File: test_fec_rebuilding.cpp

package info (click to toggle)
srt 1.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,804 kB
  • sloc: cpp: 52,175; ansic: 5,746; tcl: 1,183; sh: 318; python: 99; makefile: 38
file content (948 lines) | stat: -rw-r--r-- 31,075 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
#include <vector>
#include <algorithm>
#include <future>

#include "gtest/gtest.h"
#include "test_env.h"
#include "packet.h"
#include "fec.h"
#include "core.h"
#include "packetfilter.h"
#include "packetfilter_api.h"

// For direct imp access
#include "api.h"

using namespace std;
using namespace srt;

class TestFECRebuilding: public srt::Test
{
protected:
    FECFilterBuiltin* fec = nullptr;
    vector<SrtPacket> provided;
    vector<unique_ptr<CPacket>> source;
    int sockid = 54321;
    int isn = 123456;
    size_t plsize = 1316;

    TestFECRebuilding()
    {
        // Required to make ParseCorrectorConfig work
        PacketFilter::globalInit();
    }

    void setup() override
    {
        int timestamp = 10;

        SrtFilterInitializer init = {
            sockid,
            isn - 1, // It's passed in this form to PacketFilter constructor, it should increase it
            isn - 1, // XXX Probably this better be changed.
            plsize,
            CSrtConfig::DEF_BUFFER_SIZE
        };


        // Make configuration row-only with size 7
        string conf = "fec,rows:1,cols:7";

        provided.clear();

        fec = new FECFilterBuiltin(init, provided, conf);

        int32_t seq = isn;

        for (int i = 0; i < 7; ++i)
        {
            source.emplace_back(new CPacket);
            CPacket& p = *source.back();

            p.allocate(SRT_LIVE_MAX_PLSIZE);

            uint32_t* hdr = p.getHeader();

            // Fill in the values
            hdr[SRT_PH_SEQNO] = seq;
            hdr[SRT_PH_MSGNO] = 1 | MSGNO_PACKET_BOUNDARY::wrap(PB_SOLO);
            hdr[SRT_PH_ID] = sockid;
            hdr[SRT_PH_TIMESTAMP] = timestamp;

            // Fill in the contents.
            // Randomly chose the size

            int minsize = 732;
            int divergence = int(plsize) - minsize - 1;
            size_t length = minsize + rand() % divergence;

            p.setLength(length);
            for (size_t b = 0; b < length; ++b)
            {
                p.data()[b] = rand() % 255;
            }

            timestamp += 10;
            seq = CSeqNo::incseq(seq);
        }
    }

    void teardown() override
    {
        delete fec;
    }
};

namespace srt {
    class TestMockCUDT
    {
    public:
        CUDT* core;

        bool checkApplyFilterConfig(const string& s)
        {
            return core->checkApplyFilterConfig(s);
        }
    };
}

// The expected whole procedure of connection using FEC is
// expected to:
//
// 1. Successfully set the FEC option for correct filter type.
//    - STOP ON FAILURE: unknown filter type (the table below, case D)
// 2. Perform the connection and integrate configurations.
//    - STOP on failed integration (the table below, cases A and B)
// 3. Deliver on both sides identical configurations consisting
//    of combined configurations and completed with default values.
//    - Not possible if stopped before.
//
// Test coverage for the above cases:
//
// Success cases in all of the above: ConfigExchange, Connection, ConnectionReorder
// Failure cases:
// 1. ConfigExchangeFaux - setting unknown filter type
// 2. ConfigExchangeFaux, RejectionConflict, RejectionIncomplete, RejectionIncompleteEmpty
//
// For config exchange we have several possibilities here:
//
// - any same parameters with different values are rejected (Case A)
// - resulting configuiration should have the `cols` value set (Cases B)
//
// The configuration API rules that control correctness:
//
// 1. The first word defines an existing filter type.
// 2. Parameters are defined in whatever order.
// 3. Some parameters are optional and have default values. Others are mandatory.
// 4. A parameter provided twice remains with the last specification.
// 5. A parameter with empty value is like not provided parameter.
// 6. Only parameters handled by given filter type are allowed.
// 7. Every parameter may have limitations on the provided value:
//    a. Numeric values in appropriate range
//    b. String-enumeration with only certain values allowed
//
// Additionally there are rules for configuration integration:
//
// 8. Configuration consists of parameters provided in both sides.
// 9. Parameters lacking after integration are set to default values.
// 10. Parameters specified on both sides (including type) must be equal.
// 11. Empty configuration blindly accepts the configuration from the peer.
// 12. The final configuration must provide mandatory parameters
//
// Restrictive rules type are: 1, 6, 7, 10
//
// Case description:
// A: Conflicting values on the same parameter (rejection, rule 10 failure)
// B: Missing a mandatory parameter (rejection, rule 12 failure)
// C: Successful setting and combining parameters
//    1: rules (positive): 1, 3, 6, 7(part), 8, 9, 12
//    2: rules (positive): 1, 2, 3, 6, 7(part), 9, 10, 12
//    3,4: rules (positive): 1, 2, 3(all), 6, 7(all), 8, 10, 12
//    5: rules (positive): 1, 3, 4, 5, 6, 7, 8, 9, 12
//    6: rules (positive): 1, 3, 6, 7, 8, 11, 12
// D: Unknown filter type (failed option, rule 1)
// E: Incorrect values of the parameters (failed option, rule 7)
// F: Unknown excessive parameters (failed option, rule 6)
//
// Case |Party A                 |  Party B           | Situation           | Test coverage
//------|------------------------|--------------------|---------------------|---------------
//  A   |fec,cols:10             | fec,cols:20        | Conflict            | ConfigExchangeFaux, RejectionConflict
//  B1  |fec,rows:10             | fec,arq:never      | Missing `cols`      | RejectionIncomplete
//  B2  |fec,rows:10             |                    | Missing `cols`      | RejectionIncompleteEmpty
//  C1  |fec,cols:10,rows:10     | fec                | OK                  | ConfigExchange, Connection
//  C2  |fec,cols:10,rows:10     | fec,rows:10,cols:10| OK                  | ConnectionReorder
//  C3  |FULL 1 (see below)      | FULL 2 (see below) | OK                  | ConnectionFull1
//  C4  |FULL 3 (see below)      | FULL 4 (see below) | OK                  | ConnectionFull2
//  C5  |fec,cols:,cols:10       | fec,cols:,rows:10  | OK                  | ConnectionMess
//  C6  |fec,rows:20,cols:20     |                    | OK                  | ConnectionForced
//  D   |FEC,Cols:10             | (unimportant)      | Option rejected     | ConfigExchangeFaux
//  E1  |fec,cols:-10            | (unimportant)      | Option rejected     | ConfigExchangeFaux
//  E2  |fec,cols:10,rows:0      | (unimportant)      | Option rejected     | ConfigExchangeFaux
//  E3  |fec,cols:10,rows:-1     | (unimportant)      | Option rejected     | ConfigExchangeFaux
//  E4  |fec,cols:10,layout:x (*)| (unimportant)      | Option rejected     | ConfigExchangeFaux
//  E5  |fec,cols:10,arq:x (*)   | (unimportant)      | Option rejected     | ConfigExchangeFaux
//  F   |fec,cols:10,weight:2    | (unimportant)      | Option rejected     | ConfigExchangeFaux
//
// (*) Here is just an example of a longer string that surely is wrong for this parameter.
//
// The configurations for FULL (cases C3 and C4) are longer and use all possible
// values in different order:
// 1. fec,cols:10,rows:20,arq:never,layout:even
// 1. fec,layout:even,rows:20,cols:10,arq:never
// 1. fec,cols:10,rows:20,arq:always,layout:even
// 1. fec,layout:even,rows:20,cols:10,arq:always


bool filterConfigSame(const string& config1, const string& config2)
{
    vector<string> config1_vector;
    Split(config1, ',', back_inserter(config1_vector));
    sort(config1_vector.begin(), config1_vector.end());

    vector<string> config2_vector;
    Split(config2, ',', back_inserter(config2_vector));
    sort(config2_vector.begin(), config2_vector.end());

    return config1_vector == config2_vector;
}

TEST(TestFEC, ConfigExchange)
{
    srt::TestInit srtinit;

    CUDTSocket* s1;

    SRTSOCKET sid1 = CUDT::uglobal().newSocket(&s1);

    TestMockCUDT m1;
    m1.core = &s1->core();

    // Can't access the configuration storage without
    // accessing the private fields, so let's use the official API

    char fec_config1 [] = "fec,cols:10,rows:10";

    // Check empty configuration first
    EXPECT_EQ(srt_setsockflag(sid1, SRTO_PACKETFILTER, "", 0), -1);
    EXPECT_NE(srt_setsockflag(sid1, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1), -1);

    EXPECT_TRUE(m1.checkApplyFilterConfig("fec,cols:10,arq:never"));

    char fec_configback[200];
    int fec_configback_size = 200;
    srt_getsockflag(sid1, SRTO_PACKETFILTER, fec_configback, &fec_configback_size);

    // Order of parameters may differ, so store everything in a vector and sort it.

    string exp_config = "fec,cols:10,rows:10,arq:never,layout:staircase";

    EXPECT_TRUE(filterConfigSame(fec_configback, exp_config));
    srt_close(sid1);
}

TEST(TestFEC, ConfigExchangeFaux)
{
    srt::TestInit srtinit;

    CUDTSocket* s1;

    SRTSOCKET sid1 = CUDT::uglobal().newSocket(&s1);

    const char* fec_config_wrong [] = {
        "FEC,Cols:20", // D: unknown filter
        "fec,cols:-10", // E1: invalid value for cols
        "fec,cols:10,rows:0", // E2: invalid value for rows
        "fec,cols:10,rows:-1", // E3: invalid value for rows
        "fec,cols:10,layout:stairwars", // E4: invalid value for layout
        "fec,cols:10,arq:sometimes", // E5: invalid value for arq
        "fec,cols:10,weight:2" // F: invalid parameter name
    };

    for (auto badconfig: fec_config_wrong)
    {
        ASSERT_EQ(srt_setsockflag(sid1, SRTO_PACKETFILTER, badconfig, (int)strlen(badconfig)), -1);
    }

    TestMockCUDT m1;
    m1.core = &s1->core();

    // Can't access the configuration storage without
    // accessing the private fields, so let's use the official API

    char fec_config1 [] = "fec,cols:20,rows:10";

    EXPECT_NE(srt_setsockflag(sid1, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1), -1);

    cout << "(NOTE: expecting a failure message)\n";
    EXPECT_FALSE(m1.checkApplyFilterConfig("fec,cols:10,arq:never"));

    srt_close(sid1);
}

TEST(TestFEC, Connection)
{
    srt::TestInit srtinit;

    SRTSOCKET s = srt_create_socket();
    SRTSOCKET l = srt_create_socket();

    sockaddr_in sa;
    memset(&sa, 0, sizeof sa);
    sa.sin_family = AF_INET;
    sa.sin_port = htons(5555);
    ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);

    srt_bind(l, (sockaddr*)& sa, sizeof(sa));

    const char fec_config1 [] = "fec,cols:10,rows:10";
    const char fec_config2 [] = "fec,cols:10,arq:never";
    const char fec_config_final [] = "fec,cols:10,rows:10,arq:never,layout:staircase";

    ASSERT_NE(srt_setsockflag(s, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1), -1);
    ASSERT_NE(srt_setsockflag(l, SRTO_PACKETFILTER, fec_config2, (sizeof fec_config2)-1), -1);

    srt_listen(l, 1);

    auto connect_res = std::async(std::launch::async, [&s, &sa]() {
        return srt_connect(s, (sockaddr*)& sa, sizeof(sa));
        });

    // Make sure that the async call to srt_connect() is already kicked.
    std::this_thread::yield();

    // Given 2s timeout for accepting as it has occasionally happened with Travis
    // that 1s might not be enough.
    SRTSOCKET la[] = { l };
    SRTSOCKET a = srt_accept_bond(la, 1, 2000);
    ASSERT_NE(a, SRT_ERROR);
    EXPECT_EQ(connect_res.get(), SRT_SUCCESS);

    // Now that the connection is established, check negotiated config

    char result_config1[200] = "";
    int result_config1_size = 200;
    char result_config2[200] = "";
    int result_config2_size = 200;

    EXPECT_NE(srt_getsockflag(s, SRTO_PACKETFILTER, result_config1, &result_config1_size), -1);
    EXPECT_NE(srt_getsockflag(a, SRTO_PACKETFILTER, result_config2, &result_config2_size), -1);

    string caller_config = result_config1;
    string accept_config = result_config2;
    EXPECT_EQ(caller_config, accept_config);

    EXPECT_TRUE(filterConfigSame(caller_config, fec_config_final));
    EXPECT_TRUE(filterConfigSame(accept_config, fec_config_final));

    srt_close(a);
    srt_close(s);
    srt_close(l);
}

TEST(TestFEC, ConnectionReorder)
{
    srt::TestInit srtinit;

    SRTSOCKET s = srt_create_socket();
    SRTSOCKET l = srt_create_socket();

    sockaddr_in sa;
    memset(&sa, 0, sizeof sa);
    sa.sin_family = AF_INET;
    sa.sin_port = htons(5555);
    ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);

    srt_bind(l, (sockaddr*)& sa, sizeof(sa));

    const char fec_config1 [] = "fec,cols:10,rows:10";
    const char fec_config2 [] = "fec,rows:10,cols:10";
    const char fec_config_final [] = "fec,cols:10,rows:10,arq:onreq,layout:staircase";

    ASSERT_NE(srt_setsockflag(s, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1), -1);
    ASSERT_NE(srt_setsockflag(l, SRTO_PACKETFILTER, fec_config2, (sizeof fec_config2)-1), -1);

    srt_listen(l, 1);

    auto connect_res = std::async(std::launch::async, [&s, &sa]() {
        return srt_connect(s, (sockaddr*)& sa, sizeof(sa));
        });

    // Make sure that the async call to srt_connect() is already kicked.
    std::this_thread::yield();

    SRTSOCKET la[] = { l };
    SRTSOCKET a = srt_accept_bond(la, 1, 2000);
    ASSERT_NE(a, SRT_ERROR);
    EXPECT_EQ(connect_res.get(), SRT_SUCCESS);

    // Now that the connection is established, check negotiated config

    char result_config1[200] = "";
    int result_config1_size = 200;
    char result_config2[200] = "";
    int result_config2_size = 200;

    srt_getsockflag(s, SRTO_PACKETFILTER, result_config1, &result_config1_size);
    srt_getsockflag(a, SRTO_PACKETFILTER, result_config2, &result_config2_size);

    string caller_config = result_config1;
    string accept_config = result_config2;
    EXPECT_EQ(caller_config, accept_config);

    EXPECT_TRUE(filterConfigSame(caller_config, fec_config_final));
    EXPECT_TRUE(filterConfigSame(accept_config, fec_config_final));

    srt_close(a);
    srt_close(s);
    srt_close(l);
}

TEST(TestFEC, ConnectionFull1)
{
    srt::TestInit srtinit;

    SRTSOCKET s = srt_create_socket();
    SRTSOCKET l = srt_create_socket();

    sockaddr_in sa;
    memset(&sa, 0, sizeof sa);
    sa.sin_family = AF_INET;
    sa.sin_port = htons(5555);
    ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);

    srt_bind(l, (sockaddr*)& sa, sizeof(sa));

    const char fec_config1 [] = "fec,cols:10,rows:20,arq:never,layout:even";
    const char fec_config2 [] = "fec,layout:even,rows:20,cols:10,arq:never";
    const char fec_config_final [] = "fec,cols:10,rows:20,arq:never,layout:even";

    ASSERT_NE(srt_setsockflag(s, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1), -1);
    ASSERT_NE(srt_setsockflag(l, SRTO_PACKETFILTER, fec_config2, (sizeof fec_config2)-1), -1);

    srt_listen(l, 1);

    auto connect_res = std::async(std::launch::async, [&s, &sa]() {
        return srt_connect(s, (sockaddr*)& sa, sizeof(sa));
        });

    // Make sure that the async call to srt_connect() is already kicked.
    std::this_thread::yield();

    SRTSOCKET la[] = { l };
    SRTSOCKET a = srt_accept_bond(la, 1, 2000);
    ASSERT_NE(a, SRT_ERROR);
    EXPECT_EQ(connect_res.get(), SRT_SUCCESS);

    // Now that the connection is established, check negotiated config

    char result_config1[200] = "";
    int result_config1_size = 200;
    char result_config2[200] = "";
    int result_config2_size = 200;

    srt_getsockflag(s, SRTO_PACKETFILTER, result_config1, &result_config1_size);
    srt_getsockflag(a, SRTO_PACKETFILTER, result_config2, &result_config2_size);

    string caller_config = result_config1;
    string accept_config = result_config2;
    EXPECT_EQ(caller_config, accept_config);

    EXPECT_TRUE(filterConfigSame(caller_config, fec_config_final));
    EXPECT_TRUE(filterConfigSame(accept_config, fec_config_final));

    srt_close(a);
    srt_close(s);
    srt_close(l);
}

TEST(TestFEC, ConnectionFull2)
{
    srt::TestInit srtinit;

    SRTSOCKET s = srt_create_socket();
    SRTSOCKET l = srt_create_socket();

    sockaddr_in sa;
    memset(&sa, 0, sizeof sa);
    sa.sin_family = AF_INET;
    sa.sin_port = htons(5555);
    ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);

    srt_bind(l, (sockaddr*)& sa, sizeof(sa));

    const char fec_config1 [] = "fec,cols:10,rows:20,arq:always,layout:even";
    const char fec_config2 [] = "fec,layout:even,rows:20,cols:10,arq:always";
    const char fec_config_final [] = "fec,cols:10,rows:20,arq:always,layout:even";

    ASSERT_NE(srt_setsockflag(s, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1), -1);
    ASSERT_NE(srt_setsockflag(l, SRTO_PACKETFILTER, fec_config2, (sizeof fec_config2)-1), -1);

    srt_listen(l, 1);

    auto connect_res = std::async(std::launch::async, [&s, &sa]() {
        return srt_connect(s, (sockaddr*)& sa, sizeof(sa));
        });

    // Make sure that the async call to srt_connect() is already kicked.
    std::this_thread::yield();

    SRTSOCKET la[] = { l };
    SRTSOCKET a = srt_accept_bond(la, 1, 2000);
    ASSERT_NE(a, SRT_ERROR);
    EXPECT_EQ(connect_res.get(), SRT_SUCCESS);

    // Now that the connection is established, check negotiated config

    char result_config1[200] = "";
    int result_config1_size = 200;
    char result_config2[200] = "";
    int result_config2_size = 200;

    srt_getsockflag(s, SRTO_PACKETFILTER, result_config1, &result_config1_size);
    srt_getsockflag(a, SRTO_PACKETFILTER, result_config2, &result_config2_size);

    string caller_config = result_config1;
    string accept_config = result_config2;
    EXPECT_EQ(caller_config, accept_config);

    EXPECT_TRUE(filterConfigSame(caller_config, fec_config_final));
    EXPECT_TRUE(filterConfigSame(accept_config, fec_config_final));

    srt_close(a);
    srt_close(s);
    srt_close(l);
}

TEST(TestFEC, ConnectionMess)
{
    srt::TestInit srtinit;

    SRTSOCKET s = srt_create_socket();
    SRTSOCKET l = srt_create_socket();

    sockaddr_in sa;
    memset(&sa, 0, sizeof sa);
    sa.sin_family = AF_INET;
    sa.sin_port = htons(5555);
    ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);

    srt_bind(l, (sockaddr*)& sa, sizeof(sa));

    const char fec_config1 [] = "fec,cols:,cols:10";
    const char fec_config2 [] = "fec,cols:,rows:10";
    const char fec_config_final [] = "fec,cols:10,rows:10,arq:onreq,layout:staircase";

    ASSERT_NE(srt_setsockflag(s, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1), -1);
    ASSERT_NE(srt_setsockflag(l, SRTO_PACKETFILTER, fec_config2, (sizeof fec_config2)-1), -1);

    srt_listen(l, 1);

    auto connect_res = std::async(std::launch::async, [&s, &sa]() {
        return srt_connect(s, (sockaddr*)& sa, sizeof(sa));
        });

    // Make sure that the async call to srt_connect() is already kicked.
    std::this_thread::yield();

    SRTSOCKET la[] = { l };
    SRTSOCKET a = srt_accept_bond(la, 1, 2000);
    ASSERT_NE(a, SRT_ERROR) << srt_getlasterror_str();
    EXPECT_EQ(connect_res.get(), SRT_SUCCESS);

    // Now that the connection is established, check negotiated config

    char result_config1[200] = "";
    int result_config1_size = 200;
    char result_config2[200] = "";
    int result_config2_size = 200;

    srt_getsockflag(s, SRTO_PACKETFILTER, result_config1, &result_config1_size);
    srt_getsockflag(a, SRTO_PACKETFILTER, result_config2, &result_config2_size);

    string caller_config = result_config1;
    string accept_config = result_config2;
    EXPECT_EQ(caller_config, accept_config);

    EXPECT_TRUE(filterConfigSame(caller_config, fec_config_final));
    EXPECT_TRUE(filterConfigSame(accept_config, fec_config_final));

    srt_close(a);
    srt_close(s);
    srt_close(l);
}

TEST(TestFEC, ConnectionForced)
{
    srt::TestInit srtinit;

    SRTSOCKET s = srt_create_socket();
    SRTSOCKET l = srt_create_socket();

    sockaddr_in sa;
    memset(&sa, 0, sizeof sa);
    sa.sin_family = AF_INET;
    sa.sin_port = htons(5555);
    ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);

    srt_bind(l, (sockaddr*)& sa, sizeof(sa));

    const char fec_config1 [] = "fec,rows:20,cols:20";
    const char fec_config_final [] = "fec,cols:20,rows:20";

    ASSERT_NE(srt_setsockflag(s, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1), -1);

    srt_listen(l, 1);

    auto connect_res = std::async(std::launch::async, [&s, &sa]() {
        return srt_connect(s, (sockaddr*)& sa, sizeof(sa));
        });

    // Make sure that the async call to srt_connect() is already kicked.
    std::this_thread::yield();

    SRTSOCKET la[] = { l };
    SRTSOCKET a = srt_accept_bond(la, 1, 2000);
    ASSERT_NE(a, SRT_ERROR);
    EXPECT_EQ(connect_res.get(), SRT_SUCCESS);

    // Now that the connection is established, check negotiated config

    char result_config1[200] = "";
    int result_config1_size = 200;
    char result_config2[200] = "";
    int result_config2_size = 200;

    srt_getsockflag(s, SRTO_PACKETFILTER, result_config1, &result_config1_size);
    srt_getsockflag(a, SRTO_PACKETFILTER, result_config2, &result_config2_size);

    EXPECT_TRUE(filterConfigSame(result_config1, fec_config_final));
    EXPECT_TRUE(filterConfigSame(result_config2, fec_config_final));

    srt_close(a);
    srt_close(s);
    srt_close(l);
}

TEST(TestFEC, RejectionConflict)
{
    srt::TestInit srtinit;

    SRTSOCKET s = srt_create_socket();
    SRTSOCKET l = srt_create_socket();

    sockaddr_in sa;
    memset(&sa, 0, sizeof sa);
    sa.sin_family = AF_INET;
    sa.sin_port = htons(5555);
    ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);

    srt_bind(l, (sockaddr*)& sa, sizeof(sa));

    const char fec_config1 [] = "fec,cols:10,rows:10";
    const char fec_config2 [] = "fec,cols:20,arq:never";

    srt_setsockflag(s, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1);
    srt_setsockflag(l, SRTO_PACKETFILTER, fec_config2, (sizeof fec_config2)-1);

    srt_listen(l, 1);

    auto connect_res = std::async(std::launch::async, [&s, &sa]() {
        return srt_connect(s, (sockaddr*)& sa, sizeof(sa));
        });

    // Make sure that the async call to srt_connect() is already kicked.
    std::this_thread::yield();

    EXPECT_EQ(connect_res.get(), SRT_ERROR);
    EXPECT_EQ(srt_getrejectreason(s), SRT_REJ_FILTER);

    bool no = false;
    // Set non-blocking so that srt_accept can return
    // immediately with failure. Just to make sure that
    // the connection is not about to be established,
    // also on the listener side.
    srt_setsockflag(l, SRTO_RCVSYN, &no, sizeof no);
    sockaddr_in scl;
    int sclen = sizeof scl;
    EXPECT_EQ(srt_accept(l, (sockaddr*)& scl, &sclen), SRT_ERROR);

    srt_close(s);
    srt_close(l);
}

TEST(TestFEC, RejectionIncompleteEmpty)
{
    srt::TestInit srtinit;

    SRTSOCKET s = srt_create_socket();
    SRTSOCKET l = srt_create_socket();

    sockaddr_in sa;
    memset(&sa, 0, sizeof sa);
    sa.sin_family = AF_INET;
    sa.sin_port = htons(5555);
    ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);

    srt_bind(l, (sockaddr*)& sa, sizeof(sa));

    const char fec_config1 [] = "fec,rows:10";
    srt_setsockflag(s, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1);

    srt_listen(l, 1);

    auto connect_res = std::async(std::launch::async, [&s, &sa]() {
        return srt_connect(s, (sockaddr*)& sa, sizeof(sa));
        });

    // Make sure that the async call to srt_connect() is already kicked.
    std::this_thread::yield();

    EXPECT_EQ(connect_res.get(), SRT_ERROR);
    EXPECT_EQ(srt_getrejectreason(s), SRT_REJ_FILTER);

    bool no = false;
    // Set non-blocking so that srt_accept can return
    // immediately with failure. Just to make sure that
    // the connection is not about to be established,
    // also on the listener side.
    srt_setsockflag(l, SRTO_RCVSYN, &no, sizeof no);
    sockaddr_in scl;
    int sclen = sizeof scl;
    EXPECT_EQ(srt_accept(l, (sockaddr*)& scl, &sclen), SRT_ERROR);

    srt_close(s);
    srt_close(l);
}


TEST(TestFEC, RejectionIncomplete)
{
    srt::TestInit srtinit;

    SRTSOCKET s = srt_create_socket();
    SRTSOCKET l = srt_create_socket();

    sockaddr_in sa;
    memset(&sa, 0, sizeof sa);
    sa.sin_family = AF_INET;
    sa.sin_port = htons(5555);
    ASSERT_EQ(inet_pton(AF_INET, "127.0.0.1", &sa.sin_addr), 1);

    srt_bind(l, (sockaddr*)& sa, sizeof(sa));

    const char fec_config1 [] = "fec,rows:10";
    const char fec_config2 [] = "fec,arq:never";

    srt_setsockflag(s, SRTO_PACKETFILTER, fec_config1, (sizeof fec_config1)-1);
    srt_setsockflag(l, SRTO_PACKETFILTER, fec_config2, (sizeof fec_config2)-1);

    srt_listen(l, 1);

    auto connect_res = std::async(std::launch::async, [&s, &sa]() {
        return srt_connect(s, (sockaddr*)& sa, sizeof(sa));
        });

    // Make sure that the async call to srt_connect() is already kicked.
    std::this_thread::yield();

    EXPECT_EQ(connect_res.get(), SRT_ERROR);
    EXPECT_EQ(srt_getrejectreason(s), SRT_REJ_FILTER);

    bool no = false;
    // Set non-blocking so that srt_accept can return
    // immediately with failure. Just to make sure that
    // the connection is not about to be established,
    // also on the listener side.
    srt_setsockflag(l, SRTO_RCVSYN, &no, sizeof no);
    sockaddr_in scl;
    int sclen = sizeof scl;
    EXPECT_EQ(srt_accept(l, (sockaddr*)& scl, &sclen), SRT_ERROR);

    srt_close(s);
    srt_close(l);
}

TEST_F(TestFECRebuilding, Prepare)
{
    // Stuff in prepared packets into the source fec.
    int32_t seq;
    for (int i = 0; i < 7; ++i)
    {
        CPacket& p = *source[i].get();

        // Feed it simultaneously into the sender FEC
        fec->feedSource(p);
        seq = p.getSeqNo();
    }

    SrtPacket fec_ctl(SRT_LIVE_MAX_PLSIZE);

    // Use the sequence number of the last packet, as usual.
    bool have_fec_ctl = fec->packControlPacket(fec_ctl, seq);

    EXPECT_EQ(have_fec_ctl, true);
}

TEST_F(TestFECRebuilding, NoRebuild)
{
    // Stuff in prepared packets into the source fec.
    int32_t seq;
    for (int i = 0; i < 7; ++i)
    {
        CPacket& p = *source[i].get();

        // Feed it simultaneously into the sender FEC
        fec->feedSource(p);
        seq = p.getSeqNo();
    }

    SrtPacket fec_ctl(SRT_LIVE_MAX_PLSIZE);

    // Use the sequence number of the last packet, as usual.
    const bool have_fec_ctl = fec->packControlPacket(fec_ctl, seq);

    ASSERT_EQ(have_fec_ctl, true);
    // By having all packets and FEC CTL packet, now stuff in
    // these packets into the receiver

    FECFilterBuiltin::loss_seqs_t loss; // required as return, ignore

    for (int i = 0; i < 7; ++i)
    {
        // SKIP packet 4 to simulate loss
        if (i == 4 || i == 6)
            continue;

        // Stuff in the packet into the FEC filter
        bool want_passthru = fec->receive(*source[i], loss);
        EXPECT_EQ(want_passthru, true);
    }

    // Prepare a real packet basing on the SrtPacket.

    // XXX Consider packing this into a callable function as this
    // is a code directly copied from PacketFilter::packControlPacket.

    unique_ptr<CPacket> fecpkt ( new CPacket );

    uint32_t* chdr = fecpkt->getHeader();
    memcpy(chdr, fec_ctl.hdr, SRT_PH_E_SIZE * sizeof(*chdr));

    // The buffer can be assigned.
    fecpkt->m_pcData = fec_ctl.buffer;
    fecpkt->setLength(fec_ctl.length);

    // This sets only the Packet Boundary flags, while all other things:
    // - Order
    // - Rexmit
    // - Crypto
    // - Message Number
    // will be set to 0/false
    fecpkt->set_msgflags(MSGNO_PACKET_BOUNDARY::wrap(PB_SOLO));

    // ... and then fix only the Crypto flags
    fecpkt->setMsgCryptoFlags(EncryptionKeySpec(0));

    // And now receive the FEC control packet

    bool want_passthru_fec = fec->receive(*fecpkt, loss);
    EXPECT_EQ(want_passthru_fec, false); // Confirm that it's been eaten up
    EXPECT_EQ(provided.size(), 0U); // Confirm that nothing was rebuilt

    /*
    // XXX With such a short sequence, losses will not be reported.
    // You need at least one packet past the row, even in 1-row config.
    // Probably a better way for loss collection should be devised.

    ASSERT_EQ(loss.size(), 2);
    EXPECT_EQ(loss[0].first, isn + 4);
    EXPECT_EQ(loss[1].first, isn + 6);
     */
}

TEST_F(TestFECRebuilding, Rebuild)
{
    // Stuff in prepared packets into the source fec->
    int32_t seq;
    for (int i = 0; i < 7; ++i)
    {
        CPacket& p = *source[i].get();

        // Feed it simultaneously into the sender FEC
        fec->feedSource(p);
        seq = p.getSeqNo();
    }

    SrtPacket fec_ctl(SRT_LIVE_MAX_PLSIZE);

    // Use the sequence number of the last packet, as usual.
    const bool have_fec_ctl = fec->packControlPacket(fec_ctl, seq);

    ASSERT_EQ(have_fec_ctl, true);
    // By having all packets and FEC CTL packet, now stuff in
    // these packets into the receiver

    FECFilterBuiltin::loss_seqs_t loss; // required as return, ignore

    for (int i = 0; i < 7; ++i)
    {
        // SKIP packet 4 to simulate loss
        if (i == 4)
            continue;

        // Stuff in the packet into the FEC filter
        bool want_passthru = fec->receive(*source[i], loss);
        EXPECT_EQ(want_passthru, true);
    }

    // Prepare a real packet basing on the SrtPacket.

    // XXX Consider packing this into a callable function as this
    // is a code directly copied from PacketFilter::packControlPacket.

    unique_ptr<CPacket> fecpkt ( new CPacket );

    uint32_t* chdr = fecpkt->getHeader();
    memcpy(chdr, fec_ctl.hdr, SRT_PH_E_SIZE * sizeof(*chdr));

    // The buffer can be assigned.
    fecpkt->m_pcData = fec_ctl.buffer;
    fecpkt->setLength(fec_ctl.length);

    // This sets only the Packet Boundary flags, while all other things:
    // - Order
    // - Rexmit
    // - Crypto
    // - Message Number
    // will be set to 0/false
    fecpkt->set_msgflags(MSGNO_PACKET_BOUNDARY::wrap(PB_SOLO));

    // ... and then fix only the Crypto flags
    fecpkt->setMsgCryptoFlags(EncryptionKeySpec(0));

    // And now receive the FEC control packet

    const bool want_passthru_fec = fec->receive(*fecpkt, loss);
    EXPECT_EQ(want_passthru_fec, false); // Confirm that it's been eaten up

    EXPECT_EQ(loss.size(), 0U);
    ASSERT_EQ(provided.size(), 1U);

    SrtPacket& rebuilt = provided[0];
    CPacket& skipped = *source[4];

    // Set artificially the SN_REXMIT flag in the skipped source packet
    // because the rebuilt packet shall have REXMIT flag set.
    skipped.set_msgflags(skipped.msgflags() | MSGNO_REXMIT::wrap(true));

    // Compare the header
    EXPECT_EQ(skipped.getHeader()[SRT_PH_SEQNO], rebuilt.hdr[SRT_PH_SEQNO]);
    EXPECT_EQ(skipped.getHeader()[SRT_PH_MSGNO], rebuilt.hdr[SRT_PH_MSGNO]);
    EXPECT_EQ(skipped.getHeader()[SRT_PH_ID], rebuilt.hdr[SRT_PH_ID]);
    EXPECT_EQ(skipped.getHeader()[SRT_PH_TIMESTAMP], rebuilt.hdr[SRT_PH_TIMESTAMP]);

    // Compare sizes and contents
    ASSERT_EQ(skipped.size(), rebuilt.size());

    EXPECT_EQ(memcmp(skipped.data(), rebuilt.data(), rebuilt.size()), 0);
}