File: intdiv.v

package info (click to toggle)
ssreflect 2.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,536 kB
  • sloc: ml: 506; sh: 190; lisp: 39; makefile: 39
file content (1173 lines) | stat: -rw-r--r-- 50,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path.
From mathcomp Require Import div choice fintype tuple finfun prime order.
From mathcomp Require Import ssralg poly ssrnum ssrint archimedean rat matrix.
From mathcomp Require Import polydiv perm zmodp bigop mxalgebra vector.

(******************************************************************************)
(* This file provides various results on divisibility of integers.            *)
(* It defines, for m, n, d : int,                                             *)
(*   (m %% d)%Z == the remainder of the Euclidean division of m by d; this is *)
(*                 the least non-negative element of the coset m + dZ when    *)
(*                 d != 0, and m if d = 0.                                    *)
(*   (m %/ d)%Z == the quotient of the Euclidean division of m by d, such     *)
(*                 that m = (m %/ d)%Z * d + (m %% d)%Z. Since for d != 0 the *)
(*                 remainder is non-negative, (m %/ d)%Z is non-zero for      *)
(*                 negative m.                                                *)
(*   (d %| m)%Z <=> m is divisible by d; dvdz d is the (collective) predicate *)
(*                 for integers divisible by d, and (d %| m)%Z is actually    *)
(*                 (transposing) notation for m \in dvdz d.                   *)
(* (m = n %[mod d])%Z, (m == n %[mod d])%Z, (m != n %[mod d])%Z               *)
(*                 m and n are (resp. compare, don't compare) equal mod d.    *)
(*     gcdz m n == the (non-negative) greatest common divisor of m and n,     *)
(*                 with gcdz 0 0 = 0.                                         *)
(*     lcmz m n == the (non-negative) least common multiple of m and n.       *)
(* coprimez m n <=> m and n are coprime.                                      *)
(*    egcdz m n == the Bezout coefficients of the gcd of m and n: a pair      *)
(*                 (u, v) of coprime integers such that u*m + v*n = gcdz m n. *)
(*                 Alternatively, a Bezoutz lemma states such u and v exist.  *)
(* zchinese m1 m2 n1 n2 == for coprime m1 and m2, a solution to the Chinese   *)
(*                 remainder problem for n1 and n2, i.e., and integer n such  *)
(*                 that n = n1 %[mod m1] and n = n2 %[mod m2].                *)
(*  zcontents p == the contents of p : {poly int}, that is, the gcd of the    *)
(*                 coefficients of p, with the same sign as the lead          *)
(*                 coefficient of p.                                          *)
(* zprimitive p == the primitive part of p : {poly int}, i.e., p divided by   *)
(*                 its contents.                                              *)
(* inIntSpan X v <-> v is an integral linear combination of elements of       *)
(*                 X : seq V, where V is a zmodType. We prove that this is a  *)
(*                 decidable property for Q-vector spaces.                    *)
(* int_Smith_normal_form :: a theorem asserting the existence of the Smith    *)
(*                 normal form for integer matrices.                          *)
(* Note that many of the concepts and results in this file could and perhaps  *)
(* should be generalized to the more general setting of integral, unique      *)
(* factorization, principal ideal, or Euclidean domains.                      *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope ring_scope.

Definition divz (m d : int) : int :=
  let: (K, n) := match m with Posz n => (Posz, n) | Negz n => (Negz, n) end in
  sgz d * K (n %/ `|d|)%N.

Definition modz (m d : int) : int := m - divz m d * d.

Definition dvdz d m := (`|d| %| `|m|)%N.

Definition gcdz m n := (gcdn `|m| `|n|)%:Z.

Definition lcmz m n := (lcmn `|m| `|n|)%:Z.

Definition egcdz m n : int * int :=
  if m == 0 then (0, (-1) ^+ (n < 0)%R) else
  let: (u, v) := egcdn `|m| `|n| in (sgz m * u, - (-1) ^+ (n < 0)%R * v%:Z).

Definition coprimez m n := (gcdz m n == 1).

Infix "%/" := divz : int_scope.
Infix "%%" := modz : int_scope.
Notation "d %| m" := (m \in dvdz d) : int_scope.
Notation "m = n %[mod d ]" := (modz m d = modz n d) : int_scope.
Notation "m == n %[mod d ]" := (modz m d == modz n d) : int_scope.
Notation "m <> n %[mod d ]" := (modz m d <> modz n d) : int_scope.
Notation "m != n %[mod d ]" := (modz m d != modz n d) : int_scope.

Lemma divz_nat (n d : nat) : (n %/ d)%Z = (n %/ d)%N.
Proof. by case: d => // d; rewrite /divz /= mul1r. Qed.

Lemma divzN m d : (m %/ - d)%Z = - (m %/ d)%Z.
Proof. by case: m => n; rewrite /divz /= sgzN abszN mulNr. Qed.

Lemma divz_abs (m d : int) : (m %/ `|d|)%Z = (-1) ^+ (d < 0)%R * (m %/ d)%Z.
Proof.
by rewrite {3}[d]intEsign !mulr_sign; case: ifP => -> //; rewrite divzN opprK.
Qed.

Lemma div0z d : (0 %/ d)%Z = 0.
Proof.
by rewrite -(canLR (signrMK _) (divz_abs _ _)) (divz_nat 0) div0n mulr0.
Qed.

Lemma divNz_nat m d : (d > 0)%N -> (Negz m %/ d)%Z = - (m %/ d).+1%:Z.
Proof. by case: d => // d _; apply: mul1r. Qed.

Lemma divz_eq m d : m = (m %/ d)%Z * d + (m %% d)%Z.
Proof. by rewrite addrC subrK. Qed.

Lemma modzN m d : (m %% - d)%Z = (m %% d)%Z.
Proof. by rewrite /modz divzN mulrNN. Qed.

Lemma modz_abs m d : (m %% `|d|%N)%Z = (m %% d)%Z.
Proof. by rewrite {2}[d]intEsign mulr_sign; case: ifP; rewrite ?modzN. Qed.

Lemma modz_nat (m d : nat) : (m %% d)%Z = (m %% d)%N.
Proof.
by apply: (canLR (addrK _)); rewrite addrC divz_nat {1}(divn_eq m d).
Qed.

Lemma modNz_nat m d : (d > 0)%N -> (Negz m %% d)%Z = d%:Z - 1 - (m %% d)%:Z.
Proof.
rewrite /modz => /divNz_nat->; apply: (canLR (addrK _)).
rewrite -!addrA -!opprD -!PoszD -opprB mulnSr !addnA PoszD addrK.
by rewrite addnAC -addnA mulnC -divn_eq.
Qed.

Lemma modz_ge0 m d : d != 0 -> 0 <= (m %% d)%Z.
Proof.
rewrite -absz_gt0 -modz_abs => d_gt0.
case: m => n; rewrite ?modNz_nat ?modz_nat // -addrA -opprD subr_ge0.
by rewrite lez_nat ltn_mod.
Qed.

Lemma divz0 m : (m %/ 0)%Z = 0. Proof. by case: m. Qed.
Lemma mod0z d : (0 %% d)%Z = 0. Proof. by rewrite /modz div0z mul0r subrr. Qed.
Lemma modz0 m : (m %% 0)%Z = m. Proof. by rewrite /modz mulr0 subr0. Qed.

Lemma divz_small m d : 0 <= m < `|d|%:Z -> (m %/ d)%Z = 0.
Proof.
rewrite -(canLR (signrMK _) (divz_abs _ _)); case: m => // n /divn_small.
by rewrite divz_nat => ->; rewrite mulr0.
Qed.

Lemma divzMDl q m d : d != 0 -> ((q * d + m) %/ d)%Z = q + (m %/ d)%Z.
Proof.
rewrite neq_lt -oppr_gt0 => nz_d.
wlog{nz_d} d_gt0: q d / d > 0; last case: d => // d in d_gt0 *.
  move=> IH; case/orP: nz_d => /IH// /(_  (- q)).
  by rewrite mulrNN !divzN -opprD => /oppr_inj.
wlog q_gt0: q m / q >= 0; last case: q q_gt0 => // q _.
  move=> IH; case: q => n; first exact: IH; rewrite NegzE mulNr.
  by apply: canRL (addKr _) _; rewrite -IH ?addNKr.
case: m => n; first by rewrite !divz_nat divnMDl.
have [le_qd_n | lt_qd_n] := leqP (q * d) n.
  rewrite divNz_nat // NegzE -(subnKC le_qd_n) divnMDl //.
  by rewrite -!addnS !PoszD !opprD !addNKr divNz_nat.
rewrite divNz_nat // NegzE -PoszM subzn // divz_nat.
apply: canRL (addrK _) _; congr _%:Z; rewrite addnC -divnMDl // mulSnr.
rewrite -{3}(subnKC (ltn_pmod n d_gt0)) addnA addnS -divn_eq addnAC.
by rewrite subnKC // divnMDl // divn_small ?addn0 // subnSK ?ltn_mod ?leq_subr.
Qed.

Lemma mulzK m d : d != 0 -> (m * d %/ d)%Z = m.
Proof. by move=> d_nz; rewrite -[m * d]addr0 divzMDl // div0z addr0. Qed.

Lemma mulKz m d : d != 0 -> (d * m %/ d)%Z = m.
Proof. by move=> d_nz; rewrite mulrC mulzK. Qed.

Lemma expzB p m n : p != 0 -> (m >= n)%N -> p ^+ (m - n) = (p ^+ m %/ p ^+ n)%Z.
Proof. by move=> p_nz /subnK{2}<-; rewrite exprD mulzK // expf_neq0. Qed.

Lemma modz1 m : (m %% 1)%Z = 0.
Proof. by case: m => n; rewrite (modNz_nat, modz_nat) ?modn1. Qed.

Lemma divz1 m : (m %/ 1)%Z = m. Proof. by rewrite -{1}[m]mulr1 mulzK. Qed.

Lemma divzz d : (d %/ d)%Z = (d != 0).
Proof. by have [-> // | d_nz] := eqVneq; rewrite -{1}[d]mul1r mulzK. Qed.

Lemma ltz_pmod m d : d > 0 -> (m %% d)%Z < d.
Proof.
case: m d => n [] // d d_gt0; first by rewrite modz_nat ltz_nat ltn_pmod.
by rewrite modNz_nat // -lezD1 addrAC subrK gerDl oppr_le0.
Qed.

Lemma ltz_mod m d : d != 0 -> (m %% d)%Z < `|d|.
Proof. by rewrite -absz_gt0 -modz_abs => d_gt0; apply: ltz_pmod. Qed.

Lemma divzMpl p m d : p > 0 -> (p * m %/ (p * d) = m %/ d)%Z.
Proof.
case: p => // p p_gt0; wlog d_gt0: d / d > 0; last case: d => // d in d_gt0 *.
  by move=> IH; case/intP: d => [|d|d]; rewrite ?mulr0 ?divz0 ?mulrN ?divzN ?IH.
rewrite {1}(divz_eq m d) mulrDr mulrCA divzMDl ?mulf_neq0 ?gt_eqF // addrC.
rewrite divz_small ?add0r // PoszM pmulr_rge0 ?modz_ge0 ?gt_eqF //=.
by rewrite ltr_pM2l ?ltz_pmod.
Qed.
Arguments divzMpl [p m d].

Lemma divzMpr p m d : p > 0 -> (m * p %/ (d * p) = m %/ d)%Z.
Proof. by move=> p_gt0; rewrite -!(mulrC p) divzMpl. Qed.
Arguments divzMpr [p m d].

Lemma lez_floor m d : d != 0 -> (m %/ d)%Z * d <= m.
Proof. by rewrite -subr_ge0; apply: modz_ge0. Qed.

(* leq_mod does not extend to negative m. *)
Lemma lez_div m d : (`|(m %/ d)%Z| <= `|m|)%N.
Proof.
wlog d_gt0: d / d > 0; last case: d d_gt0 => // d d_gt0.
  by move=> IH; case/intP: d => [|n|n]; rewrite ?divz0 ?divzN ?abszN // IH.
case: m => n; first by rewrite divz_nat leq_div.
by rewrite divNz_nat // NegzE !abszN ltnS leq_div.
Qed.

Lemma ltz_ceil m d : d > 0 -> m < ((m %/ d)%Z + 1) * d.
Proof.
by case: d => // d d_gt0; rewrite mulrDl mul1r -ltrBlDl ltz_mod ?gt_eqF.
Qed.

Lemma ltz_divLR m n d : d > 0 -> ((m %/ d)%Z < n) = (m < n * d).
Proof.
move=> d_gt0; apply/idP/idP.
  by rewrite -[_ < n]lezD1 -(ler_pM2r d_gt0); exact/lt_le_trans/ltz_ceil.
by rewrite -(ltr_pM2r d_gt0 _ n); apply/le_lt_trans/lez_floor; rewrite gt_eqF.
Qed.

Lemma lez_divRL m n d : d > 0 -> (m <= (n %/ d)%Z) = (m * d <= n).
Proof. by move=> d_gt0; rewrite !leNgt ltz_divLR. Qed.

Lemma lez_pdiv2r d : 0 <= d -> {homo divz^~ d : m n / m <= n}.
Proof.
by case: d => [[|d]|]// _ [] m [] n //; rewrite /divz !mul1r; apply: leq_div2r.
Qed.

Lemma divz_ge0 m d : d > 0 -> ((m %/ d)%Z >= 0) = (m >= 0).
Proof. by case: d m => // d [] n d_gt0; rewrite (divz_nat, divNz_nat). Qed.

Lemma divzMA_ge0 m n p : n >= 0 -> (m %/ (n * p) = (m %/ n)%Z %/ p)%Z.
Proof.
case: n => // [[|n]] _; first by rewrite mul0r !divz0 div0z.
wlog p_gt0: p / p > 0; last case: p => // p in p_gt0 *.
  by case/intP: p => [|p|p] IH; rewrite ?mulr0 ?divz0 ?mulrN ?divzN // IH.
rewrite {2}(divz_eq m (n.+1%:Z * p)) mulrA mulrAC !divzMDl // ?gt_eqF //.
rewrite [rhs in _ + rhs]divz_small ?addr0 // ltz_divLR // divz_ge0 //.
by rewrite mulrC ltz_pmod ?modz_ge0 ?gt_eqF ?pmulr_lgt0.
Qed.

Lemma modz_small m d : 0 <= m < d -> (m %% d)%Z = m.
Proof. by case: m d => //= m [] // d; rewrite modz_nat => /modn_small->. Qed.

Lemma modz_mod m d : ((m %% d)%Z = m %[mod d])%Z.
Proof.
rewrite -!(modz_abs _ d); case: {d}`|d|%N => [|d]; first by rewrite !modz0.
by rewrite modz_small ?modz_ge0 ?ltz_mod.
Qed.

Lemma modzMDl p m d : (p * d + m = m %[mod d])%Z.
Proof.
have [-> | d_nz] := eqVneq d 0; first by rewrite mulr0 add0r.
by rewrite /modz divzMDl // mulrDl opprD addrACA subrr add0r.
Qed.

Lemma mulz_modr {p m d} : 0 < p -> p * (m %% d)%Z = ((p * m) %% (p * d))%Z.
Proof.
case: p => // p p_gt0; rewrite mulrBr; apply: canLR (addrK _) _.
by rewrite mulrCA -(divzMpl p_gt0) subrK.
Qed.

Lemma mulz_modl {p m d} : 0 < p -> (m %% d)%Z * p = ((m * p) %% (d * p))%Z.
Proof. by rewrite -!(mulrC p); apply: mulz_modr. Qed.

Lemma modzDl m d : (d + m = m %[mod d])%Z.
Proof. by rewrite -{1}[d]mul1r modzMDl. Qed.

Lemma modzDr m d : (m + d = m %[mod d])%Z.
Proof. by rewrite addrC modzDl. Qed.

Lemma modzz d : (d %% d)%Z = 0.
Proof. by rewrite -{1}[d]addr0 modzDl mod0z. Qed.

Lemma modzMl p d : (p * d %% d)%Z = 0.
Proof. by rewrite -[p * d]addr0 modzMDl mod0z. Qed.

Lemma modzMr p d : (d * p %% d)%Z = 0.
Proof. by rewrite mulrC modzMl. Qed.

Lemma modzDml m n d : ((m %% d)%Z + n = m + n %[mod d])%Z.
Proof. by rewrite {2}(divz_eq m d) -[_ * d + _ + n]addrA modzMDl. Qed.

Lemma modzDmr m n d : (m + (n %% d)%Z = m + n %[mod d])%Z.
Proof. by rewrite !(addrC m) modzDml. Qed.

Lemma modzDm m n d : ((m %% d)%Z + (n %% d)%Z = m + n %[mod d])%Z.
Proof. by rewrite modzDml modzDmr. Qed.

Lemma eqz_modDl p m n d : (p + m == p + n %[mod d])%Z = (m == n %[mod d])%Z.
Proof.
have [-> | d_nz] := eqVneq d 0; first by rewrite !modz0 (inj_eq (addrI p)).
apply/eqP/eqP=> eq_mn; last by rewrite -modzDmr eq_mn modzDmr.
by rewrite -(addKr p m) -modzDmr eq_mn modzDmr addKr.
Qed.

Lemma eqz_modDr p m n d : (m + p == n + p %[mod d])%Z = (m == n %[mod d])%Z.
Proof. by rewrite -!(addrC p) eqz_modDl. Qed.

Lemma modzMml m n d : ((m %% d)%Z * n = m * n %[mod d])%Z.
Proof. by rewrite {2}(divz_eq m d) [in RHS]mulrDl mulrAC modzMDl. Qed.  (* FIXME: rewrite pattern *)

Lemma modzMmr m n d : (m * (n %% d)%Z = m * n %[mod d])%Z.
Proof. by rewrite !(mulrC m) modzMml. Qed.

Lemma modzMm m n d : ((m %% d)%Z * (n %% d)%Z = m * n %[mod d])%Z.
Proof. by rewrite modzMml modzMmr. Qed.

Lemma modzXm k m d : ((m %% d)%Z ^+ k = m ^+ k %[mod d])%Z.
Proof. by elim: k => // k IHk; rewrite !exprS -modzMmr IHk modzMm. Qed.

Lemma modzNm m d : (- (m %% d)%Z = - m %[mod d])%Z.
Proof. by rewrite -mulN1r modzMmr mulN1r. Qed.

Lemma modz_absm m d : ((-1) ^+ (m < 0)%R * (m %% d)%Z = `|m|%:Z %[mod d])%Z.
Proof. by rewrite modzMmr -abszEsign. Qed.

(** Divisibility **)

Lemma dvdzE d m : (d %| m)%Z = (`|d| %| `|m|)%N. Proof. by []. Qed.
Lemma dvdz0 d : (d %| 0)%Z. Proof. exact: dvdn0. Qed.
Lemma dvd0z n : (0 %| n)%Z = (n == 0). Proof. by rewrite -absz_eq0 -dvd0n. Qed.
Lemma dvdz1 d : (d %| 1)%Z = (`|d|%N == 1). Proof. exact: dvdn1. Qed.
Lemma dvd1z m : (1 %| m)%Z. Proof. exact: dvd1n. Qed.
Lemma dvdzz m : (m %| m)%Z. Proof. exact: dvdnn. Qed.

Lemma dvdz_mull d m n : (d %| n)%Z -> (d %| m * n)%Z.
Proof. by rewrite !dvdzE abszM; apply: dvdn_mull. Qed.

Lemma dvdz_mulr d m n : (d %| m)%Z -> (d %| m * n)%Z.
Proof. by move=> d_m; rewrite mulrC dvdz_mull. Qed.
#[global] Hint Resolve dvdz0 dvd1z dvdzz dvdz_mull dvdz_mulr : core.

Lemma dvdz_mul d1 d2 m1 m2 : (d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2)%Z.
Proof. by rewrite !dvdzE !abszM; apply: dvdn_mul. Qed.

Lemma dvdz_trans n d m : (d %| n -> n %| m -> d %| m)%Z.
Proof. by rewrite !dvdzE; apply: dvdn_trans. Qed.

Lemma dvdzP d m : reflect (exists q, m = q * d) (d %| m)%Z.
Proof.
apply: (iffP dvdnP) => [] [q Dm]; last by exists `|q|%N; rewrite Dm abszM.
exists ((-1) ^+ (m < 0)%R * q%:Z * (-1) ^+ (d < 0)%R).
by rewrite -!mulrA -abszEsign -PoszM -Dm -intEsign.
Qed.
Arguments dvdzP {d m}.

Lemma dvdz_mod0P d m : reflect (m %% d = 0)%Z (d %| m)%Z.
Proof.
apply: (iffP dvdzP) => [[q ->] | md0]; first by rewrite modzMl.
by rewrite (divz_eq m d) md0 addr0; exists (m %/ d)%Z.
Qed.
Arguments dvdz_mod0P {d m}.

Lemma dvdz_eq d m : (d %| m)%Z = ((m %/ d)%Z * d == m).
Proof. by rewrite (sameP dvdz_mod0P eqP) subr_eq0 eq_sym. Qed.

Lemma divzK d m : (d %| m)%Z -> (m %/ d)%Z * d = m.
Proof. by rewrite dvdz_eq => /eqP. Qed.

Lemma lez_divLR d m n : 0 < d -> (d %| m)%Z -> ((m %/ d)%Z <= n) = (m <= n * d).
Proof. by move=> /ler_pM2r <- /divzK->. Qed.

Lemma ltz_divRL d m n : 0 < d -> (d %| m)%Z -> (n < m %/ d)%Z = (n * d < m).
Proof. by move=> /ltr_pM2r/(_ n)<- /divzK->. Qed.

Lemma eqz_div d m n : d != 0 -> (d %| m)%Z -> (n == m %/ d)%Z = (n * d == m).
Proof. by move=> /mulIf/inj_eq <- /divzK->. Qed.

Lemma eqz_mul d m n : d != 0 -> (d %| m)%Z -> (m == n * d) = (m %/ d == n)%Z.
Proof. by move=> d_gt0 dv_d_m; rewrite eq_sym -eqz_div // eq_sym. Qed.

Lemma divz_mulAC d m n : (d %| m)%Z -> (m %/ d)%Z * n = (m * n %/ d)%Z.
Proof.
have [-> | d_nz] := eqVneq d 0; first by rewrite !divz0 mul0r.
by move/divzK=> {2} <-; rewrite mulrAC mulzK.
Qed.

Lemma mulz_divA d m n : (d %| n)%Z -> m * (n %/ d)%Z = (m * n %/ d)%Z.
Proof. by move=> dv_d_m; rewrite !(mulrC m) divz_mulAC. Qed.

Lemma mulz_divCA d m n :
  (d %| m)%Z -> (d %| n)%Z -> m * (n %/ d)%Z = n * (m %/ d)%Z.
Proof. by move=> dv_d_m dv_d_n; rewrite mulrC divz_mulAC ?mulz_divA. Qed.

Lemma divzA m n p : (p %| n -> n %| m * p -> m %/ (n %/ p)%Z = m * p %/ n)%Z.
Proof.
move/divzK=> p_dv_n; have [->|] := eqVneq n 0; first by rewrite div0z !divz0.
rewrite -{1 2}p_dv_n mulf_eq0 => /norP[pn_nz p_nz] /divzK; rewrite mulrA p_dv_n.
by move/mulIf=> {1} <- //; rewrite mulzK.
Qed.

Lemma divzMA m n p : (n * p %| m -> m %/ (n * p) = (m %/ n)%Z %/ p)%Z.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite mulr0 !divz0.
have [-> | nz_n] := eqVneq n 0; first by rewrite mul0r !divz0 div0z.
by move/divzK=> {2} <-; rewrite mulrA mulrAC !mulzK.
Qed.

Lemma divzAC m n p : (n * p %| m -> (m %/ n)%Z %/ p =  (m %/ p)%Z %/ n)%Z.
Proof. by move=> np_dv_mn; rewrite -!divzMA // mulrC. Qed.

Lemma divzMl p m d : p != 0 -> (d %| m -> p * m %/ (p * d) = m %/ d)%Z.
Proof.
have [-> | nz_d nz_p] := eqVneq d 0; first by rewrite mulr0 !divz0.
by move/divzK=> {1}<-; rewrite mulrCA mulzK ?mulf_neq0.
Qed.

Lemma divzMr p m d : p != 0 -> (d %| m -> m * p %/ (d * p) = m %/ d)%Z.
Proof. by rewrite -!(mulrC p); apply: divzMl. Qed.

Lemma dvdz_mul2l p d m : p != 0 -> (p * d %| p * m)%Z = (d %| m)%Z.
Proof. by rewrite !dvdzE -absz_gt0 !abszM; apply: dvdn_pmul2l. Qed.
Arguments dvdz_mul2l [p d m].

Lemma dvdz_mul2r p d m : p != 0 -> (d * p %| m * p)%Z = (d %| m)%Z.
Proof. by rewrite !dvdzE -absz_gt0 !abszM; apply: dvdn_pmul2r. Qed.
Arguments dvdz_mul2r [p d m].

Lemma dvdz_exp2l p m n : (m <= n)%N -> (p ^+ m %| p ^+ n)%Z.
Proof. by rewrite dvdzE !abszX; apply: dvdn_exp2l. Qed.

Lemma dvdz_Pexp2l p m n : `|p| > 1 -> (p ^+ m %| p ^+ n)%Z = (m <= n)%N.
Proof. by rewrite dvdzE !abszX ltz_nat; apply: dvdn_Pexp2l. Qed.

Lemma dvdz_exp2r m n k : (m %| n -> m ^+ k %| n ^+ k)%Z.
Proof. by rewrite !dvdzE !abszX; apply: dvdn_exp2r. Qed.

Fact dvdz_zmod_closed d : zmod_closed (dvdz d).
Proof.
split=> [|_ _ /dvdzP[p ->] /dvdzP[q ->]]; first exact: dvdz0.
by rewrite -mulrBl dvdz_mull.
Qed.
HB.instance Definition _ d := GRing.isZmodClosed.Build int (dvdz d)
  (dvdz_zmod_closed d).

Lemma dvdz_exp k d m : (0 < k)%N -> (d %| m -> d %| m ^+ k)%Z.
Proof. by case: k => // k _ d_dv_m; rewrite exprS dvdz_mulr. Qed.

Lemma eqz_mod_dvd d m n : (m == n %[mod d])%Z = (d %| m - n)%Z.
Proof.
apply/eqP/dvdz_mod0P=> eq_mn.
  by rewrite -modzDml eq_mn modzDml subrr mod0z.
by rewrite -(subrK n m) -modzDml eq_mn add0r.
Qed.

Lemma divzDl m n d :
  (d %| m)%Z -> ((m + n) %/ d)%Z = (m %/ d)%Z + (n %/ d)%Z.
Proof.
have [-> | d_nz] := eqVneq d 0; first by rewrite !divz0.
by move/divzK=> {1}<-; rewrite divzMDl.
Qed.

Lemma divzDr m n d :
  (d %| n)%Z -> ((m + n) %/ d)%Z = (m %/ d)%Z + (n %/ d)%Z.
Proof. by move=> dv_n; rewrite addrC divzDl // addrC. Qed.

Lemma Qint_dvdz (m d : int) : (d %| m)%Z -> (m%:~R / d%:~R : rat) \is a Num.int.
Proof.
case/dvdzP=> z ->; rewrite rmorphM /=; have [->|dn0] := eqVneq d 0.
  by rewrite mulr0 mul0r.
by rewrite mulfK ?intr_eq0.
Qed.

Lemma Qnat_dvd (m d : nat) : (d %| m)%N -> (m%:R / d%:R : rat) \is a Num.nat.
Proof. by move=> h; rewrite natrEint divr_ge0 ?ler0n // !pmulrn Qint_dvdz. Qed.

Lemma dvdz_charf (R : ringType) p : p \in [char R] ->
  forall n : int, (p %| n)%Z = (n%:~R == 0 :> R).
Proof.
move=> charRp [] n; rewrite [LHS](dvdn_charf charRp)//.
by rewrite NegzE abszN rmorphN// oppr_eq0.
Qed.

(* Greatest common divisor *)

Lemma gcdzz m : gcdz m m = `|m|%:Z. Proof. by rewrite /gcdz gcdnn. Qed.
Lemma gcdzC : commutative gcdz. Proof. by move=> m n; rewrite /gcdz gcdnC. Qed.
Lemma gcd0z m : gcdz 0 m = `|m|%:Z. Proof. by rewrite /gcdz gcd0n. Qed.
Lemma gcdz0 m : gcdz m 0 = `|m|%:Z. Proof. by rewrite /gcdz gcdn0. Qed.
Lemma gcd1z : left_zero 1 gcdz. Proof. by move=> m; rewrite /gcdz gcd1n. Qed.
Lemma gcdz1 : right_zero 1 gcdz. Proof. by move=> m; rewrite /gcdz gcdn1. Qed.
Lemma dvdz_gcdr m n : (gcdz m n %| n)%Z. Proof. exact: dvdn_gcdr. Qed.
Lemma dvdz_gcdl m n : (gcdz m n %| m)%Z. Proof. exact: dvdn_gcdl. Qed.
Lemma gcdz_eq0 m n : (gcdz m n == 0) = (m == 0) && (n == 0).
Proof. by rewrite -absz_eq0 eqn0Ngt gcdn_gt0 !negb_or -!eqn0Ngt !absz_eq0. Qed.
Lemma gcdNz m n : gcdz (- m) n = gcdz m n. Proof. by rewrite /gcdz abszN. Qed.
Lemma gcdzN m n : gcdz m (- n) = gcdz m n. Proof. by rewrite /gcdz abszN. Qed.

Lemma gcdz_modr m n : gcdz m (n %% m)%Z = gcdz m n.
Proof.
rewrite -modz_abs /gcdz; move/absz: m => m.
have [-> | m_gt0] := posnP m; first by rewrite modz0.
case: n => n; first by rewrite modz_nat gcdn_modr.
rewrite modNz_nat // NegzE abszN {2}(divn_eq n m) -addnS gcdnMDl.
rewrite -addrA -opprD -intS /=; set m1 := _.+1.
have le_m1m: (m1 <= m)%N by apply: ltn_pmod.
by rewrite subzn // !(gcdnC m) -{2 3}(subnK le_m1m) gcdnDl gcdnDr gcdnC.
Qed.

Lemma gcdz_modl m n : gcdz (m %% n)%Z n = gcdz m n.
Proof. by rewrite -!(gcdzC n) gcdz_modr. Qed.

Lemma gcdzMDl q m n : gcdz m (q * m + n) = gcdz m n.
Proof. by rewrite -gcdz_modr modzMDl gcdz_modr. Qed.
 
Lemma gcdzDl m n : gcdz m (m + n) = gcdz m n.
Proof. by rewrite -{2}(mul1r m) gcdzMDl. Qed.

Lemma gcdzDr m n : gcdz m (n + m) = gcdz m n.
Proof. by rewrite addrC gcdzDl. Qed.

Lemma gcdzMl n m : gcdz n (m * n) = `|n|%:Z.
Proof. by rewrite -[m * n]addr0 gcdzMDl gcdz0. Qed.

Lemma gcdzMr n m : gcdz n (n * m) = `|n|%:Z.
Proof. by rewrite mulrC gcdzMl. Qed.

Lemma gcdz_idPl {m n} : reflect (gcdz m n = `|m|%:Z) (m %| n)%Z.
Proof. by apply: (iffP gcdn_idPl) => [<- | []]. Qed.

Lemma gcdz_idPr {m n} : reflect (gcdz m n = `|n|%:Z) (n %| m)%Z.
Proof. by rewrite gcdzC; apply: gcdz_idPl. Qed.

Lemma expz_min e m n : e >= 0 -> e ^+ minn m n = gcdz (e ^+ m) (e ^+ n).
Proof.
by case: e => // e _; rewrite /gcdz !abszX -expn_min -natz -natrX !natz.
Qed.

Lemma dvdz_gcd p m n : (p %| gcdz m n)%Z = (p %| m)%Z && (p %| n)%Z.
Proof. exact: dvdn_gcd. Qed.

Lemma gcdzAC : right_commutative gcdz.
Proof. by move=> m n p; rewrite /gcdz gcdnAC. Qed.

Lemma gcdzA : associative gcdz.
Proof. by move=> m n p; rewrite /gcdz gcdnA. Qed.

Lemma gcdzCA : left_commutative gcdz.
Proof. by move=> m n p; rewrite /gcdz gcdnCA. Qed.

Lemma gcdzACA : interchange gcdz gcdz.
Proof. by move=> m n p q; rewrite /gcdz gcdnACA. Qed.

Lemma mulz_gcdr m n p : `|m|%:Z * gcdz n p = gcdz (m * n) (m * p).
Proof. by rewrite -PoszM muln_gcdr -!abszM. Qed.

Lemma mulz_gcdl m n p : gcdz m n * `|p|%:Z = gcdz (m * p) (n * p).
Proof. by rewrite -PoszM muln_gcdl -!abszM. Qed.

Lemma mulz_divCA_gcd n m : n * (m %/ gcdz n m)%Z  = m * (n %/ gcdz n m)%Z.
Proof. by rewrite mulz_divCA ?dvdz_gcdl ?dvdz_gcdr. Qed.

(* Least common multiple *)

Lemma dvdz_lcmr m n : (n %| lcmz m n)%Z.
Proof. exact: dvdn_lcmr. Qed.

Lemma dvdz_lcml m n : (m %| lcmz m n)%Z.
Proof. exact: dvdn_lcml. Qed.

Lemma dvdz_lcm d1 d2 m : ((lcmn d1 d2 %| m) = (d1 %| m) && (d2 %| m))%Z.
Proof. exact: dvdn_lcm. Qed.

Lemma lcmzC : commutative lcmz.
Proof. by move=> m n; rewrite /lcmz lcmnC. Qed.

Lemma lcm0z : left_zero 0 lcmz.
Proof. by move=> x; rewrite /lcmz absz0 lcm0n. Qed.

Lemma lcmz0 : right_zero 0 lcmz.
Proof. by move=> x; rewrite /lcmz absz0 lcmn0. Qed.

Lemma lcmz_ge0 m n : 0 <= lcmz m n.
Proof. by []. Qed.

Lemma lcmz_neq0 m n : (lcmz m n != 0) = (m != 0) && (n != 0).
Proof.
have [->|m_neq0] := eqVneq m 0; first by rewrite lcm0z.
have [->|n_neq0] := eqVneq n 0; first by rewrite lcmz0.
by rewrite gt_eqF// [0 < _]lcmn_gt0 !absz_gt0 m_neq0 n_neq0.
Qed.

(* Coprime factors *)

Lemma coprimezE m n : coprimez m n = coprime `|m| `|n|. Proof. by []. Qed.

Lemma coprimez_sym : symmetric coprimez.
Proof. by move=> m n; apply: coprime_sym. Qed.

Lemma coprimeNz m n : coprimez (- m) n = coprimez m n.
Proof. by rewrite coprimezE abszN. Qed.

Lemma coprimezN m n : coprimez m (- n) = coprimez m n.
Proof. by rewrite coprimezE abszN. Qed.

Variant egcdz_spec m n : int * int -> Type :=
  EgcdzSpec u v of u * m + v * n = gcdz m n & coprimez u v
     : egcdz_spec m n (u, v).

Lemma egcdzP m n : egcdz_spec m n (egcdz m n).
Proof.
rewrite /egcdz; have [-> | m_nz] := eqVneq.
  by split; [rewrite -abszEsign gcd0z | rewrite coprimezE absz_sign].
have m_gt0 : (`|m| > 0)%N by rewrite absz_gt0.
case: egcdnP (coprime_egcdn `|n| m_gt0) => //= u v Duv _ co_uv; split.
  rewrite !mulNr -!mulrA mulrCA -abszEsg mulrCA -abszEsign.
  by rewrite -!PoszM Duv addnC PoszD addrK.
by rewrite coprimezE abszM absz_sg m_nz mul1n mulNr abszN abszMsign.
Qed.

Lemma Bezoutz m n : {u : int & {v : int | u * m + v * n = gcdz m n}}.
Proof. by exists (egcdz m n).1, (egcdz m n).2; case: egcdzP. Qed.

Lemma coprimezP m n :
  reflect (exists uv, uv.1 * m + uv.2 * n = 1) (coprimez m n).
Proof.
apply: (iffP eqP) => [<-| [[u v] /= Duv]].
  by exists (egcdz m n); case: egcdzP.
congr _%:Z; apply: gcdn_def; rewrite ?dvd1n // => d dv_d_n dv_d_m.
by rewrite -(dvdzE d 1) -Duv [m]intEsg [n]intEsg rpredD ?dvdz_mull.
Qed.

Lemma Gauss_dvdz m n p :
  coprimez m n -> (m * n %| p)%Z = (m %| p)%Z && (n %| p)%Z.
Proof. by move/Gauss_dvd <-; rewrite -abszM. Qed.

Lemma Gauss_dvdzr m n p : coprimez m n -> (m %| n * p)%Z = (m %| p)%Z.
Proof. by rewrite dvdzE abszM => /Gauss_dvdr->. Qed.

Lemma Gauss_dvdzl m n p : coprimez m p -> (m %| n * p)%Z = (m %| n)%Z.
Proof. by rewrite mulrC; apply: Gauss_dvdzr. Qed.

Lemma Gauss_gcdzr p m n : coprimez p m -> gcdz p (m * n) = gcdz p n.
Proof. by rewrite /gcdz abszM => /Gauss_gcdr->. Qed.

Lemma Gauss_gcdzl p m n : coprimez p n -> gcdz p (m * n) = gcdz p m.
Proof. by move=> co_pn; rewrite mulrC Gauss_gcdzr. Qed.

Lemma coprimezMr p m n : coprimez p (m * n) = coprimez p m && coprimez p n.
Proof. by rewrite -coprimeMr -abszM. Qed.

Lemma coprimezMl p m n : coprimez (m * n) p = coprimez m p && coprimez n p.
Proof. by rewrite -coprimeMl -abszM. Qed.

Lemma coprimez_pexpl k m n : (0 < k)%N -> coprimez (m ^+ k) n = coprimez m n.
Proof. by rewrite /coprimez /gcdz abszX; apply: coprime_pexpl. Qed.

Lemma coprimez_pexpr k m n : (0 < k)%N -> coprimez m (n ^+ k) = coprimez m n.
Proof. by move=> k_gt0; rewrite !(coprimez_sym m) coprimez_pexpl. Qed.

Lemma coprimezXl k m n : coprimez m n -> coprimez (m ^+ k) n.
Proof. by rewrite /coprimez /gcdz abszX; apply: coprimeXl. Qed.

Lemma coprimezXr k m n : coprimez m n -> coprimez m (n ^+ k).
Proof. by rewrite !(coprimez_sym m); apply: coprimezXl. Qed.

Lemma coprimez_dvdl m n p : (m %| n)%N -> coprimez n p -> coprimez m p.
Proof. exact: coprime_dvdl. Qed.

Lemma coprimez_dvdr m n p : (m %| n)%N -> coprimez p n -> coprimez p m.
Proof. exact: coprime_dvdr. Qed.

Lemma dvdz_pexp2r m n k : (k > 0)%N -> (m ^+ k %| n ^+ k)%Z = (m %| n)%Z.
Proof. by rewrite dvdzE !abszX; apply: dvdn_pexp2r. Qed.

Section Chinese.

(***********************************************************************)
(*   The chinese remainder theorem                                     *)
(***********************************************************************)

Variables m1 m2 : int.
Hypothesis co_m12 : coprimez m1 m2.

Lemma zchinese_remainder x y :
  (x == y %[mod m1 * m2])%Z = (x == y %[mod m1])%Z && (x == y %[mod m2])%Z.
Proof. by rewrite !eqz_mod_dvd Gauss_dvdz. Qed.

(***********************************************************************)
(*   A function that solves the chinese remainder problem              *)
(***********************************************************************)

Definition zchinese r1 r2 :=
  r1 * m2 * (egcdz m1 m2).2 + r2 * m1 * (egcdz m1 m2).1.

Lemma zchinese_modl r1 r2 : (zchinese r1 r2 = r1 %[mod m1])%Z.
Proof.
rewrite /zchinese; have [u v /= Duv _] := egcdzP m1 m2.
rewrite -{2}[r1]mulr1 -((gcdz _ _ =P 1) co_m12) -Duv.
by rewrite mulrDr mulrAC addrC (mulrAC r2) !mulrA !modzMDl.
Qed.

Lemma zchinese_modr r1 r2 : (zchinese r1 r2 = r2 %[mod m2])%Z.
Proof.
rewrite /zchinese; have [u v /= Duv _] := egcdzP m1 m2.
rewrite -{2}[r2]mulr1 -((gcdz _ _ =P 1) co_m12) -Duv.
by rewrite mulrAC modzMDl mulrAC addrC mulrDr !mulrA modzMDl.
Qed.

Lemma zchinese_mod x : (x = zchinese (x %% m1)%Z (x %% m2)%Z %[mod m1 * m2])%Z.
Proof.
apply/eqP; rewrite zchinese_remainder //.
by rewrite zchinese_modl zchinese_modr !modz_mod !eqxx.
Qed.

End Chinese.

Section ZpolyScale.

Definition zcontents (p : {poly int}) : int :=
  sgz (lead_coef p) * \big[gcdn/0]_(i < size p) `|(p`_i)%R|%N.

Lemma sgz_contents p : sgz (zcontents p) = sgz (lead_coef p).
Proof.
rewrite /zcontents mulrC sgzM sgz_id; set d := _%:Z.
have [-> | nz_p] := eqVneq p 0; first by rewrite lead_coef0 mulr0.
rewrite gtr0_sgz ?mul1r // ltz_nat polySpred ?big_ord_recr //= -lead_coefE.
by rewrite gcdn_gt0 orbC absz_gt0 lead_coef_eq0 nz_p.
Qed.

Lemma zcontents_eq0 p : (zcontents p == 0) = (p == 0).
Proof. by rewrite -sgz_eq0 sgz_contents sgz_eq0 lead_coef_eq0. Qed.

Lemma zcontents0 : zcontents 0 = 0.
Proof. by apply/eqP; rewrite zcontents_eq0. Qed.

Lemma zcontentsZ a p : zcontents (a *: p) = a * zcontents p.
Proof.
have [-> | nz_a] := eqVneq a 0; first by rewrite scale0r mul0r zcontents0.
rewrite {2}[a]intEsg mulrCA -mulrA -PoszM big_distrr /= mulrCA mulrA -sgzM.
rewrite -lead_coefZ; congr (_ * _%:Z); rewrite size_scale //.
by apply: eq_bigr => i _; rewrite coefZ abszM.
Qed.

Lemma zcontents_monic p : p \is monic -> zcontents p = 1.
Proof.
move=> mon_p; rewrite /zcontents polySpred ?monic_neq0 //.
by rewrite big_ord_recr /= -lead_coefE (monicP mon_p) gcdn1.
Qed.

Lemma dvdz_contents a p : (a %| zcontents p)%Z = (p \is a polyOver (dvdz a)).
Proof.
rewrite dvdzE abszM absz_sg lead_coef_eq0.
have [-> | nz_p] := eqVneq; first by rewrite mul0n dvdn0 rpred0.
rewrite mul1n; apply/dvdn_biggcdP/(all_nthP 0)=> a_dv_p i ltip /=.
  exact: (a_dv_p (Ordinal ltip)).
exact: a_dv_p.
Qed.

Lemma map_poly_divzK {a} p :
  p \is a polyOver (dvdz a) -> a *: map_poly (divz^~ a) p = p.
Proof.
move/polyOverP=> a_dv_p; apply/polyP=> i.
by rewrite coefZ coef_map_id0 ?div0z // mulrC divzK.
Qed.

Lemma polyOver_dvdzP a p :
  reflect (exists q, p = a *: q) (p \is a polyOver (dvdz a)).
Proof.
apply: (iffP idP) => [/map_poly_divzK | [q ->]].
  by exists (map_poly (divz^~ a) p).
by apply/polyOverP=> i; rewrite coefZ dvdz_mulr.
Qed.

Definition zprimitive p := map_poly (divz^~ (zcontents p)) p.

Lemma zpolyEprim p : p = zcontents p *: zprimitive p.
Proof. by rewrite map_poly_divzK // -dvdz_contents. Qed.

Lemma zprimitive0 : zprimitive 0 = 0.
Proof.
by apply/polyP=> i; rewrite coef0 coef_map_id0 ?div0z // zcontents0 divz0.
Qed.

Lemma zprimitive_eq0 p : (zprimitive p == 0) = (p == 0).
Proof.
apply/idP/idP=> /eqP p0; first by rewrite [p]zpolyEprim p0 scaler0.
by rewrite p0 zprimitive0.
Qed.

Lemma size_zprimitive p : size (zprimitive p) = size p.
Proof.
have [-> | ] := eqVneq p 0; first by rewrite zprimitive0.
by rewrite {1 3}[p]zpolyEprim scale_poly_eq0 => /norP[/size_scale-> _].
Qed.

Lemma sgz_lead_primitive p : sgz (lead_coef (zprimitive p)) = (p != 0).
Proof.
have [-> | nz_p] := eqVneq; first by rewrite zprimitive0 lead_coef0.
apply: (@mulfI _ (sgz (zcontents p))); first by rewrite sgz_eq0 zcontents_eq0.
by rewrite -sgzM mulr1 -lead_coefZ -zpolyEprim sgz_contents.
Qed.

Lemma zcontents_primitive p : zcontents (zprimitive p) = (p != 0).
Proof.
have [-> | nz_p] := eqVneq; first by rewrite zprimitive0 zcontents0.
apply: (@mulfI _ (zcontents p)); first by rewrite zcontents_eq0.
by rewrite mulr1 -zcontentsZ -zpolyEprim.
Qed.

Lemma zprimitive_id p : zprimitive (zprimitive p) = zprimitive p.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite !zprimitive0.
by rewrite {2}[zprimitive p]zpolyEprim zcontents_primitive nz_p scale1r.
Qed.

Lemma zprimitive_monic p : p \in monic -> zprimitive p = p.
Proof. by move=> mon_p; rewrite {2}[p]zpolyEprim zcontents_monic ?scale1r. Qed.

Lemma zprimitiveZ a p : a != 0 -> zprimitive (a *: p) = zprimitive p.
Proof.
have [-> | nz_p nz_a] := eqVneq p 0; first by rewrite scaler0.
apply: (@mulfI _ (a * zcontents p)%:P).
  by rewrite polyC_eq0 mulf_neq0 ?zcontents_eq0.
by rewrite -{1}zcontentsZ !mul_polyC -zpolyEprim -scalerA -zpolyEprim.
Qed.

Lemma zprimitive_min p a q :
    p != 0 -> p = a *: q ->
  {b | sgz b = sgz (lead_coef q) & q = b *: zprimitive p}.
Proof.
move=> nz_p Dp; have /dvdzP/sig_eqW[b Db]: (a %| zcontents p)%Z.
  by rewrite dvdz_contents; apply/polyOver_dvdzP; exists q.
suffices ->: q = b *: zprimitive p.
  by rewrite lead_coefZ sgzM sgz_lead_primitive nz_p mulr1; exists b.
apply: (@mulfI _ a%:P).
  by apply: contraNneq nz_p; rewrite Dp -mul_polyC => ->; rewrite mul0r.
by rewrite !mul_polyC -Dp scalerA mulrC -Db -zpolyEprim.
Qed.

Lemma zprimitive_irr p a q :
  p != 0 -> zprimitive p = a *: q -> a = sgz (lead_coef q).
Proof.
move=> nz_p Dp; have: p = (a * zcontents p) *: q.
  by rewrite mulrC -scalerA -Dp -zpolyEprim.
case/zprimitive_min=> // b <- /eqP.
rewrite Dp -{1}[q]scale1r scalerA -subr_eq0 -scalerBl scale_poly_eq0 subr_eq0.
have{Dp} /negPf->: q != 0.
  by apply: contraNneq nz_p; rewrite -zprimitive_eq0 Dp => ->; rewrite scaler0.
by case: b a => [[|[|b]] | [|b]] [[|[|a]] | [|a]] //; rewrite mulr0.
Qed.

Lemma zcontentsM p q : zcontents (p * q) = zcontents p * zcontents q.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite !(mul0r, zcontents0).
have [-> | nz_q] := eqVneq q 0; first by rewrite !(mulr0, zcontents0).
rewrite -[zcontents q]mulr1 {1}[p]zpolyEprim {1}[q]zpolyEprim.
rewrite -scalerAl -scalerAr !zcontentsZ; congr (_ * (_ * _)).
rewrite [zcontents _]intEsg sgz_contents lead_coefM sgzM !sgz_lead_primitive.
apply/eqP; rewrite nz_p nz_q !mul1r [_ == _]eqn_leq absz_gt0 zcontents_eq0.
rewrite mulf_neq0 ?zprimitive_eq0 // andbT leqNgt.
apply/negP=> /pdivP[r r_pr r_dv_d]; pose to_r : int -> 'F_r := intr.
have nz_prim_r q1: q1 != 0 -> map_poly to_r (zprimitive q1) != 0.
  move=> nz_q1; apply: contraTneq (prime_gt1 r_pr) => r_dv_q1.
  rewrite -leqNgt dvdn_leq // -(dvdzE r true) -nz_q1 -zcontents_primitive.
  rewrite dvdz_contents; apply/polyOverP=> i /=; rewrite dvdzE /=.
  have /polyP/(_ i)/eqP := r_dv_q1; rewrite coef_map coef0 /=.
  rewrite {1}[_`_i]intEsign rmorphM /= rmorph_sign /= mulf_eq0 signr_eq0 /=.
  by rewrite -val_eqE /= val_Fp_nat.
suffices{nz_prim_r} /idPn[]: map_poly to_r (zprimitive p * zprimitive q) == 0.
  by rewrite rmorphM mulf_neq0 ?nz_prim_r.
rewrite [_ * _]zpolyEprim [zcontents _]intEsign mulrC -scalerA map_polyZ /=.
by rewrite scale_poly_eq0 -val_eqE /= val_Fp_nat ?(eqnP r_dv_d).
Qed.


Lemma zprimitiveM p q : zprimitive (p * q) = zprimitive p * zprimitive q.
Proof.
have [pq_0|] := eqVneq (p * q) 0.
  rewrite pq_0; move/eqP: pq_0; rewrite mulf_eq0.
  by case/pred2P=> ->; rewrite !zprimitive0 (mul0r, mulr0).
rewrite -zcontents_eq0 -polyC_eq0 => /mulfI; apply; rewrite !mul_polyC.
by rewrite -zpolyEprim zcontentsM -scalerA scalerAr scalerAl -!zpolyEprim.
Qed.

Lemma dvdpP_int p q : p %| q -> {r | q = zprimitive p * r}.
Proof.
case/Pdiv.Idomain.dvdpP/sig2_eqW=> [[c r] /= nz_c Dpr].
exists (zcontents q *: zprimitive r); rewrite -scalerAr.
by rewrite -zprimitiveM mulrC -Dpr zprimitiveZ // -zpolyEprim.
Qed.

Local Notation pZtoQ := (map_poly (intr : int -> rat)).

Lemma size_rat_int_poly p : size (pZtoQ p) = size p.
Proof. by apply: size_map_inj_poly; first apply: intr_inj. Qed.

Lemma rat_poly_scale (p : {poly rat}) :
  {q : {poly int} & {a | a != 0 & p = a%:~R^-1 *: pZtoQ q}}.
Proof.
pose a := \prod_(i < size p) denq p`_i.
have nz_a: a != 0 by apply/prodf_neq0=> i _; apply: denq_neq0.
exists (map_poly numq (a%:~R *: p)), a => //.
apply: canRL (scalerK _) _; rewrite ?intr_eq0 //.
apply/polyP=> i; rewrite !(coefZ, coef_map_id0) // numqK // Qint_def mulrC.
have [ltip | /(nth_default 0)->] := ltnP i (size p); last by rewrite mul0r.
by rewrite [a](bigD1 (Ordinal ltip)) // rmorphM mulrA -numqE -rmorphM denq_int.
Qed.

Lemma dvdp_rat_int p q : (pZtoQ p %| pZtoQ q) = (p %| q).
Proof.
apply/dvdpP/Pdiv.Idomain.dvdpP=> [[/= r1 Dq] | [[/= a r] nz_a Dq]]; last first.
  exists (a%:~R^-1 *: pZtoQ r).
  by rewrite -scalerAl -rmorphM -Dq /= linearZ/= scalerK ?intr_eq0.
have [r [a nz_a Dr1]] := rat_poly_scale r1; exists (a, r) => //=.
apply: (map_inj_poly _ _ : injective pZtoQ) => //; first exact: intr_inj.
by rewrite linearZ /= Dq Dr1 -scalerAl -rmorphM scalerKV ?intr_eq0.
Qed.

Lemma dvdpP_rat_int p q :
    p %| pZtoQ q ->
  {p1 : {poly int} & {a | a != 0 & p = a *: pZtoQ p1} & {r | q = p1 * r}}.
Proof.
have{p} [p [a nz_a ->]] := rat_poly_scale p.
rewrite dvdpZl ?invr_eq0 ?intr_eq0 // dvdp_rat_int => dv_p_q.
exists (zprimitive p); last exact: dvdpP_int.
have [-> | nz_p] := eqVneq p 0.
  by exists 1; rewrite ?oner_eq0 // zprimitive0 map_poly0 !scaler0.
exists ((zcontents p)%:~R / a%:~R).
  by rewrite mulf_neq0 ?invr_eq0 ?intr_eq0 ?zcontents_eq0.
by rewrite mulrC -scalerA -map_polyZ -zpolyEprim.
Qed.

Lemma irreducible_rat_int p :
  irreducible_poly (pZtoQ p) <-> irreducible_poly p.
Proof.
rewrite /irreducible_poly size_rat_int_poly; split=> -[] p1 p_irr; split=> //.
  move=> q q1; rewrite /eqp -!dvdp_rat_int => rq.
  by apply/p_irr => //; rewrite size_rat_int_poly.
move=> q + /dvdpP_rat_int [] r [] c c0 qE [] s sE.
rewrite qE size_scale// size_rat_int_poly => r1.
apply/(eqp_trans (eqp_scale _ c0)).
rewrite /eqp !dvdp_rat_int; apply/p_irr => //.
by rewrite sE dvdp_mulIl.
Qed.

End ZpolyScale.

(* Integral spans. *)

Lemma int_Smith_normal_form m n (M : 'M[int]_(m, n)) :
  {L : 'M[int]_m & L \in unitmx &
  {R : 'M[int]_n & R \in unitmx &
  {d : seq int | sorted dvdz d &
   M = L *m (\matrix_(i, j) (d`_i *+ (i == j :> nat))) *m R}}}.
Proof.
move: {2}_.+1 (ltnSn (m + n)) => mn.
elim: mn => // mn IHmn in m n M *; rewrite ltnS => le_mn.
have [[i j] nzMij | no_ij] := pickP (fun k => M k.1 k.2 != 0); last first.
  do 2![exists 1%:M; first exact: unitmx1]; exists nil => //=.
  apply/matrixP=> i j; apply/eqP; rewrite mulmx1 mul1mx mxE nth_nil mul0rn.
  exact: negbFE (no_ij (i, j)).
do [case: m i => [[]//|m] i; case: n j => [[]//|n] j /=] in M nzMij le_mn *.
wlog Dj: j M nzMij / j = 0; last rewrite {j}Dj in nzMij.
  case/(_ 0 (xcol j 0 M)); rewrite ?mxE ?tpermR // => L uL [R uR [d dvD dM]].
  exists L => //; exists (xcol j 0 R); last exists d => //=.
     by rewrite xcolE unitmx_mul uR unitmx_perm.
  by rewrite xcolE !mulmxA -dM xcolE -mulmxA -perm_mxM tperm2 perm_mx1 mulmx1.
move Da: (M i 0) nzMij => a nz_a.
have [A leA] := ubnP `|a|; elim: A => // A IHa in a leA m n M i Da nz_a le_mn *.
wlog [j a'Mij]: m n M i Da le_mn / {j | ~~ (a %| M i j)%Z}; last first.
  have nz_j: j != 0 by apply: contraNneq a'Mij => ->; rewrite Da.
  case: n => [[[]//]|n] in j le_mn nz_j M a'Mij Da *.
  wlog{nz_j} Dj: j M a'Mij Da / j = 1; last rewrite {j}Dj in a'Mij.
    case/(_ 1 (xcol j 1 M)); rewrite ?mxE ?tpermR ?tpermD //.
    move=> L uL [R uR [d dvD dM]]; exists L => //.
    exists (xcol j 1 R); first by rewrite xcolE unitmx_mul uR unitmx_perm.
    exists d; rewrite //= xcolE !mulmxA -dM xcolE -mulmxA -perm_mxM tperm2.
    by rewrite perm_mx1 mulmx1.
  have [u [v]] := Bezoutz a (M i 1); set b := gcdz _ _ => Db.
  have{leA} ltA: (`|b| < A)%N.
    rewrite -ltnS (leq_trans _ leA) // ltnS ltn_neqAle andbC.
    rewrite dvdn_leq ?absz_gt0 ? dvdn_gcdl //=.
    by rewrite (contraNneq _ a'Mij) ?dvdzE // => <-; apply: dvdn_gcdr.
  pose t2 := [fun j : 'I_2 => [tuple _; _]`_j : int]; pose a1 := M i 1.
  pose Uul := \matrix_(k, j) t2 (t2 u (- (a1 %/ b)%Z) j) (t2 v (a %/ b)%Z j) k.
  pose U : 'M_(2 + n) := block_mx Uul 0 0 1%:M; pose M1 := M *m U.
  have{nz_a} nz_b: b != 0 by rewrite gcdz_eq0 (negPf nz_a).
  have uU: U \in unitmx.
    rewrite unitmxE det_ublock det1 (expand_det_col _ 0) big_ord_recl big_ord1.
    do 2!rewrite /cofactor [row' _ _]mx11_scalar !mxE det_scalar1 /=.
    rewrite mulr1 mul1r mulN1r opprK -[_ + _](mulzK _ nz_b) mulrDl.
    by rewrite -!mulrA !divzK ?dvdz_gcdl ?dvdz_gcdr // Db divzz nz_b unitr1.
  have{} Db: M1 i 0 = b.
    rewrite /M1 -(lshift0 n 1) [U]block_mxEh mul_mx_row row_mxEl.
    rewrite -[M](@hsubmxK _ _ 2) (@mul_row_col _ _ 2) mulmx0 addr0 !mxE /=.
    rewrite big_ord_recl big_ord1 !mxE /= [lshift _ _]((_ =P 0) _) // Da.
    by rewrite [lshift _ _]((_ =P 1) _) // mulrC -(mulrC v).
  have [L uL [R uR [d dvD dM1]]] := IHa b ltA _ _ M1 i Db nz_b le_mn.
  exists L => //; exists (R *m invmx U); last exists d => //.
    by rewrite unitmx_mul uR unitmx_inv.
  by rewrite mulmxA -dM1 mulmxK.
move=> {A leA}IHa; wlog Di: i M Da / i = 0; last rewrite {i}Di in Da.
  case/(_ 0 (xrow i 0 M)); rewrite ?mxE ?tpermR // => L uL [R uR [d dvD dM]].
  exists (xrow i 0 L); first by rewrite xrowE unitmx_mul unitmx_perm.
  exists R => //; exists d; rewrite //= xrowE -!mulmxA (mulmxA L) -dM xrowE.
  by rewrite mulmxA -perm_mxM tperm2 perm_mx1 mul1mx.
without loss /forallP a_dvM0: / [forall j, a %| M 0%R j]%Z.
  case: (altP forallP) => [_ IH|/forallPn/sigW/IHa IH _]; exact: IH.
without loss{Da a_dvM0} Da: M / forall j, M 0 j = a.
  pose Uur := col' 0 (\row_j (1 - (M 0%R j %/ a)%Z)).
  pose U : 'M_(1 + n) := block_mx 1 Uur 0 1%:M; pose M1 := M *m U.
  have uU: U \in unitmx by rewrite unitmxE det_ublock !det1 mulr1.
  case/(_ (M *m U)) => [j | L uL [R uR [d dvD dM]]].
    rewrite -(lshift0 m 0) -[M](@submxK _ 1 _ 1) (@mulmx_block _ 1 m 1).
    rewrite (@col_mxEu _ 1) !mulmx1 mulmx0 addr0 [ulsubmx _]mx11_scalar.
    rewrite mul_scalar_mx !mxE !lshift0 Da.
    case: splitP => [j0 _ | j1 Dj]; rewrite ?ord1 !mxE // lshift0 rshift1.
    by rewrite mulrBr mulr1 mulrC divzK ?subrK.
  exists L => //; exists (R * U^-1); first by rewrite unitmx_mul uR unitmx_inv.
  by exists d; rewrite //= mulmxA -dM mulmxK.
without loss{IHa} /forallP/(_ (_, _))/= a_dvM: / [forall k, a %| M k.1 k.2]%Z.
  case: (altP forallP) => [_|/forallPn/sigW [[i j] /= a'Mij] _]; first exact.
  have [|||L uL [R uR [d dvD dM]]] := IHa _ _ M^T j; rewrite ?mxE 1?addnC //.
    by exists i; rewrite mxE.
  exists R^T; last exists L^T; rewrite ?unitmx_tr //; exists d => //.
  rewrite -[M]trmxK dM !trmx_mul mulmxA; congr (_ *m _ *m _).
  by apply/matrixP=> i1 j1 /[!mxE]; case: eqVneq => // ->.
without loss{nz_a a_dvM} a1: M a Da / a = 1.
  pose M1 := map_mx (divz^~ a) M; case/(_ M1 1)=> // [k|L uL [R uR [d dvD dM]]].
    by rewrite !mxE Da divzz nz_a.
  exists L => //; exists R => //; exists [seq a * x | x <- d].
    case: d dvD {dM} => //= x d; elim: d x => //= y d IHd x /andP[dv_xy /IHd].
    by rewrite [dvdz _ _]dvdz_mul2l ?[_ \in _]dv_xy.
  have ->: M = a *: M1 by apply/matrixP=> i j; rewrite !mxE mulrC divzK ?a_dvM.
  rewrite dM scalemxAl scalemxAr; congr (_ *m _ *m _).
  apply/matrixP=> i j; rewrite !mxE mulrnAr; congr (_ *+ _).
  have [lt_i_d | le_d_i] := ltnP i (size d); first by rewrite (nth_map 0).
  by rewrite !nth_default ?size_map ?mulr0.
rewrite {a}a1 -[m.+1]/(1 + m)%N -[n.+1]/(1 + n)%N in M Da *.
pose Mu := ursubmx M; pose Ml := dlsubmx M.
have{} Da: ulsubmx M = 1 by rewrite [_ M]mx11_scalar !mxE !lshift0 Da.
pose M1 := - (Ml *m Mu) + drsubmx M.
have [|L uL [R uR [d dvD dM1]]] := IHmn m n M1; first by rewrite -addnS ltnW.
exists (block_mx 1 0 Ml L).
  by rewrite unitmxE det_lblock det_scalar1 mul1r.
exists (block_mx 1 Mu 0 R).
  by rewrite unitmxE det_ublock det_scalar1 mul1r.
exists (1 :: d); set D1 := \matrix_(i, j) _ in dM1.
  by rewrite /= path_min_sorted //; apply/allP => g _; apply: dvd1n.
rewrite [D in _ *m D *m _](_ : _ = block_mx 1 0 0 D1); last first.
  by apply/matrixP=> i j; do 3?[rewrite ?mxE ?ord1 //=; case: splitP => ? ->].
rewrite !mulmx_block !(mul0mx, mulmx0, addr0) !mulmx1 add0r mul1mx -Da -dM1.
by rewrite addNKr submxK.
Qed.

Definition inIntSpan (V : zmodType) m (s : m.-tuple V) v :=
  exists a : int ^ m, v = \sum_(i < m) s`_i *~ a i.

Lemma dec_Qint_span (vT : vectType rat) m (s : m.-tuple vT) v :
  decidable (inIntSpan s v).
Proof.
have s_s (i : 'I_m): s`_i \in <<s>>%VS by rewrite memv_span ?memt_nth.
have s_Zs a: \sum_(i < m) s`_i *~ a i \in <<s>>%VS.
  by apply/rpred_sum => i _; apply/rpredMz.
case s_v: (v \in <<s>>%VS); last by right=> [[a Dv]]; rewrite Dv s_Zs in s_v.
pose S := \matrix_(i < m, j < _) coord (vbasis <<s>>) j s`_i.
pose r := \rank S; pose k := (m - r)%N; pose Em := erefl m; pose Ek := erefl k.
have Dm: (m = k + r)%N by rewrite subnK ?rank_leq_row.
have [K kerK]: {K : 'M_(k, m) | map_mx intr K == kermx S}%MS.
  pose B := row_base (kermx S); pose d := \prod_ij denq (B ij.1 ij.2).
  exists (castmx (mxrank_ker S, Em) (map_mx numq (intr d *: B))).
  rewrite /k; case: _ / (mxrank_ker S); set B1 := map_mx _ _.
  have ->: B1 = (intr d *: B).
    apply/matrixP=> i j; rewrite 3!mxE mulrC [d](bigD1 (i, j)) // rmorphM mulrA.
    by rewrite -numqE -rmorphM numq_int.
  suffices nz_d: d%:Q != 0 by rewrite !eqmx_scale // !eq_row_base andbb.
  by rewrite intr_eq0; apply/prodf_neq0 => i _; apply: denq_neq0.
have [L _ [G uG [D _ defK]]] := int_Smith_normal_form K.
pose Gud := castmx (Dm, Em) G; pose G'lr := castmx (Em, Dm) (invmx G).
have{K L D defK kerK} kerGu: map_mx intr (usubmx Gud) *m S = 0.
  pose Kl : 'M[rat]_k:= map_mx intr (lsubmx (castmx (Ek, Dm) (K *m invmx G))).
  have{} defK: map_mx intr K = row_mx Kl 0 *m map_mx intr Gud.
    rewrite -[K](mulmxKV uG) -{2}[G](castmxK Dm Em) -/Gud.
    rewrite -[K *m _](castmxK Ek Dm) map_mxM map_castmx.
    rewrite -(hsubmxK (castmx _ _)) map_row_mx -/Kl map_castmx /Em.
    set Kr := map_mx _ _; case: _ / (esym Dm) (map_mx _ _) => /= GudQ.
    congr (row_mx _ _ *m _); apply/matrixP=> i j; rewrite !mxE defK mulmxK //=.
    rewrite castmxE mxE big1 //= => j1 _; rewrite mxE /= eqn_leq andbC.
    by rewrite leqNgt (leq_trans (valP j1)) ?mulr0 ?leq_addr.
  have /row_full_inj: row_full Kl; last apply.
    rewrite /row_full eqn_leq rank_leq_row /= -{1}[k](mxrank_ker S).
    rewrite -(eqmxP kerK) defK map_castmx mxrankMfree; last first.
      case: _ / (Dm); apply/row_freeP; exists (map_mx intr (invmx G)).
      by rewrite -map_mxM mulmxV ?map_mx1.
    by rewrite -mxrank_tr tr_row_mx trmx0 -addsmxE addsmx0 mxrank_tr.
  rewrite mulmx0 mulmxA (sub_kermxP _) // -(eqmxP kerK) defK.
  by rewrite -{2}[Gud]vsubmxK map_col_mx mul_row_col mul0mx addr0.
pose T := map_mx intr (dsubmx Gud) *m S.
have{kerGu} defS: map_mx intr (rsubmx G'lr) *m T = S.
  have: G'lr *m Gud = 1%:M by rewrite /G'lr /Gud; case: _ / (Dm); apply: mulVmx.
  rewrite -{1}[G'lr]hsubmxK -[Gud]vsubmxK mulmxA mul_row_col -map_mxM.
  move/(canRL (addKr _))->; rewrite -mulNmx raddfD /= map_mx1 map_mxM /=.
  by rewrite mulmxDl -mulmxA kerGu mulmx0 add0r mul1mx.
pose vv := \row_j coord (vbasis <<s>>) j v.
have uS: row_full S.
  apply/row_fullP; exists (\matrix_(i, j) coord s j (vbasis <<s>>)`_i).
  apply/matrixP=> j1 j2; rewrite !mxE.
  rewrite -(coord_free _ _ (basis_free (vbasisP _))).
  rewrite -!tnth_nth (coord_span (vbasis_mem (mem_tnth j1 _))) linear_sum.
  by apply: eq_bigr => i _; rewrite !mxE (tnth_nth 0) !linearZ.
have eqST: (S :=: T)%MS by apply/eqmxP; rewrite -{1}defS !submxMl.
case Zv: (map_mx denq (vv *m pinvmx T) == const_mx 1).
  pose a := map_mx numq (vv *m pinvmx T) *m dsubmx Gud.
  left; exists [ffun j => a 0 j].
  transitivity (\sum_j (map_mx intr a *m S) 0 j *: (vbasis <<s>>)`_j).
    rewrite {1}(coord_vbasis s_v); apply: eq_bigr => j _; congr (_ *: _).
    have ->: map_mx intr a = vv *m pinvmx T *m map_mx intr (dsubmx Gud).
      rewrite map_mxM /=; congr (_ *m _); apply/rowP=> i; rewrite 2!mxE numqE.
      by have /eqP/rowP/(_ i)/[!mxE]-> := Zv; rewrite mulr1.
    by rewrite -(mulmxA _ _ S) mulmxKpV ?mxE // -eqST submx_full.
  rewrite (coord_vbasis (s_Zs _)); apply: eq_bigr => j _; congr (_ *: _).
  rewrite linear_sum mxE; apply: eq_bigr => /= i _.
  by rewrite mxE mulrzl mxE ffunE raddfMz.
right=> [[a Dv]]; case/eqP: Zv; apply/rowP.
have ->: vv = map_mx intr (\row_i a i) *m S.
  apply/rowP=> j; rewrite !mxE Dv linear_sum.
  by apply: eq_bigr => i _; rewrite !mxE raddfMz mulrzl.
rewrite -defS -2!mulmxA; have ->: T *m pinvmx T = 1%:M.
  have uT: row_free T by rewrite /row_free -eqST.
  by apply: (row_free_inj uT); rewrite mul1mx mulmxKpV.
by move=> i; rewrite mulmx1 -map_mxM 2!mxE denq_int mxE.
Qed.

Lemma eisenstein_crit (p : nat) (q : {poly int}) : prime p -> (size q != 1)%N ->
  ~~ (p %| lead_coef q)%Z -> ~~ (p ^+ 2 %| q`_0)%Z ->
  (forall i, (i < (size q).-1)%N -> p %| q`_i)%Z ->
  irreducible_poly q.
Proof.
move=> p_prime qN1 Ndvd_pql Ndvd_pq0 dvd_pq.
apply/irreducible_rat_int.
have qN0 : q != 0 by rewrite -lead_coef_eq0; apply: contraNneq Ndvd_pql => ->.
split.
  rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0//.
  by rewrite ltn_neqAle eq_sym qN1 size_poly_gt0.
move=> f' +/dvdpP_rat_int[f [d dN0 feq]]; rewrite {f'}feq size_scale// => fN1.
move=> /= [g q_eq]; rewrite q_eq (eqp_trans (eqp_scale _ _))//.
have fN0 : f != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mul0r.
have gN0 : g != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mulr0.
rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0// in fN1.
have [/eqP/size_poly1P[c cN0 ->]|gN1] := eqVneq (size g) 1%N.
  by rewrite mulrC mul_polyC map_polyZ/= eqp_sym eqp_scale// intr_eq0.
have c_neq0 : (lead_coef q)%:~R != 0 :> 'F_p
   by rewrite -(dvdz_charf (char_Fp _)).
have : map_poly (intr : int -> 'F_p) q = (lead_coef q)%:~R *: 'X^(size q).-1.
  apply/val_inj/(@eq_from_nth _ 0) => [|i]; rewrite size_map_poly_id0//.
    by rewrite size_scale// size_polyXn -polySpred.
  move=> i_small; rewrite coef_poly i_small coefZ coefXn lead_coefE.
  move: i_small; rewrite polySpred// ltnS/=.
  case: ltngtP => // [i_lt|->]; rewrite (mulr1, mulr0)//= => _.
  by apply/eqP; rewrite -(dvdz_charf (char_Fp _))// dvd_pq.
rewrite [in LHS]q_eq rmorphM/=.
set c := (X in X *: _); set n := (_.-1).
set pf := map_poly _ f; set pg := map_poly _ g => pfMpg.
have dvdXn (r : {poly _}) : size r != 1%N -> r %| c *: 'X^n -> r`_0 = 0.
  move=> rN1; rewrite (eqp_dvdr _ (eqp_scale _ _))//.
  rewrite -['X]subr0; move=> /dvdp_exp_XsubCP[k lekn]; rewrite subr0.
  move=> /eqpP[u /andP[u1N0 u2N0]]; have [->|k_gt0] := posnP k.
    move=> /(congr1 (size \o val))/eqP.
    by rewrite /= !size_scale// size_polyXn (negPf rN1).
  move=> /(congr1 (fun p : {poly _} => p`_0))/eqP.
  by rewrite !coefZ coefXn ltn_eqF// mulr0 mulf_eq0 (negPf u1N0) => /eqP.
suff : ((p : int) ^+ 2 %| q`_0)%Z by rewrite (negPf Ndvd_pq0).
have := c_neq0; rewrite q_eq coefM big_ord1.
rewrite lead_coefM rmorphM mulf_eq0 negb_or => /andP[lpfN0 qfN0].
have pfN1 : size pf != 1%N by rewrite size_map_poly_id0.
have pgN1 : size pg != 1%N by rewrite size_map_poly_id0.
have /(dvdXn _ pgN1) /eqP : pg %| c *: 'X^n by rewrite -pfMpg dvdp_mull.
have /(dvdXn _ pfN1) /eqP : pf %| c *: 'X^n by rewrite -pfMpg dvdp_mulr.
by rewrite !coef_map// -!(dvdz_charf (char_Fp _))//; apply: dvdz_mul.
Qed.