1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
|
(* (c) Copyright Microsoft Corporation and Inria. *)
(* You may distribute this file under the terms of the CeCILL-B license *)
Require Import ssreflect ssrfun ssrbool eqtype.
Require Import BinNat.
Require BinPos Ndec.
Require Export Ring.
(******************************************************************************)
(* A version of arithmetic on nat (natural numbers) that is better suited to *)
(* small scale reflection than the Coq Arith library. It contains an *)
(* extensive equational theory (including, e.g., the AGM inequality), as well *)
(* as support for the ring tactic, and congruence tactics. *)
(* The following operations and notations are provided: *)
(* *)
(* successor and predecessor *)
(* n.+1, n.+2, n.+3, n.+4 and n.-1, n.-2 *)
(* this frees the names "S" and "pred" *)
(* *)
(* basic arithmetic *)
(* m + n, m - n, m * n *)
(* Important: m - n denotes TRUNCATED substraction: m - n = 0 if m <= n. *)
(* The definitions use the nosimpl tag to prevent undesirable computation *)
(* computation during simplification, but remain compatible with the ones *)
(* provided in the Coq.Init.Peano prelude. *)
(* For computation, a module NatTrec rebinds all arithmetic notations *)
(* to less convenient but also less inefficient tail-recursive functions; *)
(* the auxiliary functions used by these versions are flagged with %Nrec. *)
(* Also, there is support for input and output of large nat values. *)
(* Num 3 082 241 inputs the number 3082241 *)
(* [Num of n] outputs the value n *)
(* There are coercions num >-> BinNat.N >-> nat; ssrnat rebinds the scope *)
(* delimter for BinNat.N to %num, as it uses the shorter %N for its own *)
(* notations (Peano notations are flagged with %coq_nat). *)
(* *)
(* doubling, halving, and parity *)
(* n.*2, n./2, odd n, uphalf n, with uphalf n = n.+1./2 *)
(* bool coerces to nat so we can write, e.g., n = odd n + n./2.*2. *)
(* *)
(* iteration *)
(* iter n f x0 == f ( .. (f x0)) *)
(* iteri n g x0 == g n.-1 (g ... (g 0 x0)) *)
(* iterop n op x x0 == op x (... op x x) (n x's) or x0 if n = 0 *)
(* *)
(* exponentiation, factorial *)
(* m ^ n, n`! *)
(* m ^ 1 is convertible to m, and m ^ 2 to m * m *)
(* *)
(* comparison *)
(* m <= n, m < n, m >= n, m > n, m == n, m <= n <= p, etc., *)
(* comparisons are BOOLEAN operators, and m == n is the generic eqType *)
(* operation. *)
(* Most compatibility lemmas are stated as boolean equalities; this keeps *)
(* the size of the library down. All the inequalities refer to the same *)
(* constant "leq"; in particular m < n is identical to m.+1 <= n. *)
(* *)
(* conditionally strict inequality `leqif' *)
(* m <= n ?= iff condition == (m <= n) and ((m == n) = condition) *)
(* This is actually a pair of boolean equalities, so rewriting with an *)
(* `leqif' lemma can affect several kinds of comparison. The transitivity *)
(* lemma for leqif aggregates the conditions, allowing for arguments of *)
(* the form ``m <= n <= p <= m, so equality holds throughout''. *)
(* *)
(* maximum and minimum *)
(* maxn m n, minn m n *)
(* Note that maxn m n = m + (m - n), due to the truncating subtraction. *)
(* Absolute difference (linear distance) between nats is defined in the int *)
(* library (in the int.IntDist sublibrary), with the syntax `|m - n|. The *)
(* '-' in this notation is the signed integer difference. *)
(* *)
(* countable choice *)
(* ex_minn : forall P : pred nat, (exists n, P n) -> nat *)
(* This returns the smallest n such that P n holds. *)
(* ex_maxn : forall (P : pred nat) m, *)
(* (exists n, P n) -> (forall n, P n -> n <= m) -> nat *)
(* This returns the largest n such that P n holds (given an explicit upper *)
(* bound). *)
(* *)
(* This file adds the following suffix conventions to those documented in *)
(* ssrbool.v and eqtype.v: *)
(* A (infix) -- conjunction, as in *)
(* ltn_neqAle : (m < n) = (m != n) && (m <= n). *)
(* B -- subtraction, as in subBn : (m - n) - p = m - (n + p). *)
(* D -- addition, as in mulnDl : (m + n) * p = m * p + n * p. *)
(* M -- multiplication, as in expnMn : (m * n) ^ p = m ^ p * n ^ p. *)
(* p (prefix) -- positive, as in *)
(* eqn_pmul2l : m > 0 -> (m * n1 == m * n2) = (n1 == n2). *)
(* P -- greater than 1, as in *)
(* ltn_Pmull : 1 < n -> 0 < m -> m < n * m. *)
(* S -- successor, as in addSn : n.+1 + m = (n + m).+1. *)
(* V (infix) -- disjunction, as in *)
(* leq_eqVlt : (m <= n) = (m == n) || (m < n). *)
(* X - exponentiation, as in lognX : logn p (m ^ n) = logn p m * n in *)
(* file prime.v (the suffix is not used in ths file). *)
(* Suffixes that abreviate operations (D, B, M and X) are used to abbreviate *)
(* second-rank operations in equational lemma names that describe left-hand *)
(* sides (e.g., mulnDl); they are not used to abbreviate the main operation *)
(* of relational lemmas (e.g., leq_add2l). *)
(* For the asymmetrical exponentiation operator expn (m ^ n) a right suffix *)
(* indicates an operation on the exponent, e.g., expnM : m ^ (n1 * n2) = ...; *)
(* a trailing "n" is used to indicate the left operand, e.g., *)
(* expnMn : (m1 * m2) ^ n = ... The operands of other operators a selected *)
(* using the l/r suffixes. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(* Declare legacy Arith operators in new scope. *)
Delimit Scope coq_nat_scope with coq_nat.
Notation "m + n" := (plus m n) : coq_nat_scope.
Notation "m - n" := (minus m n) : coq_nat_scope.
Notation "m * n" := (mult m n) : coq_nat_scope.
Notation "m <= n" := (le m n) : coq_nat_scope.
Notation "m < n" := (lt m n) : coq_nat_scope.
Notation "m >= n" := (ge m n) : coq_nat_scope.
Notation "m > n" := (gt m n) : coq_nat_scope.
(* Rebind scope delimiters, reserving a scope for the "recursive", *)
(* i.e., unprotected version of operators. *)
Delimit Scope N_scope with num.
Delimit Scope nat_scope with N.
Delimit Scope nat_rec_scope with Nrec.
(* Postfix notation for the successor and predecessor functions. *)
(* SSreflect uses "pred" for the generic predicate type, and S as *)
(* a local bound variable. *)
Notation succn := Datatypes.S.
Notation predn := Peano.pred.
Notation "n .+1" := (succn n) (at level 2, left associativity,
format "n .+1") : nat_scope.
Notation "n .+2" := n.+1.+1 (at level 2, left associativity,
format "n .+2") : nat_scope.
Notation "n .+3" := n.+2.+1 (at level 2, left associativity,
format "n .+3") : nat_scope.
Notation "n .+4" := n.+2.+2 (at level 2, left associativity,
format "n .+4") : nat_scope.
Notation "n .-1" := (predn n) (at level 2, left associativity,
format "n .-1") : nat_scope.
Notation "n .-2" := n.-1.-1 (at level 2, left associativity,
format "n .-2") : nat_scope.
Lemma succnK : cancel succn predn. Proof. by []. Qed.
Lemma succn_inj : injective succn. Proof. by move=> n m []. Qed.
(* Predeclare postfix doubling/halving operators. *)
Reserved Notation "n .*2" (at level 2, format "n .*2").
Reserved Notation "n ./2" (at level 2, format "n ./2").
(* Canonical comparison and eqType for nat. *)
Fixpoint eqn m n {struct m} :=
match m, n with
| 0, 0 => true
| m'.+1, n'.+1 => eqn m' n'
| _, _ => false
end.
Lemma eqnP : Equality.axiom eqn.
Proof.
move=> n m; apply: (iffP idP) => [|<-]; last by elim n.
by elim: n m => [|n IHn] [|m] //= /IHn->.
Qed.
Canonical nat_eqMixin := EqMixin eqnP.
Canonical nat_eqType := Eval hnf in EqType nat nat_eqMixin.
Implicit Arguments eqnP [x y].
Prenex Implicits eqnP.
Lemma eqnE : eqn = eq_op. Proof. by []. Qed.
Lemma eqSS m n : (m.+1 == n.+1) = (m == n). Proof. by []. Qed.
Lemma nat_irrelevance (x y : nat) (E E' : x = y) : E = E'.
Proof. exact: eq_irrelevance. Qed.
(* Protected addition, with a more systematic set of lemmas. *)
Definition addn_rec := plus.
Notation "m + n" := (addn_rec m n) : nat_rec_scope.
Definition addn := nosimpl addn_rec.
Notation "m + n" := (addn m n) : nat_scope.
Lemma addnE : addn = addn_rec. Proof. by []. Qed.
Lemma plusE : plus = addn. Proof. by []. Qed.
Lemma add0n : left_id 0 addn. Proof. by []. Qed.
Lemma addSn m n : m.+1 + n = (m + n).+1. Proof. by []. Qed.
Lemma add1n n : 1 + n = n.+1. Proof. by []. Qed.
Lemma addn0 : right_id 0 addn. Proof. by move=> n; apply/eqP; elim: n. Qed.
Lemma addnS m n : m + n.+1 = (m + n).+1. Proof. by elim: m. Qed.
Lemma addSnnS m n : m.+1 + n = m + n.+1. Proof. by rewrite addnS. Qed.
Lemma addnCA : left_commutative addn.
Proof. by move=> m n p; elim: m => //= m; rewrite addnS => <-. Qed.
Lemma addnC : commutative addn.
Proof. by move=> m n; rewrite -{1}[n]addn0 addnCA addn0. Qed.
Lemma addn1 n : n + 1 = n.+1. Proof. by rewrite addnC. Qed.
Lemma addnA : associative addn.
Proof. by move=> m n p; rewrite (addnC n) addnCA addnC. Qed.
Lemma addnAC : right_commutative addn.
Proof. by move=> m n p; rewrite -!addnA (addnC n). Qed.
Lemma addnACA : interchange addn addn.
Proof. by move=> m n p q; rewrite -!addnA (addnCA n). Qed.
Lemma addn_eq0 m n : (m + n == 0) = (m == 0) && (n == 0).
Proof. by case: m; case: n. Qed.
Lemma eqn_add2l p m n : (p + m == p + n) = (m == n).
Proof. by elim: p. Qed.
Lemma eqn_add2r p m n : (m + p == n + p) = (m == n).
Proof. by rewrite -!(addnC p) eqn_add2l. Qed.
Lemma addnI : right_injective addn.
Proof. by move=> p m n Heq; apply: eqP; rewrite -(eqn_add2l p) Heq eqxx. Qed.
Lemma addIn : left_injective addn.
Proof. move=> p m n; rewrite -!(addnC p); apply addnI. Qed.
Lemma addn2 m : m + 2 = m.+2. Proof. by rewrite addnC. Qed.
Lemma add2n m : 2 + m = m.+2. Proof. by []. Qed.
Lemma addn3 m : m + 3 = m.+3. Proof. by rewrite addnC. Qed.
Lemma add3n m : 3 + m = m.+3. Proof. by []. Qed.
Lemma addn4 m : m + 4 = m.+4. Proof. by rewrite addnC. Qed.
Lemma add4n m : 4 + m = m.+4. Proof. by []. Qed.
(* Protected, structurally decreasing substraction, and basic lemmas. *)
(* Further properties depend on ordering conditions. *)
Definition subn_rec := minus.
Notation "m - n" := (subn_rec m n) : nat_rec_scope.
Definition subn := nosimpl subn_rec.
Notation "m - n" := (subn m n) : nat_scope.
Lemma subnE : subn = subn_rec. Proof. by []. Qed.
Lemma minusE : minus = subn. Proof. by []. Qed.
Lemma sub0n : left_zero 0 subn. Proof. by []. Qed.
Lemma subn0 : right_id 0 subn. Proof. by case. Qed.
Lemma subnn : self_inverse 0 subn. Proof. by elim. Qed.
Lemma subSS n m : m.+1 - n.+1 = m - n. Proof. by []. Qed.
Lemma subn1 n : n - 1 = n.-1. Proof. by case: n => [|[]]. Qed.
Lemma subn2 n : (n - 2)%N = n.-2. Proof. by case: n => [|[|[]]]. Qed.
Lemma subnDl p m n : (p + m) - (p + n) = m - n.
Proof. by elim: p. Qed.
Lemma subnDr p m n : (m + p) - (n + p) = m - n.
Proof. by rewrite -!(addnC p) subnDl. Qed.
Lemma addKn n : cancel (addn n) (subn^~ n).
Proof. by move=> m; rewrite /= -{2}[n]addn0 subnDl subn0. Qed.
Lemma addnK n : cancel (addn^~ n) (subn^~ n).
Proof. by move=> m; rewrite /= (addnC m) addKn. Qed.
Lemma subSnn n : n.+1 - n = 1.
Proof. exact (addnK n 1). Qed.
Lemma subnDA m n p : n - (m + p) = (n - m) - p.
Proof. by elim: m n => [|m IHm] [|n]; try exact (IHm n). Qed.
Lemma subnAC : right_commutative subn.
Proof. by move=> m n p; rewrite -!subnDA addnC. Qed.
Lemma subnS m n : m - n.+1 = (m - n).-1.
Proof. by rewrite -addn1 subnDA subn1. Qed.
Lemma subSKn m n : (m.+1 - n).-1 = m - n.
Proof. by rewrite -subnS. Qed.
(* Integer ordering, and its interaction with the other operations. *)
Definition leq m n := m - n == 0.
Notation "m <= n" := (leq m n) : nat_scope.
Notation "m < n" := (m.+1 <= n) : nat_scope.
Notation "m >= n" := (n <= m) (only parsing) : nat_scope.
Notation "m > n" := (n < m) (only parsing) : nat_scope.
(* For sorting, etc. *)
Definition geq := [rel m n | m >= n].
Definition ltn := [rel m n | m < n].
Definition gtn := [rel m n | m > n].
Notation "m <= n <= p" := ((m <= n) && (n <= p)) : nat_scope.
Notation "m < n <= p" := ((m < n) && (n <= p)) : nat_scope.
Notation "m <= n < p" := ((m <= n) && (n < p)) : nat_scope.
Notation "m < n < p" := ((m < n) && (n < p)) : nat_scope.
Lemma ltnS m n : (m < n.+1) = (m <= n). Proof. by []. Qed.
Lemma leq0n n : 0 <= n. Proof. by []. Qed.
Lemma ltn0Sn n : 0 < n.+1. Proof. by []. Qed.
Lemma ltn0 n : n < 0 = false. Proof. by []. Qed.
Lemma leqnn n : n <= n. Proof. by elim: n. Qed.
Hint Resolve leqnn.
Lemma ltnSn n : n < n.+1. Proof. by []. Qed.
Lemma eq_leq m n : m = n -> m <= n. Proof. by move->. Qed.
Lemma leqnSn n : n <= n.+1. Proof. by elim: n. Qed.
Hint Resolve leqnSn.
Lemma leq_pred n : n.-1 <= n. Proof. by case: n => /=. Qed.
Lemma leqSpred n : n <= n.-1.+1. Proof. by case: n => /=. Qed.
Lemma ltn_predK m n : m < n -> n.-1.+1 = n.
Proof. by case: n. Qed.
Lemma prednK n : 0 < n -> n.-1.+1 = n.
Proof. exact: ltn_predK. Qed.
Lemma leqNgt m n : (m <= n) = ~~ (n < m).
Proof. by elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.
Lemma ltnNge m n : (m < n) = ~~ (n <= m).
Proof. by rewrite leqNgt. Qed.
Lemma ltnn n : n < n = false.
Proof. by rewrite ltnNge leqnn. Qed.
Lemma leqn0 n : (n <= 0) = (n == 0). Proof. by case: n. Qed.
Lemma lt0n n : (0 < n) = (n != 0). Proof. by case: n. Qed.
Lemma lt0n_neq0 n : 0 < n -> n != 0. Proof. by case: n. Qed.
Lemma eqn0Ngt n : (n == 0) = ~~ (n > 0). Proof. by case: n. Qed.
Lemma neq0_lt0n n : (n == 0) = false -> 0 < n. Proof. by case: n. Qed.
Hint Resolve lt0n_neq0 neq0_lt0n.
Lemma eqn_leq m n : (m == n) = (m <= n <= m).
Proof. elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.
Lemma anti_leq : antisymmetric leq.
Proof. by move=> m n; rewrite -eqn_leq => /eqP. Qed.
Lemma neq_ltn m n : (m != n) = (m < n) || (n < m).
Proof. by rewrite eqn_leq negb_and orbC -!ltnNge. Qed.
Lemma gtn_eqF m n : m < n -> n == m = false.
Proof. by rewrite eqn_leq (leqNgt n) => ->. Qed.
Lemma ltn_eqF m n : m < n -> m == n = false.
Proof. by move/gtn_eqF; rewrite eq_sym. Qed.
Lemma leq_eqVlt m n : (m <= n) = (m == n) || (m < n).
Proof. elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.
Lemma ltn_neqAle m n : (m < n) = (m != n) && (m <= n).
Proof. by rewrite ltnNge leq_eqVlt negb_or -leqNgt eq_sym. Qed.
Lemma leq_trans n m p : m <= n -> n <= p -> m <= p.
Proof. by elim: n m p => [|i IHn] [|m] [|p] //; exact: IHn m p. Qed.
Lemma leq_ltn_trans n m p : m <= n -> n < p -> m < p.
Proof. move=> Hmn; exact: leq_trans. Qed.
Lemma ltnW m n : m < n -> m <= n.
Proof. exact: leq_trans. Qed.
Hint Resolve ltnW.
Lemma leqW m n : m <= n -> m <= n.+1.
Proof. by move=> le_mn; exact: ltnW. Qed.
Lemma ltn_trans n m p : m < n -> n < p -> m < p.
Proof. by move=> lt_mn /ltnW; exact: leq_trans. Qed.
Lemma leq_total m n : (m <= n) || (m >= n).
Proof. by rewrite -implyNb -ltnNge; apply/implyP; exact: ltnW. Qed.
(* Link to the legacy comparison predicates. *)
Lemma leP m n : reflect (m <= n)%coq_nat (m <= n).
Proof.
apply: (iffP idP); last by elim: n / => // n _ /leq_trans->.
elim: n => [|n IHn]; first by case: m.
by rewrite leq_eqVlt ltnS => /predU1P[<- // | /IHn]; right.
Qed.
Implicit Arguments leP [m n].
Lemma le_irrelevance m n le_mn1 le_mn2 : le_mn1 = le_mn2 :> (m <= n)%coq_nat.
Proof.
elim: {n}n.+1 {-1}n (erefl n.+1) => // n IHn _ [<-] in le_mn1 le_mn2 *.
pose def_n2 := erefl n; transitivity (eq_ind _ _ le_mn2 _ def_n2) => //.
move def_n1: {1 4 5 7}n le_mn1 le_mn2 def_n2 => n1 le_mn1.
case: n1 / le_mn1 def_n1 => [|n1 le_mn1] def_n1 [|n2 le_mn2] def_n2.
- by rewrite [def_n2]eq_axiomK.
- by move/leP: (le_mn2); rewrite -{1}def_n2 ltnn.
- by move/leP: (le_mn1); rewrite {1}def_n2 ltnn.
case: def_n2 (def_n2) => ->{n2} def_n2 in le_mn2 *.
by rewrite [def_n2]eq_axiomK /=; congr le_S; exact: IHn.
Qed.
Lemma ltP m n : reflect (m < n)%coq_nat (m < n).
Proof. exact leP. Qed.
Implicit Arguments ltP [m n].
Lemma lt_irrelevance m n lt_mn1 lt_mn2 : lt_mn1 = lt_mn2 :> (m < n)%coq_nat.
Proof. exact: (@le_irrelevance m.+1). Qed.
(* Comparison predicates. *)
CoInductive leq_xor_gtn m n : bool -> bool -> Set :=
| LeqNotGtn of m <= n : leq_xor_gtn m n true false
| GtnNotLeq of n < m : leq_xor_gtn m n false true.
Lemma leqP m n : leq_xor_gtn m n (m <= n) (n < m).
Proof.
by rewrite ltnNge; case le_mn: (m <= n); constructor; rewrite // ltnNge le_mn.
Qed.
CoInductive ltn_xor_geq m n : bool -> bool -> Set :=
| LtnNotGeq of m < n : ltn_xor_geq m n false true
| GeqNotLtn of n <= m : ltn_xor_geq m n true false.
Lemma ltnP m n : ltn_xor_geq m n (n <= m) (m < n).
Proof. by rewrite -(ltnS n); case: leqP; constructor. Qed.
CoInductive eqn0_xor_gt0 n : bool -> bool -> Set :=
| Eq0NotPos of n = 0 : eqn0_xor_gt0 n true false
| PosNotEq0 of n > 0 : eqn0_xor_gt0 n false true.
Lemma posnP n : eqn0_xor_gt0 n (n == 0) (0 < n).
Proof. by case: n; constructor. Qed.
CoInductive compare_nat m n : bool -> bool -> bool -> Set :=
| CompareNatLt of m < n : compare_nat m n true false false
| CompareNatGt of m > n : compare_nat m n false true false
| CompareNatEq of m = n : compare_nat m n false false true.
Lemma ltngtP m n : compare_nat m n (m < n) (n < m) (m == n).
Proof.
rewrite ltn_neqAle eqn_leq; case: ltnP; first by constructor.
by rewrite leq_eqVlt orbC; case: leqP; constructor; first exact/eqnP.
Qed.
(* Monotonicity lemmas *)
Lemma leq_add2l p m n : (p + m <= p + n) = (m <= n).
Proof. by elim: p. Qed.
Lemma ltn_add2l p m n : (p + m < p + n) = (m < n).
Proof. by rewrite -addnS; exact: leq_add2l. Qed.
Lemma leq_add2r p m n : (m + p <= n + p) = (m <= n).
Proof. by rewrite -!(addnC p); exact: leq_add2l. Qed.
Lemma ltn_add2r p m n : (m + p < n + p) = (m < n).
Proof. exact: leq_add2r p m.+1 n. Qed.
Lemma leq_add m1 m2 n1 n2 : m1 <= n1 -> m2 <= n2 -> m1 + m2 <= n1 + n2.
Proof.
by move=> le_mn1 le_mn2; rewrite (@leq_trans (m1 + n2)) ?leq_add2l ?leq_add2r.
Qed.
Lemma leq_addr m n : n <= n + m.
Proof. by rewrite -{1}[n]addn0 leq_add2l. Qed.
Lemma leq_addl m n : n <= m + n.
Proof. by rewrite addnC leq_addr. Qed.
Lemma ltn_addr m n p : m < n -> m < n + p.
Proof. by move/leq_trans=> -> //; exact: leq_addr. Qed.
Lemma ltn_addl m n p : m < n -> m < p + n.
Proof. by move/leq_trans=> -> //; exact: leq_addl. Qed.
Lemma addn_gt0 m n : (0 < m + n) = (0 < m) || (0 < n).
Proof. by rewrite !lt0n -negb_and addn_eq0. Qed.
Lemma subn_gt0 m n : (0 < n - m) = (m < n).
Proof. by elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.
Lemma subn_eq0 m n : (m - n == 0) = (m <= n).
Proof. by []. Qed.
Lemma leq_subLR m n p : (m - n <= p) = (m <= n + p).
Proof. by rewrite -subn_eq0 -subnDA. Qed.
Lemma leq_subr m n : n - m <= n.
Proof. by rewrite leq_subLR leq_addl. Qed.
Lemma subnKC m n : m <= n -> m + (n - m) = n.
Proof. by elim: m n => [|m IHm] [|n] // /(IHm n) {2}<-. Qed.
Lemma subnK m n : m <= n -> (n - m) + m = n.
Proof. by rewrite addnC; exact: subnKC. Qed.
Lemma addnBA m n p : p <= n -> m + (n - p) = m + n - p.
Proof. by move=> le_pn; rewrite -{2}(subnK le_pn) addnA addnK. Qed.
Lemma subnBA m n p : p <= n -> m - (n - p) = m + p - n.
Proof. by move=> le_pn; rewrite -{2}(subnK le_pn) subnDr. Qed.
Lemma subKn m n : m <= n -> n - (n - m) = m.
Proof. by move/subnBA->; rewrite addKn. Qed.
Lemma subSn m n : m <= n -> n.+1 - m = (n - m).+1.
Proof. by rewrite -add1n => /addnBA <-. Qed.
Lemma subnSK m n : m < n -> (n - m.+1).+1 = n - m.
Proof. by move/subSn. Qed.
Lemma leq_sub2r p m n : m <= n -> m - p <= n - p.
Proof.
by move=> le_mn; rewrite leq_subLR (leq_trans le_mn) // -leq_subLR.
Qed.
Lemma leq_sub2l p m n : m <= n -> p - n <= p - m.
Proof.
rewrite -(leq_add2r (p - m)) leq_subLR.
by apply: leq_trans; rewrite -leq_subLR.
Qed.
Lemma leq_sub m1 m2 n1 n2 : m1 <= m2 -> n2 <= n1 -> m1 - n1 <= m2 - n2.
Proof. by move/(leq_sub2r n1)=> le_m12 /(leq_sub2l m2); apply: leq_trans. Qed.
Lemma ltn_sub2r p m n : p < n -> m < n -> m - p < n - p.
Proof. by move/subnSK <-; exact: (@leq_sub2r p.+1). Qed.
Lemma ltn_sub2l p m n : m < p -> m < n -> p - n < p - m.
Proof. by move/subnSK <-; exact: leq_sub2l. Qed.
Lemma ltn_subRL m n p : (n < p - m) = (m + n < p).
Proof. by rewrite !ltnNge leq_subLR. Qed.
(* Eliminating the idiom for structurally decreasing compare and subtract. *)
Lemma subn_if_gt T m n F (E : T) :
(if m.+1 - n is m'.+1 then F m' else E) = (if n <= m then F (m - n) else E).
Proof.
by case: leqP => [le_nm | /eqnP-> //]; rewrite -{1}(subnK le_nm) -addSn addnK.
Qed.
(* Max and min. *)
Definition maxn m n := if m < n then n else m.
Definition minn m n := if m < n then m else n.
Lemma max0n : left_id 0 maxn. Proof. by case. Qed.
Lemma maxn0 : right_id 0 maxn. Proof. by []. Qed.
Lemma maxnC : commutative maxn.
Proof. by move=> m n; rewrite /maxn; case ltngtP. Qed.
Lemma maxnE m n : maxn m n = m + (n - m).
Proof. by rewrite /maxn addnC; case: leqP => [/eqnP-> | /ltnW/subnK]. Qed.
Lemma maxnAC : right_commutative maxn.
Proof. by move=> m n p; rewrite !maxnE -!addnA !subnDA -!maxnE maxnC. Qed.
Lemma maxnA : associative maxn.
Proof. by move=> m n p; rewrite !(maxnC m) maxnAC. Qed.
Lemma maxnCA : left_commutative maxn.
Proof. by move=> m n p; rewrite !maxnA (maxnC m). Qed.
Lemma maxnACA : interchange maxn maxn.
Proof. by move=> m n p q; rewrite -!maxnA (maxnCA n). Qed.
Lemma maxn_idPl {m n} : reflect (maxn m n = m) (m >= n).
Proof. by rewrite -subn_eq0 -(eqn_add2l m) addn0 -maxnE; apply: eqP. Qed.
Lemma maxn_idPr {m n} : reflect (maxn m n = n) (m <= n).
Proof. by rewrite maxnC; apply: maxn_idPl. Qed.
Lemma maxnn : idempotent maxn.
Proof. by move=> n; apply/maxn_idPl. Qed.
Lemma leq_max m n1 n2 : (m <= maxn n1 n2) = (m <= n1) || (m <= n2).
Proof.
without loss le_n21: n1 n2 / n2 <= n1.
by case/orP: (leq_total n2 n1) => le_n12; last rewrite maxnC orbC; apply.
by rewrite (maxn_idPl le_n21) orb_idr // => /leq_trans->.
Qed.
Lemma leq_maxl m n : m <= maxn m n. Proof. by rewrite leq_max leqnn. Qed.
Lemma leq_maxr m n : n <= maxn m n. Proof. by rewrite maxnC leq_maxl. Qed.
Lemma gtn_max m n1 n2 : (m > maxn n1 n2) = (m > n1) && (m > n2).
Proof. by rewrite !ltnNge leq_max negb_or. Qed.
Lemma geq_max m n1 n2 : (m >= maxn n1 n2) = (m >= n1) && (m >= n2).
Proof. by rewrite -ltnS gtn_max. Qed.
Lemma maxnSS m n : maxn m.+1 n.+1 = (maxn m n).+1.
Proof. by rewrite !maxnE. Qed.
Lemma addn_maxl : left_distributive addn maxn.
Proof. by move=> m1 m2 n; rewrite !maxnE subnDr addnAC. Qed.
Lemma addn_maxr : right_distributive addn maxn.
Proof. by move=> m n1 n2; rewrite !(addnC m) addn_maxl. Qed.
Lemma min0n : left_zero 0 minn. Proof. by case. Qed.
Lemma minn0 : right_zero 0 minn. Proof. by []. Qed.
Lemma minnC : commutative minn.
Proof. by move=> m n; rewrite /minn; case ltngtP. Qed.
Lemma addn_min_max m n : minn m n + maxn m n = m + n.
Proof. by rewrite /minn /maxn; case: ltngtP => // [_|->] //; exact: addnC. Qed.
Lemma minnE m n : minn m n = m - (m - n).
Proof. by rewrite -(subnDl n) -maxnE -addn_min_max addnK minnC. Qed.
Lemma minnAC : right_commutative minn.
Proof.
by move=> m n p; rewrite !minnE -subnDA subnAC -maxnE maxnC maxnE subnAC subnDA.
Qed.
Lemma minnA : associative minn.
Proof. by move=> m n p; rewrite minnC minnAC (minnC n). Qed.
Lemma minnCA : left_commutative minn.
Proof. by move=> m n p; rewrite !minnA (minnC n). Qed.
Lemma minnACA : interchange minn minn.
Proof. by move=> m n p q; rewrite -!minnA (minnCA n). Qed.
Lemma minn_idPl {m n} : reflect (minn m n = m) (m <= n).
Proof.
rewrite (sameP maxn_idPr eqP) -(eqn_add2l m) eq_sym -addn_min_max eqn_add2r.
exact: eqP.
Qed.
Lemma minn_idPr {m n} : reflect (minn m n = n) (m >= n).
Proof. by rewrite minnC; apply: minn_idPl. Qed.
Lemma minnn : idempotent minn.
Proof. by move=> n; apply/minn_idPl. Qed.
Lemma leq_min m n1 n2 : (m <= minn n1 n2) = (m <= n1) && (m <= n2).
Proof.
wlog le_n21: n1 n2 / n2 <= n1.
by case/orP: (leq_total n2 n1) => ?; last rewrite minnC andbC; auto.
by rewrite /minn ltnNge le_n21 /= andbC; case: leqP => // /leq_trans->.
Qed.
Lemma gtn_min m n1 n2 : (m > minn n1 n2) = (m > n1) || (m > n2).
Proof. by rewrite !ltnNge leq_min negb_and. Qed.
Lemma geq_min m n1 n2 : (m >= minn n1 n2) = (m >= n1) || (m >= n2).
Proof. by rewrite -ltnS gtn_min. Qed.
Lemma geq_minl m n : minn m n <= m. Proof. by rewrite geq_min leqnn. Qed.
Lemma geq_minr m n : minn m n <= n. Proof. by rewrite minnC geq_minl. Qed.
Lemma addn_minr : right_distributive addn minn.
Proof. by move=> m1 m2 n; rewrite !minnE subnDl addnBA ?leq_subr. Qed.
Lemma addn_minl : left_distributive addn minn.
Proof. by move=> m1 m2 n; rewrite -!(addnC n) addn_minr. Qed.
Lemma minnSS m n : minn m.+1 n.+1 = (minn m n).+1.
Proof. by rewrite -(addn_minr 1). Qed.
(* Quasi-cancellation (really, absorption) lemmas *)
Lemma maxnK m n : minn (maxn m n) m = m.
Proof. exact/minn_idPr/leq_maxl. Qed.
Lemma maxKn m n : minn n (maxn m n) = n.
Proof. exact/minn_idPl/leq_maxr. Qed.
Lemma minnK m n : maxn (minn m n) m = m.
Proof. exact/maxn_idPr/geq_minl. Qed.
Lemma minKn m n : maxn n (minn m n) = n.
Proof. exact/maxn_idPl/geq_minr. Qed.
(* Distributivity. *)
Lemma maxn_minl : left_distributive maxn minn.
Proof.
move=> m1 m2 n; wlog le_m21: m1 m2 / m2 <= m1.
move=> IH; case/orP: (leq_total m2 m1) => /IH //.
by rewrite minnC [in R in _ = R]minnC.
rewrite (minn_idPr le_m21); apply/esym/minn_idPr.
by rewrite geq_max leq_maxr leq_max le_m21.
Qed.
Lemma maxn_minr : right_distributive maxn minn.
Proof. by move=> m n1 n2; rewrite !(maxnC m) maxn_minl. Qed.
Lemma minn_maxl : left_distributive minn maxn.
Proof.
by move=> m1 m2 n; rewrite maxn_minr !maxn_minl -minnA maxnn (maxnC _ n) !maxnK.
Qed.
Lemma minn_maxr : right_distributive minn maxn.
Proof. by move=> m n1 n2; rewrite !(minnC m) minn_maxl. Qed.
(* Getting a concrete value from an abstract existence proof. *)
Section ExMinn.
Variable P : pred nat.
Hypothesis exP : exists n, P n.
Inductive acc_nat i : Prop := AccNat0 of P i | AccNatS of acc_nat i.+1.
Lemma find_ex_minn : {m | P m & forall n, P n -> n >= m}.
Proof.
have: forall n, P n -> n >= 0 by [].
have: acc_nat 0.
case exP => n; rewrite -(addn0 n); elim: n 0 => [|n IHn] j; first by left.
rewrite addSnnS; right; exact: IHn.
move: 0; fix 2 => m IHm m_lb; case Pm: (P m); first by exists m.
apply: find_ex_minn m.+1 _ _ => [|n Pn]; first by case: IHm; rewrite ?Pm.
by rewrite ltn_neqAle m_lb //; case: eqP Pm => // -> /idP[].
Qed.
Definition ex_minn := s2val find_ex_minn.
Inductive ex_minn_spec : nat -> Type :=
ExMinnSpec m of P m & (forall n, P n -> n >= m) : ex_minn_spec m.
Lemma ex_minnP : ex_minn_spec ex_minn.
Proof. by rewrite /ex_minn; case: find_ex_minn. Qed.
End ExMinn.
Section ExMaxn.
Variables (P : pred nat) (m : nat).
Hypotheses (exP : exists i, P i) (ubP : forall i, P i -> i <= m).
Lemma ex_maxn_subproof : exists i, P (m - i).
Proof. by case: exP => i Pi; exists (m - i); rewrite subKn ?ubP. Qed.
Definition ex_maxn := m - ex_minn ex_maxn_subproof.
CoInductive ex_maxn_spec : nat -> Type :=
ExMaxnSpec i of P i & (forall j, P j -> j <= i) : ex_maxn_spec i.
Lemma ex_maxnP : ex_maxn_spec ex_maxn.
Proof.
rewrite /ex_maxn; case: ex_minnP => i Pmi min_i; split=> // j Pj.
have le_i_mj: i <= m - j by rewrite min_i // subKn // ubP.
rewrite -subn_eq0 subnBA ?(leq_trans le_i_mj) ?leq_subr //.
by rewrite addnC -subnBA ?ubP.
Qed.
End ExMaxn.
Lemma eq_ex_minn P Q exP exQ : P =1 Q -> @ex_minn P exP = @ex_minn Q exQ.
Proof.
move=> eqPQ; case: ex_minnP => m1 Pm1 m1_lb; case: ex_minnP => m2 Pm2 m2_lb.
by apply/eqP; rewrite eqn_leq m1_lb (m2_lb, eqPQ) // -eqPQ.
Qed.
Lemma eq_ex_maxn (P Q : pred nat) m n exP ubP exQ ubQ :
P =1 Q -> @ex_maxn P m exP ubP = @ex_maxn Q n exQ ubQ.
Proof.
move=> eqPQ; case: ex_maxnP => i Pi max_i; case: ex_maxnP => j Pj max_j.
by apply/eqP; rewrite eqn_leq max_i ?eqPQ // max_j -?eqPQ.
Qed.
Section Iteration.
Variable T : Type.
Implicit Types m n : nat.
Implicit Types x y : T.
Definition iter n f x :=
let fix loop m := if m is i.+1 then f (loop i) else x in loop n.
Definition iteri n f x :=
let fix loop m := if m is i.+1 then f i (loop i) else x in loop n.
Definition iterop n op x :=
let f i y := if i is 0 then x else op x y in iteri n f.
Lemma iterSr n f x : iter n.+1 f x = iter n f (f x).
Proof. by elim: n => //= n <-. Qed.
Lemma iterS n f x : iter n.+1 f x = f (iter n f x). Proof. by []. Qed.
Lemma iter_add n m f x : iter (n + m) f x = iter n f (iter m f x).
Proof. by elim: n => //= n ->. Qed.
Lemma iteriS n f x : iteri n.+1 f x = f n (iteri n f x).
Proof. by []. Qed.
Lemma iteropS idx n op x : iterop n.+1 op x idx = iter n (op x) x.
Proof. by elim: n => //= n ->. Qed.
Lemma eq_iter f f' : f =1 f' -> forall n, iter n f =1 iter n f'.
Proof. by move=> eq_f n x; elim: n => //= n ->; rewrite eq_f. Qed.
Lemma eq_iteri f f' : f =2 f' -> forall n, iteri n f =1 iteri n f'.
Proof. by move=> eq_f n x; elim: n => //= n ->; rewrite eq_f. Qed.
Lemma eq_iterop n op op' : op =2 op' -> iterop n op =2 iterop n op'.
Proof. by move=> eq_op x; apply: eq_iteri; case. Qed.
End Iteration.
Lemma iter_succn m n : iter n succn m = m + n.
Proof. by elim: n => //= n ->. Qed.
Lemma iter_succn_0 n : iter n succn 0 = n.
Proof. exact: iter_succn. Qed.
Lemma iter_predn m n : iter n predn m = m - n.
Proof. by elim: n m => /= [|n IHn] m; rewrite ?subn0 // IHn subnS. Qed.
(* Multiplication. *)
Definition muln_rec := mult.
Notation "m * n" := (muln_rec m n) : nat_rec_scope.
Definition muln := nosimpl muln_rec.
Notation "m * n" := (muln m n) : nat_scope.
Lemma multE : mult = muln. Proof. by []. Qed.
Lemma mulnE : muln = muln_rec. Proof. by []. Qed.
Lemma mul0n : left_zero 0 muln. Proof. by []. Qed.
Lemma muln0 : right_zero 0 muln. Proof. by elim. Qed.
Lemma mul1n : left_id 1 muln. Proof. exact: addn0. Qed.
Lemma mulSn m n : m.+1 * n = n + m * n. Proof. by []. Qed.
Lemma mulSnr m n : m.+1 * n = m * n + n. Proof. exact: addnC. Qed.
Lemma mulnS m n : m * n.+1 = m + m * n.
Proof. by elim: m => // m; rewrite !mulSn !addSn addnCA => ->. Qed.
Lemma mulnSr m n : m * n.+1 = m * n + m.
Proof. by rewrite addnC mulnS. Qed.
Lemma iter_addn m n p : iter n (addn m) p = m * n + p.
Proof. by elim: n => /= [|n ->]; rewrite ?muln0 // mulnS addnA. Qed.
Lemma iter_addn_0 m n : iter n (addn m) 0 = m * n.
Proof. by rewrite iter_addn addn0. Qed.
Lemma muln1 : right_id 1 muln.
Proof. by move=> n; rewrite mulnSr muln0. Qed.
Lemma mulnC : commutative muln.
Proof.
by move=> m n; elim: m => [|m]; rewrite (muln0, mulnS) // mulSn => ->.
Qed.
Lemma mulnDl : left_distributive muln addn.
Proof. by move=> m1 m2 n; elim: m1 => //= m1 IHm; rewrite -addnA -IHm. Qed.
Lemma mulnDr : right_distributive muln addn.
Proof. by move=> m n1 n2; rewrite !(mulnC m) mulnDl. Qed.
Lemma mulnBl : left_distributive muln subn.
Proof.
move=> m n [|p]; first by rewrite !muln0.
by elim: m n => // [m IHm] [|n] //; rewrite mulSn subnDl -IHm.
Qed.
Lemma mulnBr : right_distributive muln subn.
Proof. by move=> m n p; rewrite !(mulnC m) mulnBl. Qed.
Lemma mulnA : associative muln.
Proof. by move=> m n p; elim: m => //= m; rewrite mulSn mulnDl => ->. Qed.
Lemma mulnCA : left_commutative muln.
Proof. by move=> m n1 n2; rewrite !mulnA (mulnC m). Qed.
Lemma mulnAC : right_commutative muln.
Proof. by move=> m n p; rewrite -!mulnA (mulnC n). Qed.
Lemma mulnACA : interchange muln muln.
Proof. by move=> m n p q; rewrite -!mulnA (mulnCA n). Qed.
Lemma muln_eq0 m n : (m * n == 0) = (m == 0) || (n == 0).
Proof. by case: m n => // m [|n] //=; rewrite muln0. Qed.
Lemma muln_eq1 m n : (m * n == 1) = (m == 1) && (n == 1).
Proof. by case: m n => [|[|m]] [|[|n]] //; rewrite muln0. Qed.
Lemma muln_gt0 m n : (0 < m * n) = (0 < m) && (0 < n).
Proof. by case: m n => // m [|n] //=; rewrite muln0. Qed.
Lemma leq_pmull m n : n > 0 -> m <= n * m.
Proof. by move/prednK <-; exact: leq_addr. Qed.
Lemma leq_pmulr m n : n > 0 -> m <= m * n.
Proof. by move/leq_pmull; rewrite mulnC. Qed.
Lemma leq_mul2l m n1 n2 : (m * n1 <= m * n2) = (m == 0) || (n1 <= n2).
Proof. by rewrite {1}/leq -mulnBr muln_eq0. Qed.
Lemma leq_mul2r m n1 n2 : (n1 * m <= n2 * m) = (m == 0) || (n1 <= n2).
Proof. by rewrite -!(mulnC m) leq_mul2l. Qed.
Lemma leq_mul m1 m2 n1 n2 : m1 <= n1 -> m2 <= n2 -> m1 * m2 <= n1 * n2.
Proof.
move=> le_mn1 le_mn2; apply (@leq_trans (m1 * n2)).
by rewrite leq_mul2l le_mn2 orbT.
by rewrite leq_mul2r le_mn1 orbT.
Qed.
Lemma eqn_mul2l m n1 n2 : (m * n1 == m * n2) = (m == 0) || (n1 == n2).
Proof. by rewrite eqn_leq !leq_mul2l -orb_andr -eqn_leq. Qed.
Lemma eqn_mul2r m n1 n2 : (n1 * m == n2 * m) = (m == 0) || (n1 == n2).
Proof. by rewrite eqn_leq !leq_mul2r -orb_andr -eqn_leq. Qed.
Lemma leq_pmul2l m n1 n2 : 0 < m -> (m * n1 <= m * n2) = (n1 <= n2).
Proof. by move/prednK=> <-; rewrite leq_mul2l. Qed.
Implicit Arguments leq_pmul2l [m n1 n2].
Lemma leq_pmul2r m n1 n2 : 0 < m -> (n1 * m <= n2 * m) = (n1 <= n2).
Proof. by move/prednK <-; rewrite leq_mul2r. Qed.
Implicit Arguments leq_pmul2r [m n1 n2].
Lemma eqn_pmul2l m n1 n2 : 0 < m -> (m * n1 == m * n2) = (n1 == n2).
Proof. by move/prednK <-; rewrite eqn_mul2l. Qed.
Implicit Arguments eqn_pmul2l [m n1 n2].
Lemma eqn_pmul2r m n1 n2 : 0 < m -> (n1 * m == n2 * m) = (n1 == n2).
Proof. by move/prednK <-; rewrite eqn_mul2r. Qed.
Implicit Arguments eqn_pmul2r [m n1 n2].
Lemma ltn_mul2l m n1 n2 : (m * n1 < m * n2) = (0 < m) && (n1 < n2).
Proof. by rewrite lt0n !ltnNge leq_mul2l negb_or. Qed.
Lemma ltn_mul2r m n1 n2 : (n1 * m < n2 * m) = (0 < m) && (n1 < n2).
Proof. by rewrite lt0n !ltnNge leq_mul2r negb_or. Qed.
Lemma ltn_pmul2l m n1 n2 : 0 < m -> (m * n1 < m * n2) = (n1 < n2).
Proof. by move/prednK <-; rewrite ltn_mul2l. Qed.
Implicit Arguments ltn_pmul2l [m n1 n2].
Lemma ltn_pmul2r m n1 n2 : 0 < m -> (n1 * m < n2 * m) = (n1 < n2).
Proof. by move/prednK <-; rewrite ltn_mul2r. Qed.
Implicit Arguments ltn_pmul2r [m n1 n2].
Lemma ltn_Pmull m n : 1 < n -> 0 < m -> m < n * m.
Proof. by move=> lt1n m_gt0; rewrite -{1}[m]mul1n ltn_pmul2r. Qed.
Lemma ltn_Pmulr m n : 1 < n -> 0 < m -> m < m * n.
Proof. by move=> lt1n m_gt0; rewrite mulnC ltn_Pmull. Qed.
Lemma ltn_mul m1 m2 n1 n2 : m1 < n1 -> m2 < n2 -> m1 * m2 < n1 * n2.
Proof.
move=> lt_mn1 lt_mn2; apply (@leq_ltn_trans (m1 * n2)).
by rewrite leq_mul2l orbC ltnW.
by rewrite ltn_pmul2r // (leq_trans _ lt_mn2).
Qed.
Lemma maxn_mulr : right_distributive muln maxn.
Proof. by case=> // m n1 n2; rewrite /maxn (fun_if (muln _)) ltn_pmul2l. Qed.
Lemma maxn_mull : left_distributive muln maxn.
Proof. by move=> m1 m2 n; rewrite -!(mulnC n) maxn_mulr. Qed.
Lemma minn_mulr : right_distributive muln minn.
Proof. by case=> // m n1 n2; rewrite /minn (fun_if (muln _)) ltn_pmul2l. Qed.
Lemma minn_mull : left_distributive muln minn.
Proof. by move=> m1 m2 n; rewrite -!(mulnC n) minn_mulr. Qed.
(* Exponentiation. *)
Definition expn_rec m n := iterop n muln m 1.
Notation "m ^ n" := (expn_rec m n) : nat_rec_scope.
Definition expn := nosimpl expn_rec.
Notation "m ^ n" := (expn m n) : nat_scope.
Lemma expnE : expn = expn_rec. Proof. by []. Qed.
Lemma expn0 m : m ^ 0 = 1. Proof. by []. Qed.
Lemma expn1 m : m ^ 1 = m. Proof. by []. Qed.
Lemma expnS m n : m ^ n.+1 = m * m ^ n. Proof. by case: n; rewrite ?muln1. Qed.
Lemma expnSr m n : m ^ n.+1 = m ^ n * m. Proof. by rewrite mulnC expnS. Qed.
Lemma iter_muln m n p : iter n (muln m) p = m ^ n * p.
Proof. by elim: n => /= [|n ->]; rewrite ?mul1n // expnS mulnA. Qed.
Lemma iter_muln_1 m n : iter n (muln m) 1 = m ^ n.
Proof. by rewrite iter_muln muln1. Qed.
Lemma exp0n n : 0 < n -> 0 ^ n = 0. Proof. by case: n => [|[]]. Qed.
Lemma exp1n n : 1 ^ n = 1.
Proof. by elim: n => // n; rewrite expnS mul1n. Qed.
Lemma expnD m n1 n2 : m ^ (n1 + n2) = m ^ n1 * m ^ n2.
Proof. by elim: n1 => [|n1 IHn]; rewrite !(mul1n, expnS) // IHn mulnA. Qed.
Lemma expnMn m1 m2 n : (m1 * m2) ^ n = m1 ^ n * m2 ^ n.
Proof. by elim: n => // n IHn; rewrite !expnS IHn -!mulnA (mulnCA m2). Qed.
Lemma expnM m n1 n2 : m ^ (n1 * n2) = (m ^ n1) ^ n2.
Proof.
elim: n1 => [|n1 IHn]; first by rewrite exp1n.
by rewrite expnD expnS expnMn IHn.
Qed.
Lemma expnAC m n1 n2 : (m ^ n1) ^ n2 = (m ^ n2) ^ n1.
Proof. by rewrite -!expnM mulnC. Qed.
Lemma expn_gt0 m n : (0 < m ^ n) = (0 < m) || (n == 0).
Proof.
by case: m => [|m]; elim: n => //= n IHn; rewrite expnS // addn_gt0 IHn.
Qed.
Lemma expn_eq0 m e : (m ^ e == 0) = (m == 0) && (e > 0).
Proof. by rewrite !eqn0Ngt expn_gt0 negb_or -lt0n. Qed.
Lemma ltn_expl m n : 1 < m -> n < m ^ n.
Proof.
move=> m_gt1; elim: n => //= n; rewrite -(leq_pmul2l (ltnW m_gt1)) expnS.
by apply: leq_trans; exact: ltn_Pmull.
Qed.
Lemma leq_exp2l m n1 n2 : 1 < m -> (m ^ n1 <= m ^ n2) = (n1 <= n2).
Proof.
move=> m_gt1; elim: n1 n2 => [|n1 IHn] [|n2] //; last 1 first.
- by rewrite !expnS leq_pmul2l ?IHn // ltnW.
- by rewrite expn_gt0 ltnW.
by rewrite leqNgt (leq_trans m_gt1) // expnS leq_pmulr // expn_gt0 ltnW.
Qed.
Lemma ltn_exp2l m n1 n2 : 1 < m -> (m ^ n1 < m ^ n2) = (n1 < n2).
Proof. by move=> m_gt1; rewrite !ltnNge leq_exp2l. Qed.
Lemma eqn_exp2l m n1 n2 : 1 < m -> (m ^ n1 == m ^ n2) = (n1 == n2).
Proof. by move=> m_gt1; rewrite !eqn_leq !leq_exp2l. Qed.
Lemma expnI m : 1 < m -> injective (expn m).
Proof. by move=> m_gt1 e1 e2 /eqP; rewrite eqn_exp2l // => /eqP. Qed.
Lemma leq_pexp2l m n1 n2 : 0 < m -> n1 <= n2 -> m ^ n1 <= m ^ n2.
Proof. by case: m => [|[|m]] // _; [rewrite !exp1n | rewrite leq_exp2l]. Qed.
Lemma ltn_pexp2l m n1 n2 : 0 < m -> m ^ n1 < m ^ n2 -> n1 < n2.
Proof. by case: m => [|[|m]] // _; [rewrite !exp1n | rewrite ltn_exp2l]. Qed.
Lemma ltn_exp2r m n e : e > 0 -> (m ^ e < n ^ e) = (m < n).
Proof.
move=> e_gt0; apply/idP/idP=> [|ltmn].
rewrite !ltnNge; apply: contra => lemn.
by elim: e {e_gt0} => // e IHe; rewrite !expnS leq_mul.
by elim: e e_gt0 => // [[|e] IHe] _; rewrite ?expn1 // ltn_mul // IHe.
Qed.
Lemma leq_exp2r m n e : e > 0 -> (m ^ e <= n ^ e) = (m <= n).
Proof. by move=> e_gt0; rewrite leqNgt ltn_exp2r // -leqNgt. Qed.
Lemma eqn_exp2r m n e : e > 0 -> (m ^ e == n ^ e) = (m == n).
Proof. by move=> e_gt0; rewrite !eqn_leq !leq_exp2r. Qed.
Lemma expIn e : e > 0 -> injective (expn^~ e).
Proof. by move=> e_gt1 m n /eqP; rewrite eqn_exp2r // => /eqP. Qed.
(* Factorial. *)
Fixpoint fact_rec n := if n is n'.+1 then n * fact_rec n' else 1.
Definition factorial := nosimpl fact_rec.
Notation "n `!" := (factorial n) (at level 2, format "n `!") : nat_scope.
Lemma factE : factorial = fact_rec. Proof. by []. Qed.
Lemma fact0 : 0`! = 1. Proof. by []. Qed.
Lemma factS n : (n.+1)`! = n.+1 * n`!. Proof. by []. Qed.
Lemma fact_gt0 n : n`! > 0.
Proof. by elim: n => //= n IHn; rewrite muln_gt0. Qed.
(* Parity and bits. *)
Coercion nat_of_bool (b : bool) := if b then 1 else 0.
Lemma leq_b1 (b : bool) : b <= 1. Proof. by case: b. Qed.
Lemma addn_negb (b : bool) : ~~ b + b = 1. Proof. by case: b. Qed.
Lemma eqb0 (b : bool) : (b == 0 :> nat) = ~~ b. Proof. by case: b. Qed.
Lemma eqb1 (b : bool) : (b == 1 :> nat) = b. Proof. by case: b. Qed.
Lemma lt0b (b : bool) : (b > 0) = b. Proof. by case: b. Qed.
Lemma sub1b (b : bool) : 1 - b = ~~ b. Proof. by case: b. Qed.
Lemma mulnb (b1 b2 : bool) : b1 * b2 = b1 && b2.
Proof. by case: b1; case: b2. Qed.
Lemma mulnbl (b : bool) n : b * n = (if b then n else 0).
Proof. by case: b; rewrite ?mul1n. Qed.
Lemma mulnbr (b : bool) n : n * b = (if b then n else 0).
Proof. by rewrite mulnC mulnbl. Qed.
Fixpoint odd n := if n is n'.+1 then ~~ odd n' else false.
Lemma oddb (b : bool) : odd b = b. Proof. by case: b. Qed.
Lemma odd_add m n : odd (m + n) = odd m (+) odd n.
Proof. by elim: m => [|m IHn] //=; rewrite -addTb IHn addbA addTb. Qed.
Lemma odd_sub m n : n <= m -> odd (m - n) = odd m (+) odd n.
Proof.
by move=> le_nm; apply: (@canRL bool) (addbK _) _; rewrite -odd_add subnK.
Qed.
Lemma odd_opp i m : odd m = false -> i < m -> odd (m - i) = odd i.
Proof. by move=> oddm lt_im; rewrite (odd_sub (ltnW lt_im)) oddm. Qed.
Lemma odd_mul m n : odd (m * n) = odd m && odd n.
Proof. by elim: m => //= m IHm; rewrite odd_add -addTb andb_addl -IHm. Qed.
Lemma odd_exp m n : odd (m ^ n) = (n == 0) || odd m.
Proof. by elim: n => // n IHn; rewrite expnS odd_mul {}IHn orbC; case odd. Qed.
(* Doubling. *)
Fixpoint double_rec n := if n is n'.+1 then n'.*2%Nrec.+2 else 0
where "n .*2" := (double_rec n) : nat_rec_scope.
Definition double := nosimpl double_rec.
Notation "n .*2" := (double n) : nat_scope.
Lemma doubleE : double = double_rec. Proof. by []. Qed.
Lemma double0 : 0.*2 = 0. Proof. by []. Qed.
Lemma doubleS n : n.+1.*2 = n.*2.+2. Proof. by []. Qed.
Lemma addnn n : n + n = n.*2.
Proof. by apply: eqP; elim: n => // n IHn; rewrite addnS. Qed.
Lemma mul2n m : 2 * m = m.*2.
Proof. by rewrite mulSn mul1n addnn. Qed.
Lemma muln2 m : m * 2 = m.*2.
Proof. by rewrite mulnC mul2n. Qed.
Lemma doubleD m n : (m + n).*2 = m.*2 + n.*2.
Proof. by rewrite -!addnn -!addnA (addnCA n). Qed.
Lemma doubleB m n : (m - n).*2 = m.*2 - n.*2.
Proof. elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.
Lemma leq_double m n : (m.*2 <= n.*2) = (m <= n).
Proof. by rewrite /leq -doubleB; case (m - n). Qed.
Lemma ltn_double m n : (m.*2 < n.*2) = (m < n).
Proof. by rewrite 2!ltnNge leq_double. Qed.
Lemma ltn_Sdouble m n : (m.*2.+1 < n.*2) = (m < n).
Proof. by rewrite -doubleS leq_double. Qed.
Lemma leq_Sdouble m n : (m.*2 <= n.*2.+1) = (m <= n).
Proof. by rewrite leqNgt ltn_Sdouble -leqNgt. Qed.
Lemma odd_double n : odd n.*2 = false.
Proof. by rewrite -addnn odd_add addbb. Qed.
Lemma double_gt0 n : (0 < n.*2) = (0 < n).
Proof. by case: n. Qed.
Lemma double_eq0 n : (n.*2 == 0) = (n == 0).
Proof. by case: n. Qed.
Lemma doubleMl m n : (m * n).*2 = m.*2 * n.
Proof. by rewrite -!mul2n mulnA. Qed.
Lemma doubleMr m n : (m * n).*2 = m * n.*2.
Proof. by rewrite -!muln2 mulnA. Qed.
(* Halving. *)
Fixpoint half (n : nat) : nat := if n is n'.+1 then uphalf n' else n
with uphalf (n : nat) : nat := if n is n'.+1 then n'./2.+1 else n
where "n ./2" := (half n) : nat_scope.
Lemma doubleK : cancel double half.
Proof. by elim=> //= n ->. Qed.
Definition half_double := doubleK.
Definition double_inj := can_inj doubleK.
Lemma uphalf_double n : uphalf n.*2 = n.
Proof. by elim: n => //= n ->. Qed.
Lemma uphalf_half n : uphalf n = odd n + n./2.
Proof. by elim: n => //= n ->; rewrite addnA addn_negb. Qed.
Lemma odd_double_half n : odd n + n./2.*2 = n.
Proof.
by elim: n => //= n {3}<-; rewrite uphalf_half doubleD; case (odd n).
Qed.
Lemma half_bit_double n (b : bool) : (b + n.*2)./2 = n.
Proof. by case: b; rewrite /= (half_double, uphalf_double). Qed.
Lemma halfD m n : (m + n)./2 = (odd m && odd n) + (m./2 + n./2).
Proof.
rewrite -{1}[n]odd_double_half addnCA -{1}[m]odd_double_half -addnA -doubleD.
by do 2!case: odd; rewrite /= ?add0n ?half_double ?uphalf_double.
Qed.
Lemma half_leq m n : m <= n -> m./2 <= n./2.
Proof. by move/subnK <-; rewrite halfD addnA leq_addl. Qed.
Lemma half_gt0 n : (0 < n./2) = (1 < n).
Proof. by case: n => [|[]]. Qed.
Lemma odd_geq m n : odd n -> (m <= n) = (m./2.*2 <= n).
Proof.
move=> odd_n; rewrite -{1}[m]odd_double_half -[n]odd_double_half odd_n.
by case: (odd m); rewrite // leq_Sdouble ltnS leq_double.
Qed.
Lemma odd_ltn m n : odd n -> (n < m) = (n < m./2.*2).
Proof. by move=> odd_n; rewrite !ltnNge odd_geq. Qed.
Lemma odd_gt0 n : odd n -> n > 0. Proof. by case: n. Qed.
Lemma odd_gt2 n : odd n -> n > 1 -> n > 2.
Proof. by move=> odd_n n_gt1; rewrite odd_geq. Qed.
(* Squares and square identities. *)
Lemma mulnn m : m * m = m ^ 2.
Proof. by rewrite !expnS muln1. Qed.
Lemma sqrnD m n : (m + n) ^ 2 = m ^ 2 + n ^ 2 + 2 * (m * n).
Proof.
rewrite -!mulnn mul2n mulnDr !mulnDl (mulnC n) -!addnA.
by congr (_ + _); rewrite addnA addnn addnC.
Qed.
Lemma sqrn_sub m n : n <= m -> (m - n) ^ 2 = m ^ 2 + n ^ 2 - 2 * (m * n).
Proof.
move/subnK=> def_m; rewrite -{2}def_m sqrnD -addnA addnAC.
by rewrite -2!addnA addnn -mul2n -mulnDr -mulnDl def_m addnK.
Qed.
Lemma sqrnD_sub m n : n <= m -> (m + n) ^ 2 - 4 * (m * n) = (m - n) ^ 2.
Proof.
move=> le_nm; rewrite -[4]/(2 * 2) -mulnA mul2n -addnn subnDA.
by rewrite sqrnD addnK sqrn_sub.
Qed.
Lemma subn_sqr m n : m ^ 2 - n ^ 2 = (m - n) * (m + n).
Proof. by rewrite mulnBl !mulnDr addnC (mulnC m) subnDl !mulnn. Qed.
Lemma ltn_sqr m n : (m ^ 2 < n ^ 2) = (m < n).
Proof. by rewrite ltn_exp2r. Qed.
Lemma leq_sqr m n : (m ^ 2 <= n ^ 2) = (m <= n).
Proof. by rewrite leq_exp2r. Qed.
Lemma sqrn_gt0 n : (0 < n ^ 2) = (0 < n).
Proof. exact: (ltn_sqr 0). Qed.
Lemma eqn_sqr m n : (m ^ 2 == n ^ 2) = (m == n).
Proof. by rewrite eqn_exp2r. Qed.
Lemma sqrn_inj : injective (expn ^~ 2).
Proof. exact: expIn. Qed.
(* Almost strict inequality: an inequality that is strict unless some *)
(* specific condition holds, such as the Cauchy-Schwartz or the AGM *)
(* inequality (we only prove the order-2 AGM here; the general one *)
(* requires sequences). *)
(* We formalize the concept as a rewrite multirule, that can be used *)
(* both to rewrite the non-strict inequality to true, and the equality *)
(* to the specific condition (for strict inequalities use the ltn_neqAle *)
(* lemma); in addition, the conditional equality also coerces to a *)
(* non-strict one. *)
Definition leqif m n C := ((m <= n) * ((m == n) = C))%type.
Notation "m <= n ?= 'iff' C" := (leqif m n C) : nat_scope.
Coercion leq_of_leqif m n C (H : m <= n ?= iff C) := H.1 : m <= n.
Lemma leqifP m n C : reflect (m <= n ?= iff C) (if C then m == n else m < n).
Proof.
rewrite ltn_neqAle; apply: (iffP idP) => [|lte]; last by rewrite !lte; case C.
by case C => [/eqP-> | /andP[/negPf]]; split=> //; exact: eqxx.
Qed.
Lemma leqif_refl m C : reflect (m <= m ?= iff C) C.
Proof. by apply: (iffP idP) => [-> | <-] //; split; rewrite ?eqxx. Qed.
Lemma leqif_trans m1 m2 m3 C12 C23 :
m1 <= m2 ?= iff C12 -> m2 <= m3 ?= iff C23 -> m1 <= m3 ?= iff C12 && C23.
Proof.
move=> ltm12 ltm23; apply/leqifP; rewrite -ltm12.
case eqm12: (m1 == m2).
by rewrite (eqP eqm12) ltn_neqAle !ltm23 andbT; case C23.
by rewrite (@leq_trans m2) ?ltm23 // ltn_neqAle eqm12 ltm12.
Qed.
Lemma mono_leqif f : {mono f : m n / m <= n} ->
forall m n C, (f m <= f n ?= iff C) = (m <= n ?= iff C).
Proof. by move=> f_mono m n C; rewrite /leqif !eqn_leq !f_mono. Qed.
Lemma leqif_geq m n : m <= n -> m <= n ?= iff (m >= n).
Proof. by move=> lemn; split=> //; rewrite eqn_leq lemn. Qed.
Lemma leqif_eq m n : m <= n -> m <= n ?= iff (m == n).
Proof. by []. Qed.
Lemma geq_leqif a b C : a <= b ?= iff C -> (b <= a) = C.
Proof. by case=> le_ab; rewrite eqn_leq le_ab. Qed.
Lemma ltn_leqif a b C : a <= b ?= iff C -> (a < b) = ~~ C.
Proof. by move=> le_ab; rewrite ltnNge (geq_leqif le_ab). Qed.
Lemma leqif_add m1 n1 C1 m2 n2 C2 :
m1 <= n1 ?= iff C1 -> m2 <= n2 ?= iff C2 ->
m1 + m2 <= n1 + n2 ?= iff C1 && C2.
Proof.
rewrite -(mono_leqif (leq_add2r m2)) -(mono_leqif (leq_add2l n1) m2).
exact: leqif_trans.
Qed.
Lemma leqif_mul m1 n1 C1 m2 n2 C2 :
m1 <= n1 ?= iff C1 -> m2 <= n2 ?= iff C2 ->
m1 * m2 <= n1 * n2 ?= iff (n1 * n2 == 0) || (C1 && C2).
Proof.
move=> le1 le2; case: posnP => [n12_0 | ].
rewrite n12_0; move/eqP: n12_0 {le1 le2}le1.1 le2.1; rewrite muln_eq0.
by case/orP=> /eqP->; case: m1 m2 => [|m1] [|m2] // _ _;
rewrite ?muln0; exact/leqif_refl.
rewrite muln_gt0 => /andP[n1_gt0 n2_gt0].
have [m2_0 | m2_gt0] := posnP m2.
apply/leqifP; rewrite -le2 andbC eq_sym eqn_leq leqNgt m2_0 muln0.
by rewrite muln_gt0 n1_gt0 n2_gt0.
have mono_n1 := leq_pmul2l n1_gt0; have mono_m2 := leq_pmul2r m2_gt0.
rewrite -(mono_leqif mono_m2) in le1; rewrite -(mono_leqif mono_n1) in le2.
exact: leqif_trans le1 le2.
Qed.
Lemma nat_Cauchy m n : 2 * (m * n) <= m ^ 2 + n ^ 2 ?= iff (m == n).
Proof.
wlog le_nm: m n / n <= m.
by case: (leqP m n); auto; rewrite eq_sym addnC (mulnC m); auto.
apply/leqifP; case: ifP => [/eqP-> | ne_mn]; first by rewrite mulnn addnn mul2n.
by rewrite -subn_gt0 -sqrn_sub // sqrn_gt0 subn_gt0 ltn_neqAle eq_sym ne_mn.
Qed.
Lemma nat_AGM2 m n : 4 * (m * n) <= (m + n) ^ 2 ?= iff (m == n).
Proof.
rewrite -[4]/(2 * 2) -mulnA mul2n -addnn sqrnD; apply/leqifP.
by rewrite ltn_add2r eqn_add2r ltn_neqAle !nat_Cauchy; case: ifP => ->.
Qed.
(* Support for larger integers. The normal definitions of +, - and even *)
(* IO are unsuitable for Peano integers larger than 2000 or so because *)
(* they are not tail-recursive. We provide a workaround module, along *)
(* with a rewrite multirule to change the tailrec operators to the *)
(* normal ones. We handle IO via the NatBin module, but provide our *)
(* own (more efficient) conversion functions. *)
Module NatTrec.
(* Usage: *)
(* Import NatTrec. *)
(* in section definining functions, rebinds all *)
(* non-tail recursive operators. *)
(* rewrite !trecE. *)
(* in the correctness proof, restores operators *)
Fixpoint add m n := if m is m'.+1 then m' + n.+1 else n
where "n + m" := (add n m) : nat_scope.
Fixpoint add_mul m n s := if m is m'.+1 then add_mul m' n (n + s) else s.
Definition mul m n := if m is m'.+1 then add_mul m' n n else 0.
Notation "n * m" := (mul n m) : nat_scope.
Fixpoint mul_exp m n p := if n is n'.+1 then mul_exp m n' (m * p) else p.
Definition exp m n := if n is n'.+1 then mul_exp m n' m else 1.
Notation "n ^ m" := (exp n m) : nat_scope.
Notation Local oddn := odd.
Fixpoint odd n := if n is n'.+2 then odd n' else eqn n 1.
Notation Local doublen := double.
Definition double n := if n is n'.+1 then n' + n.+1 else 0.
Notation "n .*2" := (double n) : nat_scope.
Lemma addE : add =2 addn.
Proof. by elim=> //= n IHn m; rewrite IHn addSnnS. Qed.
Lemma doubleE : double =1 doublen.
Proof. by case=> // n; rewrite -addnn -addE. Qed.
Lemma add_mulE n m s : add_mul n m s = addn (muln n m) s.
Proof. by elim: n => //= n IHn in m s *; rewrite IHn addE addnCA addnA. Qed.
Lemma mulE : mul =2 muln.
Proof. by case=> //= n m; rewrite add_mulE addnC. Qed.
Lemma mul_expE m n p : mul_exp m n p = muln (expn m n) p.
Proof.
by elim: n => [|n IHn] in p *; rewrite ?mul1n //= expnS IHn mulE mulnCA mulnA.
Qed.
Lemma expE : exp =2 expn.
Proof. by move=> m [|n] //=; rewrite mul_expE expnS mulnC. Qed.
Lemma oddE : odd =1 oddn.
Proof.
move=> n; rewrite -{1}[n]odd_double_half addnC.
by elim: n./2 => //=; case (oddn n).
Qed.
Definition trecE := (addE, (doubleE, oddE), (mulE, add_mulE, (expE, mul_expE))).
End NatTrec.
Notation natTrecE := NatTrec.trecE.
Lemma eq_binP : Equality.axiom Ndec.Neqb.
Proof.
move=> p q; apply: (iffP idP) => [|<-]; last by case: p => //; elim.
by case: q; case: p => //; elim=> [p IHp|p IHp|] [q|q|] //=; case/IHp=> ->.
Qed.
Canonical bin_nat_eqMixin := EqMixin eq_binP.
Canonical bin_nat_eqType := Eval hnf in EqType N bin_nat_eqMixin.
Section NumberInterpretation.
Import BinPos.
Section Trec.
Import NatTrec.
Fixpoint nat_of_pos p0 :=
match p0 with
| xO p => (nat_of_pos p).*2
| xI p => (nat_of_pos p).*2.+1
| xH => 1
end.
End Trec.
Coercion Local nat_of_pos : positive >-> nat.
Coercion nat_of_bin b := if b is Npos p then p : nat else 0.
Fixpoint pos_of_nat n0 m0 :=
match n0, m0 with
| n.+1, m.+2 => pos_of_nat n m
| n.+1, 1 => xO (pos_of_nat n n)
| n.+1, 0 => xI (pos_of_nat n n)
| 0, _ => xH
end.
Definition bin_of_nat n0 := if n0 is n.+1 then Npos (pos_of_nat n n) else 0%num.
Lemma bin_of_natK : cancel bin_of_nat nat_of_bin.
Proof.
have sub2nn n : n.*2 - n = n by rewrite -addnn addKn.
case=> //= n; rewrite -{3}[n]sub2nn.
by elim: n {2 4}n => // m IHm [|[|n]] //=; rewrite IHm // natTrecE sub2nn.
Qed.
Lemma nat_of_binK : cancel nat_of_bin bin_of_nat.
Proof.
case=> //=; elim=> //= p; case: (nat_of_pos p) => //= n [<-].
by rewrite natTrecE !addnS {2}addnn; elim: {1 3}n.
by rewrite natTrecE addnS /= addnS {2}addnn; elim: {1 3}n.
Qed.
Lemma nat_of_succ_gt0 p : Psucc p = p.+1 :> nat.
Proof. by elim: p => //= p ->; rewrite !natTrecE. Qed.
Lemma nat_of_addn_gt0 p q : (p + q)%positive = p + q :> nat.
Proof.
apply: fst (Pplus_carry p q = (p + q).+1 :> nat) _.
elim: p q => [p IHp|p IHp|] [q|q|] //=; rewrite !natTrecE //;
by rewrite ?IHp ?nat_of_succ_gt0 ?(doubleS, doubleD, addn1, addnS).
Qed.
Lemma nat_of_add_bin b1 b2 : (b1 + b2)%num = b1 + b2 :> nat.
Proof. case: b1 b2 => [|p] [|q] //=; exact: nat_of_addn_gt0. Qed.
Lemma nat_of_mul_bin b1 b2 : (b1 * b2)%num = b1 * b2 :> nat.
Proof.
case: b1 b2 => [|p] [|q] //=; elim: p => [p IHp|p IHp|] /=;
by rewrite ?(mul1n, nat_of_addn_gt0, mulSn) //= !natTrecE IHp doubleMl.
Qed.
Lemma nat_of_exp_bin n (b : N) : n ^ b = pow_N 1 muln n b.
Proof.
case: b => [|p] /=; first exact: expn0.
by elim: p => //= p <-; rewrite natTrecE mulnn -expnM muln2 ?expnS.
Qed.
End NumberInterpretation.
(* Big(ger) nat IO; usage: *)
(* Num 1 072 399 *)
(* to create large numbers for test cases *)
(* Eval compute in [Num of some expression] *)
(* to display the resut of an expression that *)
(* returns a larger integer. *)
Record number : Type := Num {bin_of_number :> N}.
Definition extend_number (nn : number) m := Num (nn * 1000 + bin_of_nat m).
Coercion extend_number : number >-> Funclass.
Canonical number_subType := [newType for bin_of_number].
Definition number_eqMixin := Eval hnf in [eqMixin of number by <:].
Canonical number_eqType := Eval hnf in EqType number number_eqMixin.
Notation "[ 'Num' 'of' e ]" := (Num (bin_of_nat e))
(at level 0, format "[ 'Num' 'of' e ]") : nat_scope.
(* Interface to ring/ring_simplify tactics *)
Lemma nat_semi_ring : semi_ring_theory 0 1 addn muln (@eq _).
Proof. exact: mk_srt add0n addnC addnA mul1n mul0n mulnC mulnA mulnDl. Qed.
Lemma nat_semi_morph :
semi_morph 0 1 addn muln (@eq _) 0%num 1%num Nplus Nmult pred1 nat_of_bin.
Proof.
by move: nat_of_add_bin nat_of_mul_bin; split=> //= m n; move/eqP->.
Qed.
Lemma nat_power_theory : power_theory 1 muln (@eq _) nat_of_bin expn.
Proof. split; exact: nat_of_exp_bin. Qed.
(* Interface to the ring tactic machinery. *)
Fixpoint pop_succn e := if e is e'.+1 then fun n => pop_succn e' n.+1 else id.
Ltac pop_succn e := eval lazy beta iota delta [pop_succn] in (pop_succn e 1).
Ltac nat_litteral e :=
match pop_succn e with
| ?n.+1 => constr: (bin_of_nat n)
| _ => NotConstant
end.
Ltac succn_to_add :=
match goal with
| |- context G [?e.+1] =>
let x := fresh "NatLit0" in
match pop_succn e with
| ?n.+1 => pose x := n.+1; let G' := context G [x] in change G'
| _ ?e' ?n => pose x := n; let G' := context G [x + e'] in change G'
end; succn_to_add; rewrite {}/x
| _ => idtac
end.
Add Ring nat_ring_ssr : nat_semi_ring (morphism nat_semi_morph,
constants [nat_litteral], preprocess [succn_to_add],
power_tac nat_power_theory [nat_litteral]).
(* A congruence tactic, similar to the boolean one, along with an .+1/+ *)
(* normalization tactic. *)
Ltac nat_norm :=
succn_to_add; rewrite ?add0n ?addn0 -?addnA ?(addSn, addnS, add0n, addn0).
Ltac nat_congr := first
[ apply: (congr1 succn _)
| apply: (congr1 predn _)
| apply: (congr1 (addn _) _)
| apply: (congr1 (subn _) _)
| apply: (congr1 (addn^~ _) _)
| match goal with |- (?X1 + ?X2 = ?X3) =>
symmetry;
rewrite -1?(addnC X1) -?(addnCA X1);
apply: (congr1 (addn X1) _);
symmetry
end ].
|