File: seq.v

package info (click to toggle)
ssreflect 1.5-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 932 kB
  • ctags: 96
  • sloc: ml: 334; sh: 92; makefile: 67; lisp: 37
file content (2553 lines) | stat: -rw-r--r-- 90,756 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
(* (c) Copyright Microsoft Corporation and Inria.                       *)
(* You may distribute this file under the terms of the CeCILL-B license *)
Require Import ssreflect ssrfun ssrbool eqtype ssrnat.

(******************************************************************************)
(* The seq type is the ssreflect type for sequences; it is an alias for the   *)
(* standard Coq list type. The ssreflect library equips it with many          *)
(* operations, as well as eqType and predType (and, later, choiceType)        *)
(* structures. The operations are geared towards reflection: they generally   *)
(* expect and provide boolean predicates, e.g., the membership predicate      *)
(* expects an eqType. To avoid any confusion we do not Import the Coq List    *)
(* module.                                                                    *)
(*   As there is no true subtyping in Coq, we don't use a type for non-empty  *)
(* sequences; rather, we pass explicitly the head and tail of the sequence.   *)
(*   The empty sequence is especially bothersome for subscripting, since it   *)
(* forces us to pass a default value. This default value can often be hidden  *)
(* by a notation.                                                             *)
(*   Here is the list of seq operations:                                      *)
(*  ** Constructors:                                                          *)
(*                        seq T == the type of sequences with items of type T *)
(*                       bitseq == seq bool                                   *)
(*             [::], nil, Nil T == the empty sequence (of type T)             *)
(* x :: s, cons x s, Cons T x s == the sequence x followed by s (of type T)   *)
(*                       [:: x] == the singleton sequence                     *)
(*           [:: x_0; ...; x_n] == the explicit sequence of the x_i           *)
(*       [:: x_0, ..., x_n & s] == the sequence of the x_i, followed by s     *)
(*                    rcons s x == the sequence s, followed by x              *)
(*  All of the above, except rcons, can be used in patterns. We define a view *)
(* lastP and and induction principle last_ind that can be used to decompose   *)
(* or traverse a sequence in a right to left order. The view lemma lastP has  *)
(* a dependent family type, so the ssreflect tactic case/lastP: p => [|p' x]  *)
(* will generate two subgoals in which p has been replaced by [::] and by     *)
(* rcons p' x, respectively.                                                  *)
(*  ** Factories:                                                             *)
(*             nseq n x == a sequence of n x's                                *)
(*          ncons n x s == a sequence of n x's, followed by s                 *)
(* seqn n x_0 ... x_n-1 == the sequence of the x_i (can be partially applied) *)
(*             iota m n == the sequence m, m + 1, ..., m + n - 1              *)
(*            mkseq f n == the sequence f 0, f 1, ..., f (n - 1)              *)
(*  ** Sequential access:                                                     *)
(*      head x0 s == the head (zero'th item) of s if s is non-empty, else x0  *)
(*        ohead s == None if s is empty, else Some x where x is the head of s *)
(*       behead s == s minus its head, i.e., s' if s = x :: s', else [::]     *)
(*       last x s == the last element of x :: s (which is non-empty)          *)
(*     belast x s == x :: s minus its last item                               *)
(*  ** Dimensions:                                                            *)
(*         size s == the number of items (length) in s                        *)
(*       shape ss == the sequence of sizes of the items of the sequence of    *)
(*                   sequences ss                                             *)
(*  ** Random access:                                                         *)
(*         nth x0 s i == the item i of s (numbered from 0), or x0 if s does   *)
(*                       not have at least i+1 items (i.e., size x <= i)      *)
(*               s`_i == standard notation for nth x0 s i for a default x0,   *)
(*                       e.g., 0 for rings.                                   *)
(*   set_nth x0 s i y == s where item i has been changed to y; if s does not  *)
(*                       have an item i it is first padded with copieds of x0 *)
(*                       to size i+1.                                         *)
(*       incr_nth s i == the nat sequence s with item i incremented (s is     *)
(*                       first padded with 0's to size i+1, if needed).       *)
(*  ** Predicates:                                                            *)
(*          nilp s == s is [::]                                               *)
(*                 := (size s == 0)                                           *)
(*         x \in s == x appears in s (this requires an eqType for T)          *)
(*       index x s == the first index at which x appears in s, or size s if   *)
(*                    x \notin s                                              *)
(*         has p s == the (applicative, boolean) predicate p holds for some   *)
(*                    item in s                                               *)
(*         all p s == p holds for all items in s                              *)
(*        find p s == the index of the first item in s for which p holds,     *)
(*                    or size s if no such item is found                      *)
(*       count p s == the number of items of s for which p holds              *)
(*   count_mem x s == the number of times x occurs in s := count (pred1 x) s  *)
(*      constant s == all items in s are identical (trivial if s = [::])      *)
(*          uniq s == all the items in s are pairwise different               *)
(*    subseq s1 s2 == s1 is a subsequence of s2, i.e., s1 = mask m s2 for     *)
(*                    some m : bitseq (see below).                            *)
(*   perm_eq s1 s2 == s2 is a permutation of s1, i.e., s1 and s2 have the     *)
(*                    items (with the same repetitions), but possibly in a    *)
(*                    different order.                                        *)
(*  perm_eql s1 s2 <-> s1 and s2 behave identically on the left of perm_eq    *)
(*  perm_eqr s1 s2 <-> s1 and s2 behave identically on the rightt of perm_eq  *)
(*    These left/right transitive versions of perm_eq make it easier to chain *)
(* a sequence of equivalences.                                                *)
(*  ** Filtering:                                                             *)
(*           filter p s == the subsequence of s consisting of all the items   *)
(*                         for which the (boolean) predicate p holds          *)
(* subfilter s : seq sT == when sT has a subType p structure, the sequence    *)
(*                         of items of type sT corresponding to items of s    *)
(*                         for which p holds.                                 *)
(*              rem x s == the subsequence of s, where the first occurrence   *)
(*                         of x has been removed (compare filter (predC1 x) s *)
(*                         where ALL occurrences of x are removed).           *)
(*              undup s == the subsequence of s containing only the first     *)
(*                         occurrence of each item in s, i.e., s with all     *)
(*                         duplicates removed.                                *)
(*             mask m s == the subsequence of s selected by m : bitseq, with  *)
(*                         item i of s selected by bit i in m (extra items or *)
(*                         bits are ignored.                                  *)
(*  ** Surgery:                                                               *)
(* s1 ++ s2, cat s1 s2 == the concatenation of s1 and s2.                     *)
(*            take n s == the sequence containing only the first n items of s *)
(*                        (or all of s if size s <= n).                       *)
(*            drop n s == s minus its first n items ([::] if size s <= n)     *)
(*             rot n s == s rotated left n times (or s if size s <= n).       *)
(*                     := drop n s ++ take n s                                *)
(*            rotr n s == s rotated right n times (or s if size s <= n).      *)
(*               rev s == the (linear time) reversal of s.                    *)
(*        catrev s1 s2 == the reversal of s1 followed by s2 (this is the      *)
(*                        recursive form of rev).                             *)
(*  ** Iterators: for s == [:: x_1, ..., x_n], t == [:: y_1, ..., y_m],       *)
(*        map f s == the sequence [:: f x_1, ..., f x_n].                     *)
(* allpairs f s t == the sequence of all the f x y, with x and y drawn from   *)
(*                  s and t, respectievly, in row-major order.                *)
(*               := [:: f x_1 y_1; ...; f x_1 y_m; f x_2 y_1; ...; f x_n y_m] *)
(*      pmap pf s == the sequence [:: y_i1, ..., y_ik] where i1 < ... < ik,   *)
(*                   pf x_i = Some y_i, and pf x_j = None iff j is not in     *)
(*                   {i1, ..., ik}.                                           *)
(*   foldr f a s == the right fold of s by f (i.e., the natural iterator).    *)
(*               := f x_1 (f x_2 ... (f x_n a))                               *)
(*        sumn s == x_1 + (x_2 + ... + (x_n + 0)) (when s : seq nat).         *)
(*   foldl f a s == the left fold of s by f.                                  *)
(*               := f (f ... (f a x_1) ... x_n-1) x_n                         *)
(*   scanl f a s == the sequence of partial accumulators of foldl f a s.      *)
(*               := [:: f a x_1; ...; foldl f a s]                            *)
(* pairmap f a s == the sequence of f applied to consecutie items in a :: s.  *)
(*               := [:: f a x_1; f x_1 x_2; ...; f x_n-1 x_n]                 *)
(*       zip s t == itemwise pairing of s and t (dropping any extra items).   *)
(*               := [:: (x_1, y_1); ...; (x_mn, y_mn)] with mn = minn n m.    *)
(*      unzip1 s == [:: (x_1).1; ...; (x_n).1] when s : seq (S * T).          *)
(*      unzip2 s == [:: (x_1).2; ...; (x_n).2] when s : seq (S * T).          *)
(*     flatten s == x_1 ++ ... ++ x_n ++ [::] when s : seq (seq T).           *)
(*   reshape r s == s reshaped into a sequence of sequences whose sizes are   *)
(*                  given by r (trucating if s is too long or too short).     *)
(*               := [:: [:: x_1; ...; x_r1];                                  *)
(*                      [:: x_(r1 + 1); ...; x_(r0 + r1)];                    *)
(*                      ...;                                                  *)
(*                      [:: x_(r1 + ... + r(k-1) + 1); ...; x_(r0 + ... rk)]] *)
(*  ** Notation for manifest comprehensions:                                  *)
(*         [seq x <- s | C] := filter (fun x => C) s.                         *)
(*         [seq E | x <- s] := map (fun x => E) s.                            *)
(* [seq E | x <- s, y <- t] := allpairs (fun x y => E) s t.                   *)
(*   [seq x <- s | C1 & C2] := [seq x <- s | C1 && C2].                       *)
(*     [seq E | x <- s & C] := [seq E | x <- [seq x | C]].                    *)
(*  --> The above allow optional type casts on the eigenvariables, as in      *)
(*  [seq x : T <- s | C] or [seq E | x : T <- s, y : U <- t]. The cast may be *)
(*  needed as type inference considers E or C before s.                       *)
(*   We are quite systematic in providing lemmas to rewrite any composition   *)
(* of two operations. "rev", whose simplifications are not natural, is        *)
(* protected with nosimpl.                                                    *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Delimit Scope seq_scope with SEQ.
Open Scope seq_scope.

(* Inductive seq (T : Type) : Type := Nil | Cons of T & seq T. *)
Notation seq := list.
Prenex Implicits cons.
Notation Cons T := (@cons T) (only parsing).
Notation Nil T := (@nil T) (only parsing).

Bind Scope seq_scope with list.
Arguments Scope cons [type_scope _ seq_scope].

(* As :: and ++ are (improperly) declared in Init.datatypes, we only rebind   *)
(* them here.                                                                 *)
Infix "::" := cons : seq_scope.

(* GG - this triggers a camlp4 warning, as if this Notation had been Reserved *)
Notation "[ :: ]" := nil (at level 0, format "[ :: ]") : seq_scope.

Notation "[ :: x1 ]" := (x1 :: [::])
  (at level 0, format "[ ::  x1 ]") : seq_scope.

Notation "[ :: x & s ]" := (x :: s) (at level 0, only parsing) : seq_scope.

Notation "[ :: x1 , x2 , .. , xn & s ]" := (x1 :: x2 :: .. (xn :: s) ..)
  (at level 0, format
  "'[hv' [ :: '['  x1 , '/'  x2 , '/'  .. , '/'  xn ']' '/ '  &  s ] ']'"
  ) : seq_scope.

Notation "[ :: x1 ; x2 ; .. ; xn ]" := (x1 :: x2 :: .. [:: xn] ..)
  (at level 0, format "[ :: '['  x1 ; '/'  x2 ; '/'  .. ; '/'  xn ']' ]"
  ) : seq_scope.

Section Sequences.

Variable n0 : nat.  (* numerical parameter for take, drop et al *)
Variable T : Type.  (* must come before the implicit Type     *)
Variable x0 : T.    (* default for head/nth *)

Implicit Types x y z : T.
Implicit Types m n : nat.
Implicit Type s : seq T.

Fixpoint size s := if s is _ :: s' then (size s').+1 else 0.

Lemma size0nil s : size s = 0 -> s = [::]. Proof. by case: s. Qed.

Definition nilp s := size s == 0.

Lemma nilP s : reflect (s = [::]) (nilp s).
Proof. by case: s => [|x s]; constructor. Qed.

Definition ohead s := if s is x :: _ then Some x else None.
Definition head s := if s is x :: _ then x else x0.

Definition behead s := if s is _ :: s' then s' else [::].

Lemma size_behead s : size (behead s) = (size s).-1.
Proof. by case: s. Qed.

(* Factories *)

Definition ncons n x := iter n (cons x).
Definition nseq n x := ncons n x [::].

Lemma size_ncons n x s : size (ncons n x s) = n + size s.
Proof. by elim: n => //= n ->. Qed.

Lemma size_nseq n x : size (nseq n x) = n.
Proof. by rewrite size_ncons addn0. Qed.

(* n-ary, dependently typed constructor. *)

Fixpoint seqn_type n := if n is n'.+1 then T -> seqn_type n' else seq T.

Fixpoint seqn_rec f n : seqn_type n :=
  if n is n'.+1 return seqn_type n then
    fun x => seqn_rec (fun s => f (x :: s)) n'
  else f [::].
Definition seqn := seqn_rec id.

(* Sequence catenation "cat".                                               *)

Fixpoint cat s1 s2 := if s1 is x :: s1' then x :: s1' ++ s2 else s2
where "s1 ++ s2" := (cat s1 s2) : seq_scope.

Lemma cat0s s : [::] ++ s = s. Proof. by []. Qed.
Lemma cat1s x s : [:: x] ++ s = x :: s. Proof. by []. Qed.
Lemma cat_cons x s1 s2 : (x :: s1) ++ s2 = x :: s1 ++ s2. Proof. by []. Qed.

Lemma cat_nseq n x s : nseq n x ++ s = ncons n x s.
Proof. by elim: n => //= n ->. Qed.

Lemma cats0 s : s ++ [::] = s.
Proof. by elim: s => //= x s ->. Qed.

Lemma catA s1 s2 s3 : s1 ++ s2 ++ s3 = (s1 ++ s2) ++ s3.
Proof. by elim: s1 => //= x s1 ->. Qed.

Lemma size_cat s1 s2 : size (s1 ++ s2) = size s1 + size s2.
Proof. by elim: s1 => //= x s1 ->. Qed.

(* last, belast, rcons, and last induction. *)

Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z].

Lemma rcons_cons x s z : rcons (x :: s) z = x :: rcons s z.
Proof. by []. Qed.

Lemma cats1 s z : s ++ [:: z] = rcons s z.
Proof. by elim: s => //= x s ->. Qed.

Fixpoint last x s := if s is x' :: s' then last x' s' else x.
Fixpoint belast x s := if s is x' :: s' then x :: (belast x' s') else [::].

Lemma lastI x s : x :: s = rcons (belast x s) (last x s).
Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed.

Lemma last_cons x y s : last x (y :: s) = last y s.
Proof. by []. Qed.

Lemma size_rcons s x : size (rcons s x) = (size s).+1.
Proof. by rewrite -cats1 size_cat addnC. Qed.

Lemma size_belast x s : size (belast x s) = size s.
Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed.

Lemma last_cat x s1 s2 : last x (s1 ++ s2) = last (last x s1) s2.
Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed.

Lemma last_rcons x s z : last x (rcons s z) = z.
Proof. by rewrite -cats1 last_cat. Qed.

Lemma belast_cat x s1 s2 :
  belast x (s1 ++ s2) = belast x s1 ++ belast (last x s1) s2.
Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed.

Lemma belast_rcons x s z : belast x (rcons s z) = x :: s.
Proof. by rewrite lastI -!cats1 belast_cat. Qed.

Lemma cat_rcons x s1 s2 : rcons s1 x ++ s2 = s1 ++ x :: s2.
Proof. by rewrite -cats1 -catA. Qed.

Lemma rcons_cat x s1 s2 : rcons (s1 ++ s2) x = s1 ++ rcons s2 x.
Proof. by rewrite -!cats1 catA. Qed.

CoInductive last_spec : seq T -> Type :=
  | LastNil        : last_spec [::]
  | LastRcons s x  : last_spec (rcons s x).

Lemma lastP s : last_spec s.
Proof. case: s => [|x s]; [left | rewrite lastI; right]. Qed.

Lemma last_ind P :
  P [::] -> (forall s x, P s -> P (rcons s x)) -> forall s, P s.
Proof.
move=> Hnil Hlast s; rewrite -(cat0s s).
elim: s [::] Hnil => [|x s2 IHs] s1 Hs1; first by rewrite cats0.
by rewrite -cat_rcons; auto.
Qed.

(* Sequence indexing. *)

Fixpoint nth s n {struct n} :=
  if s is x :: s' then if n is n'.+1 then @nth s' n' else x else x0.

Fixpoint set_nth s n y {struct n} :=
  if s is x :: s' then if n is n'.+1 then x :: @set_nth s' n' y else y :: s'
  else ncons n x0 [:: y].

Lemma nth0 s : nth s 0 = head s. Proof. by []. Qed.

Lemma nth_default s n : size s <= n -> nth s n = x0.
Proof. by elim: s n => [|x s IHs] [|n]; try exact (IHs n). Qed.

Lemma nth_nil n : nth [::] n = x0.
Proof. by case: n. Qed.

Lemma last_nth x s : last x s = nth (x :: s) (size s).
Proof. by elim: s x => [|y s IHs] x /=. Qed.

Lemma nth_last s : nth s (size s).-1 = last x0 s.
Proof. by case: s => //= x s; rewrite last_nth. Qed.

Lemma nth_behead s n : nth (behead s) n = nth s n.+1.
Proof. by case: s n => [|x s] [|n]. Qed.

Lemma nth_cat s1 s2 n :
  nth (s1 ++ s2) n = if n < size s1 then nth s1 n else nth s2 (n - size s1).
Proof. by elim: s1 n => [|x s1 IHs] [|n]; try exact (IHs n). Qed.

Lemma nth_rcons s x n :
  nth (rcons s x) n =
    if n < size s then nth s n else if n == size s then x else x0.
Proof. by elim: s n => [|y s IHs] [|n] //=; rewrite ?nth_nil ?IHs. Qed.

Lemma nth_ncons m x s n :
  nth (ncons m x s) n = if n < m then x else nth s (n - m).
Proof. by elim: m n => [|m IHm] [|n] //=; exact: IHm. Qed.

Lemma nth_nseq m x n : nth (nseq m x) n = (if n < m then x else x0).
Proof. by elim: m n => [|m IHm] [|n] //=; exact: IHm. Qed.

Lemma eq_from_nth s1 s2 :
    size s1 = size s2 -> (forall i, i < size s1 -> nth s1 i = nth s2 i) ->
  s1 = s2.
Proof.
elim: s1 s2 => [|x1 s1 IHs1] [|x2 s2] //= [eq_sz] eq_s12.
rewrite [x1](eq_s12 0) // (IHs1 s2) // => i; exact: (eq_s12 i.+1).
Qed.

Lemma size_set_nth s n y : size (set_nth s n y) = maxn n.+1 (size s).
Proof.
elim: s n => [|x s IHs] [|n] //=.
- by rewrite size_ncons addn1 maxn0.
- by rewrite maxnE subn1.
by rewrite IHs -add1n addn_maxr.
Qed.

Lemma set_nth_nil n y : set_nth [::] n y = ncons n x0 [:: y].
Proof. by case: n. Qed.

Lemma nth_set_nth s n y : nth (set_nth s n y) =1 [eta nth s with n |-> y].
Proof.
elim: s n => [|x s IHs] [|n] [|m] //=; rewrite ?nth_nil ?IHs // nth_ncons eqSS.
case: ltngtP => // [lt_nm | ->]; last by rewrite subnn.
by rewrite nth_default // subn_gt0.
Qed.

Lemma set_set_nth s n1 y1 n2 y2 (s2 := set_nth s n2 y2) :
  set_nth (set_nth s n1 y1) n2 y2 = if n1 == n2 then s2 else set_nth s2 n1 y1.
Proof.
have [-> | ne_n12] := altP eqP.
  apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnA maxnn.
  by do 2!rewrite !nth_set_nth /=; case: eqP.
apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnCA.
do 2!rewrite !nth_set_nth /=; case: eqP => // ->.
by rewrite eq_sym -if_neg ne_n12.
Qed.

(* find, count, has, all. *)

Section SeqFind.

Variable a : pred T.

Fixpoint find s := if s is x :: s' then if a x then 0 else (find s').+1 else 0.

Fixpoint filter s :=
  if s is x :: s' then if a x then x :: filter s' else filter s' else [::].

Fixpoint count s := if s is x :: s' then a x + count s' else 0.

Fixpoint has s := if s is x :: s' then a x || has s' else false.

Fixpoint all s := if s is x :: s' then a x && all s' else true.

Lemma size_filter s : size (filter s) = count s.
Proof. by elim: s => //= x s <-; case (a x). Qed.

Lemma has_count s : has s = (0 < count s).
Proof. by elim: s => //= x s ->; case (a x). Qed.

Lemma count_size s : count s <= size s.
Proof. by elim: s => //= x s; case: (a x); last exact: leqW. Qed.

Lemma all_count s : all s = (count s == size s).
Proof.
elim: s => //= x s; case: (a x) => _ //=.
by rewrite add0n eqn_leq andbC ltnNge count_size.
Qed.

Lemma filter_all s : all (filter s).
Proof. by elim: s => //= x s IHs; case: ifP => //= ->. Qed.

Lemma all_filterP s : reflect (filter s = s) (all s).
Proof.
apply: (iffP idP) => [| <-]; last exact: filter_all.
by elim: s => //= x s IHs /andP[-> Hs]; rewrite IHs.
Qed.

Lemma filter_id s : filter (filter s) = filter s.
Proof. by apply/all_filterP; exact: filter_all. Qed.

Lemma has_find s : has s = (find s < size s).
Proof. by elim: s => //= x s IHs; case (a x); rewrite ?leqnn. Qed.

Lemma find_size s : find s <= size s.
Proof. by elim: s => //= x s IHs; case (a x). Qed.

Lemma find_cat s1 s2 :
  find (s1 ++ s2) = if has s1 then find s1 else size s1 + find s2.
Proof.
by elim: s1 => //= x s1 IHs; case: (a x) => //; rewrite IHs (fun_if succn).
Qed.

Lemma has_nil : has [::] = false. Proof. by []. Qed.

Lemma has_seq1 x : has [:: x] = a x.
Proof. exact: orbF. Qed.

Lemma has_nseq n x : has (nseq n x) = (0 < n) && a x.
Proof. by elim: n => //= n ->; apply: andKb. Qed.

Lemma has_seqb (b : bool) x : has (nseq b x) = b && a x.
Proof. by rewrite has_nseq lt0b. Qed.

Lemma all_nil : all [::] = true. Proof. by []. Qed.

Lemma all_seq1 x : all [:: x] = a x.
Proof. exact: andbT. Qed.

Lemma all_nseq n x : all (nseq n x) = (n == 0) || a x.
Proof. by elim: n => //= n ->; apply: orKb. Qed.

Lemma all_nseqb (b : bool) x : all (nseq b x) = b ==> a x.
Proof. by rewrite all_nseq eqb0 implybE. Qed.

Lemma find_nseq n x : find (nseq n x) = ~~ a x * n.
Proof. by elim: n => //= n ->; case: (a x). Qed.

Lemma nth_find s : has s -> a (nth s (find s)).
Proof. by elim: s => //= x s IHs; case Hx: (a x). Qed.

Lemma before_find s i : i < find s -> a (nth s i) = false.
Proof.
by elim: s i => //= x s IHs; case Hx: (a x) => [|] // [|i] //; apply: (IHs i).
Qed.

Lemma filter_cat s1 s2 : filter (s1 ++ s2) = filter s1 ++ filter s2.
Proof. by elim: s1 => //= x s1 ->; case (a x). Qed.

Lemma filter_rcons s x :
  filter (rcons s x) = if a x then rcons (filter s) x else filter s.
Proof. by rewrite -!cats1 filter_cat /=; case (a x); rewrite /= ?cats0. Qed.

Lemma count_cat s1 s2 : count (s1 ++ s2) = count s1 + count s2.
Proof. by rewrite -!size_filter filter_cat size_cat. Qed.

Lemma has_cat s1 s2 : has (s1 ++ s2) = has s1 || has s2.
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs orbA. Qed.

Lemma has_rcons s x : has (rcons s x) = a x || has s.
Proof. by rewrite -cats1 has_cat has_seq1 orbC. Qed.

Lemma all_cat s1 s2 : all (s1 ++ s2) = all s1 && all s2.
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs andbA. Qed.

Lemma all_rcons s x : all (rcons s x) = a x && all s.
Proof. by rewrite -cats1 all_cat all_seq1 andbC. Qed.

End SeqFind.

Lemma eq_find a1 a2 : a1 =1 a2 -> find a1 =1 find a2.
Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed.

Lemma eq_filter a1 a2 : a1 =1 a2 -> filter a1 =1 filter a2.
Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed.

Lemma eq_count a1 a2 : a1 =1 a2 -> count a1 =1 count a2.
Proof. by move=> Ea s; rewrite -!size_filter (eq_filter Ea). Qed.

Lemma eq_has a1 a2 : a1 =1 a2 -> has a1 =1 has a2.
Proof. by move=> Ea s; rewrite !has_count (eq_count Ea). Qed.

Lemma eq_all a1 a2 : a1 =1 a2 -> all a1 =1 all a2.
Proof. by move=> Ea s; rewrite !all_count (eq_count Ea). Qed.

Section SubPred.

Variable (a1 a2 : pred T).
Hypothesis s12 : subpred a1 a2.

Lemma sub_find s : find a2 s <= find a1 s.
Proof. by elim: s => //= x s IHs; case: ifP => // /(contraFF (@s12 x))->. Qed.

Lemma sub_has s : has a1 s -> has a2 s.
Proof. by rewrite !has_find; exact: leq_ltn_trans (sub_find s). Qed.

Lemma sub_count s : count a1 s <= count a2 s.
Proof.
by elim: s => //= x s; apply: leq_add; case a1x: (a1 x); rewrite // s12.
Qed.

Lemma sub_all s : all a1 s -> all a2 s.
Proof.
by rewrite !all_count !eqn_leq !count_size => /leq_trans-> //; apply: sub_count.
Qed.

End SubPred.

Lemma filter_pred0 s : filter pred0 s = [::]. Proof. by elim: s. Qed.

Lemma filter_predT s : filter predT s = s.
Proof. by elim: s => //= x s ->. Qed.

Lemma filter_predI a1 a2 s : filter (predI a1 a2) s = filter a1 (filter a2 s).
Proof.
elim: s => //= x s IHs; rewrite andbC IHs.
by case: (a2 x) => //=; case (a1 x).
Qed.

Lemma count_pred0 s : count pred0 s = 0.
Proof. by rewrite -size_filter filter_pred0. Qed.

Lemma count_predT s : count predT s = size s.
Proof. by rewrite -size_filter filter_predT. Qed.

Lemma count_predUI a1 a2 s :
  count (predU a1 a2) s + count (predI a1 a2) s = count a1 s + count a2 s.
Proof.
elim: s => //= x s IHs; rewrite /= addnCA -addnA IHs addnA addnC.
by rewrite -!addnA; do 2 nat_congr; case (a1 x); case (a2 x).
Qed.

Lemma count_predC a s : count a s + count (predC a) s = size s.
Proof.
by elim: s => //= x s IHs; rewrite addnCA -addnA IHs addnA addn_negb.
Qed.

Lemma count_filter a1 a2 s : count a1 (filter a2 s) = count (predI a1 a2) s.
Proof. by rewrite -!size_filter filter_predI. Qed.

Lemma has_pred0 s : has pred0 s = false.
Proof. by rewrite has_count count_pred0. Qed.

Lemma has_predT s : has predT s = (0 < size s).
Proof. by rewrite has_count count_predT. Qed.

Lemma has_predC a s : has (predC a) s = ~~ all a s.
Proof. by elim: s => //= x s ->; case (a x). Qed.

Lemma has_predU a1 a2 s : has (predU a1 a2) s = has a1 s || has a2 s.
Proof. by elim: s => //= x s ->; rewrite -!orbA; do !bool_congr. Qed.

Lemma all_pred0 s : all pred0 s = (size s == 0).
Proof. by rewrite all_count count_pred0 eq_sym. Qed.

Lemma all_predT s : all predT s.
Proof. by rewrite all_count count_predT. Qed.

Lemma all_predC a s : all (predC a) s = ~~ has a s.
Proof. by elim: s => //= x s ->; case (a x). Qed.

Lemma all_predI a1 a2 s : all (predI a1 a2) s = all a1 s && all a2 s.
Proof.
apply: (can_inj negbK); rewrite negb_and -!has_predC -has_predU.
by apply: eq_has => x; rewrite /= negb_and.
Qed.

(* Surgery: drop, take, rot, rotr.                                        *)

Fixpoint drop n s {struct s} :=
  match s, n with
  | _ :: s', n'.+1 => drop n' s'
  | _, _ => s
  end.

Lemma drop_behead : drop n0 =1 iter n0 behead.
Proof. by elim: n0 => [|n IHn] [|x s] //; rewrite iterSr -IHn. Qed.

Lemma drop0 s : drop 0 s = s. Proof. by case: s. Qed.

Lemma drop1 : drop 1 =1 behead. Proof. by case=> [|x [|y s]]. Qed.

Lemma drop_oversize n s : size s <= n -> drop n s = [::].
Proof. by elim: n s => [|n IHn] [|x s]; try exact (IHn s). Qed.

Lemma drop_size s : drop (size s) s = [::].
Proof. by rewrite drop_oversize // leqnn. Qed.

Lemma drop_cons x s :
  drop n0 (x :: s) = if n0 is n.+1 then drop n s else x :: s.
Proof. by []. Qed.

Lemma size_drop s : size (drop n0 s) = size s - n0.
Proof. by elim: s n0 => [|x s IHs] [|n]; try exact (IHs n). Qed.

Lemma drop_cat s1 s2 :
  drop n0 (s1 ++ s2) =
    if n0 < size s1 then drop n0 s1 ++ s2 else drop (n0 - size s1) s2.
Proof. by elim: s1 n0 => [|x s1 IHs] [|n]; try exact (IHs n). Qed.

Lemma drop_size_cat n s1 s2 : size s1 = n -> drop n (s1 ++ s2) = s2.
Proof. by move <-; elim: s1 => //=; rewrite drop0. Qed.

Lemma nconsK n x : cancel (ncons n x) (drop n).
Proof. by elim: n => //; case. Qed.

Fixpoint take n s {struct s} :=
  match s, n with
  | x :: s', n'.+1 => x :: take n' s'
  | _, _ => [::]
  end.

Lemma take0 s : take 0 s = [::]. Proof. by case: s. Qed.

Lemma take_oversize n s : size s <= n -> take n s = s.
Proof. by elim: n s => [|n IHn] [|x s] Hsn; try (congr cons; apply: IHn). Qed.

Lemma take_size s : take (size s) s = s.
Proof. by rewrite take_oversize // leqnn. Qed.

Lemma take_cons x s :
  take n0 (x :: s) = if n0 is n.+1 then x :: (take n s) else [::].
Proof. by []. Qed.

Lemma drop_rcons s : n0 <= size s ->
  forall x, drop n0 (rcons s x) = rcons (drop n0 s) x.
Proof. by elim: s n0 => [|y s IHs] [|n]; try exact (IHs n). Qed.

Lemma cat_take_drop s : take n0 s ++ drop n0 s = s.
Proof. by elim: s n0 => [|x s IHs] [|n]; try exact (congr1 _ (IHs n)). Qed.

Lemma size_takel s : n0 <= size s -> size (take n0 s) = n0.
Proof.
by move/subnKC; rewrite -{2}(cat_take_drop s) size_cat size_drop => /addIn.
Qed.

Lemma size_take s : size (take n0 s) = if n0 < size s then n0 else size s.
Proof.
have [le_sn | lt_ns] := leqP (size s) n0; first by rewrite take_oversize.
by rewrite size_takel // ltnW.
Qed.

Lemma take_cat s1 s2 :
 take n0 (s1 ++ s2) =
   if n0 < size s1 then take n0 s1 else s1 ++ take (n0 - size s1) s2.
Proof.
elim: s1 n0 => [|x s1 IHs] [|n] //=.
by rewrite ltnS subSS -(fun_if (cons x)) -IHs.
Qed.

Lemma take_size_cat n s1 s2 : size s1 = n -> take n (s1 ++ s2) = s1.
Proof. by move <-; elim: s1 => [|x s1 IHs]; rewrite ?take0 //= IHs. Qed.

Lemma takel_cat s1 :
    n0 <= size s1 ->
  forall s2, take n0 (s1 ++ s2) = take n0 s1.
Proof.
move=> Hn0 s2; rewrite take_cat ltn_neqAle Hn0 andbT.
by case: (n0 =P size s1) => //= ->; rewrite subnn take0 cats0 take_size.
Qed.

Lemma nth_drop s i : nth (drop n0 s) i = nth s (n0 + i).
Proof.
have [lt_n0_s | le_s_n0] := ltnP n0 (size s).
  rewrite -{2}[s]cat_take_drop nth_cat size_take lt_n0_s /= addKn.
  by rewrite ltnNge leq_addr.
rewrite !nth_default //; first exact: leq_trans (leq_addr _ _).
by rewrite size_drop (eqnP le_s_n0).
Qed.

Lemma nth_take i : i < n0 -> forall s, nth (take n0 s) i = nth s i.
Proof.
move=> lt_i_n0 s; case lt_n0_s: (n0 < size s).
  by rewrite -{2}[s]cat_take_drop nth_cat size_take lt_n0_s /= lt_i_n0.
by rewrite -{1}[s]cats0 take_cat lt_n0_s /= cats0.
Qed.

(* drop_nth and take_nth below do NOT use the default n0, because the "n"  *)
(* can be inferred from the condition, whereas the nth default value x0    *)
(* will have to be given explicitly (and this will provide "d" as well).   *)

Lemma drop_nth n s : n < size s -> drop n s = nth s n :: drop n.+1 s.
Proof. by elim: s n => [|x s IHs] [|n] Hn //=; rewrite ?drop0 1?IHs. Qed.

Lemma take_nth n s : n < size s -> take n.+1 s = rcons (take n s) (nth s n).
Proof. by elim: s n => [|x s IHs] //= [|n] Hn /=; rewrite ?take0 -?IHs. Qed.

(* Rotation *)

Definition rot n s := drop n s ++ take n s.

Lemma rot0 s : rot 0 s = s.
Proof. by rewrite /rot drop0 take0 cats0. Qed.

Lemma size_rot s : size (rot n0 s) = size s.
Proof. by rewrite -{2}[s]cat_take_drop /rot !size_cat addnC. Qed.

Lemma rot_oversize n s : size s <= n -> rot n s = s.
Proof. by move=> le_s_n; rewrite /rot take_oversize ?drop_oversize. Qed.

Lemma rot_size s : rot (size s) s = s.
Proof. exact: rot_oversize. Qed.

Lemma has_rot s a : has a (rot n0 s) = has a s.
Proof. by rewrite has_cat orbC -has_cat cat_take_drop. Qed.

Lemma rot_size_cat s1 s2 : rot (size s1) (s1 ++ s2) = s2 ++ s1.
Proof. by rewrite /rot take_size_cat ?drop_size_cat. Qed.

Definition rotr n s := rot (size s - n) s.

Lemma rotK : cancel (rot n0) (rotr n0).
Proof.
move=> s; rewrite /rotr size_rot -size_drop {2}/rot.
by rewrite rot_size_cat cat_take_drop.
Qed.

Lemma rot_inj : injective (rot n0). Proof. exact (can_inj rotK). Qed.

Lemma rot1_cons x s : rot 1 (x :: s) = rcons s x.
Proof. by rewrite /rot /= take0 drop0 -cats1. Qed.

(* (efficient) reversal *)

Fixpoint catrev s1 s2 := if s1 is x :: s1' then catrev s1' (x :: s2) else s2.

End Sequences.

(* rev must be defined outside a Section because Coq's end of section *)
(* "cooking" removes the nosimpl guard.                               *)

Definition rev T (s : seq T) := nosimpl (catrev s [::]).

Implicit Arguments nilP [T s].
Implicit Arguments all_filterP [T a s].

Prenex Implicits size nilP head ohead behead last rcons belast.
Prenex Implicits cat take drop rev rot rotr.
Prenex Implicits find count nth all has filter all_filterP.

Notation count_mem x := (count (pred_of_simpl (pred1 x))).

Infix "++" := cat : seq_scope.

Notation "[ 'seq' x <- s | C ]" := (filter (fun x => C%B) s)
 (at level 0, x at level 99,
  format "[ '[hv' 'seq'  x  <-  s '/ '  |  C ] ']'") : seq_scope.
Notation "[ 'seq' x <- s | C1 & C2 ]" := [seq x <- s | C1 && C2]
 (at level 0, x at level 99,
  format "[ '[hv' 'seq'  x  <-  s '/ '  |  C1 '/ '  &  C2 ] ']'") : seq_scope.
Notation "[ 'seq' x : T <- s | C ]" := (filter (fun x : T => C%B) s)
 (at level 0, x at level 99, only parsing).
Notation "[ 'seq' x : T <- s | C1 & C2 ]" := [seq x : T <- s | C1 && C2]
 (at level 0, x at level 99, only parsing).


(* Double induction/recursion. *)
Lemma seq2_ind T1 T2 (P : seq T1 -> seq T2 -> Type) :
    P [::] [::] -> (forall x1 x2 s1 s2, P s1 s2 -> P (x1 :: s1) (x2 :: s2)) ->
  forall s1 s2, size s1 = size s2 -> P s1 s2.
Proof. by move=> Pnil Pcons; elim=> [|x s IHs] [] //= x2 s2 [] /IHs/Pcons. Qed.

Section Rev.

Variable T : Type.
Implicit Types s t : seq T.

Lemma catrev_catl s t u : catrev (s ++ t) u = catrev t (catrev s u).
Proof. by elim: s u => /=. Qed.

Lemma catrev_catr s t u : catrev s (t ++ u) = catrev s t ++ u.
Proof. by elim: s t => //= x s IHs t; rewrite -IHs. Qed.

Lemma catrevE s t : catrev s t = rev s ++ t.
Proof. by rewrite -catrev_catr. Qed.

Lemma rev_cons x s : rev (x :: s) = rcons (rev s) x.
Proof. by rewrite -cats1 -catrevE. Qed.

Lemma size_rev s : size (rev s) = size s.
Proof. by elim: s => // x s IHs; rewrite rev_cons size_rcons IHs. Qed.

Lemma rev_cat s t : rev (s ++ t) = rev t ++ rev s.
Proof. by rewrite -catrev_catr -catrev_catl. Qed.

Lemma rev_rcons s x : rev (rcons s x) = x :: rev s.
Proof. by rewrite -cats1 rev_cat. Qed.

Lemma revK : involutive (@rev T).
Proof. by elim=> //= x s IHs; rewrite rev_cons rev_rcons IHs. Qed.

Lemma nth_rev x0 n s :
  n < size s -> nth x0 (rev s) n = nth x0 s (size s - n.+1).
Proof.
elim/last_ind: s => // s x IHs in n *.
rewrite rev_rcons size_rcons ltnS subSS -cats1 nth_cat /=.
case: n => [|n] lt_n_s; first by rewrite subn0 ltnn subnn.
by rewrite -{2}(subnK lt_n_s) -addSnnS leq_addr /= -IHs.
Qed.

Lemma filter_rev a s : filter a (rev s) = rev (filter a s).
Proof. by elim: s => //= x s IH; rewrite fun_if !rev_cons filter_rcons IH. Qed.

Lemma count_rev a s : count a (rev s) = count a s.
Proof. by rewrite -!size_filter filter_rev size_rev. Qed.

Lemma has_rev a s : has a (rev s) = has a s.
Proof. by rewrite !has_count count_rev. Qed.

Lemma all_rev a s : all a (rev s) = all a s.
Proof. by rewrite !all_count count_rev size_rev. Qed.

End Rev.

Implicit Arguments revK [[T]].

(* Equality and eqType for seq.                                          *)

Section EqSeq.

Variables (n0 : nat) (T : eqType) (x0 : T).
Notation Local nth := (nth x0).
Implicit Type s : seq T.
Implicit Types x y z : T.

Fixpoint eqseq s1 s2 {struct s2} :=
  match s1, s2 with
  | [::], [::] => true
  | x1 :: s1', x2 :: s2' => (x1 == x2) && eqseq s1' s2'
  | _, _ => false
  end.

Lemma eqseqP : Equality.axiom eqseq.
Proof.
move; elim=> [|x1 s1 IHs] [|x2 s2]; do [by constructor | simpl].
case: (x1 =P x2) => [<-|neqx]; last by right; case.
by apply: (iffP (IHs s2)) => [<-|[]].
Qed.

Canonical seq_eqMixin := EqMixin eqseqP.
Canonical seq_eqType := Eval hnf in EqType (seq T) seq_eqMixin.

Lemma eqseqE : eqseq = eq_op. Proof. by []. Qed.

Lemma eqseq_cons x1 x2 s1 s2 :
  (x1 :: s1 == x2 :: s2) = (x1 == x2) && (s1 == s2).
Proof. by []. Qed.

Lemma eqseq_cat s1 s2 s3 s4 :
  size s1 = size s2 -> (s1 ++ s3 == s2 ++ s4) = (s1 == s2) && (s3 == s4).
Proof.
elim: s1 s2 => [|x1 s1 IHs] [|x2 s2] //= [sz12].
by rewrite !eqseq_cons -andbA IHs.
Qed.

Lemma eqseq_rcons s1 s2 x1 x2 :
  (rcons s1 x1 == rcons s2 x2) = (s1 == s2) && (x1 == x2).
Proof. by rewrite -(can_eq revK) !rev_rcons eqseq_cons andbC (can_eq revK). Qed.

Lemma size_eq0 s : (size s == 0) = (s == [::]).
Proof. exact: (sameP nilP eqP). Qed.

Lemma has_filter a s : has a s = (filter a s != [::]).
Proof. by rewrite -size_eq0 size_filter has_count lt0n. Qed.

(* mem_seq and index. *)
(* mem_seq defines a predType for seq. *)

Fixpoint mem_seq (s : seq T) :=
  if s is y :: s' then xpredU1 y (mem_seq s') else xpred0.

Definition eqseq_class := seq T.
Identity Coercion seq_of_eqseq : eqseq_class >-> seq.

Coercion pred_of_eq_seq (s : eqseq_class) : pred_class := [eta mem_seq s].

Canonical seq_predType := @mkPredType T (seq T) pred_of_eq_seq.
(* The line below makes mem_seq a canonical instance of topred. *)
Canonical mem_seq_predType := mkPredType mem_seq.

Lemma in_cons y s x : (x \in y :: s) = (x == y) || (x \in s).
Proof. by []. Qed.

Lemma in_nil x : (x \in [::]) = false.
Proof. by []. Qed.

Lemma mem_seq1 x y : (x \in [:: y]) = (x == y).
Proof. by rewrite in_cons orbF. Qed.

 (* to be repeated after the Section discharge. *)
Let inE := (mem_seq1, in_cons, inE).

Lemma mem_seq2 x y1 y2 : (x \in [:: y1; y2]) = xpred2 y1 y2 x.
Proof. by rewrite !inE. Qed.

Lemma mem_seq3  x y1 y2 y3 : (x \in [:: y1; y2; y3]) = xpred3 y1 y2 y3 x.
Proof. by rewrite !inE. Qed.

Lemma mem_seq4  x y1 y2 y3 y4 :
  (x \in [:: y1; y2; y3; y4]) = xpred4 y1 y2 y3 y4 x.
Proof. by rewrite !inE. Qed.

Lemma mem_cat x s1 s2 : (x \in s1 ++ s2) = (x \in s1) || (x \in s2).
Proof. by elim: s1 => //= y s1 IHs; rewrite !inE /= -orbA -IHs. Qed.

Lemma mem_rcons s y : rcons s y =i y :: s.
Proof. by move=> x; rewrite -cats1 /= mem_cat mem_seq1 orbC in_cons. Qed.

Lemma mem_head x s : x \in x :: s.
Proof. exact: predU1l. Qed.

Lemma mem_last x s : last x s \in x :: s.
Proof. by rewrite lastI mem_rcons mem_head. Qed.

Lemma mem_behead s : {subset behead s <= s}.
Proof. by case: s => // y s x; exact: predU1r. Qed.

Lemma mem_belast s y : {subset belast y s <= y :: s}.
Proof. by move=> x ys'x; rewrite lastI mem_rcons mem_behead. Qed.

Lemma mem_nth s n : n < size s -> nth s n \in s.
Proof.
by elim: s n => [|x s IHs] // [_|n sz_s]; rewrite ?mem_head // mem_behead ?IHs.
Qed.

Lemma mem_take s x : x \in take n0 s -> x \in s.
Proof. by move=> s0x; rewrite -(cat_take_drop n0 s) mem_cat /= s0x. Qed.

Lemma mem_drop s x : x \in drop n0 s -> x \in s.
Proof. by move=> s0'x; rewrite -(cat_take_drop n0 s) mem_cat /= s0'x orbT. Qed.

Section Filters.

Variable a : pred T.

Lemma hasP s : reflect (exists2 x, x \in s & a x) (has a s).
Proof.
elim: s => [|y s IHs] /=; first by right; case.
case ay: (a y); first by left; exists y; rewrite ?mem_head.
apply: (iffP IHs) => [] [x ysx ax]; exists x => //; first exact: mem_behead.
by case: (predU1P ysx) ax => [->|//]; rewrite ay.
Qed.

Lemma hasPn s : reflect (forall x, x \in s -> ~~ a x) (~~ has a s).
Proof.
apply: (iffP idP) => not_a_s => [x s_x|].
  by apply: contra not_a_s => a_x; apply/hasP; exists x.
by apply/hasP=> [[x s_x]]; apply/negP; exact: not_a_s.
Qed.

Lemma allP s : reflect (forall x, x \in s -> a x) (all a s).
Proof.
elim: s => [|x s IHs]; first by left.
rewrite /= andbC; case: IHs => IHs /=.
  apply: (iffP idP) => [Hx y|]; last by apply; exact: mem_head.
  by case/predU1P=> [->|Hy]; auto.
by right=> H; case IHs => y Hy; apply H; exact: mem_behead.
Qed.

Lemma allPn s : reflect (exists2 x, x \in s & ~~ a x) (~~ all a s).
Proof.
elim: s => [|x s IHs]; first by right=> [[x Hx _]].
rewrite /= andbC negb_and; case: IHs => IHs /=.
  by left; case: IHs => y Hy Hay; exists y; first exact: mem_behead.
apply: (iffP idP) => [|[y]]; first by exists x; rewrite ?mem_head.
by case/predU1P=> [-> // | s_y not_a_y]; case: IHs; exists y.
Qed.

Lemma mem_filter x s : (x \in filter a s) = a x && (x \in s).
Proof.
rewrite andbC; elim: s => //= y s IHs.
rewrite (fun_if (fun s' : seq T => x \in s')) !in_cons {}IHs.
by case: eqP => [->|_]; case (a y); rewrite /= ?andbF.
Qed.

End Filters.

Section EqIn.

Variables a1 a2 : pred T.

Lemma eq_in_filter s : {in s, a1 =1 a2} -> filter a1 s = filter a2 s.
Proof.
elim: s => //= x s IHs eq_a.
rewrite eq_a ?mem_head ?IHs // => y s_y; apply: eq_a; exact: mem_behead.
Qed.

Lemma eq_in_find s : {in s, a1 =1 a2} -> find a1 s = find a2 s.
Proof.
elim: s => //= x s IHs eq_a12; rewrite eq_a12 ?mem_head // IHs // => y s'y.
by rewrite eq_a12 // mem_behead.
Qed.

Lemma eq_in_count s : {in s, a1 =1 a2} -> count a1 s = count a2 s.
Proof. by move/eq_in_filter=> eq_a12; rewrite -!size_filter eq_a12. Qed.

Lemma eq_in_all s : {in s, a1 =1 a2} -> all a1 s = all a2 s.
Proof. by move=> eq_a12; rewrite !all_count eq_in_count. Qed.

Lemma eq_in_has s : {in s, a1 =1 a2} -> has a1 s = has a2 s.
Proof. by move/eq_in_filter=> eq_a12; rewrite !has_filter eq_a12. Qed.

End EqIn.

Lemma eq_has_r s1 s2 : s1 =i s2 -> has^~ s1 =1 has^~ s2.
Proof.
move=> Es12 a; apply/(hasP a s1)/(hasP a s2) => [] [x Hx Hax];
 by exists x; rewrite // ?Es12 // -Es12.
Qed.

Lemma eq_all_r s1 s2 : s1 =i s2 -> all^~ s1 =1 all^~ s2.
Proof.
by move=> Es12 a; apply/(allP a s1)/(allP a s2) => Hs x Hx;
  apply: Hs; rewrite Es12 in Hx *.
Qed.

Lemma has_sym s1 s2 : has (mem s1) s2 = has (mem s2) s1.
Proof. by apply/(hasP _ s2)/(hasP _ s1) => [] [x]; exists x. Qed.

Lemma has_pred1 x s : has (pred1 x) s = (x \in s).
Proof. by rewrite -(eq_has (mem_seq1^~ x)) (has_sym [:: x]) /= orbF. Qed.

Lemma mem_rev s : rev s =i s.
Proof. by move=> a; rewrite -!has_pred1 has_rev. Qed.

(* Constant sequences, i.e., the image of nseq. *)

Definition constant s := if s is x :: s' then all (pred1 x) s' else true.

Lemma all_pred1P x s : reflect (s = nseq (size s) x) (all (pred1 x) s).
Proof.
elim: s => [|y s IHs] /=; first by left.
case: eqP => [->{y} | ne_xy]; last by right=> [] [? _]; case ne_xy.
by apply: (iffP IHs) => [<- //| []].
Qed.

Lemma all_pred1_constant x s : all (pred1 x) s -> constant s.
Proof. by case: s => //= y s /andP[/eqP->]. Qed.

Lemma all_pred1_nseq x n : all (pred1 x) (nseq n x).
Proof. by rewrite all_nseq /= eqxx orbT. Qed.

Lemma nseqP n x y : reflect (y = x /\ n > 0) (y \in nseq n x).
Proof.
by rewrite -has_pred1 has_nseq /= eq_sym andbC; apply: (iffP andP) => -[/eqP].
Qed.

Lemma constant_nseq n x : constant (nseq n x).
Proof. exact: all_pred1_constant (all_pred1_nseq x n). Qed.

(* Uses x0 *)
Lemma constantP s : reflect (exists x, s = nseq (size s) x) (constant s).
Proof.
apply: (iffP idP) => [| [x ->]]; last exact: constant_nseq.
case: s => [|x s] /=; first by exists x0.
by move/all_pred1P=> def_s; exists x; rewrite -def_s.
Qed.

(* Duplicate-freenes. *)

Fixpoint uniq s := if s is x :: s' then (x \notin s') && uniq s' else true.

Lemma cons_uniq x s : uniq (x :: s) = (x \notin s) && uniq s.
Proof. by []. Qed.

Lemma cat_uniq s1 s2 :
  uniq (s1 ++ s2) = [&& uniq s1, ~~ has (mem s1) s2 & uniq s2].
Proof.
elim: s1 => [|x s1 IHs]; first by rewrite /= has_pred0.
by rewrite has_sym /= mem_cat !negb_or has_sym IHs -!andbA; do !bool_congr.
Qed.

Lemma uniq_catC s1 s2 : uniq (s1 ++ s2) = uniq (s2 ++ s1).
Proof. by rewrite !cat_uniq has_sym andbCA andbA andbC. Qed.

Lemma uniq_catCA s1 s2 s3 : uniq (s1 ++ s2 ++ s3) = uniq (s2 ++ s1 ++ s3).
Proof.
by rewrite !catA -!(uniq_catC s3) !(cat_uniq s3) uniq_catC !has_cat orbC.
Qed.

Lemma rcons_uniq s x : uniq (rcons s x) = (x \notin s) && uniq s.
Proof. by rewrite -cats1 uniq_catC. Qed.

Lemma filter_uniq s a : uniq s -> uniq (filter a s).
Proof.
elim: s => [|x s IHs] //= /andP[Hx Hs]; case (a x); auto.
by rewrite /= mem_filter /= (negbTE Hx) andbF; auto.
Qed.

Lemma rot_uniq s : uniq (rot n0 s) = uniq s.
Proof. by rewrite /rot uniq_catC cat_take_drop. Qed.

Lemma rev_uniq s : uniq (rev s) = uniq s.
Proof.
elim: s => // x s IHs.
by rewrite rev_cons -cats1 cat_uniq /= andbT andbC mem_rev orbF IHs.
Qed.

Lemma count_memPn x s : reflect (count_mem x s = 0) (x \notin s).
Proof. by rewrite -has_pred1 has_count -eqn0Ngt; apply: eqP. Qed.

Lemma count_uniq_mem s x : uniq s -> count_mem x s = (x \in s).
Proof.
elim: s => //= y s IHs /andP[/negbTE s'y /IHs-> {IHs}].
by rewrite in_cons eq_sym; case: eqP => // ->; rewrite s'y.
Qed.

Lemma filter_pred1_uniq s x : uniq s -> x \in s -> filter (pred1 x) s = [:: x].
Proof.
move=> uniq_s s_x; rewrite (all_pred1P _ _ (filter_all _ _)).
by rewrite size_filter count_uniq_mem ?s_x.
Qed.

(* Removing duplicates *)

Fixpoint undup s :=
  if s is x :: s' then if x \in s' then undup s' else x :: undup s' else [::].

Lemma size_undup s : size (undup s) <= size s.
Proof. by elim: s => //= x s IHs; case: (x \in s) => //=; exact: ltnW. Qed.

Lemma mem_undup s : undup s =i s.
Proof.
move=> x; elim: s => //= y s IHs.
by case Hy: (y \in s); rewrite in_cons IHs //; case: eqP => // ->.
Qed.

Lemma undup_uniq s : uniq (undup s).
Proof.
by elim: s => //= x s IHs; case s_x: (x \in s); rewrite //= mem_undup s_x.
Qed.

Lemma undup_id s : uniq s -> undup s = s.
Proof. by elim: s => //= x s IHs /andP[/negbTE-> /IHs->]. Qed.

Lemma ltn_size_undup s : (size (undup s) < size s) = ~~ uniq s.
Proof.
by elim: s => //= x s IHs; case Hx: (x \in s); rewrite //= ltnS size_undup.
Qed.

Lemma filter_undup p s : filter p (undup s) = undup (filter p s).
Proof.
elim: s => //= x s IHs; rewrite (fun_if undup) fun_if /= mem_filter /=.
by rewrite (fun_if (filter p)) /= IHs; case: ifP => -> //=; exact: if_same.
Qed.

Lemma undup_nil s : undup s = [::] -> s = [::].
Proof. by case: s => //= x s; rewrite -mem_undup; case: ifP; case: undup. Qed.

(* Lookup *)

Definition index x := find (pred1 x).

Lemma index_size x s : index x s <= size s.
Proof. by rewrite /index find_size. Qed.

Lemma index_mem x s : (index x s < size s) = (x \in s).
Proof. by rewrite -has_pred1 has_find. Qed.

Lemma nth_index x s : x \in s -> nth s (index x s) = x.
Proof. by rewrite -has_pred1 => /(nth_find x0)/eqP. Qed.

Lemma index_cat x s1 s2 :
 index x (s1 ++ s2) = if x \in s1 then index x s1 else size s1 + index x s2.
Proof. by rewrite /index find_cat has_pred1. Qed.

Lemma index_uniq i s : i < size s -> uniq s -> index (nth s i) s = i.
Proof.
elim: s i => [|x s IHs] //= [|i]; rewrite /= ?eqxx // ltnS => lt_i_s.
case/andP=> not_s_x /(IHs i)-> {IHs}//.
by case: eqP not_s_x => // ->; rewrite mem_nth.
Qed.

Lemma index_head x s : index x (x :: s) = 0.
Proof. by rewrite /= eqxx. Qed.

Lemma index_last x s : uniq (x :: s) -> index (last x s) (x :: s) = size s.
Proof.
rewrite lastI rcons_uniq -cats1 index_cat size_belast.
by case: ifP => //=; rewrite eqxx addn0.
Qed.

Lemma nth_uniq s i j :
  i < size s -> j < size s -> uniq s -> (nth s i == nth s j) = (i == j).
Proof.
move=> lt_i_s lt_j_s Us; apply/eqP/eqP=> [eq_sij|-> //].
by rewrite -(index_uniq lt_i_s Us) eq_sij index_uniq.
Qed.

Lemma mem_rot s : rot n0 s =i s.
Proof. by move=> x; rewrite -{2}(cat_take_drop n0 s) !mem_cat /= orbC. Qed.

Lemma eqseq_rot s1 s2 : (rot n0 s1 == rot n0 s2) = (s1 == s2).
Proof. by apply: inj_eq; exact: rot_inj. Qed.

CoInductive rot_to_spec s x := RotToSpec i s' of rot i s = x :: s'.

Lemma rot_to s x : x \in s -> rot_to_spec s x.
Proof.
move=> s_x; pose i := index x s; exists i (drop i.+1 s ++ take i s).
rewrite -cat_cons {}/i; congr cat; elim: s s_x => //= y s IHs.
by rewrite eq_sym in_cons; case: eqP => // -> _; rewrite drop0.
Qed.

End EqSeq.

Definition inE := (mem_seq1, in_cons, inE).

Prenex Implicits mem_seq1 uniq undup index.

Implicit Arguments eqseqP [T x y].
Implicit Arguments hasP [T a s].
Implicit Arguments hasPn [T a s].
Implicit Arguments allP [T a s].
Implicit Arguments allPn [T a s].
Implicit Arguments nseqP [T n x y].
Implicit Arguments count_memPn [T x s].
Prenex Implicits eqseqP hasP hasPn allP allPn nseqP count_memPn.

Section NthTheory.

Lemma nthP (T : eqType) (s : seq T) x x0 :
  reflect (exists2 i, i < size s & nth x0 s i = x) (x \in s).
Proof.
apply: (iffP idP) => [|[n Hn <-]]; last by apply mem_nth.
by exists (index x s); [rewrite index_mem | apply nth_index].
Qed.

Variable T : Type.

Lemma has_nthP (a : pred T) s x0 :
  reflect (exists2 i, i < size s & a (nth x0 s i)) (has a s).
Proof.
elim: s => [|x s IHs] /=; first by right; case.
case nax: (a x); first by left; exists 0.
by apply: (iffP IHs) => [[i]|[[|i]]]; [exists i.+1 | rewrite nax | exists i].
Qed.

Lemma all_nthP (a : pred T) s x0 :
  reflect (forall i, i < size s -> a (nth x0 s i)) (all a s).
Proof.
rewrite -(eq_all (fun x => negbK (a x))) all_predC.
case: (has_nthP _ _ x0) => [na_s | a_s]; [right=> a_s | left=> i lti].
  by case: na_s => i lti; rewrite a_s.
by apply/idPn=> na_si; case: a_s; exists i.
Qed.

End NthTheory.

Lemma set_nth_default T s (y0 x0 : T) n : n < size s -> nth x0 s n = nth y0 s n.
Proof. by elim: s n => [|y s' IHs] [|n] /=; auto. Qed.

Lemma headI T s (x : T) : rcons s x = head x s :: behead (rcons s x).
Proof. by case: s. Qed.

Implicit Arguments nthP [T s x].
Implicit Arguments has_nthP [T a s].
Implicit Arguments all_nthP [T a s].
Prenex Implicits nthP has_nthP all_nthP.

Definition bitseq := seq bool.
Canonical bitseq_eqType := Eval hnf in [eqType of bitseq].
Canonical bitseq_predType := Eval hnf in [predType of bitseq].

(* Incrementing the ith nat in a seq nat, padding with 0's if needed. This  *)
(* allows us to use nat seqs as bags of nats.                               *)

Fixpoint incr_nth v i {struct i} :=
  if v is n :: v' then if i is i'.+1 then n :: incr_nth v' i' else n.+1 :: v'
  else ncons i 0 [:: 1].

Lemma nth_incr_nth v i j : nth 0 (incr_nth v i) j = (i == j) + nth 0 v j.
Proof.
elim: v i j => [|n v IHv] [|i] [|j] //=; rewrite ?eqSS ?addn0 //; try by case j.
elim: i j => [|i IHv] [|j] //=; rewrite ?eqSS //; by case j.
Qed.

Lemma size_incr_nth v i :
  size (incr_nth v i) = if i < size v then size v else i.+1.
Proof.
elim: v i => [|n v IHv] [|i] //=; first by rewrite size_ncons /= addn1.
rewrite IHv; exact: fun_if.
Qed.

(* Equality up to permutation *)

Section PermSeq.

Variable T : eqType.
Implicit Type s : seq T.

Definition perm_eq s1 s2 :=
  all [pred x | count_mem x s1 == count_mem x s2] (s1 ++ s2).

Lemma perm_eqP s1 s2 : reflect (count^~ s1 =1 count^~ s2) (perm_eq s1 s2).
Proof.
apply: (iffP allP) => /= [eq_cnt1 a | eq_cnt x _]; last exact/eqP.
elim: {a}_.+1 {-2}a (ltnSn (count a (s1 ++ s2))) => // n IHn a le_an.
have [/eqP|] := posnP (count a (s1 ++ s2)).
  by rewrite count_cat addn_eq0; do 2!case: eqP => // ->.
rewrite -has_count => /hasP[x s12x a_x]; pose a' := predD1 a x.
have cnt_a' s: count a s = count_mem x s + count a' s.
  rewrite -count_predUI -[LHS]addn0 -(count_pred0 s).
  by congr (_ + _); apply: eq_count => y /=; case: eqP => // ->.
rewrite !cnt_a' (eqnP (eq_cnt1 _ s12x)) (IHn a') // -ltnS.
apply: leq_trans le_an.
by rewrite ltnS cnt_a' -add1n leq_add2r -has_count has_pred1.
Qed.

Lemma perm_eq_refl s : perm_eq s s.
Proof. exact/perm_eqP. Qed.
Hint Resolve perm_eq_refl.

Lemma perm_eq_sym : symmetric perm_eq.
Proof. by move=> s1 s2; apply/perm_eqP/perm_eqP=> ? ?. Qed.

Lemma perm_eq_trans : transitive perm_eq.
Proof. by move=> s2 s1 s3 /perm_eqP-eq12 /perm_eqP/(ftrans eq12)/perm_eqP. Qed.

Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2).
Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2).

Lemma perm_eqlE s1 s2 : perm_eql s1 s2 -> perm_eq s1 s2. Proof. by move->. Qed.

Lemma perm_eqlP s1 s2 : reflect (perm_eql s1 s2) (perm_eq s1 s2).
Proof.
apply: (iffP idP) => [eq12 s3 | -> //].
apply/idP/idP; last exact: perm_eq_trans.
by rewrite -!(perm_eq_sym s3); move/perm_eq_trans; apply.
Qed.

Lemma perm_eqrP s1 s2 : reflect (perm_eqr s1 s2) (perm_eq s1 s2).
Proof.
apply: (iffP idP) => [/perm_eqlP eq12 s3| <- //].
by rewrite !(perm_eq_sym s3) eq12.
Qed.

Lemma perm_catC s1 s2 : perm_eql (s1 ++ s2) (s2 ++ s1).
Proof. by apply/perm_eqlP; apply/perm_eqP=> a; rewrite !count_cat addnC. Qed.

Lemma perm_cat2l s1 s2 s3 : perm_eq (s1 ++ s2) (s1 ++ s3) = perm_eq s2 s3.
Proof.
apply/perm_eqP/perm_eqP=> eq23 a; apply/eqP;
  by move/(_ a)/eqP: eq23; rewrite !count_cat eqn_add2l.
Qed.

Lemma perm_cons x s1 s2 : perm_eq (x :: s1) (x :: s2) = perm_eq s1 s2.
Proof. exact: (perm_cat2l [::x]). Qed.

Lemma perm_cat2r s1 s2 s3 : perm_eq (s2 ++ s1) (s3 ++ s1) = perm_eq s2 s3.
Proof. by do 2!rewrite perm_eq_sym perm_catC; exact: perm_cat2l. Qed.

Lemma perm_catAC s1 s2 s3 : perm_eql ((s1 ++ s2) ++ s3) ((s1 ++ s3) ++ s2).
Proof. by apply/perm_eqlP; rewrite -!catA perm_cat2l perm_catC. Qed.

Lemma perm_catCA s1 s2 s3 : perm_eql (s1 ++ s2 ++ s3) (s2 ++ s1 ++ s3).
Proof. by apply/perm_eqlP; rewrite !catA perm_cat2r perm_catC. Qed.

Lemma perm_rcons x s : perm_eql (rcons s x) (x :: s).
Proof. by move=> /= s2; rewrite -cats1 perm_catC. Qed.

Lemma perm_rot n s : perm_eql (rot n s) s.
Proof. by move=> /= s2; rewrite perm_catC cat_take_drop. Qed.

Lemma perm_rotr n s : perm_eql (rotr n s) s.
Proof. exact: perm_rot. Qed.

Lemma perm_filterC a s : perm_eql (filter a s ++ filter (predC a) s) s.
Proof.
apply/perm_eqlP; elim: s => //= x s IHs.
by case: (a x); last rewrite /= -cat1s perm_catCA; rewrite perm_cons.
Qed.

Lemma perm_eq_mem s1 s2 : perm_eq s1 s2 -> s1 =i s2.
Proof. by move/perm_eqP=> eq12 x; rewrite -!has_pred1 !has_count eq12. Qed.

Lemma perm_eq_size s1 s2 : perm_eq s1 s2 -> size s1 = size s2.
Proof. by move/perm_eqP=> eq12; rewrite -!count_predT eq12. Qed.

Lemma perm_eq_small s1 s2 : size s2 <= 1 -> perm_eq s1 s2 -> s1 = s2.
Proof.
move=> s2_le1 eqs12; move/perm_eq_size: eqs12 s2_le1 (perm_eq_mem eqs12).
by case: s2 s1 => [|x []] // [|y []] // _ _ /(_ x); rewrite !inE eqxx => /eqP->.
Qed.

Lemma uniq_leq_size s1 s2 : uniq s1 -> {subset s1 <= s2} -> size s1 <= size s2.
Proof.
elim: s1 s2 => //= x s1 IHs s2 /andP[not_s1x Us1] /allP/=/andP[s2x /allP ss12].
have [i s3 def_s2] := rot_to s2x; rewrite -(size_rot i s2) def_s2.
apply: IHs => // y s1y; have:= ss12 y s1y.
by rewrite -(mem_rot i) def_s2 inE (negPf (memPn _ y s1y)).
Qed.

Lemma leq_size_uniq s1 s2 :
  uniq s1 -> {subset s1 <= s2} -> size s2 <= size s1 -> uniq s2.
Proof.
elim: s1 s2 => [[] | x s1 IHs s2] // Us1x; have /andP[not_s1x Us1] := Us1x.
case/allP/andP=> /rot_to[i s3 def_s2] /allP ss12 le_s21.
rewrite -(rot_uniq i) -(size_rot i) def_s2 /= in le_s21 *.
have ss13 y (s1y : y \in s1): y \in s3.
  by have:= ss12 y s1y; rewrite -(mem_rot i) def_s2 inE (negPf (memPn _ y s1y)).
rewrite IHs // andbT; apply: contraL _ le_s21 => s3x; rewrite -leqNgt.
by apply/(uniq_leq_size Us1x)/allP; rewrite /= s3x; exact/allP.
Qed.

Lemma uniq_size_uniq s1 s2 :
  uniq s1 -> s1 =i s2 -> uniq s2 = (size s2 == size s1).
Proof.
move=> Us1 eqs12; apply/idP/idP=> [Us2 | /eqP eq_sz12].
  by rewrite eqn_leq !uniq_leq_size // => y; rewrite eqs12.
by apply: (leq_size_uniq Us1) => [y|]; rewrite (eqs12, eq_sz12).
Qed.

Lemma leq_size_perm s1 s2 :
    uniq s1 -> {subset s1 <= s2} -> size s2 <= size s1 ->
  s1 =i s2 /\ size s1 = size s2.
Proof.
move=> Us1 ss12 le_s21; have Us2: uniq s2 := leq_size_uniq Us1 ss12 le_s21.
suffices: s1 =i s2 by split; last by apply/eqP; rewrite -uniq_size_uniq.
move=> x; apply/idP/idP=> [/ss12// | s2x]; apply: contraLR le_s21 => not_s1x.
rewrite -ltnNge (@uniq_leq_size (x :: s1)) /= ?not_s1x //.
by apply/allP; rewrite /= s2x; apply/allP.
Qed.

Lemma perm_uniq s1 s2 : s1 =i s2 -> size s1 = size s2 -> uniq s1 = uniq s2.
Proof.
move=> Es12 Esz12.
by apply/idP/idP=> Us; rewrite (uniq_size_uniq Us) ?Esz12 ?eqxx.
Qed.

Lemma perm_eq_uniq s1 s2 : perm_eq s1 s2 -> uniq s1 = uniq s2.
Proof.
by move=> eq_s12; apply: perm_uniq; [apply: perm_eq_mem | apply: perm_eq_size].
Qed.

Lemma uniq_perm_eq s1 s2 : uniq s1 -> uniq s2 -> s1 =i s2 -> perm_eq s1 s2.
Proof.
move=> Us1 Us2 eq12; apply/allP=> x _; apply/eqP.
by rewrite !count_uniq_mem ?eq12.
Qed.

Lemma count_mem_uniq s : (forall x, count_mem x s = (x \in s)) -> uniq s.
Proof.
move=> count1_s; have Uus := undup_uniq s.
suffices: perm_eq s (undup s) by move/perm_eq_uniq->.
by apply/allP=> x _; apply/eqP; rewrite (count_uniq_mem x Uus) mem_undup.
Qed.

Lemma catCA_perm_ind P :
    (forall s1 s2 s3, P (s1 ++ s2 ++ s3) -> P (s2 ++ s1 ++ s3)) ->
  (forall s1 s2, perm_eq s1 s2 -> P s1 -> P s2).
Proof.
move=> PcatCA s1 s2 eq_s12; rewrite -[s1]cats0 -[s2]cats0.
elim: s2 nil => [| x s2 IHs] s3 in s1 eq_s12 *.
  by case: s1 {eq_s12}(perm_eq_size eq_s12).
have /rot_to[i s' def_s1]: x \in s1 by rewrite (perm_eq_mem eq_s12) mem_head.
rewrite -(cat_take_drop i s1) -catA => /PcatCA.
rewrite catA -/(rot i s1) def_s1 /= -cat1s => /PcatCA/IHs/PcatCA; apply.
by rewrite -(perm_cons x) -def_s1 perm_rot.
Qed.

Lemma catCA_perm_subst R F :
    (forall s1 s2 s3, F (s1 ++ s2 ++ s3) = F (s2 ++ s1 ++ s3) :> R) ->
  (forall s1 s2, perm_eq s1 s2 -> F s1 = F s2).
Proof.
move=> FcatCA s1 s2 /catCA_perm_ind => ind_s12.
by apply: (ind_s12 (eq _ \o F)) => //= *; rewrite FcatCA.
Qed.

End PermSeq.

Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2).
Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2).

Implicit Arguments perm_eqP [T s1 s2].
Implicit Arguments perm_eqlP [T s1 s2].
Implicit Arguments perm_eqrP [T s1 s2].
Prenex Implicits perm_eq perm_eqP perm_eqlP perm_eqrP.
Hint Resolve perm_eq_refl.

Section RotrLemmas.

Variables (n0 : nat) (T : Type) (T' : eqType).
Implicit Type s : seq T.

Lemma size_rotr s : size (rotr n0 s) = size s.
Proof. by rewrite size_rot. Qed.

Lemma mem_rotr (s : seq T') : rotr n0 s =i s.
Proof. by move=> x; rewrite mem_rot. Qed.

Lemma rotr_size_cat s1 s2 : rotr (size s2) (s1 ++ s2) = s2 ++ s1.
Proof. by rewrite /rotr size_cat addnK rot_size_cat. Qed.

Lemma rotr1_rcons x s : rotr 1 (rcons s x) = x :: s.
Proof. by rewrite -rot1_cons rotK. Qed.

Lemma has_rotr a s : has a (rotr n0 s) = has a s.
Proof. by rewrite has_rot. Qed.

Lemma rotr_uniq (s : seq T') : uniq (rotr n0 s) = uniq s.
Proof. by rewrite rot_uniq. Qed.

Lemma rotrK : cancel (@rotr T n0) (rot n0).
Proof.
move=> s; have [lt_n0s | ge_n0s] := ltnP n0 (size s).
  by rewrite -{1}(subKn (ltnW lt_n0s)) -{1}[size s]size_rotr; exact: rotK.
by rewrite -{2}(rot_oversize ge_n0s) /rotr (eqnP ge_n0s) rot0.
Qed.

Lemma rotr_inj : injective (@rotr T n0).
Proof. exact (can_inj rotrK). Qed.

Lemma rev_rot s : rev (rot n0 s) = rotr n0 (rev s).
Proof.
rewrite /rotr size_rev -{3}(cat_take_drop n0 s) {1}/rot !rev_cat.
by rewrite -size_drop -size_rev rot_size_cat.
Qed.

Lemma rev_rotr s : rev (rotr n0 s) = rot n0 (rev s).
Proof.
apply: canRL rotrK _; rewrite {1}/rotr size_rev size_rotr /rotr {2}/rot rev_cat.
set m := size s - n0; rewrite -{1}(@size_takel m _ _ (leq_subr _ _)).
by rewrite -size_rev rot_size_cat -rev_cat cat_take_drop.
Qed.

End RotrLemmas.

Section RotCompLemmas.

Variable T : Type.
Implicit Type s : seq T.

Lemma rot_addn m n s : m + n <= size s -> rot (m + n) s = rot m (rot n s).
Proof.
move=> sz_s; rewrite {1}/rot -[take _ s](cat_take_drop n).
rewrite 5!(catA, =^~ rot_size_cat) !cat_take_drop.
by rewrite size_drop !size_takel ?leq_addl ?addnK.
Qed.

Lemma rotS n s : n < size s -> rot n.+1 s = rot 1 (rot n s).
Proof. exact: (@rot_addn 1). Qed.

Lemma rot_add_mod m n s : n <= size s -> m <= size s ->
  rot m (rot n s) = rot (if m + n <= size s then m + n else m + n - size s) s.
Proof.
move=> Hn Hm; case: leqP => [/rot_addn // | /ltnW Hmn]; symmetry.
by rewrite -{2}(rotK n s) /rotr -rot_addn size_rot addnBA ?subnK ?addnK.
Qed.

Lemma rot_rot m n s : rot m (rot n s) = rot n (rot m s).
Proof.
case: (ltnP (size s) m) => Hm.
  by rewrite !(@rot_oversize T m) ?size_rot 1?ltnW.
case: (ltnP (size s) n) => Hn.
  by rewrite !(@rot_oversize T n) ?size_rot 1?ltnW.
by rewrite !rot_add_mod 1?addnC.
Qed.

Lemma rot_rotr m n s : rot m (rotr n s) = rotr n (rot m s).
Proof. by rewrite {2}/rotr size_rot rot_rot. Qed.

Lemma rotr_rotr m n s : rotr m (rotr n s) = rotr n (rotr m s).
Proof. by rewrite /rotr !size_rot rot_rot. Qed.

End RotCompLemmas.

Section Mask.

Variables (n0 : nat) (T : Type).
Implicit Types (m : bitseq) (s : seq T).

Fixpoint mask m s {struct m} :=
  match m, s with
  | b :: m', x :: s' => if b then x :: mask m' s' else mask m' s'
  | _, _ => [::]
  end.

Lemma mask_false s n : mask (nseq n false) s = [::].
Proof. by elim: s n => [|x s IHs] [|n] /=. Qed.

Lemma mask_true s n : size s <= n -> mask (nseq n true) s = s.
Proof. by elim: s n => [|x s IHs] [|n] //= Hn; congr (_ :: _); apply: IHs. Qed.

Lemma mask0 m : mask m [::] = [::].
Proof. by case: m. Qed.

Lemma mask1 b x : mask [:: b] [:: x] = nseq b x.
Proof. by case: b. Qed.

Lemma mask_cons b m x s : mask (b :: m) (x :: s) = nseq b x ++ mask m s.
Proof. by case: b. Qed.

Lemma size_mask m s : size m = size s -> size (mask m s) = count id m.
Proof. by move: m s; apply: seq2_ind => // -[] x m s /= ->. Qed.

Lemma mask_cat m1 m2 s1 s2 :
  size m1 = size s1 -> mask (m1 ++ m2) (s1 ++ s2) = mask m1 s1 ++ mask m2 s2.
Proof. by move: m1 s1; apply: seq2_ind => // -[] m1 x1 s1 /= ->. Qed.

Lemma has_mask_cons a b m x s :
  has a (mask (b :: m) (x :: s)) = b && a x || has a (mask m s).
Proof. by case: b. Qed.

Lemma has_mask a m s : has a (mask m s) -> has a s.
Proof.
elim: m s => [|b m IHm] [|x s] //; rewrite has_mask_cons /= andbC.
by case: (a x) => //= /IHm.
Qed.

Lemma mask_rot m s : size m = size s ->
   mask (rot n0 m) (rot n0 s) = rot (count id (take n0 m)) (mask m s).
Proof.
move=> Ems; rewrite mask_cat ?size_drop ?Ems // -rot_size_cat.
by rewrite size_mask -?mask_cat ?size_take ?Ems // !cat_take_drop.
Qed.

Lemma resize_mask m s : {m1 | size m1 = size s & mask m s = mask m1 s}.
Proof.
by exists (take (size s) m ++ nseq (size s - size m) false);
   elim: s m => [|x s IHs] [|b m] //=; rewrite (size_nseq, mask_false, IHs).
Qed.

End Mask.

Section EqMask.

Variables (n0 : nat) (T : eqType).
Implicit Types (s : seq T) (m : bitseq).

Lemma mem_mask_cons x b m y s :
  (x \in mask (b :: m) (y :: s)) = b && (x == y) || (x \in mask m s).
Proof. by case: b. Qed.

Lemma mem_mask x m s : x \in mask m s -> x \in s.
Proof. by rewrite -!has_pred1 => /has_mask. Qed.

Lemma mask_uniq s : uniq s -> forall m, uniq (mask m s).
Proof.
elim: s => [|x s IHs] Uxs [|b m] //=.
case: b Uxs => //= /andP[s'x Us]; rewrite {}IHs // andbT.
by apply: contra s'x; exact: mem_mask.
Qed.

Lemma mem_mask_rot m s :
  size m = size s -> mask (rot n0 m) (rot n0 s) =i mask m s.
Proof. by move=> Ems x; rewrite mask_rot // mem_rot. Qed.

End EqMask.

Section Subseq.

Variable T : eqType.
Implicit Type s : seq T.

Fixpoint subseq s1 s2 :=
  if s2 is y :: s2' then
    if s1 is x :: s1' then subseq (if x == y then s1' else s1) s2' else true
  else s1 == [::].

Lemma sub0seq s : subseq [::] s. Proof. by case: s. Qed.

Lemma subseq0 s : subseq s [::] = (s == [::]). Proof. by []. Qed.

Lemma subseqP s1 s2 :
  reflect (exists2 m, size m = size s2 & s1 = mask m s2) (subseq s1 s2).
Proof.
elim: s2 s1 => [|y s2 IHs2] [|x s1].
- by left; exists [::].
- by right; do 2!case.
- by left; exists (nseq (size s2).+1 false); rewrite ?size_nseq //= mask_false.
apply: {IHs2}(iffP (IHs2 _)) => [] [m sz_m def_s1].
  by exists ((x == y) :: m); rewrite /= ?sz_m // -def_s1; case: eqP => // ->.
case: eqP => [_ | ne_xy]; last first.
  by case: m def_s1 sz_m => [//|[m []//|m]] -> [<-]; exists m.
pose i := index true m; have def_m_i: take i m = nseq (size (take i m)) false.
  apply/all_pred1P; apply/(all_nthP true) => j.
  rewrite size_take ltnNge geq_min negb_or -ltnNge; case/andP=> lt_j_i _.
  rewrite nth_take //= -negb_add addbF -addbT -negb_eqb.
  by rewrite [_ == _](before_find _ lt_j_i).
have lt_i_m: i < size m.
  rewrite ltnNge; apply/negP=> le_m_i; rewrite take_oversize // in def_m_i.
  by rewrite def_m_i mask_false in def_s1.
rewrite size_take lt_i_m in def_m_i.
exists (take i m ++ drop i.+1 m).
  rewrite size_cat size_take size_drop lt_i_m.
  by rewrite sz_m in lt_i_m *; rewrite subnKC.
rewrite {s1 def_s1}[s1](congr1 behead def_s1).
rewrite -[s2](cat_take_drop i) -{1}[m](cat_take_drop i) {}def_m_i -cat_cons.
have sz_i_s2: size (take i s2) = i by apply: size_takel; rewrite sz_m in lt_i_m.
rewrite lastI cat_rcons !mask_cat ?size_nseq ?size_belast ?mask_false //=.
by rewrite (drop_nth true) // nth_index -?index_mem.
Qed.

Lemma mask_subseq m s : subseq (mask m s) s.
Proof. by apply/subseqP; have [m1] := resize_mask m s; exists m1. Qed.

Lemma subseq_trans : transitive subseq.
Proof.
move=> _ _ s /subseqP[m2 _ ->] /subseqP[m1 _ ->].
elim: s => [|x s IHs] in m2 m1 *; first by rewrite !mask0.
case: m1 => [|[] m1]; first by rewrite mask0.
  case: m2 => [|[] m2] //; first by rewrite /= eqxx IHs.
  case/subseqP: (IHs m2 m1) => m sz_m def_s; apply/subseqP.
  by exists (false :: m); rewrite //= sz_m.
case/subseqP: (IHs m2 m1) => m sz_m def_s; apply/subseqP.
by exists (false :: m); rewrite //= sz_m.
Qed.

Lemma subseq_refl s : subseq s s.
Proof. by elim: s => //= x s IHs; rewrite eqxx. Qed.
Hint Resolve subseq_refl.

Lemma cat_subseq s1 s2 s3 s4 :
  subseq s1 s3 -> subseq s2 s4 -> subseq (s1 ++ s2) (s3 ++ s4).
Proof.
case/subseqP=> m1 sz_m1 ->; case/subseqP=> m2 sz_m2 ->; apply/subseqP.
by exists (m1 ++ m2); rewrite ?size_cat ?mask_cat ?sz_m1 ?sz_m2.
Qed.

Lemma prefix_subseq s1 s2 : subseq s1 (s1 ++ s2).
Proof. by rewrite -{1}[s1]cats0 cat_subseq ?sub0seq. Qed.

Lemma suffix_subseq s1 s2 : subseq s2 (s1 ++ s2).
Proof. by rewrite -{1}[s2]cat0s cat_subseq ?sub0seq. Qed.

Lemma mem_subseq s1 s2 : subseq s1 s2 -> {subset s1 <= s2}.
Proof. by case/subseqP=> m _ -> x; exact: mem_mask. Qed.

Lemma sub1seq x s : subseq [:: x] s = (x \in s).
Proof.
by elim: s => //= y s; rewrite inE; case: (x == y); rewrite ?sub0seq.
Qed.

Lemma size_subseq s1 s2 : subseq s1 s2 -> size s1 <= size s2.
Proof. by case/subseqP=> m sz_m ->; rewrite size_mask -sz_m ?count_size. Qed.

Lemma size_subseq_leqif s1 s2 :
  subseq s1 s2 -> size s1 <= size s2 ?= iff (s1 == s2).
Proof.
move=> sub12; split; first exact: size_subseq.
apply/idP/eqP=> [|-> //]; case/subseqP: sub12 => m sz_m ->{s1}.
rewrite size_mask -sz_m // -all_count -(eq_all eqb_id).
by move/(@all_pred1P _ true)->; rewrite sz_m mask_true.
Qed.

Lemma subseq_cons s x : subseq s (x :: s).
Proof. by exact: (@cat_subseq [::] s [:: x]). Qed.

Lemma subseq_rcons s x : subseq s (rcons s x).
Proof. by rewrite -{1}[s]cats0 -cats1 cat_subseq. Qed.

Lemma subseq_uniq s1 s2 : subseq s1 s2 -> uniq s2 -> uniq s1.
Proof. by case/subseqP=> m _ -> Us2; exact: mask_uniq. Qed.

End Subseq.

Prenex Implicits subseq.
Implicit Arguments subseqP [T s1 s2].

Hint Resolve subseq_refl.

Section Rem.

Variables (T : eqType) (x : T).

Fixpoint rem s := if s is y :: t then (if y == x then t else y :: rem t) else s.

Lemma rem_id s : x \notin s -> rem s = s.
Proof.
by elim: s => //= y s IHs /norP[neq_yx /IHs->]; rewrite eq_sym (negbTE neq_yx).
Qed.

Lemma perm_to_rem s : x \in s -> perm_eq s (x :: rem s).
Proof.
elim: s => // y s IHs; rewrite inE /= eq_sym perm_eq_sym.
case: eqP => [-> // | _ /IHs].
by rewrite (perm_catCA [:: x] [:: y]) perm_cons perm_eq_sym.
Qed.

Lemma size_rem s : x \in s -> size (rem s) = (size s).-1.
Proof. by move/perm_to_rem/perm_eq_size->. Qed.

Lemma rem_subseq s : subseq (rem s) s.
Proof.
elim: s => //= y s IHs; rewrite eq_sym.
by case: ifP => _; [exact: subseq_cons | rewrite eqxx].
Qed.

Lemma rem_uniq s : uniq s -> uniq (rem s).
Proof. by apply: subseq_uniq; exact: rem_subseq. Qed.

Lemma mem_rem s : {subset rem s <= s}.
Proof. exact: mem_subseq (rem_subseq s). Qed.

Lemma rem_filter s : uniq s -> rem s = filter (predC1 x) s.
Proof.
elim: s => //= y s IHs /andP[not_s_y /IHs->].
by case: eqP => //= <-; apply/esym/all_filterP; rewrite all_predC has_pred1.
Qed.

Lemma mem_rem_uniq s : uniq s -> rem s =i [predD1 s & x].
Proof. by move/rem_filter=> -> y; rewrite mem_filter. Qed.

End Rem.

Section Map.

Variables (n0 : nat) (T1 : Type) (x1 : T1).
Variables (T2 : Type) (x2 : T2) (f : T1 -> T2).

Fixpoint map s := if s is x :: s' then f x :: map s' else [::].

Lemma map_cons x s : map (x :: s) = f x :: map s.
Proof. by []. Qed.

Lemma map_nseq x : map (nseq n0 x) = nseq n0 (f x).
Proof. by elim: n0 => // *; congr (_ :: _). Qed.

Lemma map_cat s1 s2 : map (s1 ++ s2) = map s1 ++ map s2.
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs. Qed.

Lemma size_map s : size (map s) = size s.
Proof. by elim: s => //= x s ->. Qed.

Lemma behead_map s : behead (map s) = map (behead s).
Proof. by case: s. Qed.

Lemma nth_map n s : n < size s -> nth x2 (map s) n = f (nth x1 s n).
Proof. by elim: s n => [|x s IHs] [|n]; try exact (IHs n). Qed.

Lemma map_rcons s x : map (rcons s x) = rcons (map s) (f x).
Proof. by rewrite -!cats1 map_cat. Qed.

Lemma last_map s x : last (f x) (map s) = f (last x s).
Proof. by elim: s x => /=. Qed.

Lemma belast_map s x : belast (f x) (map s) = map (belast x s).
Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed.

Lemma filter_map a s : filter a (map s) = map (filter (preim f a) s).
Proof. by elim: s => //= x s IHs; rewrite (fun_if map) /= IHs. Qed.

Lemma find_map a s : find a (map s) = find (preim f a) s.
Proof. by elim: s => //= x s ->. Qed.

Lemma has_map a s : has a (map s) = has (preim f a) s.
Proof. by elim: s => //= x s ->. Qed.

Lemma all_map a s : all a (map s) = all (preim f a) s.
Proof. by elim: s => //= x s ->. Qed.

Lemma count_map a s : count a (map s) = count (preim f a) s.
Proof. by elim: s => //= x s ->. Qed.

Lemma map_take s : map (take n0 s) = take n0 (map s).
Proof. by elim: n0 s => [|n IHn] [|x s] //=; rewrite IHn. Qed.

Lemma map_drop s : map (drop n0 s) = drop n0 (map s).
Proof. by elim: n0 s => [|n IHn] [|x s] //=; rewrite IHn. Qed.

Lemma map_rot s : map (rot n0 s) = rot n0 (map s).
Proof. by rewrite /rot map_cat map_take map_drop. Qed.

Lemma map_rotr s : map (rotr n0 s) = rotr n0 (map s).
Proof. by apply: canRL (@rotK n0 T2) _; rewrite -map_rot rotrK. Qed.

Lemma map_rev s : map (rev s) = rev (map s).
Proof. by elim: s => //= x s IHs; rewrite !rev_cons -!cats1 map_cat IHs. Qed.

Lemma map_mask m s : map (mask m s) = mask m (map s).
Proof. by elim: m s => [|[|] m IHm] [|x p] //=; rewrite IHm. Qed.

Lemma inj_map : injective f -> injective map.
Proof.
by move=> injf; elim=> [|y1 s1 IHs] [|y2 s2] //= [/injf-> /IHs->].
Qed.

End Map.

Notation "[ 'seq' E | i <- s ]" := (map (fun i => E) s)
  (at level 0, E at level 99, i ident,
   format "[ '[hv' 'seq'  E '/ '  |  i  <-  s ] ']'") : seq_scope.

Notation "[ 'seq' E | i <- s & C ]" := [seq E | i <- [seq i <- s | C]]
  (at level 0, E at level 99, i ident,
   format "[ '[hv' 'seq'  E '/ '  |  i  <-  s '/ '  &  C ] ']'") : seq_scope.

Notation "[ 'seq' E | i : T <- s ]" := (map (fun i : T => E) s)
  (at level 0, E at level 99, i ident, only parsing) : seq_scope.

Notation "[ 'seq' E | i : T <- s & C ]" :=
  [seq E | i : T <- [seq i : T <- s | C]]
  (at level 0, E at level 99, i ident, only parsing) : seq_scope.

Lemma filter_mask T a (s : seq T) : filter a s = mask (map a s) s.
Proof. by elim: s => //= x s <-; case: (a x). Qed.

Section FilterSubseq.

Variable T : eqType.
Implicit Types (s : seq T) (a : pred T).

Lemma filter_subseq a s : subseq (filter a s) s.
Proof. by apply/subseqP; exists (map a s); rewrite ?size_map ?filter_mask. Qed.

Lemma subseq_filter s1 s2 a :
  subseq s1 (filter a s2) = all a s1 && subseq s1 s2.
Proof.
elim: s2 s1 => [|x s2 IHs] [|y s1] //=; rewrite ?andbF ?sub0seq //.
by case a_x: (a x); rewrite /= !IHs /=; case: eqP => // ->; rewrite a_x.
Qed.

Lemma subseq_uniqP s1 s2 :
  uniq s2 -> reflect (s1 = filter (mem s1) s2) (subseq s1 s2).
Proof.
move=> uniq_s2; apply: (iffP idP) => [ss12 | ->]; last exact: filter_subseq.
apply/eqP; rewrite -size_subseq_leqif ?subseq_filter ?(introT allP) //.
apply/eqP/esym/perm_eq_size.
rewrite uniq_perm_eq ?filter_uniq ?(subseq_uniq ss12) // => x.
by rewrite mem_filter; apply: andb_idr; exact: (mem_subseq ss12).
Qed.

Lemma perm_to_subseq s1 s2 :
  subseq s1 s2 -> {s3 | perm_eq s2 (s1 ++ s3)}.
Proof.
elim Ds2: s2 s1 => [|y s2' IHs] [|x s1] //=; try by exists s2; rewrite Ds2.
case: eqP => [-> | _] /IHs[s3 perm_s2] {IHs}.
  by exists s3; rewrite perm_cons.
by exists (rcons s3 y); rewrite -cat_cons -perm_rcons -!cats1 catA perm_cat2r.
Qed.

End FilterSubseq.

Implicit Arguments subseq_uniqP [T s1 s2].

Section EqMap.

Variables (n0 : nat) (T1 : eqType) (x1 : T1).
Variables (T2 : eqType) (x2 : T2) (f : T1 -> T2).
Implicit Type s : seq T1.

Lemma map_f s x : x \in s -> f x \in map f s.
Proof.
elim: s => [|y s IHs] //=.
by case/predU1P=> [->|Hx]; [exact: predU1l | apply: predU1r; auto].
Qed.

Lemma mapP s y : reflect (exists2 x, x \in s & y = f x) (y \in map f s).
Proof.
elim: s => [|x s IHs]; first by right; case.
rewrite /= in_cons eq_sym; case Hxy: (f x == y).
  by left; exists x; [rewrite mem_head | rewrite (eqP Hxy)].
apply: (iffP IHs) => [[x' Hx' ->]|[x' Hx' Dy]].
  by exists x'; first exact: predU1r.
by move: Dy Hxy => ->; case/predU1P: Hx' => [->|]; [rewrite eqxx | exists x'].
Qed.

Lemma map_uniq s : uniq (map f s) -> uniq s.
Proof.
elim: s => //= x s IHs /andP[not_sfx /IHs->]; rewrite andbT.
by apply: contra not_sfx => sx; apply/mapP; exists x.
Qed.

Lemma map_inj_in_uniq s : {in s &, injective f} -> uniq (map f s) = uniq s.
Proof.
elim: s => //= x s IHs //= injf; congr (~~ _ && _).
  apply/mapP/idP=> [[y sy /injf] | ]; last by exists x.
  by rewrite mem_head mem_behead // => ->.
apply: IHs => y z sy sz; apply: injf => //; exact: predU1r.
Qed.

Lemma map_subseq s1 s2 : subseq s1 s2 -> subseq (map f s1) (map f s2).
Proof.
case/subseqP=> m sz_m ->; apply/subseqP.
by exists m; rewrite ?size_map ?map_mask.
Qed.

Lemma nth_index_map s x0 x :
  {in s &, injective f} -> x \in s -> nth x0 s (index (f x) (map f s)) = x.
Proof.
elim: s => //= y s IHs inj_f s_x; rewrite (inj_in_eq inj_f) ?mem_head //.
move: s_x; rewrite inE eq_sym; case: eqP => [-> | _] //=; apply: IHs.
by apply: sub_in2 inj_f => z; exact: predU1r.
Qed.

Lemma perm_map s t : perm_eq s t -> perm_eq (map f s) (map f t).
Proof. by move/perm_eqP=> Est; apply/perm_eqP=> a; rewrite !count_map Est. Qed.

Hypothesis Hf : injective f.

Lemma mem_map s x : (f x \in map f s) = (x \in s).
Proof. by apply/mapP/idP=> [[y Hy /Hf->] //|]; exists x. Qed.

Lemma index_map s x : index (f x) (map f s) = index x s.
Proof. by rewrite /index; elim: s => //= y s IHs; rewrite (inj_eq Hf) IHs. Qed.

Lemma map_inj_uniq s : uniq (map f s) = uniq s.
Proof. apply: map_inj_in_uniq; exact: in2W. Qed.

End EqMap.

Implicit Arguments mapP [T1 T2 f s y].
Prenex Implicits mapP.

Lemma map_of_seq (T1 : eqType) T2 (s : seq T1) (fs : seq T2) (y0 : T2) :
  {f | uniq s -> size fs = size s -> map f s = fs}.
Proof.
exists (fun x => nth y0 fs (index x s)) => uAs eq_sz.
apply/esym/(@eq_from_nth _ y0); rewrite ?size_map eq_sz // => i ltis.
have x0 : T1 by [case: (s) ltis]; by rewrite (nth_map x0) // index_uniq.
Qed.

Section MapComp.

Variable T1 T2 T3 : Type.

Lemma map_id (s : seq T1) : map id s = s.
Proof. by elim: s => //= x s ->. Qed.

Lemma eq_map (f1 f2 : T1 -> T2) : f1 =1 f2 -> map f1 =1 map f2.
Proof. by move=> Ef; elim=> //= x s ->; rewrite Ef. Qed.

Lemma map_comp (f1 : T2 -> T3) (f2 : T1 -> T2) s :
  map (f1 \o f2) s = map f1 (map f2 s).
Proof. by elim: s => //= x s ->. Qed.

Lemma mapK (f1 : T1 -> T2) (f2 : T2 -> T1) :
  cancel f1 f2 -> cancel (map f1) (map f2).
Proof. by move=> eq_f12; elim=> //= x s ->; rewrite eq_f12. Qed.

End MapComp.

Lemma eq_in_map (T1 : eqType) T2 (f1 f2 : T1 -> T2) (s : seq T1) :
  {in s, f1 =1 f2} <-> map f1 s = map f2 s.
Proof.
elim: s => //= x s IHs; split=> [eqf12 | [f12x /IHs eqf12]]; last first.
  by move=> y /predU1P[-> | /eqf12].
rewrite eqf12 ?mem_head //; congr (_ :: _).
by apply/IHs=> y s_y; rewrite eqf12 // mem_behead.
Qed.

Lemma map_id_in (T : eqType) f (s : seq T) : {in s, f =1 id} -> map f s = s.
Proof. by move/eq_in_map->; apply: map_id. Qed.

(* Map a partial function *)

Section Pmap.

Variables (aT rT : Type) (f : aT -> option rT) (g : rT -> aT).

Fixpoint pmap s :=
  if s is x :: s' then let r := pmap s' in oapp (cons^~ r) r (f x) else [::].

Lemma map_pK : pcancel g f -> cancel (map g) pmap.
Proof. by move=> gK; elim=> //= x s ->; rewrite gK. Qed.

Lemma size_pmap s : size (pmap s) = count [eta f] s.
Proof. by elim: s => //= x s <-; case: (f _). Qed.

Lemma pmapS_filter s : map some (pmap s) = map f (filter [eta f] s).
Proof. by elim: s => //= x s; case fx: (f x) => //= [u] <-; congr (_ :: _). Qed.

Hypothesis fK : ocancel f g.

Lemma pmap_filter s : map g (pmap s) = filter [eta f] s.
Proof. by elim: s => //= x s <-; rewrite -{3}(fK x); case: (f _). Qed.

End Pmap.

Section EqPmap.

Variables (aT rT : eqType) (f : aT -> option rT) (g : rT -> aT).

Lemma eq_pmap (f1 f2 : aT -> option rT) : f1 =1 f2 -> pmap f1 =1 pmap f2.
Proof. by move=> Ef; elim=> //= x s ->; rewrite Ef. Qed.

Lemma mem_pmap s u : (u \in pmap f s) = (Some u \in map f s).
Proof. by elim: s => //= x s IHs; rewrite in_cons -IHs; case: (f x). Qed.

Hypothesis fK : ocancel f g.

Lemma can2_mem_pmap : pcancel g f -> forall s u, (u \in pmap f s) = (g u \in s).
Proof.
by move=> gK s u; rewrite -(mem_map (pcan_inj gK)) pmap_filter // mem_filter gK.
Qed.

Lemma pmap_uniq s : uniq s -> uniq (pmap f s).
Proof.
by move/(filter_uniq [eta f]); rewrite -(pmap_filter fK); exact: map_uniq.
Qed.

End EqPmap.

Section PmapSub.

Variables (T : Type) (p : pred T) (sT : subType p).

Lemma size_pmap_sub s : size (pmap (insub : T -> option sT) s) = count p s.
Proof. by rewrite size_pmap (eq_count (isSome_insub _)). Qed.

End PmapSub.

Section EqPmapSub.

Variables (T : eqType) (p : pred T) (sT : subType p).

Let insT : T -> option sT := insub.

Lemma mem_pmap_sub s u : (u \in pmap insT s) = (val u \in s).
Proof. apply: (can2_mem_pmap (insubK _)); exact: valK. Qed.

Lemma pmap_sub_uniq s : uniq s -> uniq (pmap insT s).
Proof. exact: (pmap_uniq (insubK _)). Qed.

End EqPmapSub.

(* Index sequence *)

Fixpoint iota m n := if n is n'.+1 then m :: iota m.+1 n' else [::].

Lemma size_iota m n : size (iota m n) = n.
Proof. by elim: n m => //= n IHn m; rewrite IHn. Qed.

Lemma iota_add m n1 n2 : iota m (n1 + n2) = iota m n1 ++ iota (m + n1) n2.
Proof.
by elim: n1 m => //= [|n1 IHn1] m; rewrite ?addn0 // -addSnnS -IHn1.
Qed.

Lemma iota_addl m1 m2 n : iota (m1 + m2) n = map (addn m1) (iota m2 n).
Proof. by elim: n m2 => //= n IHn m2; rewrite -addnS IHn. Qed.

Lemma nth_iota m n i : i < n -> nth 0 (iota m n) i = m + i.
Proof.
by move/subnKC <-; rewrite addSnnS iota_add nth_cat size_iota ltnn subnn.
Qed.

Lemma mem_iota m n i : (i \in iota m n) = (m <= i) && (i < m + n).
Proof.
elim: n m => [|n IHn] /= m; first by rewrite addn0 ltnNge andbN.
rewrite -addSnnS leq_eqVlt in_cons eq_sym.
by case: eqP => [->|_]; [rewrite leq_addr | exact: IHn].
Qed.

Lemma iota_uniq m n : uniq (iota m n).
Proof. by elim: n m => //= n IHn m; rewrite mem_iota ltnn /=. Qed.

(* Making a sequence of a specific length, using indexes to compute items. *)

Section MakeSeq.

Variables (T : Type) (x0 : T).

Definition mkseq f n : seq T := map f (iota 0 n).

Lemma size_mkseq f n : size (mkseq f n) = n.
Proof. by rewrite size_map size_iota. Qed.

Lemma eq_mkseq f g : f =1 g -> mkseq f =1 mkseq g.
Proof. by move=> Efg n; exact: eq_map Efg _. Qed.

Lemma nth_mkseq f n i : i < n -> nth x0 (mkseq f n) i = f i.
Proof. by move=> Hi; rewrite (nth_map 0) ?nth_iota ?size_iota. Qed.

Lemma mkseq_nth s : mkseq (nth x0 s) (size s) = s.
Proof.
by apply: (@eq_from_nth _ x0); rewrite size_mkseq // => i Hi; rewrite nth_mkseq.
Qed.

End MakeSeq.

Section MakeEqSeq.

Variable T : eqType.

Lemma mkseq_uniq (f : nat -> T) n : injective f -> uniq (mkseq f n).
Proof. by move/map_inj_uniq->; apply: iota_uniq. Qed.

Lemma perm_eq_iotaP {s t : seq T} x0 (It := iota 0 (size t)) :
  reflect (exists2 Is, perm_eq Is It & s = map (nth x0 t) Is) (perm_eq s t).
Proof.
apply: (iffP idP) => [Est | [Is eqIst ->]]; last first.
  by rewrite -{2}[t](mkseq_nth x0) perm_map.
elim: t => [|x t IHt] in s It Est *.
  by rewrite (perm_eq_small _ Est) //; exists [::].
have /rot_to[k s1 Ds]: x \in s by rewrite (perm_eq_mem Est) mem_head.
have [|Is1 eqIst1 Ds1] := IHt s1; first by rewrite -(perm_cons x) -Ds perm_rot.
exists (rotr k (0 :: map succn Is1)).
  by rewrite perm_rot /It /= perm_cons (iota_addl 1) perm_map.
by rewrite map_rotr /= -map_comp -(@eq_map _ _ (nth x0 t)) // -Ds1 -Ds rotK.
Qed.

End MakeEqSeq.

Implicit Arguments perm_eq_iotaP [[T] [s] [t]].

Section FoldRight.

Variables (T R : Type) (f : T -> R -> R) (z0 : R).

Fixpoint foldr s := if s is x :: s' then f x (foldr s') else z0.

End FoldRight.

Section FoldRightComp.

Variables (T1 T2 : Type) (h : T1 -> T2).
Variables (R : Type) (f : T2 -> R -> R) (z0 : R).

Lemma foldr_cat s1 s2 : foldr f z0 (s1 ++ s2) = foldr f (foldr f z0 s2) s1.
Proof. by elim: s1 => //= x s1 ->. Qed.

Lemma foldr_map s : foldr f z0 (map h s) = foldr (fun x z => f (h x) z) z0 s.
Proof. by elim: s => //= x s ->. Qed.

End FoldRightComp.

(* Quick characterization of the null sequence. *)

Definition sumn := foldr addn 0.

Lemma sumn_nseq x n : sumn (nseq n x) = x * n.
Proof. by rewrite mulnC; elim: n => //= n ->. Qed.

Lemma sumn_cat s1 s2 : sumn (s1 ++ s2) = sumn s1 + sumn s2.
Proof. by elim: s1 => //= x s1 ->; rewrite addnA. Qed.

Lemma natnseq0P s : reflect (s = nseq (size s) 0) (sumn s == 0).
Proof.
apply: (iffP idP) => [|->]; last by rewrite sumn_nseq.
by elim: s => //= x s IHs; rewrite addn_eq0 => /andP[/eqP-> /IHs <-].
Qed.

Section FoldLeft.

Variables (T R : Type) (f : R -> T -> R).

Fixpoint foldl z s := if s is x :: s' then foldl (f z x) s' else z.

Lemma foldl_rev z s : foldl z (rev s) = foldr (fun x z => f z x) z s.
Proof.
elim/last_ind: s z => [|s x IHs] z //=.
by rewrite rev_rcons -cats1 foldr_cat -IHs.
Qed.

Lemma foldl_cat z s1 s2 : foldl z (s1 ++ s2) = foldl (foldl z s1) s2.
Proof.
by rewrite -(revK (s1 ++ s2)) foldl_rev rev_cat foldr_cat -!foldl_rev !revK.
Qed.

End FoldLeft.

Section Scan.

Variables (T1 : Type) (x1 : T1) (T2 : Type) (x2 : T2).
Variables (f : T1 -> T1 -> T2) (g : T1 -> T2 -> T1).

Fixpoint pairmap x s := if s is y :: s' then f x y :: pairmap y s' else [::].

Lemma size_pairmap x s : size (pairmap x s) = size s.
Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed.

Lemma pairmap_cat x s1 s2 :
  pairmap x (s1 ++ s2) = pairmap x s1 ++ pairmap (last x s1) s2.
Proof. by elim: s1 x => //= y s1 IHs1 x; rewrite IHs1. Qed.

Lemma nth_pairmap s n : n < size s ->
  forall x, nth x2 (pairmap x s) n = f (nth x1 (x :: s) n) (nth x1 s n).
Proof. by elim: s n => [|y s IHs] [|n] //= Hn x; apply: IHs. Qed.

Fixpoint scanl x s :=
  if s is y :: s' then let x' := g x y in x' :: scanl x' s' else [::].

Lemma size_scanl x s : size (scanl x s) = size s.
Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed.

Lemma scanl_cat x s1 s2 :
  scanl x (s1 ++ s2) = scanl x s1 ++ scanl (foldl g x s1) s2.
Proof. by elim: s1 x => //= y s1 IHs1 x; rewrite IHs1. Qed.

Lemma nth_scanl s n : n < size s ->
  forall x, nth x1 (scanl x s) n = foldl g x (take n.+1 s).
Proof. by elim: s n => [|y s IHs] [|n] Hn x //=; rewrite ?take0 ?IHs. Qed.

Lemma scanlK :
  (forall x, cancel (g x) (f x)) -> forall x, cancel (scanl x) (pairmap x).
Proof. by move=> Hfg x s; elim: s x => //= y s IHs x; rewrite Hfg IHs. Qed.

Lemma pairmapK :
  (forall x, cancel (f x) (g x)) -> forall x, cancel (pairmap x) (scanl x).
Proof. by move=> Hgf x s; elim: s x => //= y s IHs x; rewrite Hgf IHs. Qed.

End Scan.

Prenex Implicits mask map pmap foldr foldl scanl pairmap.

Section Zip.

Variables S T : Type.

Fixpoint zip (s : seq S) (t : seq T) {struct t} :=
  match s, t with
  | x :: s', y :: t' => (x, y) :: zip s' t'
  | _, _ => [::]
  end.

Definition unzip1 := map (@fst S T).
Definition unzip2 := map (@snd S T).

Lemma zip_unzip s : zip (unzip1 s) (unzip2 s) = s.
Proof. by elim: s => [|[x y] s /= ->]. Qed.

Lemma unzip1_zip s t : size s <= size t -> unzip1 (zip s t) = s.
Proof. by elim: s t => [|x s IHs] [|y t] //= le_s_t; rewrite IHs. Qed.

Lemma unzip2_zip s t : size t <= size s -> unzip2 (zip s t) = t.
Proof. by elim: s t => [|x s IHs] [|y t] //= le_t_s; rewrite IHs. Qed.

Lemma size1_zip s t : size s <= size t -> size (zip s t) = size s.
Proof. by elim: s t => [|x s IHs] [|y t] //= Hs; rewrite IHs. Qed.

Lemma size2_zip s t : size t <= size s -> size (zip s t) = size t.
Proof. by elim: s t => [|x s IHs] [|y t] //= Hs; rewrite IHs. Qed.

Lemma size_zip s t : size (zip s t) = minn (size s) (size t).
Proof.
by elim: s t => [|x s IHs] [|t2 t] //=; rewrite IHs -add1n addn_minr.
Qed.

Lemma zip_cat s1 s2 t1 t2 :
  size s1 = size t1 -> zip (s1 ++ s2) (t1 ++ t2) = zip s1 t1 ++ zip s2 t2.
Proof. by elim: s1 t1 => [|x s IHs] [|y t] //= [/IHs->]. Qed.

Lemma nth_zip x y s t i :
  size s = size t -> nth (x, y) (zip s t) i = (nth x s i, nth y t i).
Proof. by elim: i s t => [|i IHi] [|y1 s1] [|y2 t] //= [/IHi->]. Qed.

Lemma nth_zip_cond p s t i :
   nth p (zip s t) i
     = (if i < size (zip s t) then (nth p.1 s i, nth p.2 t i) else p).
Proof.
rewrite size_zip ltnNge geq_min.
by elim: s t i => [|x s IHs] [|y t] [|i] //=; rewrite ?orbT -?IHs.
Qed.

Lemma zip_rcons s1 s2 z1 z2 :
    size s1 = size s2 ->
  zip (rcons s1 z1) (rcons s2 z2) = rcons (zip s1 s2) (z1, z2).
Proof. by move=> eq_sz; rewrite -!cats1 zip_cat //= eq_sz. Qed.

Lemma rev_zip s1 s2 :
  size s1 = size s2 -> rev (zip s1 s2) = zip (rev s1) (rev s2).
Proof.
elim: s1 s2 => [|x s1 IHs] [|y s2] //= [eq_sz].
by rewrite !rev_cons zip_rcons ?IHs ?size_rev.
Qed.

End Zip.

Prenex Implicits zip unzip1 unzip2.

Section Flatten.

Variable T : Type.
Implicit Types (s : seq T) (ss : seq (seq T)).

Definition flatten := foldr cat (Nil T).
Definition shape := map (@size T).
Fixpoint reshape sh s :=
  if sh is n :: sh' then take n s :: reshape sh' (drop n s) else [::].

Lemma size_flatten ss : size (flatten ss) = sumn (shape ss).
Proof. by elim: ss => //= s ss <-; rewrite size_cat. Qed.

Lemma flatten_cat ss1 ss2 :
  flatten (ss1 ++ ss2) = flatten ss1 ++ flatten ss2.
Proof. by elim: ss1 => //= s ss1 ->; rewrite catA. Qed.

Lemma flattenK ss : reshape (shape ss) (flatten ss) = ss.
Proof.
by elim: ss => //= s ss IHss; rewrite take_size_cat ?drop_size_cat ?IHss.
Qed.

Lemma reshapeKr sh s : size s <= sumn sh -> flatten (reshape sh s) = s.
Proof.
elim: sh s => [[]|n sh IHsh] //= s sz_s; rewrite IHsh ?cat_take_drop //.
by rewrite size_drop leq_subLR.
Qed.

Lemma reshapeKl sh s : size s >= sumn sh -> shape (reshape sh s) = sh.
Proof.
elim: sh s => [[]|n sh IHsh] //= s sz_s.
rewrite size_takel; last exact: leq_trans (leq_addr _ _) sz_s.
by rewrite IHsh // -(leq_add2l n) size_drop -maxnE leq_max sz_s orbT.
Qed.

End Flatten.

Prenex Implicits flatten shape reshape.

Section EqFlatten.

Variables S T : eqType.

Lemma flattenP (A : seq (seq T)) x :
  reflect (exists2 s, s \in A & x \in s) (x \in flatten A).
Proof.
elim: A => /= [|s A /iffP IH_A]; [by right; case | rewrite mem_cat].
have [s_x|s'x] := @idP (x \in s); first by left; exists s; rewrite ?mem_head.
by apply: IH_A => [[t] | [t /predU1P[->|]]]; exists t; rewrite // mem_behead.
Qed.
Implicit Arguments flattenP [A x].

Lemma flatten_mapP (A : S -> seq T) s y :
  reflect (exists2 x, x \in s & y \in A x) (y \in flatten (map A s)).
Proof.
apply: (iffP flattenP) => [[_ /mapP[x sx ->]] | [x sx]] Axy; first by exists x.
by exists (A x); rewrite ?map_f.
Qed.

End EqFlatten.

Implicit Arguments flattenP [T A x].
Implicit Arguments flatten_mapP [S T A s y].

Lemma perm_undup_count (T : eqType) (s : seq T) :
  perm_eq (flatten [seq nseq (count_mem x s) x | x <- undup s]) s.
Proof.
pose N x r := count_mem x (flatten [seq nseq (count_mem y s) y | y <- r]).
apply/allP=> x _; rewrite /= -/(N x _).
have Nx0 r (r'x : x \notin r): N x r = 0.
  by apply/count_memPn; apply: contra r'x => /flatten_mapP[y r_y /nseqP[->]].
have [|s'x] := boolP (x \in s); last by rewrite Nx0 ?mem_undup ?(count_memPn _).
rewrite -mem_undup => /perm_to_rem/catCA_perm_subst->; last first.
  by move=> s1 s2 s3; rewrite /N !map_cat !flatten_cat !count_cat addnCA.
rewrite /N /= count_cat -/(N x _) Nx0 ?mem_rem_uniq ?undup_uniq ?inE ?eqxx //.
by rewrite addn0 -{2}(size_nseq (_ s) x) -all_count all_pred1_nseq.
Qed.

Section AllPairs.

Variables (S T R : Type) (f : S -> T -> R).
Implicit Types (s : seq S) (t : seq T).

Definition allpairs s t := foldr (fun x => cat (map (f x) t)) [::] s.

Lemma size_allpairs s t : size (allpairs s t) = size s * size t.
Proof. by elim: s => //= x s IHs; rewrite size_cat size_map IHs. Qed.

Lemma allpairs_cat s1 s2 t :
  allpairs (s1 ++ s2) t = allpairs s1 t ++ allpairs s2 t.
Proof. by elim: s1 => //= x s1 ->; rewrite catA. Qed.

End AllPairs.

Prenex Implicits allpairs.

Notation "[ 'seq' E | i <- s , j <- t ]" := (allpairs (fun i j => E) s t)
  (at level 0, E at level 99, i ident, j ident,
   format "[ '[hv' 'seq'  E '/ '  |  i  <-  s , '/   '  j  <-  t ] ']'")
   : seq_scope.
Notation "[ 'seq' E | i : T <- s , j : U <- t ]" :=
  (allpairs (fun (i : T) (j : U) => E) s t)
  (at level 0, E at level 99, i ident, j ident, only parsing) : seq_scope.

Section EqAllPairs.

Variables S T : eqType.
Implicit Types (R : eqType) (s : seq S) (t : seq T).

Lemma allpairsP R (f : S -> T -> R) s t z :
  reflect (exists p, [/\ p.1 \in s, p.2 \in t & z = f p.1 p.2])
          (z \in allpairs f s t).
Proof.
elim: s => [|x s IHs /=]; first by right=> [[p []]].
rewrite mem_cat; have [fxt_z | not_fxt_z] := altP mapP.
  by left; have [y t_y ->] := fxt_z; exists (x, y); rewrite mem_head.
apply: (iffP IHs) => [] [[x' y] /= [s_x' t_y def_z]]; exists (x', y).
  by rewrite !inE predU1r.
by have [def_x' | //] := predU1P s_x'; rewrite def_z def_x' map_f in not_fxt_z.
Qed.

Lemma mem_allpairs R (f : S -> T -> R) s1 t1 s2 t2 :
  s1 =i s2 -> t1 =i t2 -> allpairs f s1 t1 =i allpairs f s2 t2.
Proof.
move=> eq_s eq_t z.
by apply/allpairsP/allpairsP=> [] [p fpz]; exists p; rewrite eq_s eq_t in fpz *.
Qed.

Lemma allpairs_catr R (f : S -> T -> R) s t1 t2 :
  allpairs f s (t1 ++ t2) =i allpairs f s t1 ++ allpairs f s t2.
Proof.
move=> z; rewrite mem_cat.
apply/allpairsP/orP=> [[p [sP1]]|].
  by rewrite mem_cat; case/orP; [left | right]; apply/allpairsP; exists p.
by case=> /allpairsP[p [sp1 sp2 ->]]; exists p; rewrite mem_cat sp2 ?orbT.
Qed.

Lemma allpairs_uniq R (f : S -> T -> R) s t :
    uniq s -> uniq t ->
    {in [seq (x, y) | x <- s, y <- t] &, injective (prod_curry f)} ->
  uniq (allpairs f s t).
Proof.
move=> Us Ut inj_f; have: all (mem s) s by exact/allP.
elim: {-2}s Us => //= x s1 IHs /andP[s1'x Us1] /andP[sx1 ss1].
rewrite cat_uniq {}IHs // andbT map_inj_in_uniq ?Ut // => [|y1 y2 *].
  apply/hasPn=> _ /allpairsP[z [s1z tz ->]]; apply/mapP=> [[y ty Dy]].
  suffices [Dz1 _]: (z.1, z.2) = (x, y) by rewrite -Dz1 s1z in s1'x.
  apply: inj_f => //; apply/allpairsP; last by exists (x, y).
  by have:= allP ss1 _ s1z; exists z.
suffices: (x, y1) = (x, y2) by case.
by apply: inj_f => //; apply/allpairsP; [exists (x, y1) | exists (x, y2)].
Qed.

End EqAllPairs.