1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
|
/* ssdeep
Copyright (C) 2006 ManTech International Corporation
$Id: fuzzy.c 97 2010-03-19 15:10:06Z jessekornblum $
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
The code in this file, and this file only, is based on SpamSum, part
of the Samba project:
http://www.samba.org/ftp/unpacked/junkcode/spamsum/
Because of where this file came from, any program that contains it
must be licensed under the terms of the General Public License (GPL).
See the file COPYING for details. The author's original comments
about licensing are below:
this is a checksum routine that is specifically designed for spam.
Copyright Andrew Tridgell <tridge@samba.org> 2002
This code is released under the GNU General Public License version 2
or later. Alteratively, you may also use this code under the terms
of the Perl Artistic license.
If you wish to distribute this code under the terms of a different
free software license then please ask me. If there is a good reason
then I will probably say yes.
*/
#include "main.h"
#define MIN_BLOCKSIZE 3
#define ROLLING_WINDOW 7
#define HASH_PRIME 0x01000193
#define HASH_INIT 0x28021967
// Our input buffer when reading files to hash
#define BUFFER_SIZE 8192
static struct {
unsigned char window[ROLLING_WINDOW];
uint32_t h1, h2, h3;
uint32_t n;
} roll_state;
/*
a rolling hash, based on the Adler checksum. By using a rolling hash
we can perform auto resynchronisation after inserts/deletes
internally, h1 is the sum of the bytes in the window and h2
is the sum of the bytes times the index
h3 is a shift/xor based rolling hash, and is mostly needed to ensure that
we can cope with large blocksize values
*/
static inline uint32_t roll_hash(unsigned char c)
{
roll_state.h2 -= roll_state.h1;
roll_state.h2 += ROLLING_WINDOW * c;
roll_state.h1 += c;
roll_state.h1 -= roll_state.window[roll_state.n % ROLLING_WINDOW];
roll_state.window[roll_state.n % ROLLING_WINDOW] = c;
roll_state.n++;
/* The original spamsum AND'ed this value with 0xFFFFFFFF which
in theory should have no effect. This AND has been removed
for performance (jk) */
roll_state.h3 = (roll_state.h3 << 5); //& 0xFFFFFFFF;
roll_state.h3 ^= c;
return roll_state.h1 + roll_state.h2 + roll_state.h3;
}
/*
reset the state of the rolling hash and return the initial rolling hash value
*/
static uint32_t roll_reset(void)
{
memset(&roll_state, 0, sizeof(roll_state));
return 0;
}
/* a simple non-rolling hash, based on the FNV hash */
static inline uint32_t sum_hash(unsigned char c, uint32_t h)
{
h *= HASH_PRIME;
h ^= c;
return h;
}
typedef struct _ss_context {
char *ret, *p;
uint32_t total_chars;
uint32_t h, h2, h3;
uint32_t j, n, i, k;
uint32_t block_size;
char ret2[SPAMSUM_LENGTH/2 + 1];
} ss_context;
static void ss_destroy(ss_context *ctx)
{
if (ctx->ret != NULL)
free(ctx->ret);
}
static int ss_init(ss_context *ctx, FILE *handle)
{
if (NULL == ctx)
return TRUE;
ctx->ret = (char *)malloc(sizeof(char) * FUZZY_MAX_RESULT);
if (ctx->ret == NULL)
return TRUE;
if (handle != NULL)
ctx->total_chars = find_file_size(handle);
ctx->block_size = MIN_BLOCKSIZE;
while (ctx->block_size * SPAMSUM_LENGTH < ctx->total_chars) {
ctx->block_size = ctx->block_size * 2;
}
return FALSE;
}
static const char *b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static void ss_engine(ss_context *ctx,
const unsigned char *buffer,
uint32_t buffer_size)
{
uint32_t i;
if (NULL == ctx || NULL == buffer)
return;
for ( i = 0 ; i < buffer_size ; ++i)
{
/*
at each character we update the rolling hash and
the normal hash. When the rolling hash hits the
reset value then we emit the normal hash as a
element of the signature and reset both hashes
*/
ctx->h = roll_hash(buffer[i]);
ctx->h2 = sum_hash(buffer[i], ctx->h2);
ctx->h3 = sum_hash(buffer[i], ctx->h3);
if (ctx->h % ctx->block_size == (ctx->block_size-1)) {
/* we have hit a reset point. We now emit a
hash which is based on all chacaters in the
piece of the message between the last reset
point and this one */
ctx->p[ctx->j] = b64[ctx->h2 % 64];
if (ctx->j < SPAMSUM_LENGTH-1) {
/* we can have a problem with the tail
overflowing. The easiest way to
cope with this is to only reset the
second hash if we have room for
more characters in our
signature. This has the effect of
combining the last few pieces of
the message into a single piece */
ctx->h2 = HASH_INIT;
(ctx->j)++;
}
}
/* this produces a second signature with a block size
of block_size*2. By producing dual signatures in
this way the effect of small changes in the message
size near a block size boundary is greatly reduced. */
if (ctx->h % (ctx->block_size*2) == ((ctx->block_size*2)-1)) {
ctx->ret2[ctx->k] = b64[ctx->h3 % 64];
if (ctx->k < SPAMSUM_LENGTH/2-1) {
ctx->h3 = HASH_INIT;
(ctx->k)++;
}
}
}
}
static int ss_update(ss_context *ctx, FILE *handle)
{
uint32_t bytes_read;
unsigned char *buffer;
if (NULL == ctx || NULL == handle)
return TRUE;
buffer = (unsigned char *)malloc(sizeof(unsigned char) * BUFFER_SIZE);
if (buffer == NULL)
return TRUE;
snprintf(ctx->ret, 12, "%u:", ctx->block_size);
ctx->p = ctx->ret + strlen(ctx->ret);
memset(ctx->p, 0, SPAMSUM_LENGTH+1);
memset(ctx->ret2, 0, sizeof(ctx->ret2));
ctx->k = ctx->j = 0;
ctx->h3 = ctx->h2 = HASH_INIT;
ctx->h = roll_reset();
while ((bytes_read = fread(buffer,sizeof(unsigned char),BUFFER_SIZE,handle)) > 0)
{
ss_engine(ctx,buffer,bytes_read);
}
if (ctx->h != 0)
{
ctx->p[ctx->j] = b64[ctx->h2 % 64];
ctx->ret2[ctx->k] = b64[ctx->h3 % 64];
}
strcat(ctx->p+ctx->j, ":");
strcat(ctx->p+ctx->j, ctx->ret2);
free(buffer);
return FALSE;
}
int fuzzy_hash_file(FILE *handle,
char *result)
{
ss_context *ctx;
uint64_t filepos;
int done = FALSE;
if (NULL == handle || NULL == result)
return TRUE;
ctx = (ss_context *)malloc(sizeof(ss_context));
if (ctx == NULL)
return TRUE;
filepos = ftello(handle);
ss_init(ctx, handle);
while (!done)
{
if (fseeko(handle,0,SEEK_SET))
return TRUE;
ss_update(ctx,handle);
// our blocksize guess may have been way off - repeat if necessary
if (ctx->block_size > MIN_BLOCKSIZE && ctx->j < SPAMSUM_LENGTH/2)
ctx->block_size = ctx->block_size / 2;
else
done = TRUE;
}
strncpy(result,ctx->ret,FUZZY_MAX_RESULT);
ss_destroy(ctx);
free(ctx);
if (fseeko(handle,filepos,SEEK_SET))
return TRUE;
return FALSE;
}
extern int fuzzy_hash_filename(const char * filename,
char * result)
{
int status;
if (NULL == filename || NULL == result)
return TRUE;
FILE * handle = fopen(filename,"rb");
if (NULL == handle)
return TRUE;
status = fuzzy_hash_file(handle,result);
fclose(handle);
return status;
}
int fuzzy_hash_buf(const unsigned char *buf,
uint32_t buf_len,
char *result)
{
ss_context *ctx;
int done = FALSE;
if (NULL == buf || NULL == result)
return TRUE;
ctx = (ss_context *)malloc(sizeof(ss_context));
if (ctx == NULL)
return TRUE;
ctx->total_chars = buf_len;
ss_init(ctx, NULL);
while (!done)
{
snprintf(ctx->ret, 12, "%u:", ctx->block_size);
ctx->p = ctx->ret + strlen(ctx->ret);
memset(ctx->p, 0, SPAMSUM_LENGTH+1);
memset(ctx->ret2, 0, sizeof(ctx->ret2));
ctx->k = ctx->j = 0;
ctx->h3 = ctx->h2 = HASH_INIT;
ctx->h = roll_reset();
ss_engine(ctx,buf,buf_len);
/* our blocksize guess may have been way off - repeat if necessary */
if (ctx->block_size > MIN_BLOCKSIZE && ctx->j < SPAMSUM_LENGTH/2)
ctx->block_size = ctx->block_size / 2;
else
done = TRUE;
if (ctx->h != 0)
{
ctx->p[ctx->j] = b64[ctx->h2 % 64];
ctx->ret2[ctx->k] = b64[ctx->h3 % 64];
}
strcat(ctx->p+ctx->j, ":");
strcat(ctx->p+ctx->j, ctx->ret2);
}
strncpy(result,ctx->ret,FUZZY_MAX_RESULT);
ss_destroy(ctx);
free(ctx);
return FALSE;
}
/*
we only accept a match if we have at least one common substring in
the signature of length ROLLING_WINDOW. This dramatically drops the
false positive rate for low score thresholds while having
negligable affect on the rate of spam detection.
return 1 if the two strings do have a common substring, 0 otherwise
*/
static int has_common_substring(const char *s1, const char *s2)
{
int i, j;
int num_hashes;
uint32_t hashes[SPAMSUM_LENGTH];
/* there are many possible algorithms for common substring
detection. In this case I am re-using the rolling hash code
to act as a filter for possible substring matches */
roll_reset();
memset(hashes, 0, sizeof(hashes));
/* first compute the windowed rolling hash at each offset in
the first string */
for (i=0;s1[i];i++)
{
hashes[i] = roll_hash((unsigned char)s1[i]);
}
num_hashes = i;
roll_reset();
/* now for each offset in the second string compute the
rolling hash and compare it to all of the rolling hashes
for the first string. If one matches then we have a
candidate substring match. We then confirm that match with
a direct string comparison */
for (i=0;s2[i];i++) {
uint32_t h = roll_hash((unsigned char)s2[i]);
if (i < ROLLING_WINDOW-1) continue;
for (j=ROLLING_WINDOW-1;j<num_hashes;j++)
{
if (hashes[j] != 0 && hashes[j] == h)
{
/* we have a potential match - confirm it */
if (strlen(s2+i-(ROLLING_WINDOW-1)) >= ROLLING_WINDOW &&
strncmp(s2+i-(ROLLING_WINDOW-1),
s1+j-(ROLLING_WINDOW-1),
ROLLING_WINDOW) == 0)
{
return 1;
}
}
}
}
return 0;
}
// eliminate sequences of longer than 3 identical characters. These
// sequences contain very little information so they tend to just bias
// the result unfairly
static char *eliminate_sequences(const char *str)
{
char *ret;
int i, j, len;
ret = strdup(str);
if (!ret)
return NULL;
len = strlen(str);
for (i=j=3;i<len;i++) {
if (str[i] != str[i-1] ||
str[i] != str[i-2] ||
str[i] != str[i-3]) {
ret[j++] = str[i];
}
}
ret[j] = 0;
return ret;
}
/*
this is the low level string scoring algorithm. It takes two strings
and scores them on a scale of 0-100 where 0 is a terrible match and
100 is a great match. The block_size is used to cope with very small
messages.
*/
static unsigned score_strings(const char *s1, const char *s2, uint32_t block_size)
{
uint32_t score;
uint32_t len1, len2;
int edit_distn(const char *from, int from_len, const char *to, int to_len);
len1 = strlen(s1);
len2 = strlen(s2);
if (len1 > SPAMSUM_LENGTH || len2 > SPAMSUM_LENGTH) {
/* not a real spamsum signature? */
return 0;
}
/* the two strings must have a common substring of length
ROLLING_WINDOW to be candidates */
if (has_common_substring(s1, s2) == 0) {
return 0;
}
/* compute the edit distance between the two strings. The edit distance gives
us a pretty good idea of how closely related the two strings are */
score = edit_distn(s1, len1, s2, len2);
/* scale the edit distance by the lengths of the two
strings. This changes the score to be a measure of the
proportion of the message that has changed rather than an
absolute quantity. It also copes with the variability of
the string lengths. */
score = (score * SPAMSUM_LENGTH) / (len1 + len2);
/* at this stage the score occurs roughly on a 0-64 scale,
* with 0 being a good match and 64 being a complete
* mismatch */
/* rescale to a 0-100 scale (friendlier to humans) */
score = (100 * score) / 64;
/* it is possible to get a score above 100 here, but it is a
really terrible match */
if (score >= 100) return 0;
/* now re-scale on a 0-100 scale with 0 being a poor match and
100 being a excellent match. */
score = 100 - score;
// printf ("len1: %"PRIu32" len2: %"PRIu32"\n", len1, len2);
/* when the blocksize is small we don't want to exaggerate the match size */
if (score > block_size/MIN_BLOCKSIZE * MIN(len1, len2)) {
score = block_size/MIN_BLOCKSIZE * MIN(len1, len2);
}
return score;
}
/*
given two spamsum strings return a value indicating the degree to which they match.
*/
int fuzzy_compare(const char *str1, const char *str2)
{
uint32_t block_size1, block_size2;
uint32_t score = 0;
char *s1, *s2;
char *s1_1, *s1_2;
char *s2_1, *s2_2;
if (NULL == str1 || NULL == str2)
return -1;
// each spamsum is prefixed by its block size
if (sscanf(str1, "%u:", &block_size1) != 1 ||
sscanf(str2, "%u:", &block_size2) != 1) {
return -1;
}
// if the blocksizes don't match then we are comparing
// apples to oranges. This isn't an 'error' per se. We could
// have two valid signatures, but they can't be compared.
if (block_size1 != block_size2 &&
block_size1 != block_size2*2 &&
block_size2 != block_size1*2) {
return 0;
}
// move past the prefix
str1 = strchr(str1, ':');
str2 = strchr(str2, ':');
if (!str1 || !str2) {
// badly formed ...
return -1;
}
// there is very little information content is sequences of
// the same character like 'LLLLL'. Eliminate any sequences
// longer than 3. This is especially important when combined
// with the has_common_substring() test below.
s1 = eliminate_sequences(str1+1);
s2 = eliminate_sequences(str2+1);
if (!s1 || !s2) return 0;
// now break them into the two pieces
s1_1 = s1;
s2_1 = s2;
s1_2 = strchr(s1, ':');
s2_2 = strchr(s2, ':');
if (!s1_2 || !s2_2) {
// a signature is malformed - it doesn't have 2 parts
free(s1); free(s2);
return 0;
}
*s1_2++ = 0;
*s2_2++ = 0;
// each signature has a string for two block sizes. We now
// choose how to combine the two block sizes. We checked above
// that they have at least one block size in common
if (block_size1 == block_size2) {
uint32_t score1, score2;
score1 = score_strings(s1_1, s2_1, block_size1);
score2 = score_strings(s1_2, s2_2, block_size2);
// s->block_size = block_size1;
score = MAX(score1, score2);
} else if (block_size1 == block_size2*2) {
score = score_strings(s1_1, s2_2, block_size1);
// s->block_size = block_size1;
} else {
score = score_strings(s1_2, s2_1, block_size2);
// s->block_size = block_size2;
}
free(s1);
free(s2);
return (int)score;
}
|