File: test_sync.cpp

package info (click to toggle)
srt 1.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,804 kB
  • sloc: cpp: 52,175; ansic: 5,746; tcl: 1,183; sh: 318; python: 99; makefile: 38
file content (684 lines) | stat: -rw-r--r-- 21,128 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
#include "gtest/gtest.h"
#include <array>
#include <chrono>
#include <thread>
#include <future>
#include <numeric> // std::accumulate
#include <regex>   // Used in FormatTime test
#include "sync.h"
#include "common.h"

// This test set requires support for C++14
// * Uses "'" as a separator: 100'000
// * Uses operator"ms" at al from chrono

using namespace std;
using namespace srt::sync;


TEST(SyncDuration, BasicChecks)
{
    const steady_clock::duration d = steady_clock::duration();

    EXPECT_EQ(d.count(), 0);
    EXPECT_TRUE(d == d);  // operator==
    EXPECT_FALSE(d != d); // operator!=
    EXPECT_EQ(d, steady_clock::duration::zero());
    EXPECT_EQ(d, microseconds_from(0));
    EXPECT_EQ(d, milliseconds_from(0));
    EXPECT_EQ(d, seconds_from(0));
    EXPECT_EQ(count_milliseconds(d), 0);
    EXPECT_EQ(count_microseconds(d), 0);
    EXPECT_EQ(count_seconds(d), 0);

    const steady_clock::duration a = d + milliseconds_from(120);
    EXPECT_EQ(a, milliseconds_from(120));
    EXPECT_EQ(count_milliseconds(a), 120);
    EXPECT_EQ(count_microseconds(a), 120000);
    EXPECT_EQ(count_seconds(a), 0);
}

/// Check operations on (uint32_t + 1)
TEST(SyncDuration, DurationFrom)
{
    const int64_t val = int64_t(numeric_limits<uint32_t>::max()) + 1;

    const steady_clock::duration us_from = microseconds_from(val);
    EXPECT_EQ(count_microseconds(us_from), val);

    const steady_clock::duration ms_from = milliseconds_from(val);
    EXPECT_EQ(count_milliseconds(ms_from), val);

    const steady_clock::duration s_from = seconds_from(val);
    EXPECT_EQ(count_seconds(s_from), val);
}

TEST(SyncDuration, RelOperators)
{
    const steady_clock::duration a = steady_clock::duration();

    EXPECT_EQ(a.count(), 0);
    EXPECT_TRUE(a == a);  // operator==
    EXPECT_FALSE(a != a); // operator!=
    EXPECT_FALSE(a > a);  // operator>
    EXPECT_FALSE(a < a);  // operator<
    EXPECT_TRUE(a <= a);  // operator<=
    EXPECT_TRUE(a >= a);  // operator>=

    const steady_clock::duration b = a + milliseconds_from(120);
    EXPECT_FALSE(b == a); // operator==
    EXPECT_TRUE(b != a);  // operator!=
    EXPECT_TRUE(b > a);   // operator>
    EXPECT_FALSE(a > b);  // operator>
    EXPECT_FALSE(b < a);  // operator<
    EXPECT_TRUE(a < b);   // operator<
    EXPECT_FALSE(b <= a); // operator<=
    EXPECT_TRUE(a <= b);  // operator<=
    EXPECT_TRUE(b >= a);  // operator>=
    EXPECT_FALSE(a >= b); // operator>=

    const steady_clock::duration c = steady_clock::duration(numeric_limits<int64_t>::max());
    EXPECT_EQ(c.count(), numeric_limits<int64_t>::max());
    const steady_clock::duration d = steady_clock::duration(numeric_limits<int64_t>::min());
    EXPECT_EQ(d.count(), numeric_limits<int64_t>::min());
}

TEST(SyncDuration, OperatorMinus)
{
    const steady_clock::duration a = seconds_from(5);
    const steady_clock::duration b = milliseconds_from(3500);

    EXPECT_EQ(count_milliseconds(a - b), 1500);
    EXPECT_EQ(count_milliseconds(b - a), -1500);
    EXPECT_EQ((a - a).count(), 0);
}

TEST(SyncDuration, OperatorMinusEq)
{
    const steady_clock::duration a = seconds_from(5);
    const steady_clock::duration b = milliseconds_from(3500);

    steady_clock::duration c = a;
    EXPECT_EQ(c, a);
    c -= b;
    EXPECT_EQ(count_milliseconds(c), 1500);
    c = b;
    EXPECT_EQ(c, b);
    c -= a;
    EXPECT_EQ(count_milliseconds(c), -1500);
}

TEST(SyncDuration, OperatorPlus)
{
    const steady_clock::duration a = seconds_from(5);
    const steady_clock::duration b = milliseconds_from(3500);

    EXPECT_EQ(count_milliseconds(a + b), 8500);
    EXPECT_EQ(count_milliseconds(b + a), 8500);
}

TEST(SyncDuration, OperatorPlusEq)
{
    const steady_clock::duration a = seconds_from(5);
    const steady_clock::duration b = milliseconds_from(3500);

    steady_clock::duration c = a;
    EXPECT_EQ(c, a);
    c += b;
    EXPECT_EQ(count_milliseconds(c), 8500);
    c = b;
    EXPECT_EQ(c, b);
    c += a;
    EXPECT_EQ(count_milliseconds(c), 8500);
}

TEST(SyncDuration, OperatorMultInt)
{
    const steady_clock::duration a = milliseconds_from(3500);

    EXPECT_EQ(count_milliseconds(a), 3500);
    EXPECT_EQ(count_milliseconds(a * 2), 7000);
}

TEST(SyncDuration, OperatorMultIntEq)
{
    steady_clock::duration a = milliseconds_from(3500);

    EXPECT_EQ(count_milliseconds(a), 3500);
    a *= 2;
    EXPECT_EQ(count_milliseconds(a), 7000);
}

TEST(SyncRandom, GenRandomInt)
{
    array<size_t, 64> mn = {};

    // Check generated values are in the specified range.
    const size_t n = 2048;
    for (size_t i = 0; i < n; ++i)
    {
        const int rand_val = genRandomInt(0, int(mn.size()) - 1);
        ASSERT_GE(rand_val, 0);
        ASSERT_LT(rand_val, (int) mn.size());
        ++mn[rand_val];
    }

    // Check the distribution is more or less uniform.
    // 100% uniform if each value is generated (n / (2 * mn.size())) times.
    // We expect at least half of that value for a random uniform distribution.
    ASSERT_GT(n / (2 * mn.size()), 4u);
    const size_t min_value = n / (2 * mn.size()) - 4u; // Subtracting 4 to tolerate possible deviations.
    for (size_t i = 0; i < mn.size(); ++i)
    {
        EXPECT_GE(mn[i], min_value) << "i=" << i << ". Ok-ish if the count is non-zero.";
    }

    // Uncomment to see the distribution.
    //cout << "min value: " << min_value << endl;
    //for (size_t i = 0; i < mn.size(); ++i)
    //{
    //    cout << i << '\t';
    //    for (int j=0; j<mn[i]; ++j) cout << '*';
    //    cout << '\n';
    //}

    // Check INT32_MAX
    for (size_t i = 0; i < n; ++i)
    {
        const int rand_val = genRandomInt(INT32_MAX - 1, INT32_MAX);

        EXPECT_GE(rand_val, INT32_MAX - 1);
        EXPECT_LE(rand_val, INT32_MAX);
    }
}

/*****************************************************************************/
/*
 * TimePoint tests
 */
/*****************************************************************************/

TEST(SyncTimePoint, DefaultConstructorZero)
{
    steady_clock::time_point a;
    EXPECT_TRUE(is_zero(a));
}

TEST(SyncTimePoint, RelOperators)
{
    const steady_clock::time_point a(steady_clock::time_point::max());
    const steady_clock::time_point b(steady_clock::time_point::min());
    EXPECT_TRUE(a == a);
    EXPECT_FALSE(a == b);
    EXPECT_TRUE(a != b);
    EXPECT_TRUE(a != b);

    EXPECT_TRUE(a >= a);
    EXPECT_FALSE(b >= a);
    EXPECT_TRUE(a > b);
    EXPECT_FALSE(a > a);
    EXPECT_TRUE(a <= a);
    EXPECT_TRUE(b <= a);
    EXPECT_FALSE(a <= b);
    EXPECT_FALSE(a < a);
    EXPECT_TRUE(b < a);
    EXPECT_FALSE(a < b);
}

#ifndef ENABLE_STDCXX_SYNC
TEST(SyncTimePoint, OperatorMinus)
{
    const int64_t                  delta = 1024;
    const steady_clock::time_point a(numeric_limits<uint64_t>::max());
    const steady_clock::time_point b(numeric_limits<uint64_t>::max() - delta);
    EXPECT_EQ((a - b).count(), delta);
    EXPECT_EQ((b - a).count(), -delta);
}

TEST(SyncTimePoint, OperatorEq)
{
    const int64_t                  delta = 1024;
    const steady_clock::time_point a(numeric_limits<uint64_t>::max() - delta);
    const steady_clock::time_point b = a;
    EXPECT_EQ(a, b);
}

TEST(SyncTimePoint, OperatorMinusPlusDuration)
{
    const int64_t                  delta = 1024;
    const steady_clock::time_point a(numeric_limits<uint64_t>::max());
    const steady_clock::time_point b(numeric_limits<uint64_t>::max() - delta);

    EXPECT_EQ((a + steady_clock::duration(-delta)), b);
    EXPECT_EQ((b + steady_clock::duration(+delta)), a);

    EXPECT_EQ((a - steady_clock::duration(+delta)), b);
    EXPECT_EQ((b - steady_clock::duration(-delta)), a);
}

TEST(SyncTimePoint, OperatorPlusEqDuration)
{
    const int64_t                  delta = 1024;
    const steady_clock::time_point a(numeric_limits<uint64_t>::max());
    const steady_clock::time_point b(numeric_limits<uint64_t>::max() - delta);
    steady_clock::time_point       r = a;
    EXPECT_EQ(r, a);
    r += steady_clock::duration(-delta);
    EXPECT_EQ(r, b);
    r = b;
    EXPECT_EQ(r, b);
    r += steady_clock::duration(+delta);
    EXPECT_EQ(r, a);
    r = a;
    EXPECT_EQ(r, a);
    r -= steady_clock::duration(+delta);
    EXPECT_EQ((a - steady_clock::duration(+delta)), b);
    EXPECT_EQ((b - steady_clock::duration(-delta)), a);
}

TEST(SyncTimePoint, OperatorMinusEqDuration)
{
    const int64_t                  delta = 1024;
    const steady_clock::time_point a(numeric_limits<uint64_t>::max());
    const steady_clock::time_point b(numeric_limits<uint64_t>::max() - delta);
    steady_clock::time_point       r = a;
    EXPECT_EQ(r, a);
    r -= steady_clock::duration(+delta);
    EXPECT_EQ(r, b);
    r = b;
    EXPECT_EQ(r, b);
    r -= steady_clock::duration(-delta);
    EXPECT_EQ(r, a);
}
#endif

/*****************************************************************************/
/*
 * UniqueLock tests
 */
/*****************************************************************************/
TEST(SyncUniqueLock, LockUnlock)
{
    Mutex mtx;
    UniqueLock lock(mtx);
    EXPECT_FALSE(mtx.try_lock());
    
    lock.unlock();
    EXPECT_TRUE(mtx.try_lock());
    
    mtx.unlock();
    lock.lock();
    EXPECT_FALSE(mtx.try_lock());
}

TEST(SyncUniqueLock, Scope)
{
    Mutex mtx;

    {
        UniqueLock lock(mtx);
        EXPECT_FALSE(mtx.try_lock());
    }
    
    EXPECT_TRUE(mtx.try_lock());
    mtx.unlock();
}

/*****************************************************************************/
/*
 * SyncEvent tests
 */
/*****************************************************************************/
TEST(SyncEvent, WaitFor)
{
    Mutex mutex;
    Condition  cond;
    cond.init();

    for (int timeout_us : {50, 100, 500, 1000, 101000, 1001000})
    {
        const steady_clock::duration   timeout = microseconds_from(timeout_us);
        UniqueLock lock(mutex);
        const steady_clock::time_point start = steady_clock::now();
        const bool on_timeout = !cond.wait_for(lock, timeout);
        const steady_clock::time_point stop = steady_clock::now();
        const steady_clock::duration waittime = stop - start;
        const int64_t waittime_us = count_microseconds(waittime);
#if defined(ENABLE_STDCXX_SYNC) || !defined(_WIN32)
        // This check somehow fails on AppVeyor Windows VM with VS 2015 and pthreads.
        // - SyncEvent::wait_for( 50us) took 6us
        // - SyncEvent::wait_for(100us) took 4us
        if (on_timeout) {
            const int tolerance = timeout_us/1000;
            EXPECT_GE(waittime_us, timeout_us - tolerance);
        }
#endif
        if (on_timeout) {
            // Give it 100 times the timeout, as this is
            // considered more than "crazy long", whereas we only
            // want to check if it has waited a finite amount of time.
            EXPECT_LE(waittime_us, 10 * 1001000); // biggest wait value
        }

        string spurious = on_timeout ? "" : " (SPURIOUS)";

        if (timeout_us < 1000)
        {
            cerr << "SyncEvent::wait_for(" << timeout_us << "us) took "
                << waittime_us << "us" << spurious << endl;
        }
        else
        {
            cerr << "SyncEvent::wait_for(" << count_milliseconds(timeout) << " ms) took "
                << (waittime_us / 1000.0) << " ms" << spurious << endl;
        }
    }

    cond.destroy();
}

TEST(SyncEvent, WaitForNotifyOne)
{
    Mutex mutex;
    Condition cond;
    cond.init();

    const steady_clock::duration timeout = seconds_from(5);

    auto wait_async = [](Condition* cv, Mutex* m, const steady_clock::duration& tmo) {
        CUniqueSync cc (*m, *cv);
        return cc.wait_for(tmo);
    };
    auto wait_async_res = async(launch::async, wait_async, &cond, &mutex, timeout);

    EXPECT_EQ(wait_async_res.wait_for(chrono::milliseconds(100)), future_status::timeout);
    cond.notify_one();
    ASSERT_EQ(wait_async_res.wait_for(chrono::milliseconds(100)), future_status::ready);
    const bool wait_for_res = wait_async_res.get();
    EXPECT_TRUE(wait_for_res) << "Woken up by a notification";

    cond.destroy();
}

TEST(SyncEvent, WaitNotifyOne)
{
    Mutex mutex;
    Condition cond;
    cond.init();

    auto wait_async = [](Condition* cv, Mutex* m) {
        UniqueLock lock(*m);
        return cv->wait(lock);
    };
    auto wait_async_res = async(launch::async, wait_async, &cond, &mutex);

    EXPECT_EQ(wait_async_res.wait_for(chrono::milliseconds(100)), future_status::timeout);
    cond.notify_one();
    ASSERT_EQ(wait_async_res.wait_for(chrono::milliseconds(100)), future_status::ready);
    wait_async_res.get();

    cond.destroy();
}

TEST(SyncEvent, WaitForTwoNotifyAll)
{
    Mutex mutex;
    Condition cond;
    cond.init();
    const steady_clock::duration timeout = seconds_from(3);

    auto wait_async = [](Condition* cv, Mutex* m, const steady_clock::duration& tmo) {
        UniqueLock lock(*m);
        return cv->wait_for(lock, tmo);
    };
    auto wait_async1_res = async(launch::async, wait_async, &cond, &mutex, timeout);
    auto wait_async2_res = async(launch::async, wait_async, &cond, &mutex, timeout);

    EXPECT_EQ(wait_async1_res.wait_for(chrono::milliseconds(100)), future_status::timeout);
    EXPECT_EQ(wait_async2_res.wait_for(chrono::milliseconds(100)), future_status::timeout);
    cond.notify_all();
    // Now only one waiting thread should become ready
    const future_status status1 = wait_async1_res.wait_for(chrono::milliseconds(100));
    const future_status status2 = wait_async2_res.wait_for(chrono::milliseconds(100));
    EXPECT_EQ(status1, future_status::ready);
    EXPECT_EQ(status2, future_status::ready);
    // Expect both threads to wake up by condition
    EXPECT_TRUE(wait_async1_res.get());
    EXPECT_TRUE(wait_async2_res.get());

    cond.destroy();
}

TEST(SyncEvent, WaitForNotifyAll)
{
    Mutex mutex;
    Condition cond;
    cond.init();
    const steady_clock::duration timeout = seconds_from(5);

    auto wait_async = [](Condition* cv, Mutex* m, const steady_clock::duration& tmo) {
        UniqueLock lock(*m);
        return cv->wait_for(lock, tmo);
    };
    auto wait_async_res = async(launch::async, wait_async, &cond, &mutex, timeout);

    EXPECT_EQ(wait_async_res.wait_for(chrono::milliseconds(500)), future_status::timeout);
    cond.notify_all();
    ASSERT_EQ(wait_async_res.wait_for(chrono::milliseconds(500)), future_status::ready);
    const bool wait_for_res = wait_async_res.get();
    EXPECT_TRUE(wait_for_res) << "Woken up by condition";

    cond.destroy();
}

/*****************************************************************************/
/*
 * CThread
 */
 /*****************************************************************************/
void* dummythread(void* param)
{
    auto& thread_finished = *(srt::sync::atomic<bool>*)param;
    thread_finished = true;
    return nullptr;
}

TEST(SyncThread, Joinable)
{
    CThread foo;
    srt::sync::atomic<bool> thread_finished;

    StartThread(foo, dummythread, (void*)&thread_finished, "DumyThread");

    EXPECT_TRUE(foo.joinable());
    while (!thread_finished)
    {
        std::this_thread::sleep_for(chrono::milliseconds(50));
    }
    EXPECT_TRUE(foo.joinable());
    foo.join();
    EXPECT_FALSE(foo.joinable());
}

/*****************************************************************************/
/*
 * SharedMutex
 */
 /*****************************************************************************/
TEST(SharedMutex, LockWriteRead)
{
    SharedMutex mut;
        
    mut.lock();
    EXPECT_FALSE(mut.try_lock_shared());

}

TEST(SharedMutex, LockReadWrite)
{
    SharedMutex mut;

    mut.lock_shared();
    EXPECT_FALSE(mut.try_lock());

}

TEST(SharedMutex, LockReadTwice)
{
    SharedMutex mut;

    mut.lock_shared();
    mut.lock_shared();
    EXPECT_TRUE(mut.try_lock_shared());
}

TEST(SharedMutex, LockWriteTwice)
{
    SharedMutex mut;

    mut.lock();
    EXPECT_FALSE(mut.try_lock());
}

TEST(SharedMutex, LockUnlockWrite)
{
    SharedMutex mut;
    mut.lock();
    EXPECT_FALSE(mut.try_lock());
    mut.unlock();
    EXPECT_TRUE(mut.try_lock());
}

TEST(SharedMutex, LockUnlockRead)
{
    SharedMutex mut;

    mut.lock_shared();
    EXPECT_FALSE(mut.try_lock());

    mut.unlock_shared();
    EXPECT_TRUE(mut.try_lock());
}

TEST(SharedMutex, LockedReadCount)
{
    SharedMutex mut;
    int count = 0;

    mut.lock_shared();
    count++;
    ASSERT_EQ(mut.getReaderCount(), count);

    mut.lock_shared();
    count++;
    ASSERT_EQ(mut.getReaderCount(), count);

    mut.unlock_shared();
    count--;
    ASSERT_EQ(mut.getReaderCount(), count);

    mut.unlock_shared();
    count--;
    ASSERT_EQ(mut.getReaderCount(), count);

    EXPECT_TRUE(mut.try_lock());
}


/*****************************************************************************/
/*
 * FormatTime
 */
/*****************************************************************************/
#if !defined(__GNUC__) || defined(__clang__) || (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 9))
//#if !defined(__GNUC__) || (__GNUC__ > 4)
//#if !defined(__GNUC__) || (__GNUC__ >= 5)
// g++ before 4.9 (?) does not support regex and crashes on execution.

TEST(Sync, FormatTime)
{
    auto parse_time = [](const string& timestr) -> long long {
        // Example string: 1D 02:10:55.972651 [STD]
        const regex rex("([[:digit:]]+D )?([[:digit:]]{2}):([[:digit:]]{2}):([[:digit:]]{2}).([[:digit:]]{6,}) \\[STDY\\]");
        std::smatch sm;
        EXPECT_TRUE(regex_match(timestr, sm, rex));
        EXPECT_LE(sm.size(), 6U);
        if (sm.size() != 6 && sm.size() != 5)
            return 0;

        // Day may be missing if zero
        const long long d = sm[1].matched ? std::stoi(sm[1]) : 0;
        const long long h = std::stoll(sm[2]);
        const long long m = std::stoll(sm[3]);
        const long long s = std::stoll(sm[4]);
        const long long u = std::stoll(sm[5]);

        return u + s * 1000000 + m * 60000000 + h * 60 * 60 * 1000000 + d * 24 * 60 * 60 * 1000000;
    };

    auto print_timediff = [&parse_time](const string& desc, const string& time, const string& time_base) {
        const long long diff = parse_time(time) - parse_time(time_base);
        cerr << desc << time << " (" << diff << " us)" << endl;
    };

    const auto   a = steady_clock::now();
    const string time1 = FormatTime(a);
    const string time2 = FormatTime(a);
    const string time3 = FormatTime(a + milliseconds_from(500));
    const string time4 = FormatTime(a + seconds_from(1));
    const string time5 = FormatTime(a + seconds_from(5));
    const string time6 = FormatTime(a + milliseconds_from(-4350));
    cerr << "Current time formated:    " << time1 << endl;
    const long long diff_2_1 = parse_time(time2) - parse_time(time1);
    cerr << "Same time formated again: " << time2 << " (" << diff_2_1 << " us)" << endl;
    print_timediff("Same time formated again: ", time2, time1);
    print_timediff("Time +500 ms formated:    ", time3, time1);
    print_timediff("Time +1  sec formated:    ", time4, time1);
    print_timediff("Time +5  sec formated:    ", time5, time1);
    print_timediff("Time -4350 ms formated:   ", time6, time1);

    EXPECT_TRUE(time1 == time2);
}

TEST(Sync, FormatTimeSys)
{
    auto parse_time = [](const string& timestr) -> long long {
        const regex rex("([[:digit:]]{2}):([[:digit:]]{2}):([[:digit:]]{2}).([[:digit:]]{6}) \\[SYST\\]");
        std::smatch sm;
        EXPECT_TRUE(regex_match(timestr, sm, rex));
        EXPECT_EQ(sm.size(), 5U);
        if (sm.size() != 5)
            return 0;

        const long long h = std::stoi(sm[1]);
        const long long m = std::stoi(sm[2]);
        const long long s = std::stoi(sm[3]);
        const long long u = std::stoi(sm[4]);

        return u + s * 1000000 + m * 60000000 + h * 60 * 60 * 1000000;
    };

    auto print_timediff = [&parse_time](const string& desc, const string& time, const string& time_base) {
        const long long diff = parse_time(time) - parse_time(time_base);
        cerr << desc << time << " (" << diff << " us)" << endl;
    };

    const steady_clock::time_point a     = steady_clock::now();
    const string                   time1 = FormatTimeSys(a);
    const string                   time2 = FormatTimeSys(a);
    const string                   time3 = FormatTimeSys(a + milliseconds_from(500));
    const string                   time4 = FormatTimeSys(a + seconds_from(1));
    const string                   time5 = FormatTimeSys(a + seconds_from(5));
    const string                   time6 = FormatTimeSys(a + milliseconds_from(-4350));
    cerr << "Current time formated:    " << time1 << endl;
    const long long diff_2_1 = parse_time(time2) - parse_time(time1);
    cerr << "Same time formated again: " << time2 << " (" << diff_2_1 << " us)" << endl;
    print_timediff("Same time formated again: ", time2, time1);
    print_timediff("Time +500 ms formated:    ", time3, time1);
    print_timediff("Time +1  sec formated:    ", time4, time1);
    print_timediff("Time +5  sec formated:    ", time5, time1);
    print_timediff("Time -4350 ms formated:   ", time6, time1);

    EXPECT_TRUE(time1 == time2);
}
#endif