File: ssrnat.v

package info (click to toggle)
ssreflect 1.5-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 932 kB
  • ctags: 96
  • sloc: ml: 334; sh: 92; makefile: 67; lisp: 37
file content (1599 lines) | stat: -rw-r--r-- 58,490 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
(* (c) Copyright Microsoft Corporation and Inria.                       *)
(* You may distribute this file under the terms of the CeCILL-B license *)
Require Import ssreflect ssrfun ssrbool eqtype.
Require Import BinNat.
Require BinPos Ndec.
Require Export Ring.

(******************************************************************************)
(* A version of arithmetic on nat (natural numbers) that is better suited to  *)
(* small scale reflection than the Coq Arith library. It contains an          *)
(* extensive equational theory (including, e.g., the AGM inequality), as well *)
(* as support for the ring tactic, and congruence tactics.                    *)
(*   The following operations and notations are provided:                     *)
(*                                                                            *)
(*   successor and predecessor                                                *)
(*     n.+1, n.+2, n.+3, n.+4 and n.-1, n.-2                                  *)
(*     this frees the names "S" and "pred"                                    *)
(*                                                                            *)
(*   basic arithmetic                                                         *)
(*     m + n, m - n, m * n                                                    *)
(*   Important: m - n denotes TRUNCATED substraction: m - n = 0 if m <= n.    *)
(*   The definitions use the nosimpl tag to prevent undesirable computation   *)
(*   computation during simplification, but remain compatible with the ones   *)
(*   provided in the Coq.Init.Peano prelude.                                  *)
(*     For computation, a module NatTrec rebinds all arithmetic notations     *)
(*   to less convenient but also less inefficient tail-recursive functions;   *)
(*   the auxiliary functions used by these versions are flagged with %Nrec.   *)
(*     Also, there is support for input and output of large nat values.       *)
(*       Num 3 082 241 inputs the number 3082241                              *)
(*         [Num of n]  outputs the value n                                    *)
(*   There are coercions num >-> BinNat.N >-> nat; ssrnat rebinds the scope   *)
(*   delimter for BinNat.N to %num, as it uses the shorter %N for its own     *)
(*   notations (Peano notations are flagged with %coq_nat).                   *)
(*                                                                            *)
(*   doubling, halving, and parity                                            *)
(*      n.*2, n./2, odd n, uphalf n,  with uphalf n = n.+1./2                 *)
(*   bool coerces to nat so we can write, e.g., n = odd n + n./2.*2.          *)
(*                                                                            *)
(*   iteration                                                                *)
(*             iter n f x0  == f ( .. (f x0))                                 *)
(*             iteri n g x0 == g n.-1 (g ... (g 0 x0))                        *)
(*         iterop n op x x0 == op x (... op x x) (n x's) or x0 if n = 0       *)
(*                                                                            *)
(*   exponentiation, factorial                                                *)
(*        m ^ n, n`!                                                          *)
(*        m ^ 1 is convertible to m, and m ^ 2 to m * m                       *)
(*                                                                            *)
(*   comparison                                                               *)
(*      m <= n, m < n, m >= n, m > n, m == n, m <= n <= p, etc.,              *)
(*   comparisons are BOOLEAN operators, and m == n is the generic eqType      *)
(*   operation.                                                               *)
(*     Most compatibility lemmas are stated as boolean equalities; this keeps *)
(*   the size of the library down. All the inequalities refer to the same     *)
(*   constant "leq"; in particular m < n is identical to m.+1 <= n.           *)
(*                                                                            *)
(*   conditionally strict inequality `leqif'                                  *)
(*      m <= n ?= iff condition   ==   (m <= n) and ((m == n) = condition)    *)
(*   This is actually a pair of boolean equalities, so rewriting with an      *)
(*   `leqif' lemma can affect several kinds of comparison. The transitivity   *)
(*   lemma for leqif aggregates the conditions, allowing for arguments of     *)
(*   the form ``m <= n <= p <= m, so equality holds throughout''.             *)
(*                                                                            *)
(*   maximum and minimum                                                      *)
(*      maxn m n, minn m n                                                    *)
(*   Note that maxn m n = m + (m - n), due to the truncating subtraction.     *)
(*   Absolute difference (linear distance) between nats is defined in the int *)
(*   library (in the int.IntDist sublibrary), with the syntax `|m - n|. The   *)
(*   '-' in this notation is the signed integer difference.                   *)
(*                                                                            *)
(*   countable choice                                                         *)
(*     ex_minn : forall P : pred nat, (exists n, P n) -> nat                  *)
(*   This returns the smallest n such that P n holds.                         *)
(*     ex_maxn : forall (P : pred nat) m,                                     *)
(*        (exists n, P n) -> (forall n, P n -> n <= m) -> nat                 *)
(*   This returns the largest n such that P n holds (given an explicit upper  *)
(*   bound).                                                                  *)
(*                                                                            *)
(*  This file adds the following suffix conventions to those documented in    *)
(* ssrbool.v and eqtype.v:                                                    *)
(*   A (infix) -- conjunction, as in                                          *)
(*      ltn_neqAle : (m < n) = (m != n) && (m <= n).                          *)
(*   B -- subtraction, as in subBn : (m - n) - p = m - (n + p).               *)
(*   D -- addition, as in mulnDl : (m + n) * p = m * p + n * p.               *)
(*   M -- multiplication, as in expnMn : (m * n) ^ p = m ^ p * n ^ p.         *)
(*   p (prefix) -- positive, as in                                            *)
(*      eqn_pmul2l : m > 0 -> (m * n1 == m * n2) = (n1 == n2).                *)
(*   P  -- greater than 1, as in                                              *)
(*      ltn_Pmull : 1 < n -> 0 < m -> m < n * m.                              *)
(*   S -- successor, as in addSn : n.+1 + m = (n + m).+1.                     *)
(*   V (infix) -- disjunction, as in                                          *)
(*      leq_eqVlt : (m <= n) = (m == n) || (m < n).                           *)
(*   X - exponentiation, as in lognX : logn p (m ^ n) = logn p m * n in       *)
(*         file prime.v (the suffix is not used in ths file).                 *)
(* Suffixes that abreviate operations (D, B, M and X) are used to abbreviate  *)
(* second-rank operations in equational lemma names that describe left-hand   *)
(* sides (e.g., mulnDl); they are not used to abbreviate the main operation   *)
(* of relational lemmas (e.g., leq_add2l).                                    *)
(*   For the asymmetrical exponentiation operator expn (m ^ n) a right suffix *)
(* indicates an operation on the exponent, e.g., expnM : m ^ (n1 * n2) = ...; *)
(* a trailing "n" is used to indicate the left operand, e.g.,                 *)
(* expnMn : (m1 * m2) ^ n = ... The operands of other operators a selected    *)
(* using the l/r suffixes.                                                    *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

(* Declare legacy Arith operators in new scope. *)

Delimit Scope coq_nat_scope with coq_nat.

Notation "m + n" := (plus m n) : coq_nat_scope.
Notation "m - n" := (minus m n) : coq_nat_scope.
Notation "m * n" := (mult m n) : coq_nat_scope.
Notation "m <= n" := (le m n) : coq_nat_scope.
Notation "m < n" := (lt m n) : coq_nat_scope.
Notation "m >= n" := (ge m n) : coq_nat_scope.
Notation "m > n" := (gt m n) : coq_nat_scope.

(* Rebind scope delimiters, reserving a scope for the "recursive",     *)
(* i.e., unprotected version of operators.                             *)

Delimit Scope N_scope with num.
Delimit Scope nat_scope with N.
Delimit Scope nat_rec_scope with Nrec.

(* Postfix notation for the successor and predecessor functions.  *)
(* SSreflect uses "pred" for the generic predicate type, and S as *)
(* a local bound variable.                                        *)

Notation succn := Datatypes.S.
Notation predn := Peano.pred.

Notation "n .+1" := (succn n) (at level 2, left associativity,
  format "n .+1") : nat_scope.
Notation "n .+2" := n.+1.+1 (at level 2, left associativity,
  format "n .+2") : nat_scope.
Notation "n .+3" := n.+2.+1 (at level 2, left associativity,
  format "n .+3") : nat_scope.
Notation "n .+4" := n.+2.+2 (at level 2, left associativity,
  format "n .+4") : nat_scope.

Notation "n .-1" := (predn n) (at level 2, left associativity,
  format "n .-1") : nat_scope.
Notation "n .-2" := n.-1.-1 (at level 2, left associativity,
  format "n .-2") : nat_scope.

Lemma succnK : cancel succn predn. Proof. by []. Qed.
Lemma succn_inj : injective succn. Proof. by move=> n m []. Qed.

(* Predeclare postfix doubling/halving operators. *)

Reserved Notation "n .*2" (at level 2, format "n .*2").
Reserved Notation "n ./2" (at level 2, format "n ./2").

(* Canonical comparison and eqType for nat.                                *)

Fixpoint eqn m n {struct m} :=
  match m, n with
  | 0, 0 => true
  | m'.+1, n'.+1 => eqn m' n'
  | _, _ => false
  end.

Lemma eqnP : Equality.axiom eqn.
Proof.
move=> n m; apply: (iffP idP) => [|<-]; last by elim n.
by elim: n m => [|n IHn] [|m] //= /IHn->.
Qed.

Canonical nat_eqMixin := EqMixin eqnP.
Canonical nat_eqType := Eval hnf in EqType nat nat_eqMixin.

Implicit Arguments eqnP [x y].
Prenex Implicits eqnP.

Lemma eqnE : eqn = eq_op. Proof. by []. Qed.

Lemma eqSS m n : (m.+1 == n.+1) = (m == n). Proof. by []. Qed.

Lemma nat_irrelevance (x y : nat) (E E' : x = y) : E = E'.
Proof. exact: eq_irrelevance. Qed.

(* Protected addition, with a more systematic set of lemmas.                *)

Definition addn_rec := plus.
Notation "m + n" := (addn_rec m n) : nat_rec_scope.

Definition addn := nosimpl addn_rec.
Notation "m + n" := (addn m n) : nat_scope.

Lemma addnE : addn = addn_rec. Proof. by []. Qed.

Lemma plusE : plus = addn. Proof. by []. Qed.

Lemma add0n : left_id 0 addn.            Proof. by []. Qed.
Lemma addSn m n : m.+1 + n = (m + n).+1. Proof. by []. Qed.
Lemma add1n n : 1 + n = n.+1.            Proof. by []. Qed.

Lemma addn0 : right_id 0 addn. Proof. by move=> n; apply/eqP; elim: n. Qed.

Lemma addnS m n : m + n.+1 = (m + n).+1. Proof. by elim: m. Qed.

Lemma addSnnS m n : m.+1 + n = m + n.+1. Proof. by rewrite addnS. Qed.

Lemma addnCA : left_commutative addn.
Proof. by move=> m n p; elim: m => //= m; rewrite addnS => <-. Qed.

Lemma addnC : commutative addn.
Proof. by move=> m n; rewrite -{1}[n]addn0 addnCA addn0. Qed.

Lemma addn1 n : n + 1 = n.+1. Proof. by rewrite addnC. Qed.

Lemma addnA : associative addn.
Proof. by move=> m n p; rewrite (addnC n) addnCA addnC. Qed.

Lemma addnAC : right_commutative addn.
Proof. by move=> m n p; rewrite -!addnA (addnC n). Qed.

Lemma addnACA : interchange addn addn.
Proof. by move=> m n p q; rewrite -!addnA (addnCA n). Qed.

Lemma addn_eq0 m n : (m + n == 0) = (m == 0) && (n == 0).
Proof. by case: m; case: n. Qed.

Lemma eqn_add2l p m n : (p + m == p + n) = (m == n).
Proof. by elim: p. Qed.

Lemma eqn_add2r p m n : (m + p == n + p) = (m == n).
Proof. by rewrite -!(addnC p) eqn_add2l. Qed.

Lemma addnI : right_injective addn.
Proof. by move=> p m n Heq; apply: eqP; rewrite -(eqn_add2l p) Heq eqxx. Qed.

Lemma addIn : left_injective addn.
Proof. move=> p m n; rewrite -!(addnC p); apply addnI. Qed.

Lemma addn2 m : m + 2 = m.+2. Proof. by rewrite addnC. Qed.
Lemma add2n m : 2 + m = m.+2. Proof. by []. Qed.
Lemma addn3 m : m + 3 = m.+3. Proof. by rewrite addnC. Qed.
Lemma add3n m : 3 + m = m.+3. Proof. by []. Qed.
Lemma addn4 m : m + 4 = m.+4. Proof. by rewrite addnC. Qed.
Lemma add4n m : 4 + m = m.+4. Proof. by []. Qed.

(* Protected, structurally decreasing substraction, and basic lemmas. *)
(* Further properties depend on ordering conditions.                  *)

Definition subn_rec := minus.
Notation "m - n" := (subn_rec m n) : nat_rec_scope.

Definition subn := nosimpl subn_rec.
Notation "m - n" := (subn m n) : nat_scope.

Lemma subnE : subn = subn_rec. Proof. by []. Qed.
Lemma minusE : minus = subn.   Proof. by []. Qed.

Lemma sub0n : left_zero 0 subn.    Proof. by []. Qed.
Lemma subn0 : right_id 0 subn.   Proof. by case. Qed.
Lemma subnn : self_inverse 0 subn. Proof. by elim. Qed.

Lemma subSS n m : m.+1 - n.+1 = m - n. Proof. by []. Qed.
Lemma subn1 n : n - 1 = n.-1.          Proof. by case: n => [|[]]. Qed.
Lemma subn2 n : (n - 2)%N = n.-2.      Proof. by case: n => [|[|[]]]. Qed.

Lemma subnDl p m n : (p + m) - (p + n) = m - n.
Proof. by elim: p. Qed.

Lemma subnDr p m n : (m + p) - (n + p) = m - n.
Proof. by rewrite -!(addnC p) subnDl. Qed.

Lemma addKn n : cancel (addn n) (subn^~ n).
Proof. by move=> m; rewrite /= -{2}[n]addn0 subnDl subn0. Qed.

Lemma addnK n : cancel (addn^~ n) (subn^~ n).
Proof. by move=> m; rewrite /= (addnC m) addKn. Qed.

Lemma subSnn n : n.+1 - n = 1.
Proof. exact (addnK n 1). Qed.

Lemma subnDA m n p : n - (m + p) = (n - m) - p.
Proof. by elim: m n => [|m IHm] [|n]; try exact (IHm n). Qed.

Lemma subnAC : right_commutative subn.
Proof. by move=> m n p; rewrite -!subnDA addnC. Qed.

Lemma subnS m n : m - n.+1 = (m - n).-1.
Proof. by rewrite -addn1 subnDA subn1. Qed.

Lemma subSKn m n : (m.+1 - n).-1 = m - n.
Proof. by rewrite -subnS. Qed.

(* Integer ordering, and its interaction with the other operations.       *)

Definition leq m n := m - n == 0.

Notation "m <= n" := (leq m n) : nat_scope.
Notation "m < n"  := (m.+1 <= n) : nat_scope.
Notation "m >= n" := (n <= m) (only parsing) : nat_scope.
Notation "m > n"  := (n < m) (only parsing)  : nat_scope.

(* For sorting, etc. *)
Definition geq := [rel m n | m >= n].
Definition ltn := [rel m n | m < n].
Definition gtn := [rel m n | m > n].

Notation "m <= n <= p" := ((m <= n) && (n <= p)) : nat_scope.
Notation "m < n <= p" := ((m < n) && (n <= p)) : nat_scope.
Notation "m <= n < p" := ((m <= n) && (n < p)) : nat_scope.
Notation "m < n < p" := ((m < n) && (n < p)) : nat_scope.

Lemma ltnS m n : (m < n.+1) = (m <= n). Proof. by []. Qed.
Lemma leq0n n : 0 <= n.                 Proof. by []. Qed.
Lemma ltn0Sn n : 0 < n.+1.              Proof. by []. Qed.
Lemma ltn0 n : n < 0 = false.           Proof. by []. Qed.
Lemma leqnn n : n <= n.                 Proof. by elim: n. Qed.
Hint Resolve leqnn.
Lemma ltnSn n : n < n.+1.               Proof. by []. Qed.
Lemma eq_leq m n : m = n -> m <= n.     Proof. by move->. Qed.
Lemma leqnSn n : n <= n.+1.             Proof. by elim: n. Qed.
Hint Resolve leqnSn.
Lemma leq_pred n : n.-1 <= n.           Proof. by case: n => /=. Qed.
Lemma leqSpred n : n <= n.-1.+1.        Proof. by case: n => /=. Qed.

Lemma ltn_predK m n : m < n -> n.-1.+1 = n.
Proof. by case: n. Qed.

Lemma prednK n : 0 < n -> n.-1.+1 = n.
Proof. exact: ltn_predK. Qed.

Lemma leqNgt m n : (m <= n) = ~~ (n < m).
Proof. by elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.

Lemma ltnNge m n : (m < n) = ~~ (n <= m).
Proof. by rewrite leqNgt. Qed.

Lemma ltnn n : n < n = false.
Proof. by rewrite ltnNge leqnn. Qed.

Lemma leqn0 n : (n <= 0) = (n == 0).           Proof. by case: n. Qed.
Lemma lt0n n : (0 < n) = (n != 0).             Proof. by case: n. Qed.
Lemma lt0n_neq0 n : 0 < n -> n != 0.           Proof. by case: n. Qed.
Lemma eqn0Ngt n : (n == 0) = ~~ (n > 0).       Proof. by case: n. Qed.
Lemma neq0_lt0n n : (n == 0) = false -> 0 < n. Proof. by case: n. Qed.
Hint Resolve lt0n_neq0 neq0_lt0n.

Lemma eqn_leq m n : (m == n) = (m <= n <= m).
Proof. elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.

Lemma anti_leq : antisymmetric leq.
Proof. by move=> m n; rewrite -eqn_leq => /eqP. Qed.

Lemma neq_ltn m n : (m != n) = (m < n) || (n < m).
Proof. by rewrite eqn_leq negb_and orbC -!ltnNge. Qed.

Lemma gtn_eqF m n : m < n -> n == m = false.
Proof. by rewrite eqn_leq (leqNgt n) => ->. Qed.

Lemma ltn_eqF m n : m < n -> m == n = false.
Proof. by move/gtn_eqF; rewrite eq_sym. Qed.

Lemma leq_eqVlt m n : (m <= n) = (m == n) || (m < n).
Proof. elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.

Lemma ltn_neqAle m n : (m < n) = (m != n) && (m <= n).
Proof. by rewrite ltnNge leq_eqVlt negb_or -leqNgt eq_sym. Qed.

Lemma leq_trans n m p : m <= n -> n <= p -> m <= p.
Proof. by elim: n m p => [|i IHn] [|m] [|p] //; exact: IHn m p. Qed.

Lemma leq_ltn_trans n m p : m <= n -> n < p -> m < p.
Proof. move=> Hmn; exact: leq_trans. Qed.

Lemma ltnW m n : m < n -> m <= n.
Proof. exact: leq_trans. Qed.
Hint Resolve ltnW.

Lemma leqW m n : m <= n -> m <= n.+1.
Proof. by move=> le_mn; exact: ltnW. Qed.

Lemma ltn_trans n m p : m < n -> n < p -> m < p.
Proof. by move=> lt_mn /ltnW; exact: leq_trans. Qed.

Lemma leq_total m n : (m <= n) || (m >= n).
Proof. by rewrite -implyNb -ltnNge; apply/implyP; exact: ltnW. Qed.

(* Link to the legacy comparison predicates. *)

Lemma leP m n : reflect (m <= n)%coq_nat (m <= n).
Proof.
apply: (iffP idP); last by elim: n / => // n _ /leq_trans->.
elim: n => [|n IHn]; first by case: m.
by rewrite leq_eqVlt ltnS => /predU1P[<- // | /IHn]; right.
Qed.
Implicit Arguments leP [m n].

Lemma le_irrelevance m n le_mn1 le_mn2 : le_mn1 = le_mn2 :> (m <= n)%coq_nat.
Proof.
elim: {n}n.+1 {-1}n (erefl n.+1) => // n IHn _ [<-] in le_mn1 le_mn2 *.
pose def_n2 := erefl n; transitivity (eq_ind _ _ le_mn2 _ def_n2) => //.
move def_n1: {1 4 5 7}n le_mn1 le_mn2 def_n2 => n1 le_mn1.
case: n1 / le_mn1 def_n1 => [|n1 le_mn1] def_n1 [|n2 le_mn2] def_n2.
- by rewrite [def_n2]eq_axiomK.
- by move/leP: (le_mn2); rewrite -{1}def_n2 ltnn.
- by move/leP: (le_mn1); rewrite {1}def_n2 ltnn.
case: def_n2 (def_n2) => ->{n2} def_n2 in le_mn2 *.
by rewrite [def_n2]eq_axiomK /=; congr le_S; exact: IHn.
Qed.

Lemma ltP m n : reflect (m < n)%coq_nat (m < n).
Proof. exact leP. Qed.
Implicit Arguments ltP [m n].

Lemma lt_irrelevance m n lt_mn1 lt_mn2 : lt_mn1 = lt_mn2 :> (m < n)%coq_nat.
Proof. exact: (@le_irrelevance m.+1). Qed.

(* Comparison predicates. *)

CoInductive leq_xor_gtn m n : bool -> bool -> Set :=
  | LeqNotGtn of m <= n : leq_xor_gtn m n true false
  | GtnNotLeq of n < m  : leq_xor_gtn m n false true.

Lemma leqP m n : leq_xor_gtn m n (m <= n) (n < m).
Proof.
by rewrite ltnNge; case le_mn: (m <= n); constructor; rewrite // ltnNge le_mn.
Qed.

CoInductive ltn_xor_geq m n : bool -> bool -> Set :=
  | LtnNotGeq of m < n  : ltn_xor_geq m n false true
  | GeqNotLtn of n <= m : ltn_xor_geq m n true false.

Lemma ltnP m n : ltn_xor_geq m n (n <= m) (m < n).
Proof. by rewrite -(ltnS n); case: leqP; constructor. Qed.

CoInductive eqn0_xor_gt0 n : bool -> bool -> Set :=
  | Eq0NotPos of n = 0 : eqn0_xor_gt0 n true false
  | PosNotEq0 of n > 0 : eqn0_xor_gt0 n false true.

Lemma posnP n : eqn0_xor_gt0 n (n == 0) (0 < n).
Proof. by case: n; constructor. Qed.

CoInductive compare_nat m n : bool -> bool -> bool -> Set :=
  | CompareNatLt of m < n : compare_nat m n true false false
  | CompareNatGt of m > n : compare_nat m n false true false
  | CompareNatEq of m = n : compare_nat m n false false true.

Lemma ltngtP m n : compare_nat m n (m < n) (n < m) (m == n).
Proof.
rewrite ltn_neqAle eqn_leq; case: ltnP; first by constructor.
by rewrite leq_eqVlt orbC; case: leqP; constructor; first exact/eqnP.
Qed.

(* Monotonicity lemmas *)

Lemma leq_add2l p m n : (p + m <= p + n) = (m <= n).
Proof. by elim: p. Qed.

Lemma ltn_add2l p m n : (p + m < p + n) = (m < n).
Proof. by rewrite -addnS; exact: leq_add2l. Qed.

Lemma leq_add2r p m n : (m + p <= n + p) = (m <= n).
Proof. by rewrite -!(addnC p); exact: leq_add2l. Qed.

Lemma ltn_add2r p m n : (m + p < n + p) = (m < n).
Proof. exact: leq_add2r p m.+1 n. Qed.

Lemma leq_add m1 m2 n1 n2 : m1 <= n1 -> m2 <= n2 -> m1 + m2 <= n1 + n2.
Proof.
by move=> le_mn1 le_mn2; rewrite (@leq_trans (m1 + n2)) ?leq_add2l ?leq_add2r.
Qed.

Lemma leq_addr m n : n <= n + m.
Proof. by rewrite -{1}[n]addn0 leq_add2l. Qed.

Lemma leq_addl m n : n <= m + n.
Proof. by rewrite addnC leq_addr. Qed.

Lemma ltn_addr m n p : m < n -> m < n + p.
Proof. by move/leq_trans=> -> //; exact: leq_addr. Qed.

Lemma ltn_addl m n p : m < n -> m < p + n.
Proof. by move/leq_trans=> -> //; exact: leq_addl. Qed.

Lemma addn_gt0 m n : (0 < m + n) = (0 < m) || (0 < n).
Proof. by rewrite !lt0n -negb_and addn_eq0. Qed.

Lemma subn_gt0 m n : (0 < n - m) = (m < n).
Proof. by elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.

Lemma subn_eq0 m n : (m - n == 0) = (m <= n).
Proof. by []. Qed.

Lemma leq_subLR m n p : (m - n <= p) = (m <= n + p).
Proof. by rewrite -subn_eq0 -subnDA. Qed.

Lemma leq_subr m n : n - m <= n.
Proof. by rewrite leq_subLR leq_addl. Qed.

Lemma subnKC m n : m <= n -> m + (n - m) = n.
Proof. by elim: m n => [|m IHm] [|n] // /(IHm n) {2}<-. Qed.

Lemma subnK m n : m <= n -> (n - m) + m = n.
Proof. by rewrite addnC; exact: subnKC. Qed.

Lemma addnBA m n p : p <= n -> m + (n - p) = m + n - p.
Proof. by move=> le_pn; rewrite -{2}(subnK le_pn) addnA addnK. Qed.

Lemma subnBA m n p : p <= n -> m - (n - p) = m + p - n.
Proof. by move=> le_pn; rewrite -{2}(subnK le_pn) subnDr. Qed.

Lemma subKn m n : m <= n -> n - (n - m) = m.
Proof. by move/subnBA->; rewrite addKn. Qed.

Lemma subSn m n : m <= n -> n.+1 - m = (n - m).+1.
Proof. by rewrite -add1n => /addnBA <-. Qed.

Lemma subnSK m n : m < n -> (n - m.+1).+1 = n - m.
Proof. by move/subSn. Qed.

Lemma leq_sub2r p m n : m <= n -> m - p <= n - p.
Proof.
by move=> le_mn; rewrite leq_subLR (leq_trans le_mn) // -leq_subLR.
Qed.

Lemma leq_sub2l p m n : m <= n -> p - n <= p - m.
Proof.
rewrite -(leq_add2r (p - m)) leq_subLR.
by apply: leq_trans; rewrite -leq_subLR.
Qed.

Lemma leq_sub m1 m2 n1 n2 : m1 <= m2 -> n2 <= n1 -> m1 - n1 <= m2 - n2.
Proof. by move/(leq_sub2r n1)=> le_m12 /(leq_sub2l m2); apply: leq_trans. Qed.

Lemma ltn_sub2r p m n : p < n -> m < n -> m - p < n - p.
Proof. by move/subnSK <-; exact: (@leq_sub2r p.+1). Qed.

Lemma ltn_sub2l p m n : m < p -> m < n -> p - n < p - m.
Proof. by move/subnSK <-; exact: leq_sub2l. Qed.

Lemma ltn_subRL m n p : (n < p - m) = (m + n < p).
Proof. by rewrite !ltnNge leq_subLR. Qed.

(* Eliminating the idiom for structurally decreasing compare and subtract. *)
Lemma subn_if_gt T m n F (E : T) :
  (if m.+1 - n is m'.+1 then F m' else E) = (if n <= m then F (m - n) else E).
Proof.
by case: leqP => [le_nm | /eqnP-> //]; rewrite -{1}(subnK le_nm) -addSn addnK.
Qed.

(* Max and min. *)

Definition maxn m n := if m < n then n else m.

Definition minn m n := if m < n then m else n.

Lemma max0n : left_id 0 maxn.  Proof. by case. Qed.
Lemma maxn0 : right_id 0 maxn. Proof. by []. Qed.

Lemma maxnC : commutative maxn.
Proof. by move=> m n; rewrite /maxn; case ltngtP. Qed.

Lemma maxnE m n : maxn m n = m + (n - m).
Proof. by rewrite /maxn addnC; case: leqP => [/eqnP-> | /ltnW/subnK]. Qed.

Lemma maxnAC : right_commutative maxn.
Proof. by move=> m n p; rewrite !maxnE -!addnA !subnDA -!maxnE maxnC. Qed.

Lemma maxnA : associative maxn.
Proof. by move=> m n p; rewrite !(maxnC m) maxnAC. Qed.

Lemma maxnCA : left_commutative maxn.
Proof. by move=> m n p; rewrite !maxnA (maxnC m). Qed.

Lemma maxnACA : interchange maxn maxn.
Proof. by move=> m n p q; rewrite -!maxnA (maxnCA n). Qed.

Lemma maxn_idPl {m n} : reflect (maxn m n = m) (m >= n).
Proof. by rewrite -subn_eq0 -(eqn_add2l m) addn0 -maxnE; apply: eqP. Qed.

Lemma maxn_idPr {m n} : reflect (maxn m n = n) (m <= n).
Proof. by rewrite maxnC; apply: maxn_idPl. Qed.

Lemma maxnn : idempotent maxn.
Proof. by move=> n; apply/maxn_idPl. Qed.

Lemma leq_max m n1 n2 : (m <= maxn n1 n2) = (m <= n1) || (m <= n2).
Proof.
without loss le_n21: n1 n2 / n2 <= n1.
  by case/orP: (leq_total n2 n1) => le_n12; last rewrite maxnC orbC; apply.
by rewrite (maxn_idPl le_n21) orb_idr // => /leq_trans->.
Qed.
Lemma leq_maxl m n : m <= maxn m n. Proof. by rewrite leq_max leqnn. Qed.
Lemma leq_maxr m n : n <= maxn m n. Proof. by rewrite maxnC leq_maxl. Qed.

Lemma gtn_max m n1 n2 : (m > maxn n1 n2) = (m > n1) && (m > n2).
Proof. by rewrite !ltnNge leq_max negb_or. Qed.

Lemma geq_max m n1 n2 : (m >= maxn n1 n2) = (m >= n1) && (m >= n2).
Proof. by rewrite -ltnS gtn_max. Qed.

Lemma maxnSS m n : maxn m.+1 n.+1 = (maxn m n).+1.
Proof. by rewrite !maxnE. Qed.

Lemma addn_maxl : left_distributive addn maxn.
Proof. by move=> m1 m2 n; rewrite !maxnE subnDr addnAC. Qed.

Lemma addn_maxr : right_distributive addn maxn.
Proof. by move=> m n1 n2; rewrite !(addnC m) addn_maxl. Qed.

Lemma min0n : left_zero 0 minn. Proof. by case. Qed.
Lemma minn0 : right_zero 0 minn. Proof. by []. Qed.

Lemma minnC : commutative minn.
Proof. by move=> m n; rewrite /minn; case ltngtP. Qed.

Lemma addn_min_max m n : minn m n + maxn m n = m + n.
Proof. by rewrite /minn /maxn; case: ltngtP => // [_|->] //; exact: addnC. Qed.

Lemma minnE m n : minn m n = m - (m - n).
Proof. by rewrite -(subnDl n) -maxnE -addn_min_max addnK minnC. Qed.

Lemma minnAC : right_commutative minn.
Proof.
by move=> m n p; rewrite !minnE -subnDA subnAC -maxnE maxnC maxnE subnAC subnDA.
Qed.

Lemma minnA : associative minn.
Proof. by move=> m n p; rewrite minnC minnAC (minnC n). Qed.

Lemma minnCA : left_commutative minn.
Proof. by move=> m n p; rewrite !minnA (minnC n). Qed.

Lemma minnACA : interchange minn minn.
Proof. by move=> m n p q; rewrite -!minnA (minnCA n). Qed.

Lemma minn_idPl {m n} : reflect (minn m n = m) (m <= n).
Proof.
rewrite (sameP maxn_idPr eqP) -(eqn_add2l m) eq_sym -addn_min_max eqn_add2r.
exact: eqP.
Qed.

Lemma minn_idPr {m n} : reflect (minn m n = n) (m >= n).
Proof. by rewrite minnC; apply: minn_idPl. Qed.

Lemma minnn : idempotent minn.
Proof. by move=> n; apply/minn_idPl. Qed.

Lemma leq_min m n1 n2 : (m <= minn n1 n2) = (m <= n1) && (m <= n2).
Proof.
wlog le_n21: n1 n2 / n2 <= n1.
  by case/orP: (leq_total n2 n1) => ?; last rewrite minnC andbC; auto.
by rewrite /minn ltnNge le_n21 /= andbC; case: leqP => // /leq_trans->.
Qed.

Lemma gtn_min m n1 n2 : (m > minn n1 n2) = (m > n1) || (m > n2).
Proof. by rewrite !ltnNge leq_min negb_and. Qed.

Lemma geq_min m n1 n2 : (m >= minn n1 n2) = (m >= n1) || (m >= n2).
Proof. by rewrite -ltnS gtn_min. Qed.

Lemma geq_minl m n : minn m n <= m. Proof. by rewrite geq_min leqnn. Qed.
Lemma geq_minr m n : minn m n <= n. Proof. by rewrite minnC geq_minl. Qed.

Lemma addn_minr : right_distributive addn minn.
Proof. by move=> m1 m2 n; rewrite !minnE subnDl addnBA ?leq_subr. Qed.

Lemma addn_minl : left_distributive addn minn.
Proof. by move=> m1 m2 n; rewrite -!(addnC n) addn_minr. Qed.

Lemma minnSS m n : minn m.+1 n.+1 = (minn m n).+1.
Proof. by rewrite -(addn_minr 1). Qed.

(* Quasi-cancellation (really, absorption) lemmas *)
Lemma maxnK m n : minn (maxn m n) m = m.
Proof. exact/minn_idPr/leq_maxl. Qed.

Lemma maxKn m n : minn n (maxn m n) = n.
Proof. exact/minn_idPl/leq_maxr. Qed.

Lemma minnK m n : maxn (minn m n) m = m.
Proof. exact/maxn_idPr/geq_minl. Qed.

Lemma minKn m n : maxn n (minn m n) = n.
Proof. exact/maxn_idPl/geq_minr. Qed.

(* Distributivity. *)
Lemma maxn_minl : left_distributive maxn minn.
Proof.
move=> m1 m2 n; wlog le_m21: m1 m2 / m2 <= m1.
  move=> IH; case/orP: (leq_total m2 m1) => /IH //.
  by rewrite minnC [in R in _ = R]minnC.
rewrite (minn_idPr le_m21); apply/esym/minn_idPr.
by rewrite geq_max leq_maxr leq_max le_m21.
Qed.

Lemma maxn_minr : right_distributive maxn minn.
Proof. by move=> m n1 n2; rewrite !(maxnC m) maxn_minl. Qed.

Lemma minn_maxl : left_distributive minn maxn.
Proof.
by move=> m1 m2 n; rewrite maxn_minr !maxn_minl -minnA maxnn (maxnC _ n) !maxnK.
Qed.

Lemma minn_maxr : right_distributive minn maxn.
Proof. by move=> m n1 n2; rewrite !(minnC m) minn_maxl. Qed.

(* Getting a concrete value from an abstract existence proof. *)

Section ExMinn.

Variable P : pred nat.
Hypothesis exP : exists n, P n.

Inductive acc_nat i : Prop := AccNat0 of P i | AccNatS of acc_nat i.+1.

Lemma find_ex_minn : {m | P m & forall n, P n -> n >= m}.
Proof.
have: forall n, P n -> n >= 0 by [].
have: acc_nat 0.
  case exP => n; rewrite -(addn0 n); elim: n 0 => [|n IHn] j; first by left.
  rewrite addSnnS; right; exact: IHn.
move: 0; fix 2 => m IHm m_lb; case Pm: (P m); first by exists m.
apply: find_ex_minn m.+1 _ _ => [|n Pn]; first by case: IHm; rewrite ?Pm.
by rewrite ltn_neqAle m_lb //; case: eqP Pm => // -> /idP[].
Qed.

Definition ex_minn := s2val find_ex_minn.

Inductive ex_minn_spec : nat -> Type :=
  ExMinnSpec m of P m & (forall n, P n -> n >= m) : ex_minn_spec m.

Lemma ex_minnP : ex_minn_spec ex_minn.
Proof. by rewrite /ex_minn; case: find_ex_minn. Qed.

End ExMinn.

Section ExMaxn.

Variables (P : pred nat) (m : nat).
Hypotheses (exP : exists i, P i) (ubP : forall i, P i -> i <= m).

Lemma ex_maxn_subproof : exists i, P (m - i).
Proof. by case: exP => i Pi; exists (m - i); rewrite subKn ?ubP. Qed.

Definition ex_maxn := m - ex_minn ex_maxn_subproof.

CoInductive ex_maxn_spec : nat -> Type :=
  ExMaxnSpec i of P i & (forall j, P j -> j <= i) : ex_maxn_spec i.

Lemma ex_maxnP : ex_maxn_spec ex_maxn.
Proof.
rewrite /ex_maxn; case: ex_minnP => i Pmi min_i; split=> // j Pj.
have le_i_mj: i <= m - j by rewrite min_i // subKn // ubP.
rewrite -subn_eq0 subnBA ?(leq_trans le_i_mj) ?leq_subr //.
by rewrite addnC -subnBA ?ubP.
Qed.

End ExMaxn.

Lemma eq_ex_minn P Q exP exQ : P =1 Q -> @ex_minn P exP = @ex_minn Q exQ.
Proof.
move=> eqPQ; case: ex_minnP => m1 Pm1 m1_lb; case: ex_minnP => m2 Pm2 m2_lb.
by apply/eqP; rewrite eqn_leq m1_lb (m2_lb, eqPQ) // -eqPQ.
Qed.

Lemma eq_ex_maxn (P Q : pred nat) m n exP ubP exQ ubQ :
  P =1 Q -> @ex_maxn P m exP ubP = @ex_maxn Q n exQ ubQ.
Proof.
move=> eqPQ; case: ex_maxnP => i Pi max_i; case: ex_maxnP => j Pj max_j.
by apply/eqP; rewrite eqn_leq max_i ?eqPQ // max_j -?eqPQ.
Qed.

Section Iteration.

Variable T : Type.
Implicit Types m n : nat.
Implicit Types x y : T.

Definition iter n f x :=
  let fix loop m := if m is i.+1 then f (loop i) else x in loop n.

Definition iteri n f x :=
  let fix loop m := if m is i.+1 then f i (loop i) else x in loop n.

Definition iterop n op x :=
  let f i y := if i is 0 then x else op x y in iteri n f.

Lemma iterSr n f x : iter n.+1 f x = iter n f (f x).
Proof. by elim: n => //= n <-. Qed.

Lemma iterS n f x : iter n.+1 f x = f (iter n f x). Proof. by []. Qed.

Lemma iter_add n m f x : iter (n + m) f x = iter n f (iter m f x).
Proof. by elim: n => //= n ->. Qed.

Lemma iteriS n f x : iteri n.+1 f x = f n (iteri n f x).
Proof. by []. Qed.

Lemma iteropS idx n op x : iterop n.+1 op x idx = iter n (op x) x.
Proof. by elim: n => //= n ->. Qed.

Lemma eq_iter f f' : f =1 f' -> forall n, iter n f =1 iter n f'.
Proof. by move=> eq_f n x; elim: n => //= n ->; rewrite eq_f. Qed.

Lemma eq_iteri f f' : f =2 f' -> forall n, iteri n f =1 iteri n f'.
Proof. by move=> eq_f n x; elim: n => //= n ->; rewrite eq_f. Qed.

Lemma eq_iterop n op op' : op =2 op' -> iterop n op =2 iterop n op'.
Proof. by move=> eq_op x; apply: eq_iteri; case. Qed.

End Iteration.

Lemma iter_succn m n : iter n succn m = m + n.
Proof. by elim: n => //= n ->. Qed.

Lemma iter_succn_0 n : iter n succn 0 = n.
Proof. exact: iter_succn. Qed.

Lemma iter_predn m n : iter n predn m = m - n.
Proof. by elim: n m => /= [|n IHn] m; rewrite ?subn0 // IHn subnS. Qed.

(* Multiplication. *)

Definition muln_rec := mult.
Notation "m * n" := (muln_rec m n) : nat_rec_scope.

Definition muln := nosimpl muln_rec.
Notation "m * n" := (muln m n) : nat_scope.

Lemma multE : mult = muln.     Proof. by []. Qed.
Lemma mulnE : muln = muln_rec. Proof. by []. Qed.

Lemma mul0n : left_zero 0 muln.          Proof. by []. Qed.
Lemma muln0 : right_zero 0 muln.         Proof. by elim. Qed.
Lemma mul1n : left_id 1 muln.            Proof. exact: addn0. Qed.
Lemma mulSn m n : m.+1 * n = n + m * n.  Proof. by []. Qed.
Lemma mulSnr m n : m.+1 * n = m * n + n. Proof. exact: addnC. Qed.

Lemma mulnS m n : m * n.+1 = m + m * n.
Proof. by elim: m => // m; rewrite !mulSn !addSn addnCA => ->. Qed.
Lemma mulnSr m n : m * n.+1 = m * n + m.
Proof. by rewrite addnC mulnS. Qed.

Lemma iter_addn m n p : iter n (addn m) p = m * n + p.
Proof. by elim: n => /= [|n ->]; rewrite ?muln0 // mulnS addnA. Qed.

Lemma iter_addn_0 m n : iter n (addn m) 0 = m * n.
Proof. by rewrite iter_addn addn0. Qed.

Lemma muln1 : right_id 1 muln.
Proof. by move=> n; rewrite mulnSr muln0. Qed.

Lemma mulnC : commutative muln.
Proof.
by move=> m n; elim: m => [|m]; rewrite (muln0, mulnS) // mulSn => ->.
Qed.

Lemma mulnDl : left_distributive muln addn.
Proof. by move=> m1 m2 n; elim: m1 => //= m1 IHm; rewrite -addnA -IHm. Qed.

Lemma mulnDr : right_distributive muln addn.
Proof. by move=> m n1 n2; rewrite !(mulnC m) mulnDl. Qed.

Lemma mulnBl : left_distributive muln subn.
Proof.
move=> m n [|p]; first by rewrite !muln0.
by elim: m n => // [m IHm] [|n] //; rewrite mulSn subnDl -IHm.
Qed.

Lemma mulnBr : right_distributive muln subn.
Proof. by move=> m n p; rewrite !(mulnC m) mulnBl. Qed.

Lemma mulnA : associative muln.
Proof. by move=> m n p; elim: m => //= m; rewrite mulSn mulnDl => ->. Qed.

Lemma mulnCA : left_commutative muln.
Proof. by move=> m n1 n2; rewrite !mulnA (mulnC m). Qed.

Lemma mulnAC : right_commutative muln.
Proof. by move=> m n p; rewrite -!mulnA (mulnC n). Qed.

Lemma mulnACA : interchange muln muln.
Proof. by move=> m n p q; rewrite -!mulnA (mulnCA n). Qed.

Lemma muln_eq0 m n : (m * n == 0) = (m == 0) || (n == 0).
Proof. by case: m n => // m [|n] //=; rewrite muln0. Qed.

Lemma muln_eq1 m n : (m * n == 1) = (m == 1) && (n == 1).
Proof. by case: m n => [|[|m]] [|[|n]] //; rewrite muln0. Qed.

Lemma muln_gt0 m n : (0 < m * n) = (0 < m) && (0 < n).
Proof. by case: m n => // m [|n] //=; rewrite muln0. Qed.

Lemma leq_pmull m n : n > 0 -> m <= n * m.
Proof. by move/prednK <-; exact: leq_addr. Qed.

Lemma leq_pmulr m n : n > 0 -> m <= m * n.
Proof. by move/leq_pmull; rewrite mulnC. Qed.

Lemma leq_mul2l m n1 n2 : (m * n1 <= m * n2) = (m == 0) || (n1 <= n2).
Proof. by rewrite {1}/leq -mulnBr muln_eq0. Qed.

Lemma leq_mul2r m n1 n2 : (n1 * m <= n2 * m) = (m == 0) || (n1 <= n2).
Proof. by rewrite -!(mulnC m) leq_mul2l. Qed.

Lemma leq_mul m1 m2 n1 n2 : m1 <= n1 -> m2 <= n2 -> m1 * m2 <= n1 * n2.
Proof.
move=> le_mn1 le_mn2; apply (@leq_trans (m1 * n2)).
  by rewrite leq_mul2l le_mn2 orbT.
by rewrite leq_mul2r le_mn1 orbT.
Qed.

Lemma eqn_mul2l m n1 n2 : (m * n1 == m * n2) = (m == 0) || (n1 == n2).
Proof. by rewrite eqn_leq !leq_mul2l -orb_andr -eqn_leq. Qed.

Lemma eqn_mul2r m n1 n2 : (n1 * m == n2 * m) = (m == 0) || (n1 == n2).
Proof. by rewrite eqn_leq !leq_mul2r -orb_andr -eqn_leq. Qed.

Lemma leq_pmul2l m n1 n2 : 0 < m -> (m * n1 <= m * n2) = (n1 <= n2).
Proof. by move/prednK=> <-; rewrite leq_mul2l. Qed.
Implicit Arguments leq_pmul2l [m n1 n2].

Lemma leq_pmul2r m n1 n2 : 0 < m -> (n1 * m <= n2 * m) = (n1 <= n2).
Proof. by move/prednK <-; rewrite leq_mul2r. Qed.
Implicit Arguments leq_pmul2r [m n1 n2].

Lemma eqn_pmul2l m n1 n2 : 0 < m -> (m * n1 == m * n2) = (n1 == n2).
Proof. by move/prednK <-; rewrite eqn_mul2l. Qed.
Implicit Arguments eqn_pmul2l [m n1 n2].

Lemma eqn_pmul2r m n1 n2 : 0 < m -> (n1 * m == n2 * m) = (n1 == n2).
Proof. by move/prednK <-; rewrite eqn_mul2r. Qed.
Implicit Arguments eqn_pmul2r [m n1 n2].

Lemma ltn_mul2l m n1 n2 : (m * n1 < m * n2) = (0 < m) && (n1 < n2).
Proof. by rewrite lt0n !ltnNge leq_mul2l negb_or. Qed.

Lemma ltn_mul2r m n1 n2 : (n1 * m < n2 * m) = (0 < m) && (n1 < n2).
Proof. by rewrite lt0n !ltnNge leq_mul2r negb_or. Qed.

Lemma ltn_pmul2l m n1 n2 : 0 < m -> (m * n1 < m * n2) = (n1 < n2).
Proof. by move/prednK <-; rewrite ltn_mul2l. Qed.
Implicit Arguments ltn_pmul2l [m n1 n2].

Lemma ltn_pmul2r m n1 n2 : 0 < m -> (n1 * m < n2 * m) = (n1 < n2).
Proof. by move/prednK <-; rewrite ltn_mul2r. Qed.
Implicit Arguments ltn_pmul2r [m n1 n2].

Lemma ltn_Pmull m n : 1 < n -> 0 < m -> m < n * m.
Proof. by move=> lt1n m_gt0; rewrite -{1}[m]mul1n ltn_pmul2r. Qed.

Lemma ltn_Pmulr m n : 1 < n -> 0 < m -> m < m * n.
Proof. by move=> lt1n m_gt0; rewrite mulnC ltn_Pmull. Qed.

Lemma ltn_mul m1 m2 n1 n2 : m1 < n1 -> m2 < n2 -> m1 * m2 < n1 * n2.
Proof.
move=> lt_mn1 lt_mn2; apply (@leq_ltn_trans (m1 * n2)).
  by rewrite leq_mul2l orbC ltnW.
by rewrite ltn_pmul2r // (leq_trans _ lt_mn2).
Qed.

Lemma maxn_mulr : right_distributive muln maxn.
Proof. by case=> // m n1 n2; rewrite /maxn (fun_if (muln _)) ltn_pmul2l. Qed.

Lemma maxn_mull : left_distributive muln maxn.
Proof. by move=> m1 m2 n; rewrite -!(mulnC n) maxn_mulr. Qed.

Lemma minn_mulr : right_distributive muln minn.
Proof. by case=> // m n1 n2; rewrite /minn (fun_if (muln _)) ltn_pmul2l. Qed.

Lemma minn_mull : left_distributive muln minn.
Proof. by move=> m1 m2 n; rewrite -!(mulnC n) minn_mulr. Qed.

(* Exponentiation. *)

Definition expn_rec m n := iterop n muln m 1.
Notation "m ^ n" := (expn_rec m n) : nat_rec_scope.
Definition expn := nosimpl expn_rec.
Notation "m ^ n" := (expn m n) : nat_scope.

Lemma expnE : expn = expn_rec. Proof. by []. Qed.

Lemma expn0 m : m ^ 0 = 1. Proof. by []. Qed.
Lemma expn1 m : m ^ 1 = m. Proof. by []. Qed.
Lemma expnS m n : m ^ n.+1 = m * m ^ n. Proof. by case: n; rewrite ?muln1. Qed.
Lemma expnSr m n : m ^ n.+1 = m ^ n * m. Proof. by rewrite mulnC expnS. Qed.

Lemma iter_muln m n p : iter n (muln m) p = m ^ n * p.
Proof. by elim: n => /= [|n ->]; rewrite ?mul1n // expnS mulnA. Qed.

Lemma iter_muln_1 m n : iter n (muln m) 1 = m ^ n.
Proof. by rewrite iter_muln muln1. Qed.

Lemma exp0n n : 0 < n -> 0 ^ n = 0. Proof. by case: n => [|[]]. Qed.

Lemma exp1n n : 1 ^ n = 1.
Proof. by elim: n => // n; rewrite expnS mul1n. Qed.

Lemma expnD m n1 n2 : m ^ (n1 + n2) = m ^ n1 * m ^ n2.
Proof. by elim: n1 => [|n1 IHn]; rewrite !(mul1n, expnS) // IHn mulnA. Qed.

Lemma expnMn m1 m2 n : (m1 * m2) ^ n = m1 ^ n * m2 ^ n.
Proof. by elim: n => // n IHn; rewrite !expnS IHn -!mulnA (mulnCA m2). Qed.

Lemma expnM m n1 n2 : m ^ (n1 * n2) = (m ^ n1) ^ n2.
Proof.
elim: n1 => [|n1 IHn]; first by rewrite exp1n.
by rewrite expnD expnS expnMn IHn.
Qed.

Lemma expnAC m n1 n2 : (m ^ n1) ^ n2 = (m ^ n2) ^ n1.
Proof. by rewrite -!expnM mulnC. Qed.

Lemma expn_gt0 m n : (0 < m ^ n) = (0 < m) || (n == 0).
Proof.
by case: m => [|m]; elim: n => //= n IHn; rewrite expnS // addn_gt0 IHn.
Qed.

Lemma expn_eq0 m e : (m ^ e == 0) = (m == 0) && (e > 0).
Proof. by rewrite !eqn0Ngt expn_gt0 negb_or -lt0n. Qed.

Lemma ltn_expl m n : 1 < m -> n < m ^ n.
Proof.
move=> m_gt1; elim: n => //= n; rewrite -(leq_pmul2l (ltnW m_gt1)) expnS.
by apply: leq_trans; exact: ltn_Pmull.
Qed.

Lemma leq_exp2l m n1 n2 : 1 < m -> (m ^ n1 <= m ^ n2) = (n1 <= n2).
Proof.
move=> m_gt1; elim: n1 n2 => [|n1 IHn] [|n2] //; last 1 first.
- by rewrite !expnS leq_pmul2l ?IHn // ltnW.
- by rewrite expn_gt0 ltnW.
by rewrite leqNgt (leq_trans m_gt1) // expnS leq_pmulr // expn_gt0 ltnW.
Qed.

Lemma ltn_exp2l m n1 n2 : 1 < m -> (m ^ n1 < m ^ n2) = (n1 < n2).
Proof. by move=> m_gt1; rewrite !ltnNge leq_exp2l. Qed.

Lemma eqn_exp2l m n1 n2 : 1 < m -> (m ^ n1 == m ^ n2) = (n1 == n2).
Proof. by move=> m_gt1; rewrite !eqn_leq !leq_exp2l. Qed.

Lemma expnI m : 1 < m -> injective (expn m).
Proof. by move=> m_gt1 e1 e2 /eqP; rewrite eqn_exp2l // => /eqP. Qed.

Lemma leq_pexp2l m n1 n2 : 0 < m -> n1 <= n2 -> m ^ n1 <= m ^ n2.
Proof. by case: m => [|[|m]] // _; [rewrite !exp1n | rewrite leq_exp2l]. Qed.

Lemma ltn_pexp2l m n1 n2 : 0 < m -> m ^ n1 < m ^ n2 -> n1 < n2.
Proof. by case: m => [|[|m]] // _; [rewrite !exp1n | rewrite ltn_exp2l]. Qed.

Lemma ltn_exp2r m n e : e > 0 -> (m ^ e < n ^ e) = (m < n).
Proof.
move=> e_gt0; apply/idP/idP=> [|ltmn].
  rewrite !ltnNge; apply: contra => lemn.
  by elim: e {e_gt0} => // e IHe; rewrite !expnS leq_mul.
by elim: e e_gt0 => // [[|e] IHe] _; rewrite ?expn1 // ltn_mul // IHe.
Qed.

Lemma leq_exp2r m n e : e > 0 -> (m ^ e <= n ^ e) = (m <= n).
Proof. by move=> e_gt0; rewrite leqNgt ltn_exp2r // -leqNgt. Qed.

Lemma eqn_exp2r m n e : e > 0 -> (m ^ e == n ^ e) = (m == n).
Proof. by move=> e_gt0; rewrite !eqn_leq !leq_exp2r. Qed.

Lemma expIn e : e > 0 -> injective (expn^~ e).
Proof. by move=> e_gt1 m n /eqP; rewrite eqn_exp2r // => /eqP. Qed.

(* Factorial. *)

Fixpoint fact_rec n := if n is n'.+1 then n * fact_rec n' else 1.

Definition factorial := nosimpl fact_rec.

Notation "n `!" := (factorial n) (at level 2, format "n `!") : nat_scope.

Lemma factE : factorial = fact_rec. Proof. by []. Qed.

Lemma fact0 : 0`! = 1. Proof. by []. Qed.

Lemma factS n : (n.+1)`!  = n.+1 * n`!. Proof. by []. Qed.

Lemma fact_gt0 n : n`! > 0.
Proof. by elim: n => //= n IHn; rewrite muln_gt0. Qed.

(* Parity and bits. *)

Coercion nat_of_bool (b : bool) := if b then 1 else 0.

Lemma leq_b1 (b : bool) : b <= 1. Proof. by case: b. Qed.

Lemma addn_negb (b : bool) : ~~ b + b = 1. Proof. by case: b. Qed.

Lemma eqb0 (b : bool) : (b == 0 :> nat) = ~~ b. Proof. by case: b. Qed.

Lemma eqb1 (b : bool) : (b == 1 :> nat) = b. Proof. by case: b. Qed.

Lemma lt0b (b : bool) : (b > 0) = b. Proof. by case: b. Qed.

Lemma sub1b (b : bool) : 1 - b = ~~ b. Proof. by case: b. Qed.

Lemma mulnb (b1 b2 : bool) : b1 * b2 = b1 && b2.
Proof. by case: b1; case: b2. Qed.

Lemma mulnbl (b : bool) n : b * n = (if b then n else 0).
Proof. by case: b; rewrite ?mul1n. Qed.

Lemma mulnbr (b : bool) n : n * b = (if b then n else 0).
Proof. by rewrite mulnC mulnbl. Qed.

Fixpoint odd n := if n is n'.+1 then ~~ odd n' else false.

Lemma oddb (b : bool) : odd b = b. Proof. by case: b. Qed.

Lemma odd_add m n : odd (m + n) = odd m (+) odd n.
Proof. by elim: m => [|m IHn] //=; rewrite -addTb IHn addbA addTb. Qed.

Lemma odd_sub m n : n <= m -> odd (m - n) = odd m (+) odd n.
Proof.
by move=> le_nm; apply: (@canRL bool) (addbK _) _; rewrite -odd_add subnK.
Qed.

Lemma odd_opp i m : odd m = false -> i < m -> odd (m - i) = odd i.
Proof. by move=> oddm lt_im; rewrite (odd_sub (ltnW lt_im)) oddm. Qed.

Lemma odd_mul m n : odd (m * n) = odd m && odd n.
Proof. by elim: m => //= m IHm; rewrite odd_add -addTb andb_addl -IHm. Qed.

Lemma odd_exp m n : odd (m ^ n) = (n == 0) || odd m.
Proof. by elim: n => // n IHn; rewrite expnS odd_mul {}IHn orbC; case odd. Qed.

(* Doubling. *)

Fixpoint double_rec n := if n is n'.+1 then n'.*2%Nrec.+2 else 0
where "n .*2" := (double_rec n) : nat_rec_scope.

Definition double := nosimpl double_rec.
Notation "n .*2" := (double n) : nat_scope.

Lemma doubleE : double = double_rec. Proof. by []. Qed.

Lemma double0 : 0.*2 = 0. Proof. by []. Qed.

Lemma doubleS n : n.+1.*2 = n.*2.+2. Proof. by []. Qed.

Lemma addnn n : n + n = n.*2.
Proof. by apply: eqP; elim: n => // n IHn; rewrite addnS. Qed.

Lemma mul2n m : 2 * m = m.*2.
Proof. by rewrite mulSn mul1n addnn. Qed.

Lemma muln2 m : m * 2 = m.*2.
Proof. by rewrite mulnC mul2n. Qed.

Lemma doubleD m n : (m + n).*2 = m.*2 + n.*2.
Proof. by rewrite -!addnn -!addnA (addnCA n). Qed.

Lemma doubleB m n : (m - n).*2 = m.*2 - n.*2.
Proof. elim: m n => [|m IHm] [|n] //; exact: IHm n. Qed.

Lemma leq_double m n : (m.*2 <= n.*2) = (m <= n).
Proof. by rewrite /leq -doubleB; case (m - n). Qed.

Lemma ltn_double m n : (m.*2 < n.*2) = (m < n).
Proof. by rewrite 2!ltnNge leq_double. Qed.

Lemma ltn_Sdouble m n : (m.*2.+1 < n.*2) = (m < n).
Proof. by rewrite -doubleS leq_double. Qed.

Lemma leq_Sdouble m n : (m.*2 <= n.*2.+1) = (m <= n).
Proof. by rewrite leqNgt ltn_Sdouble -leqNgt. Qed.

Lemma odd_double n : odd n.*2 = false.
Proof. by rewrite -addnn odd_add addbb. Qed.

Lemma double_gt0 n : (0 < n.*2) = (0 < n).
Proof. by case: n. Qed.

Lemma double_eq0 n : (n.*2 == 0) = (n == 0).
Proof. by case: n. Qed.

Lemma doubleMl m n : (m * n).*2 = m.*2 * n.
Proof. by rewrite -!mul2n mulnA. Qed.

Lemma doubleMr m n : (m * n).*2 = m * n.*2.
Proof. by rewrite -!muln2 mulnA. Qed.

(* Halving. *)

Fixpoint half (n : nat) : nat := if n is n'.+1 then uphalf n' else n
with   uphalf (n : nat) : nat := if n is n'.+1 then n'./2.+1 else n
where "n ./2" := (half n) : nat_scope.

Lemma doubleK : cancel double half.
Proof. by elim=> //= n ->. Qed.

Definition half_double := doubleK.
Definition double_inj := can_inj doubleK.

Lemma uphalf_double n : uphalf n.*2 = n.
Proof. by elim: n => //= n ->. Qed.

Lemma uphalf_half n : uphalf n = odd n + n./2.
Proof. by elim: n => //= n ->; rewrite addnA addn_negb. Qed.

Lemma odd_double_half n : odd n + n./2.*2 = n.
Proof.
by elim: n => //= n {3}<-; rewrite uphalf_half doubleD; case (odd n).
Qed.

Lemma half_bit_double n (b : bool) : (b + n.*2)./2 = n.
Proof. by case: b; rewrite /= (half_double, uphalf_double). Qed.

Lemma halfD m n : (m + n)./2 = (odd m && odd n) + (m./2 + n./2).
Proof.
rewrite -{1}[n]odd_double_half addnCA -{1}[m]odd_double_half -addnA -doubleD.
by do 2!case: odd; rewrite /= ?add0n ?half_double ?uphalf_double.
Qed.

Lemma half_leq m n : m <= n -> m./2 <= n./2.
Proof. by move/subnK <-; rewrite halfD addnA leq_addl. Qed.

Lemma half_gt0 n : (0 < n./2) = (1 < n).
Proof. by case: n => [|[]]. Qed.

Lemma odd_geq m n : odd n -> (m <= n) = (m./2.*2 <= n).
Proof.
move=> odd_n; rewrite -{1}[m]odd_double_half -[n]odd_double_half odd_n.
by case: (odd m); rewrite // leq_Sdouble ltnS leq_double.
Qed.

Lemma odd_ltn m n : odd n -> (n < m) = (n < m./2.*2).
Proof. by move=> odd_n; rewrite !ltnNge odd_geq. Qed.

Lemma odd_gt0 n : odd n -> n > 0. Proof. by case: n. Qed.

Lemma odd_gt2 n : odd n -> n > 1 -> n > 2.
Proof. by move=> odd_n n_gt1; rewrite odd_geq. Qed.

(* Squares and square identities. *)

Lemma mulnn m : m * m = m ^ 2.
Proof. by rewrite !expnS muln1. Qed.

Lemma sqrnD m n : (m + n) ^ 2 = m ^ 2 + n ^ 2 + 2 * (m * n).
Proof.
rewrite -!mulnn mul2n mulnDr !mulnDl (mulnC n) -!addnA.
by congr (_ + _); rewrite addnA addnn addnC.
Qed.

Lemma sqrn_sub m n : n <= m -> (m - n) ^ 2 = m ^ 2 + n ^ 2 - 2 * (m * n).
Proof.
move/subnK=> def_m; rewrite -{2}def_m sqrnD -addnA addnAC.
by rewrite -2!addnA addnn -mul2n -mulnDr -mulnDl def_m addnK.
Qed.

Lemma sqrnD_sub m n : n <= m -> (m + n) ^ 2 - 4 * (m * n) = (m - n) ^ 2.
Proof.
move=> le_nm; rewrite -[4]/(2 * 2) -mulnA mul2n -addnn subnDA.
by rewrite sqrnD addnK sqrn_sub.
Qed.

Lemma subn_sqr m n : m ^ 2 - n ^ 2 = (m - n) * (m + n).
Proof. by rewrite mulnBl !mulnDr addnC (mulnC m) subnDl !mulnn. Qed.

Lemma ltn_sqr m n : (m ^ 2 < n ^ 2) = (m < n).
Proof. by rewrite ltn_exp2r. Qed.

Lemma leq_sqr m n : (m ^ 2 <= n ^ 2) = (m <= n).
Proof. by rewrite leq_exp2r. Qed.

Lemma sqrn_gt0 n : (0 < n ^ 2) = (0 < n).
Proof. exact: (ltn_sqr 0). Qed.

Lemma eqn_sqr m n : (m ^ 2 == n ^ 2) = (m == n).
Proof. by rewrite eqn_exp2r. Qed.

Lemma sqrn_inj : injective (expn ^~ 2).
Proof. exact: expIn. Qed.

(* Almost strict inequality: an inequality that is strict unless some    *)
(* specific condition holds, such as the Cauchy-Schwartz or the AGM      *)
(* inequality (we only prove the order-2 AGM here; the general one       *)
(* requires sequences).                                                  *)
(*   We formalize the concept as a rewrite multirule, that can be used   *)
(* both to rewrite the non-strict inequality to true, and the equality   *)
(* to the specific condition (for strict inequalities use the ltn_neqAle *)
(* lemma); in addition, the conditional equality also coerces to a       *)
(* non-strict one.                                                       *)

Definition leqif m n C := ((m <= n) * ((m == n) = C))%type.

Notation "m <= n ?= 'iff' C" := (leqif m n C) : nat_scope.

Coercion leq_of_leqif m n C (H : m <= n ?= iff C) := H.1 : m <= n.

Lemma leqifP m n C : reflect (m <= n ?= iff C) (if C then m == n else m < n).
Proof.
rewrite ltn_neqAle; apply: (iffP idP) => [|lte]; last by rewrite !lte; case C.
by case C => [/eqP-> | /andP[/negPf]]; split=> //; exact: eqxx.
Qed.

Lemma leqif_refl m C : reflect (m <= m ?= iff C) C.
Proof. by apply: (iffP idP) => [-> | <-] //; split; rewrite ?eqxx. Qed.

Lemma leqif_trans m1 m2 m3 C12 C23 :
  m1 <= m2 ?= iff C12 -> m2 <= m3 ?= iff C23 -> m1 <= m3 ?= iff C12 && C23.
Proof.
move=> ltm12 ltm23; apply/leqifP; rewrite -ltm12.
case eqm12: (m1 == m2).
  by rewrite (eqP eqm12) ltn_neqAle !ltm23 andbT; case C23.
by rewrite (@leq_trans m2) ?ltm23 // ltn_neqAle eqm12 ltm12.
Qed.

Lemma mono_leqif f : {mono f : m n / m <= n} ->
  forall m n C, (f m <= f n ?= iff C) = (m <= n ?= iff C).
Proof. by move=> f_mono m n C; rewrite /leqif !eqn_leq !f_mono. Qed.

Lemma leqif_geq m n : m <= n -> m <= n ?= iff (m >= n).
Proof. by move=> lemn; split=> //; rewrite eqn_leq lemn. Qed.

Lemma leqif_eq m n : m <= n -> m <= n ?= iff (m == n).
Proof. by []. Qed.

Lemma geq_leqif a b C : a <= b ?= iff C -> (b <= a) = C.
Proof. by case=> le_ab; rewrite eqn_leq le_ab. Qed.

Lemma ltn_leqif a b C : a <= b ?= iff C -> (a < b) = ~~ C.
Proof. by move=> le_ab; rewrite ltnNge (geq_leqif le_ab). Qed.

Lemma leqif_add m1 n1 C1 m2 n2 C2 :
    m1 <= n1 ?= iff C1 -> m2 <= n2 ?= iff C2 ->
  m1 + m2 <= n1 + n2 ?= iff C1 && C2.
Proof.
rewrite -(mono_leqif (leq_add2r m2)) -(mono_leqif (leq_add2l n1) m2).
exact: leqif_trans.
Qed.

Lemma leqif_mul m1 n1 C1 m2 n2 C2 :
    m1 <= n1 ?= iff C1 -> m2 <= n2 ?= iff C2 ->
  m1 * m2 <= n1 * n2 ?= iff (n1 * n2 == 0) || (C1 && C2).
Proof.
move=> le1 le2; case: posnP => [n12_0 | ].
  rewrite n12_0; move/eqP: n12_0 {le1 le2}le1.1 le2.1; rewrite muln_eq0.
  by case/orP=> /eqP->; case: m1 m2 => [|m1] [|m2] // _ _; 
    rewrite ?muln0; exact/leqif_refl.
rewrite muln_gt0 => /andP[n1_gt0 n2_gt0].
have [m2_0 | m2_gt0] := posnP m2.
  apply/leqifP; rewrite -le2 andbC eq_sym eqn_leq leqNgt m2_0 muln0.
  by rewrite muln_gt0 n1_gt0 n2_gt0.
have mono_n1 := leq_pmul2l n1_gt0; have mono_m2 := leq_pmul2r m2_gt0.
rewrite -(mono_leqif mono_m2) in le1; rewrite -(mono_leqif mono_n1) in le2.
exact: leqif_trans le1 le2.
Qed.

Lemma nat_Cauchy m n : 2 * (m * n) <= m ^ 2 + n ^ 2 ?= iff (m == n).
Proof.
wlog le_nm: m n / n <= m.
  by case: (leqP m n); auto; rewrite eq_sym addnC (mulnC m); auto.
apply/leqifP; case: ifP => [/eqP-> | ne_mn]; first by rewrite mulnn addnn mul2n.
by rewrite -subn_gt0 -sqrn_sub // sqrn_gt0 subn_gt0 ltn_neqAle eq_sym ne_mn.
Qed.

Lemma nat_AGM2 m n : 4 * (m * n) <= (m + n) ^ 2 ?= iff (m == n).
Proof.
rewrite -[4]/(2 * 2) -mulnA mul2n -addnn sqrnD; apply/leqifP.
by rewrite ltn_add2r eqn_add2r ltn_neqAle !nat_Cauchy; case: ifP => ->.
Qed.

(* Support for larger integers. The normal definitions of +, - and even  *)
(* IO are unsuitable for Peano integers larger than 2000 or so because   *)
(* they are not tail-recursive. We provide a workaround module, along    *)
(* with a rewrite multirule to change the tailrec operators to the       *)
(* normal ones. We handle IO via the NatBin module, but provide our      *)
(* own (more efficient) conversion functions.                            *)

Module NatTrec.

(*   Usage:                                             *)
(*     Import NatTrec.                                  *)
(*        in section definining functions, rebinds all  *)
(*        non-tail recursive operators.                 *)
(*     rewrite !trecE.                                  *)
(*        in the correctness proof, restores operators  *)

Fixpoint add m n := if m is m'.+1 then m' + n.+1 else n
where "n + m" := (add n m) : nat_scope.

Fixpoint add_mul m n s := if m is m'.+1 then add_mul m' n (n + s) else s.

Definition mul m n := if m is m'.+1 then add_mul m' n n else 0.

Notation "n * m" := (mul n m) : nat_scope.

Fixpoint mul_exp m n p := if n is n'.+1 then mul_exp m n' (m * p) else p.

Definition exp m n := if n is n'.+1 then mul_exp m n' m else 1.

Notation "n ^ m" := (exp n m) : nat_scope.

Notation Local oddn := odd.
Fixpoint odd n := if n is n'.+2 then odd n' else eqn n 1.

Notation Local doublen := double.
Definition double n := if n is n'.+1 then n' + n.+1 else 0.
Notation "n .*2" := (double n) : nat_scope.

Lemma addE : add =2 addn.
Proof. by elim=> //= n IHn m; rewrite IHn addSnnS. Qed.

Lemma doubleE : double =1 doublen.
Proof. by case=> // n; rewrite -addnn -addE. Qed.

Lemma add_mulE n m s : add_mul n m s = addn (muln n m) s.
Proof. by elim: n => //= n IHn in m s *; rewrite IHn addE addnCA addnA. Qed.

Lemma mulE : mul =2 muln.
Proof. by case=> //= n m; rewrite add_mulE addnC. Qed.

Lemma mul_expE m n p : mul_exp m n p = muln (expn m n) p.
Proof.
by elim: n => [|n IHn] in p *; rewrite ?mul1n //= expnS IHn mulE mulnCA mulnA.
Qed.

Lemma expE : exp =2 expn.
Proof. by move=> m [|n] //=; rewrite mul_expE expnS mulnC. Qed.

Lemma oddE : odd =1 oddn.
Proof.
move=> n; rewrite -{1}[n]odd_double_half addnC.
by elim: n./2 => //=; case (oddn n).
Qed.

Definition trecE := (addE, (doubleE, oddE), (mulE, add_mulE, (expE, mul_expE))).

End NatTrec.

Notation natTrecE := NatTrec.trecE.

Lemma eq_binP : Equality.axiom Ndec.Neqb.
Proof.
move=> p q; apply: (iffP idP) => [|<-]; last by case: p => //; elim.
by case: q; case: p => //; elim=> [p IHp|p IHp|] [q|q|] //=; case/IHp=> ->.
Qed.

Canonical bin_nat_eqMixin := EqMixin eq_binP.
Canonical bin_nat_eqType := Eval hnf in EqType N bin_nat_eqMixin.

Section NumberInterpretation.

Import BinPos.

Section Trec.

Import NatTrec.

Fixpoint nat_of_pos p0 :=
  match p0 with
  | xO p => (nat_of_pos p).*2
  | xI p => (nat_of_pos p).*2.+1
  | xH   => 1
  end.

End Trec.

Coercion Local nat_of_pos : positive >-> nat.

Coercion nat_of_bin b := if b is Npos p then p : nat else 0.

Fixpoint pos_of_nat n0 m0 :=
  match n0, m0 with
  | n.+1, m.+2 => pos_of_nat n m
  | n.+1,    1 => xO (pos_of_nat n n)
  | n.+1,    0 => xI (pos_of_nat n n)
  |    0,    _ => xH
  end.

Definition bin_of_nat n0 := if n0 is n.+1 then Npos (pos_of_nat n n) else 0%num.

Lemma bin_of_natK : cancel bin_of_nat nat_of_bin.
Proof.
have sub2nn n : n.*2 - n = n by rewrite -addnn addKn.
case=> //= n; rewrite -{3}[n]sub2nn.
by elim: n {2 4}n => // m IHm [|[|n]] //=; rewrite IHm // natTrecE sub2nn.
Qed.

Lemma nat_of_binK : cancel nat_of_bin bin_of_nat.
Proof.
case=> //=; elim=> //= p; case: (nat_of_pos p) => //= n [<-].
  by rewrite natTrecE !addnS {2}addnn; elim: {1 3}n.
by rewrite natTrecE addnS /= addnS {2}addnn; elim: {1 3}n.
Qed.

Lemma nat_of_succ_gt0 p : Psucc p = p.+1 :> nat.
Proof. by elim: p => //= p ->; rewrite !natTrecE. Qed.

Lemma nat_of_addn_gt0 p q : (p + q)%positive = p + q :> nat.
Proof.
apply: fst (Pplus_carry p q = (p + q).+1 :> nat) _.
elim: p q => [p IHp|p IHp|] [q|q|] //=; rewrite !natTrecE //;
  by rewrite ?IHp ?nat_of_succ_gt0 ?(doubleS, doubleD, addn1, addnS).
Qed.

Lemma nat_of_add_bin b1 b2 : (b1 + b2)%num = b1 + b2 :> nat.
Proof. case: b1 b2 => [|p] [|q] //=; exact: nat_of_addn_gt0. Qed.

Lemma nat_of_mul_bin b1 b2 : (b1 * b2)%num = b1 * b2 :> nat.
Proof.
case: b1 b2 => [|p] [|q] //=; elim: p => [p IHp|p IHp|] /=;
  by rewrite ?(mul1n, nat_of_addn_gt0, mulSn) //= !natTrecE IHp doubleMl.
Qed.

Lemma nat_of_exp_bin n (b : N) : n ^ b = pow_N 1 muln n b.
Proof.
case: b => [|p] /=; first exact: expn0.
by elim: p => //= p <-; rewrite natTrecE mulnn -expnM muln2 ?expnS.
Qed.

End NumberInterpretation.

(* Big(ger) nat IO; usage:                              *)
(*     Num 1 072 399                                    *)
(*        to create large numbers for test cases        *)
(* Eval compute in [Num of some expression]             *)
(*        to display the resut of an expression that    *)
(*        returns a larger integer.                     *)

Record number : Type := Num {bin_of_number :> N}.

Definition extend_number (nn : number) m := Num (nn * 1000 + bin_of_nat m).

Coercion extend_number : number >-> Funclass.

Canonical number_subType := [newType for bin_of_number].
Definition number_eqMixin := Eval hnf in [eqMixin of number by <:].
Canonical number_eqType := Eval hnf in EqType number number_eqMixin.

Notation "[ 'Num' 'of' e ]" := (Num (bin_of_nat e))
  (at level 0, format "[ 'Num'  'of'  e ]") : nat_scope.

(* Interface to ring/ring_simplify tactics *)

Lemma nat_semi_ring : semi_ring_theory 0 1 addn muln (@eq _).
Proof. exact: mk_srt add0n addnC addnA mul1n mul0n mulnC mulnA mulnDl. Qed.

Lemma nat_semi_morph :
  semi_morph 0 1 addn muln (@eq _) 0%num 1%num Nplus Nmult pred1 nat_of_bin.
Proof.
by move: nat_of_add_bin nat_of_mul_bin; split=> //= m n; move/eqP->.
Qed.

Lemma nat_power_theory : power_theory 1 muln (@eq _) nat_of_bin expn.
Proof. split; exact: nat_of_exp_bin. Qed.

(* Interface to the ring tactic machinery. *)

Fixpoint pop_succn e := if e is e'.+1 then fun n => pop_succn e' n.+1 else id.

Ltac pop_succn e := eval lazy beta iota delta [pop_succn] in (pop_succn e 1).

Ltac nat_litteral e :=
  match pop_succn e with
  | ?n.+1 => constr: (bin_of_nat n)
  |     _ => NotConstant
  end.

Ltac succn_to_add :=
  match goal with
  | |- context G [?e.+1] =>
    let x := fresh "NatLit0" in
    match pop_succn e with
    | ?n.+1 => pose x := n.+1; let G' := context G [x] in change G'
    | _ ?e' ?n => pose x := n; let G' := context G [x + e'] in change G'
    end; succn_to_add; rewrite {}/x
  | _ => idtac
  end.

Add Ring nat_ring_ssr : nat_semi_ring (morphism nat_semi_morph,
   constants [nat_litteral], preprocess [succn_to_add],
   power_tac nat_power_theory [nat_litteral]).

(* A congruence tactic, similar to the boolean one, along with an .+1/+  *)
(* normalization tactic.                                                 *)


Ltac nat_norm :=
  succn_to_add; rewrite ?add0n ?addn0 -?addnA ?(addSn, addnS, add0n, addn0).

Ltac nat_congr := first
 [ apply: (congr1 succn _)
 | apply: (congr1 predn _)
 | apply: (congr1 (addn _) _)
 | apply: (congr1 (subn _) _)
 | apply: (congr1 (addn^~ _) _)
 | match goal with |- (?X1 + ?X2 = ?X3) =>
     symmetry;
     rewrite -1?(addnC X1) -?(addnCA X1);
     apply: (congr1 (addn X1) _);
     symmetry
   end ].