: " << m_km_state[GetKMState(m_caller_socket)] << '\n';
std::cerr << "RCV KM State caller: " << m_km_state[GetSocetkOption(m_caller_socket, SRTO_RCVKMSTATE)] << '\n';
std::cerr << "SND KM State caller: " << m_km_state[GetSocetkOption(m_caller_socket, SRTO_SNDKMSTATE)] << '\n';
std::cerr << "KM State listener: " << m_km_state[GetKMState(m_listener_socket)] << '\n';
}
// If a blocking call to srt_connect() returned error, then the state is not valid,
// but we still check it because we know what it should be. This way we may see potential changes in the core behavior.
if (is_blocking)
{
EXPECT_EQ(srt_getsockstate(m_caller_socket), expect.socket_state[CHECK_SOCKET_CALLER]);
}
// A caller socket, regardless of the mode, if it's not expected to be connected, check negatively.
if (expect.socket_state[CHECK_SOCKET_CALLER] == SRTS_CONNECTED)
{
EXPECT_EQ(srt_getsockstate(m_caller_socket), SRTS_CONNECTED);
}
else
{
// If the socket is not expected to be connected (might be CONNECTING),
// then it is ok if it's CONNECTING or BROKEN.
EXPECT_NE(srt_getsockstate(m_caller_socket), SRTS_CONNECTED);
}
EXPECT_EQ(GetSocetkOption(m_caller_socket, SRTO_RCVKMSTATE), expect.km_state[CHECK_SOCKET_CALLER]);
EXPECT_EQ(srt_getsockstate(m_listener_socket), SRTS_LISTENING);
EXPECT_EQ(GetKMState(m_listener_socket), SRT_KM_S_UNSECURED);
if (!is_blocking && case_both_relaxed && case_pw_failure && case_sender_enc)
{
// Additionally check decryption failure does not trigger read-readiness (see issue #2503).
std::this_thread::sleep_for(std::chrono::milliseconds(100));
EXPECT_FALSE(accepting_thread.joinable());
int const epollRead = srt_epoll_create();
int events = SRT_EPOLL_IN | SRT_EPOLL_ERR;
srt_epoll_add_usock(epollRead, accepted_socket, &events);
std::this_thread::sleep_for(std::chrono::milliseconds(100));
{
int const epollWrite = srt_epoll_create();
events = SRT_EPOLL_OUT | SRT_EPOLL_ERR;
srt_epoll_add_usock(epollWrite, m_caller_socket, &events);
std::this_thread::sleep_for(std::chrono::milliseconds(100));
SRTSOCKET srtSocket = SRT_INVALID_SOCK;
int socketNum = 1;
const int epoll_res_w = srt_epoll_wait(epollWrite,
nullptr, nullptr, // read
&srtSocket, &socketNum, // write
500,
nullptr, nullptr, nullptr, nullptr); // R/W system sockets
std::cout << "W: " << epoll_res_w << std::endl;
char buffer[1316] = {1, 2, 3, 4};
ASSERT_NE(srt_sendmsg2(m_caller_socket, buffer, sizeof buffer, nullptr), SRT_ERROR);
std::this_thread::sleep_for(std::chrono::seconds(1));
}
SRTSOCKET srtSocket = SRT_INVALID_SOCK;
int socketNum = 1;
int epoll_res_r = srt_epoll_wait(epollRead, &srtSocket, &socketNum, nullptr, nullptr, 500, nullptr, nullptr, nullptr, nullptr);
std::cout << "R: " << epoll_res_r << std::endl;
EXPECT_LE(epoll_res_r, 0) << "It's wrongly reported, so let's take a look...";
char buffer[1316] = {};
EXPECT_EQ(srt_recvmsg2(accepted_socket, buffer, sizeof buffer, nullptr), -1);
epoll_res_r = srt_epoll_wait(epollRead, &srtSocket, &socketNum, nullptr, nullptr, 500, nullptr, nullptr, nullptr, nullptr);
EXPECT_LE(epoll_res_r, 0) << "Another?!";
//// ! /KLUDGE !
srt_epoll_release(epollRead);
}
if (is_blocking)
{
// srt_accept() has no timeout, so we have to close the socket and wait for the thread to exit.
// Just give it some time and close the socket.
std::this_thread::sleep_for(std::chrono::milliseconds(50));
ASSERT_NE(srt_close(m_listener_socket), SRT_ERROR);
m_listener_socket = SRT_INVALID_SOCK; // mark closed already
accepting_thread.join();
}
}
private:
// put in any custom data members that you need
SRTSOCKET m_caller_socket = SRT_INVALID_SOCK;
SRTSOCKET m_listener_socket = SRT_INVALID_SOCK;
int m_pollid = 0;
const bool s_yes = true;
const bool s_no = false;
const bool m_is_tracing = false;
static const char* m_km_state[];
static const char* const* m_socket_state;
};
template<>
int TestEnforcedEncryption::WaitOnEpoll<TestResultBlocking>(const TestResultBlocking &)
{
return SRT_EPOLL_IN;
}
static std::ostream& PrintEpollEvent(std::ostream& os, int events, int et_events)
{
using namespace std;
static pair<int, const char*> const namemap [] = {
make_pair(SRT_EPOLL_IN, "R"),
make_pair(SRT_EPOLL_OUT, "W"),
make_pair(SRT_EPOLL_ERR, "E"),
make_pair(SRT_EPOLL_UPDATE, "U")
};
const int N = (int)Size(namemap);
for (int i = 0; i < N; ++i)
{
if (events & namemap[i].first)
{
os << "[";
if (et_events & namemap[i].first)
os << "^";
os << namemap[i].second << "]";
}
}
return os;
}
template<>
int TestEnforcedEncryption::WaitOnEpoll<TestResultNonBlocking>(const TestResultNonBlocking &expect)
{
const int default_len = 3;
SRT_EPOLL_EVENT ready[default_len];
const int epoll_res = srt_epoll_uwait(m_pollid, ready, default_len, 500);
std::cerr << "Epoll wait result: " << epoll_res;
if (epoll_res > 0)
{
std::cerr << " FOUND: @" << ready[0].fd << " in ";
PrintEpollEvent(std::cerr, ready[0].events, 0);
}
else
{
std::cerr << " NOTHING READY";
}
std::cerr << std::endl;
// Expect: -2 means that
if (expect.epoll_wait_ret != IGNORE_EPOLL)
{
EXPECT_EQ(epoll_res, expect.epoll_wait_ret);
}
if (epoll_res == SRT_ERROR)
{
std::cerr << "Epoll returned error: " << srt_getlasterror_str() << " (code " << srt_getlasterror(NULL) << ")\n";
return 0;
}
// We have exactly one socket here and we expect to return
// only this one, or nothing.
if (epoll_res != 0)
{
EXPECT_EQ(epoll_res, 1);
EXPECT_EQ(ready[0].fd, m_listener_socket);
}
return epoll_res == 0 ? 0 : int(ready[0].events);
}
template<>
const TestCase<TestResultBlocking>& TestEnforcedEncryption::GetTestMatrix<TestResultBlocking>(TEST_CASE test_case) const
{
return g_test_matrix_blocking[test_case];
}
template<>
const TestCase<TestResultNonBlocking>& TestEnforcedEncryption::GetTestMatrix<TestResultNonBlocking>(TEST_CASE test_case) const
{
return g_test_matrix_non_blocking[test_case];
}
const char* TestEnforcedEncryption::m_km_state[] = {
"SRT_KM_S_UNSECURED (0)", //No encryption
"SRT_KM_S_SECURING (1)", //Stream encrypted, exchanging Keying Material
"SRT_KM_S_SECURED (2)", //Stream encrypted, keying Material exchanged, decrypting ok.
"SRT_KM_S_NOSECRET (3)", //Stream encrypted and no secret to decrypt Keying Material
"SRT_KM_S_BADSECRET (4)" //Stream encrypted and wrong secret, cannot decrypt Keying Material
};
static const char* const socket_state_array[] = {
"IGNORE_SRTS",
"SRTS_INVALID",
"SRTS_INIT",
"SRTS_OPENED",
"SRTS_LISTENING",
"SRTS_CONNECTING",
"SRTS_CONNECTED",
"SRTS_BROKEN",
"SRTS_CLOSING",
"SRTS_CLOSED",
"SRTS_NONEXIST"
};
// A trick that allows the array to be indexed by -1
const char* const* TestEnforcedEncryption::m_socket_state = socket_state_array+1;
/**
* @fn TestEnforcedEncryption.PasswordLength
* @brief The password length should belong to the interval of [10; 80]
*/
TEST_F(TestEnforcedEncryption, PasswordLength)
{
#ifdef SRT_ENABLE_ENCRYPTION
// Empty string sets password to none
EXPECT_EQ(SetPassword(PEER_CALLER, std::string("")), SRT_SUCCESS);
EXPECT_EQ(SetPassword(PEER_LISTENER, std::string("")), SRT_SUCCESS);
EXPECT_EQ(SetPassword(PEER_CALLER, std::string("too_short")), SRT_ERROR);
EXPECT_EQ(SetPassword(PEER_LISTENER, std::string("too_short")), SRT_ERROR);
std::string long_pwd;
const int pwd_len = 81; // 80 is the maximum password length accepted
long_pwd.reserve(pwd_len);
const char start_char = '!';
// Please ensure to be within the valid ASCII symbols!
ASSERT_LT(pwd_len + start_char, 126);
for (int i = 0; i < pwd_len; ++i)
long_pwd.push_back(static_cast<char>(start_char + i));
EXPECT_EQ(SetPassword(PEER_CALLER, long_pwd), SRT_ERROR);
EXPECT_EQ(SetPassword(PEER_LISTENER, long_pwd), SRT_ERROR);
EXPECT_EQ(SetPassword(PEER_CALLER, std::string("proper_len")), SRT_SUCCESS);
EXPECT_EQ(SetPassword(PEER_LISTENER, std::string("proper_length")), SRT_SUCCESS);
#else
EXPECT_EQ(SetPassword(PEER_CALLER, "whateverpassword"), SRT_ERROR);
#endif
}
/**
* @fn TestEnforcedEncryption.SetGetDefault
* @brief The default value for the enforced encryption should be ON
*/
TEST_F(TestEnforcedEncryption, SetGetDefault)
{
EXPECT_EQ(GetEnforcedEncryption(PEER_CALLER), true);
EXPECT_EQ(GetEnforcedEncryption(PEER_LISTENER), true);
EXPECT_EQ(SetEnforcedEncryption(PEER_CALLER, false), SRT_SUCCESS);
EXPECT_EQ(SetEnforcedEncryption(PEER_LISTENER, false), SRT_SUCCESS);
EXPECT_EQ(GetEnforcedEncryption(PEER_CALLER), false);
EXPECT_EQ(GetEnforcedEncryption(PEER_LISTENER), false);
}
#define CREATE_TEST_CASE_BLOCKING(CASE_NUMBER, DESC) TEST_F(TestEnforcedEncryption, CASE_NUMBER##_Blocking_##DESC)\
{\
TestConnect<TestResultBlocking>(TEST_##CASE_NUMBER);\
}
#define CREATE_TEST_CASE_NONBLOCKING(CASE_NUMBER, DESC) TEST_F(TestEnforcedEncryption, CASE_NUMBER##_NonBlocking_##DESC)\
{\
TestConnect<TestResultNonBlocking>(TEST_##CASE_NUMBER);\
}
#define CREATE_TEST_CASES(CASE_NUMBER, DESC) \
CREATE_TEST_CASE_NONBLOCKING(CASE_NUMBER, DESC) \
CREATE_TEST_CASE_BLOCKING(CASE_NUMBER, DESC)
#ifdef SRT_ENABLE_ENCRYPTION
CREATE_TEST_CASES(CASE_A_1, Enforced_On_On_Pwd_Set_Set_Match)
CREATE_TEST_CASES(CASE_A_2, Enforced_On_On_Pwd_Set_Set_Mismatch)
CREATE_TEST_CASES(CASE_A_3, Enforced_On_On_Pwd_Set_None)
CREATE_TEST_CASES(CASE_A_4, Enforced_On_On_Pwd_None_Set)
#endif
CREATE_TEST_CASES(CASE_A_5, Enforced_On_On_Pwd_None_None)
#ifdef SRT_ENABLE_ENCRYPTION
CREATE_TEST_CASES(CASE_B_1, Enforced_On_Off_Pwd_Set_Set_Match)
CREATE_TEST_CASES(CASE_B_2, Enforced_On_Off_Pwd_Set_Set_Mismatch)
CREATE_TEST_CASES(CASE_B_3, Enforced_On_Off_Pwd_Set_None)
CREATE_TEST_CASES(CASE_B_4, Enforced_On_Off_Pwd_None_Set)
#endif
CREATE_TEST_CASES(CASE_B_5, Enforced_On_Off_Pwd_None_None)
#ifdef SRT_ENABLE_ENCRYPTION
CREATE_TEST_CASES(CASE_C_1, Enforced_Off_On_Pwd_Set_Set_Match)
CREATE_TEST_CASES(CASE_C_2, Enforced_Off_On_Pwd_Set_Set_Mismatch)
CREATE_TEST_CASES(CASE_C_3, Enforced_Off_On_Pwd_Set_None)
CREATE_TEST_CASES(CASE_C_4, Enforced_Off_On_Pwd_None_Set)
#endif
CREATE_TEST_CASES(CASE_C_5, Enforced_Off_On_Pwd_None_None)
#ifdef SRT_ENABLE_ENCRYPTION
CREATE_TEST_CASES(CASE_D_1, Enforced_Off_Off_Pwd_Set_Set_Match)
CREATE_TEST_CASES(CASE_D_2, Enforced_Off_Off_Pwd_Set_Set_Mismatch)
CREATE_TEST_CASES(CASE_D_3, Enforced_Off_Off_Pwd_Set_None)
CREATE_TEST_CASES(CASE_D_4, Enforced_Off_Off_Pwd_None_Set)
#endif
CREATE_TEST_CASES(CASE_D_5, Enforced_Off_Off_Pwd_None_None)
|