File: mxpoly.v

package info (click to toggle)
ssreflect 2.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,536 kB
  • sloc: ml: 506; sh: 190; lisp: 39; makefile: 39
file content (1963 lines) | stat: -rw-r--r-- 84,362 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq.
From mathcomp Require Import div fintype tuple finfun bigop fingroup perm.
From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv.

(******************************************************************************)
(*   This file provides basic support for formal computation with matrices,   *)
(* mainly results combining matrices and univariate polynomials, such as the  *)
(* Cayley-Hamilton theorem; it also contains an extension of the first order  *)
(* representation of algebra introduced in ssralg (GRing.term/formula).       *)
(*      rVpoly v == the little-endian decoding of the row vector v as a       *)
(*                  polynomial p = \sum_i (v 0 i)%:P * 'X^i.                  *)
(*     poly_rV p == the partial inverse to rVpoly, for polynomials of degree  *)
(*                  less than d to 'rV_d (d is inferred from the context).    *)
(* Sylvester_mx p q == the Sylvester matrix of p and q.                       *)
(* resultant p q == the resultant of p and q, i.e., \det (Sylvester_mx p q).  *)
(*   horner_mx A == the morphism from {poly R} to 'M_n (n of the form n'.+1)  *)
(*                  mapping a (scalar) polynomial p to the value of its       *)
(*                  scalar matrix interpretation at A (this is an instance of *)
(*                  the generic horner_morph construct defined in poly).      *)
(* powers_mx A d == the d x (n ^ 2) matrix whose rows are the mxvec encodings *)
(*                  of the first d powers of A (n of the form n'.+1). Thus,   *)
(*                  vec_mx (v *m powers_mx A d) = horner_mx A (rVpoly v).     *)
(*   char_poly A  == the characteristic polynomial of A.                      *)
(* char_poly_mx A == a matrix whose determinant is char_poly A.               *)
(*  companionmx p == a matrix whose char_poly is p                            *)
(*   mxminpoly A  == the minimal polynomial of A, i.e., the smallest monic    *)
(*                   polynomial that annihilates A (A must be nontrivial).    *)
(* degree_mxminpoly A == the (positive) degree of mxminpoly A.                *)
(* mx_inv_horner A == the inverse of horner_mx A for polynomials of degree    *)
(*                  smaller than degree_mxminpoly A.                          *)
(*    kermxpoly g p == the kernel of p(g)                                     *)
(*  geigenspace g a == the generalized eigenspace of g for eigenvalue a       *)
(*                  := kermxpoly g ('X ^ n - a%:P) where g : 'M_n             *)
(*  eigenpoly g p <=> p is an eigen polynomial for g, i.e. kermxpoly g p != 0 *)
(*  integralOver RtoK u <-> u is in the integral closure of the image of R    *)
(*                  under RtoK : R -> K, i.e. u is a root of the image of a   *)
(*                  monic polynomial in R.                                    *)
(*  algebraicOver FtoE u <-> u : E is algebraic over E; it is a root of the   *)
(*                  image of a nonzero polynomial under FtoE; as F must be a  *)
(*                  fieldType, this is equivalent to integralOver FtoE u.     *)
(*  integralRange RtoK <-> the integral closure of the image of R contains    *)
(*                  all of K (:= forall u, integralOver RtoK u).              *)
(* This toolkit for building formal matrix expressions is packaged in the     *)
(* MatrixFormula submodule, and comprises the following:                      *)
(*     eval_mx e == GRing.eval lifted to matrices (:= map_mx (GRing.eval e)). *)
(*     mx_term A == GRing.Const lifted to matrices.                           *)
(* mulmx_term A B == the formal product of two matrices of terms.             *)
(* mxrank_form m A == a GRing.formula asserting that the interpretation of    *)
(*                  the term matrix A has rank m.                             *)
(* submx_form A B == a GRing.formula asserting that the row space of the      *)
(*                  interpretation of the term matrix A is included in the    *)
(*                  row space of the interpretation of B.                     *)
(*   seq_of_rV v == the seq corresponding to a row vector.                    *)
(*     row_env e == the flattening of a tensored environment e : seq 'rV_d.   *)
(* row_var F d k == the term vector of width d such that for e : seq 'rV[F]_d *)
(*                  we have eval e 'X_k = eval_mx (row_env e) (row_var d k).  *)
(*    conjmx V f := V *m f *m pinvmx V                                        *)
(*               == the conjugation of f by V, i.e. "the" matrix of f         *)
(*                  in the basis of row vectors of V.                         *)
(*                  Although this makes sense only when f stabilizes V,       *)
(*                  the definition can be stated more generally.              *)
(*  restrictmx V := conjmx (row_base V)                                       *)
(* A ~_P {in S'} == where P is a base change matrix, A is a matrix, and S     *)
(*                  is a boolean predicate representing a set of matrices,    *)
(*                  this states that conjmx P A is in S,                      *)
(*                  which means A is similar to a matrix in S.                *)
(* From the latter, we derive several related notions:                        *)
(*       A ~_P B := A ~_P {in pred1 B}                                        *)
(*                  A is similar to B, with base change matrix P              *)
(*  A ~_{in S} B := exists P, P \in S /\ A ~_P B                              *)
(*               == A is similar to B,   with a base change matrix in S       *)
(*   A ~_{in S} {in S'} := exists P, P \in S /\ A ~_P {in S'}                 *)
(*                      == A is similar to a matrix in the class S',          *)
(*                         with a base change matrix in S                     *)
(* all_simmx_in S As S' == all the matrices in the sequence As are            *)
(*                         similar to some matrix in the predicate S',        *)
(*                         with a base change matrix in S.                    *)
(*                                                                            *)
(* We also specialize the class S' to diagonalizability:                      *)
(*    diagonalizable_for P A := A ~_P {in is_diag_mx}.                        *)
(*     diagonalizable_in S A := A ~_{in S} {in is_diag_mx}.                   *)
(*          diagonalizable A := diagonalizable_in unitmx A.                   *)
(*  codiagonalizable_in S As := all_simmx_in S As is_diag_mx.                 *)
(*       codiagonalizable As := codiagonalizable_in unitmx As.                *)
(*                                                                            *)
(* The main results in diagnonalization theory are:                           *)
(* - diagonalizablePeigen:                                                    *)
(*     a matrix is diagonalizable iff there is a sequence                     *)
(*     of scalars r, such that the sum of the associated                      *)
(*     eigenspaces is full.                                                   *)
(* - diagonalizableP:                                                         *)
(*     a matrix is diagonalizable iff its minimal polynomial                  *)
(*     divides a split polynomial with simple roots.                          *)
(* - codiagonalizableP:                                                       *)
(*     a sequence of matrices are diagonalizable in the same basis            *)
(*     iff they are all diagonalizable and commute pairwize.                  *)
(*                                                                            *)
(* Naming conventions:                                                        *)
(* - p, q are polynomials                                                     *)
(* - A, B, C are matrices                                                     *)
(* - f, g are matrices that are viewed as linear maps                         *)
(* - V, W are matrices that are viewed as subspaces                           *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GRing.Theory.
Import Monoid.Theory.

Local Open Scope ring_scope.

Import Pdiv.Idomain.
(* Row vector <-> bounded degree polynomial bijection *)
Section RowPoly.

Variables (R : ringType) (d : nat).
Implicit Types u v : 'rV[R]_d.
Implicit Types p q : {poly R}.

Definition rVpoly v := \poly_(k < d) (if insub k is Some i then v 0 i else 0).
Definition poly_rV p := \row_(i < d) p`_i.

Lemma coef_rVpoly v k : (rVpoly v)`_k = if insub k is Some i then v 0 i else 0.
Proof. by rewrite coef_poly; case: insubP => [i ->|]; rewrite ?if_same. Qed.

Lemma coef_rVpoly_ord v (i : 'I_d) : (rVpoly v)`_i = v 0 i.
Proof. by rewrite coef_rVpoly valK. Qed.

Lemma rVpoly_delta i : rVpoly (delta_mx 0 i) = 'X^i.
Proof.
apply/polyP=> j; rewrite coef_rVpoly coefXn.
case: insubP => [k _ <- | j_ge_d]; first by rewrite mxE.
by case: eqP j_ge_d => // ->; rewrite ltn_ord.
Qed.

Lemma rVpolyK : cancel rVpoly poly_rV.
Proof. by move=> u; apply/rowP=> i; rewrite mxE coef_rVpoly_ord. Qed.

Lemma poly_rV_K p : size p <= d -> rVpoly (poly_rV p) = p.
Proof.
move=> le_p_d; apply/polyP=> k; rewrite coef_rVpoly.
case: insubP => [i _ <- | ]; first by rewrite mxE.
by rewrite -ltnNge => le_d_l; rewrite nth_default ?(leq_trans le_p_d).
Qed.

Lemma poly_rV_is_linear : linear poly_rV.
Proof. by move=> a p q; apply/rowP=> i; rewrite !mxE coefD coefZ. Qed.
HB.instance Definition _ := GRing.isLinear.Build R {poly R} 'rV_d _ poly_rV
  poly_rV_is_linear.

Lemma rVpoly_is_linear : linear rVpoly.
Proof.
move=> a u v; apply/polyP=> k; rewrite coefD coefZ !coef_rVpoly.
by case: insubP => [i _ _ | _]; rewrite ?mxE // mulr0 addr0.
Qed.
HB.instance Definition _ := GRing.isLinear.Build R 'rV_d {poly R} _ rVpoly
  rVpoly_is_linear.

End RowPoly.

Prenex Implicits rVpoly rVpolyK.
Arguments poly_rV {R d}.
Arguments poly_rV_K {R d} [p] le_p_d.

Section Resultant.

Variables (R : ringType) (p q : {poly R}).

Let dS := ((size q).-1 + (size p).-1)%N.
Local Notation band r := (lin1_mx (poly_rV \o r \o* rVpoly)).

Definition Sylvester_mx : 'M[R]_dS := col_mx (band p) (band q).

Lemma Sylvester_mxE (i j : 'I_dS) :
  let S_ r k := r`_(j - k) *+ (k <= j) in
  Sylvester_mx i j = match split i with inl k => S_ p k | inr k => S_ q k end.
Proof.
move=> S_ /[1!mxE]; case: {i}(split i) => i /[!mxE]/=;
  by rewrite rVpoly_delta coefXnM ltnNge if_neg -mulrb.
Qed.

Definition resultant := \det Sylvester_mx.

End Resultant.

Prenex Implicits Sylvester_mx resultant.

Lemma resultant_in_ideal (R : comRingType) (p q : {poly R}) :
    size p > 1 -> size q > 1 ->
  {uv : {poly R} * {poly R} | size uv.1 < size q /\ size uv.2 < size p
  & (resultant p q)%:P = uv.1 * p + uv.2 * q}.
Proof.
move=> p_nc q_nc; pose dp := (size p).-1; pose dq := (size q).-1.
pose S := Sylvester_mx p q; pose dS := (dq + dp)%N.
have dS_gt0: dS > 0 by rewrite /dS /dq -(subnKC q_nc).
pose j0 := Ordinal dS_gt0.
pose Ss0 := col_mx (p *: \col_(i < dq) 'X^i) (q *: \col_(i < dp) 'X^i).
pose Ss := \matrix_(i, j) (if j == j0 then Ss0 i 0 else (S i j)%:P).
pose u ds s := \sum_(i < ds) cofactor Ss (s i) j0 * 'X^i.
exists (u _ (lshift dp), u _ ((rshift dq) _)).
  suffices sz_u ds s: ds > 1 -> size (u ds.-1 s) < ds by rewrite !sz_u.
  move/ltn_predK=> {2}<-; apply: leq_trans (size_sum _ _ _) _.
  apply/bigmax_leqP=> i _.
  have ->: cofactor Ss (s i) j0 = (cofactor S (s i) j0)%:P.
    rewrite rmorphM /= rmorph_sign -det_map_mx; congr (_ * \det _).
    by apply/matrixP=> i' j'; rewrite !mxE.
  apply: leq_trans (size_mul_leq _ _) (leq_trans _ (valP i)).
  by rewrite size_polyC size_polyXn addnS /= -add1n leq_add2r leq_b1.
transitivity (\det Ss); last first.
  rewrite (expand_det_col Ss j0) big_split_ord !big_distrl /=.
  by congr (_ + _); apply: eq_bigr => i _;
    rewrite mxE eqxx (col_mxEu, col_mxEd) !mxE mulrC mulrA mulrAC.
pose S_ j1 := map_mx polyC (\matrix_(i, j) S i (if j == j0 then j1 else j)).
pose Ss0_ i dj := \poly_(j < dj) S i (insubd j0 j).
pose Ss_ dj := \matrix_(i, j) (if j == j0 then Ss0_ i dj else (S i j)%:P).
have{Ss u} ->: Ss = Ss_ dS.
  apply/matrixP=> i j; rewrite mxE [in RHS]mxE; case: (j == j0) => {j}//.
  apply/polyP=> k; rewrite coef_poly Sylvester_mxE mxE.
  have [k_ge_dS | k_lt_dS] := leqP dS k.
    case: (split i) => {}i; rewrite !mxE coefMXn;
    case: ifP => // /negbT; rewrite -ltnNge ltnS => hi.
      apply: (leq_sizeP _ _ (leqnn (size p))); rewrite -(ltn_predK p_nc).
      by rewrite ltn_subRL (leq_trans _ k_ge_dS) // ltn_add2r.
    - apply: (leq_sizeP _ _ (leqnn (size q))); rewrite -(ltn_predK q_nc).
      by rewrite ltn_subRL (leq_trans _ k_ge_dS) // addnC ltn_add2l.
  by rewrite insubdK //; case: (split i) => {}i;
     rewrite !mxE coefMXn; case: leqP.
case: (ubnPgeq dS) (dS_gt0); elim=> // dj IHj ltjS _; pose j1 := Ordinal ltjS.
pose rj0T (A : 'M[{poly R}]_dS) := row j0 A^T.
have: rj0T (Ss_ dj.+1) = 'X^dj *: rj0T (S_ j1) + 1 *: rj0T (Ss_ dj).
  apply/rowP=> i; apply/polyP=> k; rewrite scale1r !(Sylvester_mxE, mxE) eqxx.
  rewrite coefD coefXnM coefC !coef_poly ltnS subn_eq0 ltn_neqAle andbC.
  have [k_le_dj | k_gt_dj] /= := leqP k dj; last by rewrite addr0.
  rewrite Sylvester_mxE insubdK; last exact: leq_ltn_trans (ltjS).
  by have [->|] := eqP; rewrite (addr0, add0r).
rewrite -det_tr => /determinant_multilinear->;
  try by apply/matrixP=> i j; rewrite !mxE lift_eqF.
have [dj0 | dj_gt0] := posnP dj; rewrite ?dj0 !mul1r.
  rewrite !det_tr det_map_mx addrC (expand_det_col _ j0) big1 => [|i _].
    rewrite add0r; congr (\det _)%:P.
    apply/matrixP=> i j; rewrite [in RHS]mxE; case: eqP => // ->.
    by congr (S i _); apply: val_inj.
  by rewrite mxE /= [Ss0_ _ _]poly_def big_ord0 mul0r.
have /determinant_alternate->: j1 != j0 by rewrite -val_eqE -lt0n.
  by rewrite mulr0 add0r det_tr IHj // ltnW.
by move=> i; rewrite !mxE if_same.
Qed.

Lemma resultant_eq0 (R : idomainType) (p q : {poly R}) :
  (resultant p q == 0) = (size (gcdp p q) > 1).
Proof.
have dvdpp := dvdpp; set r := gcdp p q.
pose dp := (size p).-1; pose dq := (size q).-1.
have /andP[r_p r_q]: (r %| p) && (r %| q) by rewrite -dvdp_gcd.
apply/det0P/idP=> [[uv nz_uv] | r_nonC].
  have [p0 _ | p_nz] := eqVneq p 0.
    have: dq + dp > 0.
      rewrite lt0n; apply: contraNneq nz_uv => dqp0.
      by rewrite dqp0 in uv *; rewrite [uv]thinmx0.
    by rewrite /dp /dq /r p0 size_poly0 addn0 gcd0p -subn1 subn_gt0.
  do [rewrite -[uv]hsubmxK -{1}row_mx0 mul_row_col !mul_rV_lin1 /=] in nz_uv *.
  set u := rVpoly _; set v := rVpoly _; pose m := gcdp (v * p) (v * q).
  have lt_vp: size v < size p by rewrite (polySpred p_nz) ltnS size_poly.
  move/(congr1 rVpoly)/eqP; rewrite -linearD linear0 poly_rV_K; last first.
    rewrite (leq_trans (size_add _ _)) // geq_max.
    rewrite !(leq_trans (size_mul_leq _ _)) // -subn1 leq_subLR.
      by rewrite addnC addnA leq_add ?leqSpred ?size_poly.
    by rewrite addnCA leq_add ?leqSpred ?size_poly.
  rewrite addrC addr_eq0 => /eqP vq_up.
  have nz_v: v != 0.
    apply: contraNneq nz_uv => v0; apply/eqP.
    congr row_mx; apply: (can_inj rVpolyK); rewrite linear0 // -/u.
    by apply: contra_eq vq_up; rewrite v0 mul0r -addr_eq0 add0r => /mulf_neq0->.
  have r_nz: r != 0 := dvdpN0 r_p p_nz.
  have /dvdpP [[c w] /= nz_c wv]: v %| m by rewrite dvdp_gcd !dvdp_mulr.
  have m_wd d: m %| v * d -> w %| d.
    case/dvdpP=> [[k f]] /= nz_k /(congr1 ( *:%R c)).
    rewrite mulrC scalerA scalerAl scalerAr wv mulrA => /(mulIf nz_v)def_fw.
    by apply/dvdpP; exists (c * k, f); rewrite //= mulf_neq0.
  have w_r: w %| r by rewrite dvdp_gcd !m_wd ?dvdp_gcdl ?dvdp_gcdr.
  have w_nz: w != 0 := dvdpN0 w_r r_nz.
  have p_m: p %| m  by rewrite dvdp_gcd vq_up -mulNr !dvdp_mull.
  rewrite (leq_trans _ (dvdp_leq r_nz w_r)) // -(ltn_add2l (size v)).
  rewrite addnC -ltn_subRL subn1 -size_mul // mulrC -wv size_scale //.
  rewrite (leq_trans lt_vp) // dvdp_leq // -size_poly_eq0.
  by rewrite -(size_scale _ nz_c) size_poly_eq0 wv mulf_neq0.
have [[c p'] /= nz_c p'r] := dvdpP _ _ r_p.
have [[k q'] /= nz_k q'r] := dvdpP _ _ r_q.
have def_r := subnKC r_nonC; have r_nz: r != 0 by rewrite -size_poly_eq0 -def_r.
have le_p'_dp: size p' <= dp.
  have [-> | nz_p'] := eqVneq p' 0; first by rewrite size_poly0.
  by rewrite /dp -(size_scale p nz_c) p'r size_mul // addnC -def_r leq_addl.
have le_q'_dq: size q' <= dq.
  have [-> | nz_q'] := eqVneq q' 0; first by rewrite size_poly0.
  by rewrite /dq -(size_scale q nz_k) q'r size_mul // addnC -def_r leq_addl.
exists (row_mx (- c *: poly_rV q') (k *: poly_rV p')); last first.
  rewrite mul_row_col scaleNr mulNmx !mul_rV_lin1 /= 2!linearZ /= !poly_rV_K //.
  by rewrite !scalerCA p'r q'r mulrCA addNr.
apply: contraNneq r_nz; rewrite -row_mx0 => /eq_row_mx[/eqP].
rewrite scaleNr oppr_eq0 gcdp_eq0 -!size_poly_eq0 => /eqP q0 p0.
rewrite -(size_scale p nz_c) -(size_scale (c *: p) nz_k) p'r.
rewrite -(size_scale q nz_k) -(size_scale (k *: q) nz_c) q'r !scalerAl.
rewrite -(poly_rV_K le_p'_dp) -(poly_rV_K le_q'_dq).
by rewrite -2![_ *: rVpoly _]linearZ p0 q0 !linear0 mul0r size_poly0.
Qed.

Section HornerMx.

Variables (R : comRingType) (n' : nat).
Local Notation n := n'.+1.
Implicit Types (A B : 'M[R]_n) (p q : {poly R}).

Section OneMatrix.

Variable A : 'M[R]_n.

Definition horner_mx := horner_morph (comm_mx_scalar^~ A).
HB.instance Definition _ := GRing.RMorphism.on horner_mx.

Lemma horner_mx_C a : horner_mx a%:P = a%:M.
Proof. exact: horner_morphC. Qed.

Lemma horner_mx_X : horner_mx 'X = A. Proof. exact: horner_morphX. Qed.

Lemma horner_mxZ : scalable horner_mx.
Proof.
move=> a p /=; rewrite -mul_polyC rmorphM /=.
by rewrite horner_mx_C [_ * _]mul_scalar_mx.
Qed.

HB.instance Definition _ := GRing.isScalable.Build R _ _ *:%R horner_mx
  horner_mxZ.

Definition powers_mx d := \matrix_(i < d) mxvec (A ^+ i).

Lemma horner_rVpoly m (u : 'rV_m) :
  horner_mx (rVpoly u) = vec_mx (u *m powers_mx m).
Proof.
rewrite mulmx_sum_row [rVpoly u]poly_def 2!linear_sum; apply: eq_bigr => i _.
by rewrite valK /= 2!linearZ rmorphXn/= horner_mx_X rowK mxvecK.
Qed.

End OneMatrix.

Lemma horner_mx_diag (d : 'rV[R]_n) (p : {poly R}) :
  horner_mx (diag_mx d) p = diag_mx (map_mx (horner p) d).
Proof.
apply/matrixP => i j; rewrite !mxE.
elim/poly_ind: p => [|p c ihp]; first by rewrite rmorph0 horner0 mxE mul0rn.
rewrite !hornerE mulrnDl rmorphD rmorphM /= horner_mx_X horner_mx_C !mxE.
rewrite (bigD1 j)//= ihp mxE eqxx mulr1n -mulrnAl big1 ?addr0.
  by have [->|_] := eqVneq; rewrite /= !(mulr1n, addr0, mul0r).
by move=> k /negPf nkF; rewrite mxE nkF mulr0.
Qed.

Lemma comm_mx_horner A B p : comm_mx A B -> comm_mx A (horner_mx B p).
Proof.
move=> fg; apply: commr_horner => // i.
by rewrite coef_map; apply/comm_scalar_mx.
Qed.

Lemma comm_horner_mx A B p : comm_mx A B -> comm_mx (horner_mx A p) B.
Proof. by move=> ?; apply/comm_mx_sym/comm_mx_horner/comm_mx_sym. Qed.

Lemma comm_horner_mx2 A p q : GRing.comm (horner_mx A p) (horner_mx A q).
Proof. exact/comm_mx_horner/comm_horner_mx. Qed.

End HornerMx.

Lemma horner_mx_stable (K : fieldType) m n p
    (V : 'M[K]_(n.+1, m.+1)) (f : 'M_m.+1) :
  stablemx V f -> stablemx V (horner_mx f p).
Proof.
move=> V_fstab; elim/poly_ind: p => [|p c]; first by rewrite rmorph0 stablemx0.
move=> fp_stable; rewrite rmorphD rmorphM/= horner_mx_X horner_mx_C.
by rewrite stablemxD ?stablemxM ?fp_stable ?stablemxC.
Qed.

Prenex Implicits horner_mx powers_mx.

Section CharPoly.

Variables (R : ringType) (n : nat) (A : 'M[R]_n).
Implicit Types p q : {poly R}.

Definition char_poly_mx := 'X%:M - map_mx (@polyC R) A.
Definition char_poly := \det char_poly_mx.

Let diagA := [seq A i i | i <- index_enum _ & true].
Let size_diagA : size diagA = n.
Proof. by rewrite -[n]card_ord size_map; have [e _ _ []] := big_enumP. Qed.

Let split_diagA :
  exists2 q, \prod_(x <- diagA) ('X - x%:P) + q = char_poly & size q <= n.-1.
Proof.
rewrite [char_poly](bigD1 1%g) //=; set q := \sum_(s | _) _; exists q.
  congr (_ + _); rewrite odd_perm1 mul1r big_map big_filter /=.
  by apply: eq_bigr => i _; rewrite !mxE perm1 eqxx.
apply: leq_trans {q}(size_sum _ _ _) _; apply/bigmax_leqP=> s nt_s.
have{nt_s} [i nfix_i]: exists i, s i != i.
  apply/existsP; rewrite -negb_forall; apply: contra nt_s => s_1.
  by apply/eqP/permP=> i; apply/eqP; rewrite perm1 (forallP s_1).
apply: leq_trans (_ : #|[pred j | s j == j]|.+1 <= n.-1).
  rewrite -sum1_card (@big_mkcond nat) /= size_Msign.
  apply: (big_ind2 (fun p m => size p <= m.+1)) => [| p mp q mq IHp IHq | j _].
  - by rewrite size_poly1.
  - apply: leq_trans (size_mul_leq _ _) _.
    by rewrite -subn1 -addnS leq_subLR addnA leq_add.
  rewrite !mxE eq_sym !inE; case: (s j == j); first by rewrite polyseqXsubC.
  by rewrite sub0r size_opp size_polyC leq_b1.
rewrite -[n in n.-1]card_ord -(cardC (pred2 (s i) i)) card2 nfix_i !ltnS.
apply/subset_leq_card/subsetP=> j /(_ =P j) fix_j.
rewrite !inE -{1}fix_j (inj_eq perm_inj) orbb.
by apply: contraNneq nfix_i => <-; rewrite fix_j.
Qed.

Lemma size_char_poly : size char_poly = n.+1.
Proof.
have [q <- lt_q_n] := split_diagA; have le_q_n := leq_trans lt_q_n (leq_pred n).
by rewrite size_addl size_prod_XsubC size_diagA.
Qed.

Lemma char_poly_monic : char_poly \is monic.
Proof.
rewrite monicE -(monicP (monic_prod_XsubC diagA xpredT id)).
rewrite !lead_coefE size_char_poly.
have [q <- lt_q_n] := split_diagA; have le_q_n := leq_trans lt_q_n (leq_pred n).
by rewrite size_prod_XsubC size_diagA coefD (nth_default 0 le_q_n) addr0.
Qed.

Lemma char_poly_trace : n > 0 -> char_poly`_n.-1 = - \tr A.
Proof.
move=> n_gt0; have [q <- lt_q_n] := split_diagA; set p := \prod_(x <- _) _.
rewrite coefD {q lt_q_n}(nth_default 0 lt_q_n) addr0.
have{n_gt0} ->: p`_n.-1 = ('X * p)`_n by rewrite coefXM eqn0Ngt n_gt0.
have ->: \tr A = \sum_(x <- diagA) x by rewrite big_map big_filter.
rewrite -size_diagA {}/p; elim: diagA => [|x d IHd].
  by rewrite !big_nil mulr1 coefX oppr0.
rewrite !big_cons coefXM mulrBl coefB IHd opprD addrC; congr (- _ + _).
rewrite mul_polyC coefZ [size _]/= -(size_prod_XsubC _ id) -lead_coefE.
by rewrite (monicP _) ?monic_prod_XsubC ?mulr1.
Qed.

Lemma char_poly_det : char_poly`_0 = (- 1) ^+ n * \det A.
Proof.
rewrite big_distrr coef_sum [0%N]lock /=; apply: eq_bigr => s _.
rewrite -{1}rmorphN -rmorphXn mul_polyC coefZ /=.
rewrite mulrA -exprD addnC exprD -mulrA -lock; congr (_ * _).
transitivity (\prod_(i < n) - A i (s i)); last by rewrite prodrN card_ord.
elim: (index_enum _) => [|i e IHe]; rewrite !(big_nil, big_cons) ?coef1 //.
by rewrite coefM big_ord1 IHe !mxE coefB coefC coefMn coefX mul0rn sub0r.
Qed.

End CharPoly.

Prenex Implicits char_poly_mx char_poly.

Lemma mx_poly_ring_isom (R : ringType) n' (n := n'.+1) :
  exists phi : {rmorphism 'M[{poly R}]_n -> {poly 'M[R]_n}},
  [/\ bijective phi,
      forall p, phi p%:M = map_poly scalar_mx p,
      forall A, phi (map_mx polyC A) = A%:P
    & forall A i j k, (phi A)`_k i j = (A i j)`_k].
Proof.
set M_RX := 'M[{poly R}]_n; set MR_X := ({poly 'M[R]_n}).
pose Msize (A : M_RX) := \max_i \max_j size (A i j).
pose phi (A : M_RX) := \poly_(k < Msize A) \matrix_(i, j) (A i j)`_k.
have coef_phi A i j k: (phi A)`_k i j = (A i j)`_k.
  rewrite coef_poly; case: (ltnP k _) => le_m_k; rewrite mxE // nth_default //.
  by apply: leq_trans (leq_trans (leq_bigmax i) le_m_k); apply: (leq_bigmax j).
have phi_is_additive : additive phi.
  move=> A B; apply/polyP => k; apply/matrixP => i j.
  by rewrite !(coef_phi, mxE, coefD, coefN).
have phi_is_multiplicative : multiplicative phi.
  split=> [A B|]; apply/polyP => k; apply/matrixP => i j; last first.
    by rewrite coef_phi mxE coefMn !coefC; case: (k == _); rewrite ?mxE ?mul0rn.
  rewrite !coef_phi !mxE !coefM summxE coef_sum.
  pose F k1 k2 := (A i k1)`_k2 * (B k1 j)`_(k - k2).
  transitivity (\sum_k1 \sum_(k2 < k.+1) F k1 k2); rewrite {}/F.
    by apply: eq_bigr=> k1 _; rewrite coefM.
  rewrite exchange_big /=; apply: eq_bigr => k2 _.
  by rewrite mxE; apply: eq_bigr => k1 _; rewrite !coef_phi.
have bij_phi: bijective phi.
  exists (fun P : MR_X => \matrix_(i, j) \poly_(k < size P) P`_k i j) => [A|P].
    apply/matrixP=> i j; rewrite mxE; apply/polyP=> k.
    rewrite coef_poly -coef_phi.
    by case: leqP => // P_le_k; rewrite nth_default ?mxE.
  apply/polyP=> k; apply/matrixP=> i j; rewrite coef_phi mxE coef_poly.
  by case: leqP => // P_le_k; rewrite nth_default ?mxE.
pose phiaM := GRing.isAdditive.Build _ _ phi phi_is_additive.
pose phimM := GRing.isMultiplicative.Build _ _ phi phi_is_multiplicative.
pose phiRM : {rmorphism _ -> _} := HB.pack phi phiaM phimM.
exists phiRM; split=> // [p | A]; apply/polyP=> k; apply/matrixP=> i j.
  by rewrite coef_phi coef_map !mxE coefMn.
by rewrite coef_phi !mxE !coefC; case k; last rewrite /= mxE.
Qed.

Theorem Cayley_Hamilton (R : comRingType) n' (A : 'M[R]_n'.+1) :
  horner_mx A (char_poly A) = 0.
Proof.
have [phi [_ phiZ phiC _]] := mx_poly_ring_isom R n'.
apply/rootP/factor_theorem; rewrite -phiZ -mul_adj_mx rmorphM /=.
by move: (phi _) => q; exists q; rewrite rmorphB phiC phiZ map_polyX.
Qed.

Lemma eigenvalue_root_char (F : fieldType) n (A : 'M[F]_n) a :
  eigenvalue A a = root (char_poly A) a.
Proof.
transitivity (\det (a%:M - A) == 0).
  apply/eigenvalueP/det0P=> [[v Av_av v_nz] | [v v_nz Av_av]]; exists v => //.
    by rewrite mulmxBr Av_av mul_mx_scalar subrr.
  by apply/eqP; rewrite -mul_mx_scalar eq_sym -subr_eq0 -mulmxBr Av_av.
congr (_ == 0); rewrite horner_sum; apply: eq_bigr => s _.
rewrite hornerM horner_exp !hornerE; congr (_ * _).
rewrite (big_morph _ (fun p q => hornerM p q a) (hornerC 1 a)).
by apply: eq_bigr => i _; rewrite !mxE !(hornerE, hornerMn).
Qed.

Lemma char_poly_trig {R : comRingType} n (A : 'M[R]_n) : is_trig_mx A ->
  char_poly A = \prod_(i < n) ('X - (A i i)%:P).
Proof.
move=> /is_trig_mxP Atrig; rewrite /char_poly det_trig.
  by apply: eq_bigr => i; rewrite !mxE eqxx.
by apply/is_trig_mxP => i j lt_ij; rewrite !mxE -val_eqE ltn_eqF ?Atrig ?subrr.
Qed.

Definition companionmx {R : ringType} (p : seq R) (d := (size p).-1) :=
  \matrix_(i < d, j < d)
    if (i == d.-1 :> nat) then - p`_j else (i.+1 == j :> nat)%:R.

Lemma companionmxK {R : comRingType} (p : {poly R}) :
   p \is monic -> char_poly (companionmx p) = p.
Proof.
pose D n : 'M[{poly R}]_n := \matrix_(i, j)
   ('X *+ (i == j.+1 :> nat) - ((i == j)%:R)%:P).
have detD n : \det (D n) = (-1) ^+ n.
  elim: n => [|n IHn]; first by rewrite det_mx00.
  rewrite (expand_det_row _ ord0) big_ord_recl !mxE /= sub0r.
  rewrite big1 ?addr0; last by move=> i _; rewrite !mxE /= subrr mul0r.
  rewrite /cofactor mul1r [X in \det X](_ : _ = D _) ?IHn ?exprS//.
  by apply/matrixP=> i j; rewrite !mxE /= /bump !add1n eqSS.
elim/poly_ind: p => [|p c IHp].
  by rewrite monicE lead_coef0 eq_sym oner_eq0.
have [->|p_neq0] := eqVneq p 0.
  rewrite mul0r add0r monicE lead_coefC => /eqP->.
  by rewrite /companionmx /char_poly size_poly1 det_mx00.
rewrite monicE lead_coefDl ?lead_coefMX => [p_monic|]; last first.
  rewrite size_polyC size_mulX ?polyX_eq0// ltnS.
  by rewrite (leq_trans (leq_b1 _)) ?size_poly_gt0.
rewrite -[in RHS]IHp // /companionmx size_MXaddC (negPf p_neq0) /=.
rewrite /char_poly polySpred //.
have [->|spV1_gt0] := posnP (size p).-1.
  rewrite [X in \det X]mx11_scalar det_scalar1 !mxE ?eqxx det_mx00.
  by rewrite mul1r -horner_coef0 hornerMXaddC mulr0 add0r rmorphN opprK.
rewrite (expand_det_col _ ord0) /= -[(size p).-1]prednK //.
rewrite big_ord_recr big_ord_recl/= big1 ?add0r //=; last first.
  move=> i _; rewrite !mxE -val_eqE /= /bump leq0n add1n eqSS.
  by rewrite ltn_eqF ?subrr ?mul0r.
rewrite !mxE ?subnn -horner_coef0 /= hornerMXaddC.
rewrite !(eqxx, mulr0, add0r, addr0, subr0, rmorphN, opprK)/=.
rewrite mulrC /cofactor; congr (_ * 'X + _).
  rewrite /cofactor -signr_odd oddD addbb mul1r; congr (\det _).
  apply/matrixP => i j; rewrite !mxE -val_eqE coefD coefMX coefC.
  by rewrite /= /bump /= !add1n !eqSS addr0.
rewrite /cofactor [X in \det X](_ : _ = D _).
  by rewrite detD /= addn0 -signr_odd -signr_addb addbb mulr1.
apply/matrixP=> i j; rewrite !mxE -!val_eqE /= /bump /=.
by rewrite leqNgt ltn_ord add0n add1n [_ == _.-2.+1]ltn_eqF.
Qed.

Lemma mulmx_delta_companion (R : ringType) (p : seq R)
  (i: 'I_(size p).-1) (i_small : i.+1 < (size p).-1):
  delta_mx 0 i *m companionmx p = delta_mx 0 (Ordinal i_small) :> 'rV__.
Proof.
apply/rowP => j; rewrite !mxE (bigD1 i) //= ?(=^~val_eqE, mxE) /= eqxx mul1r.
rewrite ltn_eqF ?big1 ?addr0 1?eq_sym //; last first.
  by rewrite -ltnS prednK // (leq_trans  _ i_small).
by move=> k /negPf ki_eqF; rewrite !mxE eqxx ki_eqF mul0r.
Qed.

Lemma row'_col'_char_poly_mx {R : ringType} m i (M : 'M[R]_m) :
  row' i (col' i (char_poly_mx M)) = char_poly_mx (row' i (col' i M)).
Proof. by apply/matrixP => k l; rewrite !mxE (inj_eq lift_inj). Qed.

Lemma char_block_diag_mx {R : ringType} m n (A : 'M[R]_m) (B : 'M[R]_n) :
  char_poly_mx (block_mx A 0 0 B) =
  block_mx (char_poly_mx A) 0 0 (char_poly_mx B).
Proof.
rewrite /char_poly_mx map_block_mx/= !map_mx0.
by rewrite scalar_mx_block opp_block_mx add_block_mx !subr0.
Qed.

Section MinPoly.

Variables (F : fieldType) (n' : nat).
Local Notation n := n'.+1.
Variable A : 'M[F]_n.
Implicit Types p q : {poly F}.

Fact degree_mxminpoly_proof : exists d, \rank (powers_mx A d.+1) <= d.
Proof. by exists (n ^ 2)%N; rewrite rank_leq_col. Qed.
Definition degree_mxminpoly := ex_minn degree_mxminpoly_proof.
Local Notation d := degree_mxminpoly.
Local Notation Ad := (powers_mx A d).

Lemma mxminpoly_nonconstant : d > 0.
Proof.
rewrite /d; case: ex_minnP => -[] //; rewrite leqn0 mxrank_eq0; move/eqP.
by move/row_matrixP/(_ 0)/eqP; rewrite rowK row0 mxvec_eq0 -mxrank_eq0 mxrank1.
Qed.

Lemma minpoly_mx1 : (1%:M \in Ad)%MS.
Proof.
by apply: (eq_row_sub (Ordinal mxminpoly_nonconstant)); rewrite rowK.
Qed.

Lemma minpoly_mx_free : row_free Ad.
Proof.
have:= mxminpoly_nonconstant; rewrite /d; case: ex_minnP => -[] // d' _ /(_ d').
by move/implyP; rewrite ltnn implybF -ltnS ltn_neqAle rank_leq_row andbT negbK.
Qed.

Lemma horner_mx_mem p : (horner_mx A p \in Ad)%MS.
Proof.
elim/poly_ind: p => [|p a IHp]; first by rewrite rmorph0 // linear0 sub0mx.
rewrite rmorphD rmorphM /= horner_mx_C horner_mx_X.
rewrite addrC -scalemx1 linearP /= -(mul_vec_lin (mulmxr A)).
case/submxP: IHp => u ->{p}.
have: (powers_mx A (1 + d) <= Ad)%MS.
  rewrite -(geq_leqif (mxrank_leqif_sup _)).
    by rewrite (eqnP minpoly_mx_free) /d; case: ex_minnP.
  rewrite addnC; apply/row_subP=> i.
  by apply: eq_row_sub (lshift 1 i) _; rewrite !rowK.
apply: submx_trans; rewrite addmx_sub ?scalemx_sub //.
  by apply: (eq_row_sub 0); rewrite rowK.
rewrite -mulmxA mulmx_sub {u}//; apply/row_subP=> i.
rewrite row_mul rowK mul_vec_lin /= mulmxE -exprSr.
by apply: (eq_row_sub (rshift 1 i)); rewrite rowK.
Qed.

Definition mx_inv_horner B := rVpoly (mxvec B *m pinvmx Ad).

Lemma mx_inv_horner0 :  mx_inv_horner 0 = 0.
Proof. by rewrite /mx_inv_horner !(linear0, mul0mx). Qed.

Lemma mx_inv_hornerK B : (B \in Ad)%MS -> horner_mx A (mx_inv_horner B) = B.
Proof. by move=> sBAd; rewrite horner_rVpoly mulmxKpV ?mxvecK. Qed.

Lemma minpoly_mxM B C : (B \in Ad -> C \in Ad -> B * C \in Ad)%MS.
Proof.
move=> AdB AdC; rewrite -(mx_inv_hornerK AdB) -(mx_inv_hornerK AdC).
by rewrite -rmorphM ?horner_mx_mem.
Qed.

Lemma minpoly_mx_ring : mxring Ad.
Proof.
apply/andP; split; first exact/mulsmx_subP/minpoly_mxM.
apply/mxring_idP; exists 1%:M; split=> *; rewrite ?mulmx1 ?mul1mx //.
  by rewrite -mxrank_eq0 mxrank1.
exact: minpoly_mx1.
Qed.

Definition mxminpoly := 'X^d - mx_inv_horner (A ^+ d).
Local Notation p_A := mxminpoly.

Lemma size_mxminpoly : size p_A = d.+1.
Proof. by rewrite size_addl ?size_polyXn // size_opp ltnS size_poly. Qed.

Lemma mxminpoly_monic : p_A \is monic.
Proof.
rewrite monicE /lead_coef size_mxminpoly coefB coefXn eqxx /=.
by rewrite nth_default ?size_poly // subr0.
Qed.

Lemma size_mod_mxminpoly p : size (p %% p_A) <= d.
Proof.
by rewrite -ltnS -size_mxminpoly ltn_modp // -size_poly_eq0 size_mxminpoly.
Qed.

Lemma mx_root_minpoly : horner_mx A p_A = 0.
Proof.
rewrite rmorphB -{3}(horner_mx_X A) -rmorphXn /=.
by rewrite mx_inv_hornerK ?subrr ?horner_mx_mem.
Qed.

Lemma horner_rVpolyK (u : 'rV_d) :
  mx_inv_horner (horner_mx A (rVpoly u)) = rVpoly u.
Proof.
congr rVpoly; rewrite horner_rVpoly vec_mxK.
by apply: (row_free_inj minpoly_mx_free); rewrite mulmxKpV ?submxMl.
Qed.

Lemma horner_mxK p : mx_inv_horner (horner_mx A p) = p %% p_A.
Proof.
rewrite {1}(Pdiv.IdomainMonic.divp_eq mxminpoly_monic p) rmorphD rmorphM /=.
rewrite mx_root_minpoly mulr0 add0r.
by rewrite -(poly_rV_K (size_mod_mxminpoly _)) horner_rVpolyK.
Qed.

Lemma mxminpoly_min p : horner_mx A p = 0 -> p_A %| p.
Proof. by move=> pA0; rewrite /dvdp -horner_mxK pA0 mx_inv_horner0. Qed.

Lemma mxminpoly_minP p : reflect (horner_mx A p = 0) (p_A %| p).
Proof.
apply: (iffP idP); last exact: mxminpoly_min.
by move=> /Pdiv.Field.dvdpP[q ->]; rewrite rmorphM/= mx_root_minpoly mulr0.
Qed.

Lemma dvd_mxminpoly p : (p_A %| p) = (horner_mx A p == 0).
Proof. exact/mxminpoly_minP/eqP. Qed.

Lemma horner_rVpoly_inj : injective (horner_mx A \o rVpoly : 'rV_d -> 'M_n).
Proof.
apply: can_inj (poly_rV \o mx_inv_horner) _ => u /=.
by rewrite horner_rVpolyK rVpolyK.
Qed.

Lemma mxminpoly_linear_is_scalar : (d <= 1) = is_scalar_mx A.
Proof.
have scalP := has_non_scalar_mxP minpoly_mx1.
rewrite leqNgt -(eqnP minpoly_mx_free); apply/scalP/idP=> [|[[B]]].
  case scalA: (is_scalar_mx A); [by right | left].
  by exists A; rewrite ?scalA // -{1}(horner_mx_X A) horner_mx_mem.
move/mx_inv_hornerK=> <- nsB; case/is_scalar_mxP=> a defA; case/negP: nsB.
move: {B}(_ B); apply: poly_ind => [|p c].
  by rewrite rmorph0 ?mx0_is_scalar.
rewrite rmorphD ?rmorphM /= horner_mx_X defA; case/is_scalar_mxP=> b ->.
by rewrite -rmorphM horner_mx_C -rmorphD /= scalar_mx_is_scalar.
Qed.

Lemma mxminpoly_dvd_char : p_A %| char_poly A.
Proof. exact/mxminpoly_min/Cayley_Hamilton. Qed.

Lemma eigenvalue_root_min a : eigenvalue A a = root p_A a.
Proof.
apply/idP/idP=> Aa; last first.
  rewrite eigenvalue_root_char !root_factor_theorem in Aa *.
  exact: dvdp_trans Aa mxminpoly_dvd_char.
have{Aa} [v Av_av v_nz] := eigenvalueP Aa.
apply: contraR v_nz => pa_nz; rewrite -{pa_nz}(eqmx_eq0 (eqmx_scale _ pa_nz)).
apply/eqP; rewrite -(mulmx0 _ v) -mx_root_minpoly.
elim/poly_ind: p_A => [|p c IHp].
  by rewrite rmorph0 horner0 scale0r mulmx0.
rewrite !hornerE rmorphD rmorphM /= horner_mx_X horner_mx_C scalerDl.
by rewrite -scalerA mulmxDr mul_mx_scalar mulmxA -IHp -scalemxAl Av_av.
Qed.

Lemma root_mxminpoly a : root p_A a = root (char_poly A) a.
Proof. by rewrite -eigenvalue_root_min eigenvalue_root_char. Qed.

End MinPoly.

Lemma mxminpoly_diag {F : fieldType} {n} (d : 'rV[F]_n.+1)
    (u := undup [seq d 0 i | i <- enum 'I_n.+1]) :
  mxminpoly (diag_mx d) = \prod_(r <- u) ('X - r%:P).
Proof.
apply/eqP; rewrite -eqp_monic ?mxminpoly_monic ?monic_prod_XsubC// /eqp.
rewrite mxminpoly_min/=; last first.
  rewrite horner_mx_diag; apply/matrixP => i j; rewrite !mxE horner_prod.
  case: (altP (i =P j)) => [->|neq_ij//]; rewrite mulr1n.
  rewrite (bigD1_seq (d 0 j)) ?undup_uniq ?mem_undup ?map_f// /=.
  by rewrite hornerD hornerN hornerX hornerC subrr mul0r.
apply: uniq_roots_dvdp; last by rewrite uniq_rootsE undup_uniq.
apply/allP => x; rewrite mem_undup root_mxminpoly char_poly_trig//.
rewrite -(big_map _ predT (fun x => _ - x%:P)) root_prod_XsubC.
by move=> /mapP[i _ ->]; apply/mapP; exists i; rewrite ?(mxE, eqxx).
Qed.
Prenex Implicits degree_mxminpoly mxminpoly mx_inv_horner.

Arguments mx_inv_hornerK {F n' A} [B] AnB.
Arguments horner_rVpoly_inj {F n' A} [u1 u2] eq_u12A : rename.

(* Parametricity. *)
Section MapRingMatrix.

Variables (aR rR : ringType) (f : {rmorphism aR -> rR}).
Local Notation "A ^f" := (map_mx (GRing.RMorphism.sort f) A) : ring_scope.
Local Notation fp := (map_poly (GRing.RMorphism.sort f)).
Variables (d n : nat) (A : 'M[aR]_n).

Lemma map_rVpoly (u : 'rV_d) : fp (rVpoly u) = rVpoly u^f.
Proof.
apply/polyP=> k; rewrite coef_map !coef_rVpoly.
by case: (insub k) => [i|]; rewrite /=  ?rmorph0 // mxE.
Qed.

Lemma map_poly_rV p : (poly_rV p)^f = poly_rV (fp p) :> 'rV_d.
Proof. by apply/rowP=> j; rewrite !mxE coef_map. Qed.

Lemma map_char_poly_mx : map_mx fp (char_poly_mx A) = char_poly_mx A^f.
Proof.
rewrite raddfB /= map_scalar_mx /= map_polyX; congr (_ - _).
by apply/matrixP=> i j; rewrite !mxE map_polyC.
Qed.

Lemma map_char_poly : fp (char_poly A) = char_poly A^f.
Proof. by rewrite -det_map_mx map_char_poly_mx. Qed.

End MapRingMatrix.

Section MapResultant.

Lemma map_resultant (aR rR : ringType) (f : {rmorphism {poly aR} -> rR}) p q :
    f (lead_coef p) != 0 -> f (lead_coef q) != 0 ->
  f (resultant p q)= resultant (map_poly f p) (map_poly f q).
Proof.
move=> nz_fp nz_fq; rewrite /resultant /Sylvester_mx !size_map_poly_id0 //.
rewrite -det_map_mx /= map_col_mx; congr (\det (col_mx _ _));
  by apply: map_lin1_mx => v; rewrite map_poly_rV rmorphM /= map_rVpoly.
Qed.

End MapResultant.

Section MapComRing.

Variables (aR rR : comRingType) (f : {rmorphism aR -> rR}).
Local Notation "A ^f" := (map_mx f A) : ring_scope.
Local Notation fp := (map_poly f).
Variables (n' : nat) (A : 'M[aR]_n'.+1).

Lemma map_powers_mx e : (powers_mx A e)^f = powers_mx A^f e.
Proof. by apply/row_matrixP=> i; rewrite -map_row !rowK map_mxvec rmorphXn. Qed.

Lemma map_horner_mx p : (horner_mx A p)^f = horner_mx A^f (fp p).
Proof.
rewrite -[p](poly_rV_K (leqnn _)) map_rVpoly.
by rewrite !horner_rVpoly map_vec_mx map_mxM map_powers_mx.
Qed.

End MapComRing.

Section MapField.

Variables (aF rF : fieldType) (f : {rmorphism aF -> rF}).
Local Notation "A ^f" := (map_mx f A) : ring_scope.
Local Notation fp := (map_poly f).
Variables (n' : nat) (A : 'M[aF]_n'.+1) (p : {poly aF}).

Lemma map_mx_companion (e := congr1 predn (size_map_poly _ _)) :
  (companionmx p)^f = castmx (e, e) (companionmx (fp p)).
Proof.
apply/matrixP => i j; rewrite !(castmxE, mxE) /= (fun_if f).
by rewrite rmorphN coef_map size_map_poly rmorph_nat.
Qed.

Lemma companion_map_poly (e := esym (congr1 predn (size_map_poly _ _))) :
  companionmx (fp p) = castmx (e, e) (companionmx p)^f.
Proof. by rewrite map_mx_companion castmx_comp castmx_id. Qed.

Lemma degree_mxminpoly_map : degree_mxminpoly A^f = degree_mxminpoly A.
Proof. by apply: eq_ex_minn => e; rewrite -map_powers_mx mxrank_map. Qed.

Lemma mxminpoly_map : mxminpoly A^f = fp (mxminpoly A).
Proof.
rewrite rmorphB; congr (_ - _).
  by rewrite /= map_polyXn degree_mxminpoly_map.
rewrite degree_mxminpoly_map -rmorphXn /=.
apply/polyP=> i; rewrite coef_map //= !coef_rVpoly degree_mxminpoly_map.
case/insub: i => [i|]; last by rewrite rmorph0.
by rewrite -map_powers_mx -map_pinvmx // -map_mxvec -map_mxM // mxE.
Qed.

Lemma map_mx_inv_horner u : fp (mx_inv_horner A u) = mx_inv_horner A^f u^f.
Proof.
rewrite map_rVpoly map_mxM map_mxvec map_pinvmx map_powers_mx.
by rewrite /mx_inv_horner degree_mxminpoly_map.
Qed.

End MapField.

Section KernelLemmas.

Variable K : fieldType.

(* convertible to kermx (horner_mx g p) when n = n.+1 *)
Definition kermxpoly n (g : 'M_n) (p : {poly K}) : 'M_n :=
  kermx ((if n is n.+1 then horner_mx^~ p : 'M_n.+1 -> 'M_n.+1 else \0) g).

Lemma kermxpolyC n (g : 'M_n) c : c != 0 -> kermxpoly g c%:P = 0.
Proof.
move=> c_neq0; case: n => [|n] in g *; first by rewrite thinmx0.
apply/eqP; rewrite /kermxpoly horner_mx_C kermx_eq0 row_free_unit.
by rewrite -scalemx1 scaler_unit ?unitmx1// unitfE.
Qed.

Lemma kermxpoly1 n (g : 'M_n) : kermxpoly g 1 = 0.
Proof. by rewrite kermxpolyC ?oner_eq0. Qed.

Lemma kermxpolyX n (g : 'M_n) : kermxpoly g 'X = kermx g.
Proof.
case: n => [|n] in g *; first by rewrite !thinmx0.
by rewrite /kermxpoly horner_mx_X.
Qed.

Lemma kermxpoly_min n (g : 'M[K]_n.+1) p :
  mxminpoly g %| p -> (kermxpoly g p :=: 1)%MS.
Proof. by rewrite /kermxpoly => /mxminpoly_minP ->; apply: kermx0. Qed.

Lemma comm_mx_stable_kermxpoly n (f g : 'M_n) (p : {poly K}) : comm_mx f g ->
  stablemx (kermxpoly f p) g.
Proof.
case: n => [|n] in f g *; first by rewrite !thinmx0.
move=> fg; rewrite /kermxpoly; apply: comm_mx_stable_ker.
by apply/comm_mx_sym/comm_mx_horner/comm_mx_sym.
Qed.

Lemma mxdirect_kermxpoly n (g : 'M_n) (p q : {poly K}) :
  coprimep p q -> (kermxpoly g p :&: kermxpoly g q = 0)%MS.
Proof.
case: n => [|n] in g *; first by rewrite thinmx0 ?cap0mx ?submx_refl.
move=> /Bezout_eq1_coprimepP [[/= u v]]; rewrite mulrC [v * _]mulrC => cpq.
apply/eqP/rowV0P => x.
rewrite sub_capmx => /andP[/sub_kermxP xgp0 /sub_kermxP xgq0].
move: cpq => /(congr1 (mulmx x \o horner_mx g))/=.
rewrite !(rmorphM, rmorphD, rmorph1, mulmx1, mulmxDr, mulmxA).
by rewrite xgp0 xgq0 !mul0mx add0r.
Qed.

Lemma kermxpolyM n (g : 'M_n) (p q : {poly K}) : coprimep p q ->
  (kermxpoly g (p * q) :=: kermxpoly g p + kermxpoly g q)%MS.
Proof.
case: n => [|n] in g *; first by rewrite !thinmx0.
move=> /Bezout_eq1_coprimepP [[/= u v]]; rewrite mulrC [v * _]mulrC => cpq.
apply/eqmxP/andP; split; last first.
  apply/sub_kermxP/eqmx0P; rewrite !addsmxMr [in X in (_ + X)%MS]mulrC.
  by rewrite !rmorphM/= !mulmxA !mulmx_ker !mul0mx !addsmx0 submx_refl.
move: cpq => /(congr1 (horner_mx g))/=; rewrite rmorph1 rmorphD/=.
rewrite -[X in (X <= _)%MS]mulr1 => <-; rewrite mulrDr [p * u]mulrC addrC.
rewrite addmx_sub_adds//; apply/sub_kermxP; rewrite mulmxE -mulrA -rmorphM.
  by rewrite mulrAC [q * p]mulrC rmorphM/= mulrA -!mulmxE mulmx_ker mul0mx.
rewrite -[_ * _ * q]mulrA [u * _]mulrC.
by rewrite rmorphM mulrA -!mulmxE mulmx_ker mul0mx.
Qed.

Lemma kermxpoly_prod n (g : 'M_n)
    (I : finType) (P : {pred I}) (p_ : I -> {poly K}) :
  {in P &, forall i j, j != i -> coprimep (p_ i) (p_ j)} ->
  (kermxpoly g (\prod_(i | P i) p_ i) :=: \sum_(i | P i) kermxpoly g (p_ i))%MS.
Proof.
move=> p_coprime; elim: index_enum (index_enum_uniq I).
  by rewrite !big_nil ?kermxpoly1 ?submx_refl//.
move=> j js ihjs /= /andP[jNjs js_uniq]; apply/eqmxP.
rewrite !big_cons; case: ifP => [Pj|PNj]; rewrite ?ihjs ?submx_refl//.
suff cjjs: coprimep (p_ j) (\prod_(i <- js | P i) p_ i).
  by rewrite !kermxpolyM// !(adds_eqmx (eqmx_refl _) (ihjs _)) ?submx_refl.
rewrite (@big_morph _ _ _ true andb) ?big_all_cond ?coprimep1//; last first.
  by move=> p q; rewrite coprimepMr.
apply/allP => i i_js; apply/implyP => Pi; apply: p_coprime => //.
by apply: contraNneq jNjs => <-.
Qed.

Lemma mxdirect_sum_kermx n (g : 'M_n)
    (I : finType) (P : {pred I}) (p_ : I -> {poly K}) :
  {in P &, forall i j, j != i -> coprimep (p_ i) (p_ j)} ->
  mxdirect (\sum_(i | P i) kermxpoly g (p_ i))%MS.
Proof.
move=> p_coprime; apply/mxdirect_sumsP => i Pi; apply/eqmx0P.
have cpNi : {in [pred j | P j && (j != i)] &,
    forall j k : I, k != j -> coprimep (p_ j) (p_ k)}.
  by move=> j k /andP[Pj _] /andP[Pk _]; apply: p_coprime.
rewrite -!(cap_eqmx (eqmx_refl _) (kermxpoly_prod g _))//.
rewrite mxdirect_kermxpoly ?submx_refl//.
rewrite (@big_morph _ _ _ true andb) ?big_all_cond ?coprimep1//; last first.
  by move=> p q; rewrite coprimepMr.
by apply/allP => j _; apply/implyP => /andP[Pj neq_ji]; apply: p_coprime.
Qed.

Lemma eigenspace_poly n a (f : 'M_n) :
  eigenspace f a = kermxpoly f ('X - a%:P).
Proof.
case: n => [|m] in a f *; first by rewrite !thinmx0.
by congr (kermx _); rewrite rmorphB /= ?horner_mx_X ?horner_mx_C.
Qed.

Definition geigenspace n (g : 'M_n) a := kermxpoly g (('X - a%:P) ^+ n).

Lemma geigenspaceE n' (g : 'M_n'.+1) a :
  geigenspace g a = kermx ((g - a%:M) ^+ n'.+1).
Proof.
by rewrite /geigenspace /kermxpoly rmorphXn/= rmorphB/= horner_mx_X horner_mx_C.
Qed.

Lemma eigenspace_sub_geigen n (g : 'M_n) a :
  (eigenspace g a <= geigenspace g a)%MS.
Proof.
case: n => [|n] in g *; rewrite ?thinmx0 ?sub0mx// geigenspaceE.
by apply/sub_kermxP; rewrite exprS mulmxA mulmx_ker mul0mx.
Qed.

Lemma mxdirect_sum_geigenspace
    (I : finType) (n : nat) (g : 'M_n) (P : {pred I}) (a_ : I -> K) :
  {in P &, injective a_} -> mxdirect (\sum_(i | P i) geigenspace g (a_ i)).
Proof.
move=> /inj_in_eq eq_a; apply: mxdirect_sum_kermx => i j Pi Pj Nji.
by rewrite coprimep_expr ?coprimep_expl// coprimep_XsubC root_XsubC eq_a.
Qed.

Definition eigenpoly n (g : 'M_n) : pred {poly K} :=
  (fun p => kermxpoly g p != 0).

Lemma eigenpolyP n (g : 'M_n) (p : {poly K}) :
  reflect (exists2 v : 'rV_n, (v <= kermxpoly g p)%MS & v != 0) (eigenpoly g p).
Proof. exact: rowV0Pn. Qed.

Lemma eigenvalue_poly n a (f : 'M_n) : eigenvalue f a = eigenpoly f ('X - a%:P).
Proof. by rewrite /eigenpoly /eigenvalue eigenspace_poly. Qed.

Lemma comm_mx_stable_geigenspace n (f g : 'M_n) a : comm_mx f g ->
  stablemx (geigenspace f a) g.
Proof. exact: comm_mx_stable_kermxpoly. Qed.

End KernelLemmas.

Section MapKermxPoly.
Variables (aF rF : fieldType) (f : {rmorphism aF -> rF}).

Lemma map_kermxpoly (n : nat) (g : 'M_n) (p : {poly aF}) :
  map_mx f (kermxpoly g p) = kermxpoly (map_mx f g) (map_poly f p).
Proof.
by case: n => [|n] in g *; rewrite ?thinmx0// map_kermx map_horner_mx.
Qed.

Lemma map_geigenspace (n : nat) (g : 'M_n) (a : aF) :
  map_mx f (geigenspace g a) = geigenspace (map_mx f g) (f a).
Proof. by rewrite map_kermxpoly rmorphXn/= rmorphB /= map_polyX map_polyC. Qed.

Lemma eigenpoly_map n (g : 'M_n) (p : {poly aF}) :
  eigenpoly (map_mx f g) (map_poly f p) = eigenpoly g p.
Proof. by rewrite /eigenpoly -map_kermxpoly map_mx_eq0. Qed.

End MapKermxPoly.

Section IntegralOverRing.

Definition integralOver (R K : ringType) (RtoK : R -> K) (z : K) :=
  exists2 p, p \is monic & root (map_poly RtoK p) z.

Definition integralRange R K RtoK := forall z, @integralOver R K RtoK z.

Variables (B R K : ringType) (BtoR : B -> R) (RtoK : {rmorphism R -> K}).

Lemma integral_rmorph x :
  integralOver BtoR x -> integralOver (RtoK \o BtoR) (RtoK x).
Proof. by case=> p; exists p; rewrite // map_poly_comp rmorph_root. Qed.

Lemma integral_id x : integralOver RtoK (RtoK x).
Proof. by exists ('X - x%:P); rewrite ?monicXsubC ?rmorph_root ?root_XsubC. Qed.

Lemma integral_nat n : integralOver RtoK n%:R.
Proof. by rewrite -(rmorph_nat RtoK); apply: integral_id. Qed.

Lemma integral0 : integralOver RtoK 0. Proof. exact: (integral_nat 0). Qed.

Lemma integral1 : integralOver RtoK 1. Proof. exact: (integral_nat 1). Qed.

Lemma integral_poly (p : {poly K}) :
  (forall i, integralOver RtoK p`_i) <-> {in p : seq K, integralRange RtoK}.
Proof.
split=> intRp => [_ /(nthP 0)[i _ <-] // | i]; rewrite -[p]coefK coef_poly.
by case: ifP => [ltip | _]; [apply/intRp/mem_nth | apply: integral0].
Qed.

End IntegralOverRing.

Section IntegralOverComRing.

Variables (R K : comRingType) (RtoK : {rmorphism R -> K}).

Lemma integral_horner_root w (p q : {poly K}) :
    p \is monic -> root p w ->
    {in p : seq K, integralRange RtoK} -> {in q : seq K, integralRange RtoK} ->
  integralOver RtoK q.[w].
Proof.
move=> mon_p pw0 intRp intRq.
pose memR y := exists x, y = RtoK x.
have memRid x: memR (RtoK x) by exists x.
have memR_nat n: memR n%:R by rewrite -(rmorph_nat RtoK) /=.
have [memR0 memR1]: memR 0 * memR 1 := (memR_nat 0, memR_nat 1).
have memRN1: memR (- 1) by exists (- 1); rewrite rmorphN1.
pose rVin (E : K -> Prop) n (a : 'rV[K]_n) := forall i, E (a 0 i).
pose pXin (E : K -> Prop) (r : {poly K}) := forall i, E r`_i.
pose memM E n (X : 'rV_n) y := exists a, rVin E n a /\ y = (a *m X^T) 0 0.
pose finM E S := exists n, exists X, forall y, memM E n X y <-> S y.
have tensorM E n1 n2 X Y: finM E (memM (memM E n2 Y) n1 X).
  exists (n1 * n2)%N, (mxvec (X^T *m Y)) => y.
  split=> [[a [Ea Dy]] | [a1 [/fin_all_exists[a /all_and2[Ea Da1]] ->]]].
    exists (Y *m (vec_mx a)^T); split=> [i|].
      exists (row i (vec_mx a)); split=> [j|]; first by rewrite !mxE; apply: Ea.
      by rewrite -row_mul -{1}[Y]trmxK -trmx_mul !mxE.
    by rewrite -[Y]trmxK -!trmx_mul mulmxA -mxvec_dotmul trmx_mul trmxK vec_mxK.
  exists (mxvec (\matrix_i a i)); split.
    by case/mxvec_indexP=> i j; rewrite mxvecE mxE; apply: Ea.
  rewrite -[mxvec _]trmxK -trmx_mul mxvec_dotmul -mulmxA trmx_mul !mxE.
  apply: eq_bigr => i _; rewrite Da1 !mxE; congr (_ * _).
  by apply: eq_bigr => j _; rewrite !mxE.
suffices [m [X [[u [_ Du]] idealM]]]: exists m,
  exists X, let M := memM memR m X in M 1 /\ forall y, M y -> M (q.[w] * y).
- do [set M := memM _ m X; move: q.[w] => z] in idealM *.
  have MX i: M (X 0 i).
    by exists (delta_mx 0 i); split=> [j|]; rewrite -?rowE !mxE.
  have /fin_all_exists[a /all_and2[Fa Da1]] i := idealM _ (MX i).
  have /fin_all_exists[r Dr] i := fin_all_exists (Fa i).
  pose A := \matrix_(i, j) r j i; pose B := z%:M - map_mx RtoK A.
  have XB0: X *m B = 0.
    apply/eqP; rewrite mulmxBr mul_mx_scalar subr_eq0; apply/eqP/rowP=> i.
    by rewrite !mxE Da1 mxE; apply: eq_bigr=> j _; rewrite !mxE mulrC Dr.
  exists (char_poly A); first exact: char_poly_monic.
  have: (\det B *: (u *m X^T)) 0 0 == 0.
    rewrite scalemxAr -linearZ -mul_mx_scalar -mul_mx_adj mulmxA XB0 /=.
    by rewrite mul0mx trmx0 mulmx0 mxE.
  rewrite mxE -Du mulr1 rootE -horner_evalE -!det_map_mx; congr (\det _ == 0).
  rewrite !raddfB /= !map_scalar_mx /= map_polyX horner_evalE hornerX.
  by apply/matrixP=> i j; rewrite !mxE map_polyC /horner_eval hornerC.
pose gen1 x E y := exists2 r, pXin E r & y = r.[x]; pose gen := foldr gen1 memR.
have gen1S (E : K -> Prop) x y: E 0 -> E y -> gen1 x E y.
  by exists y%:P => [i|]; rewrite ?hornerC ?coefC //; case: ifP.
have genR S y: memR y -> gen S y.
  by elim: S => //= x S IH in y * => /IH; apply/gen1S/IH.
have gen0 := genR _ 0 memR0; have gen_1 := genR _ 1 memR1.
have{gen1S} genS S y: y \in S -> gen S y.
  elim: S => //= x S IH /predU1P[-> | /IH//]; last exact: gen1S.
  by exists 'X => [i|]; rewrite ?hornerX // coefX; apply: genR.
pose propD (R : K -> Prop) := forall x y, R x -> R y -> R (x + y).
have memRD: propD memR.
  by move=> _ _ [a ->] [b ->]; exists (a + b); rewrite rmorphD.
have genD S: propD (gen S).
  elim: S => //= x S IH _ _ [r1 Sr1 ->] [r2 Sr2 ->]; rewrite -hornerD.
  by exists (r1 + r2) => // i; rewrite coefD; apply: IH.
have gen_sum S := big_ind _ (gen0 S) (genD S).
pose propM (R : K -> Prop) := forall x y, R x -> R y -> R (x * y).
have memRM: propM memR.
  by move=> _ _ [a ->] [b ->]; exists (a * b); rewrite rmorphM.
have genM S: propM (gen S).
  elim: S => //= x S IH _ _ [r1 Sr1 ->] [r2 Sr2 ->]; rewrite -hornerM.
  by exists (r1 * r2) => // i; rewrite coefM; apply: gen_sum => j _; apply: IH.
have gen_horner S r y: pXin (gen S) r -> gen S y -> gen S r.[y].
  move=> Sq Sy; rewrite horner_coef; apply: gen_sum => [[i _] /= _].
  by elim: {2}i => [|n IHn]; rewrite ?mulr1 // exprSr mulrA; apply: genM.
pose S := w :: q ++ p; suffices [m [X defX]]: finM memR (gen S).
  exists m, X => M; split=> [|y /defX Xy]; first exact/defX.
  apply/defX/genM => //; apply: gen_horner => // [i|]; last exact/genS/mem_head.
  rewrite -[q]coefK coef_poly; case: ifP => // lt_i_q.
  by apply: genS; rewrite inE mem_cat mem_nth ?orbT.
pose intR R y := exists r, [/\ r \is monic, root r y & pXin R r].
pose fix genI s := if s is y :: s1 then intR (gen s1) y /\ genI s1 else True.
have{mon_p pw0 intRp intRq}: genI S.
  split; set S1 := _ ++ _; first exists p.
    split=> // i; rewrite -[p]coefK coef_poly; case: ifP => // lt_i_p.
    by apply: genS; rewrite mem_cat orbC mem_nth.
  set S2 := S1; have: all [in S1] S2 by apply/allP.
  elim: S2 => //= y S2 IH /andP[S1y S12]; split; last exact: IH.
  have{q S S1 IH S1y S12 intRp intRq} [q mon_q qx0]: integralOver RtoK y.
    by move: S1y; rewrite mem_cat => /orP[]; [apply: intRq | apply: intRp].
  exists (map_poly RtoK q); split=> // [|i]; first exact: monic_map.
  by rewrite coef_map /=; apply: genR.
elim: {w p q}S => /= [_|x S IH [[p [mon_p px0 Sp]] /IH{IH}[m2 [X2 defS]]]].
  exists 1, 1 => y; split=> [[a [Fa ->]] | Fy].
    by rewrite tr_scalar_mx mulmx1; apply: Fa.
  by exists y%:M; split=> [i|]; rewrite 1?ord1 ?tr_scalar_mx ?mulmx1 mxE.
pose m1 := (size p).-1; pose X1 := \row_(i < m1) x ^+ i.
have [m [X defM]] := tensorM memR m1 m2 X1 X2; set M := memM _ _ _ in defM.
exists m, X => y; rewrite -/M; split=> [/defM[a [M2a]] | [q Sq]] -> {y}.
  exists (rVpoly a) => [i|].
    by rewrite coef_rVpoly; case/insub: i => // i; apply/defS/M2a.
  rewrite mxE (horner_coef_wide _ (size_poly _ _)) -/(rVpoly a).
  by apply: eq_bigr => i _; rewrite coef_rVpoly_ord !mxE.
have M_0: M 0 by exists 0; split=> [i|]; rewrite ?mul0mx mxE.
have M_D: propD M.
  move=> _ _ [a [Fa ->]] [b [Fb ->]]; exists (a + b).
  by rewrite mulmxDl !mxE; split=> // i /[1!mxE]; apply: memRD.
have{M_0 M_D} Msum := big_ind _ M_0 M_D.
rewrite horner_coef; apply: (Msum) => i _; case: i q`_i {Sq}(Sq i) => /=.
elim: {q}(size q) => // n IHn i i_le_n y Sy.
have [i_lt_m1 | m1_le_i] := ltnP i m1.
  apply/defM; exists (y *: delta_mx 0 (Ordinal i_lt_m1)); split=> [j|].
    by apply/defS; rewrite !mxE /= mulr_natr; case: eqP.
  by rewrite -scalemxAl -rowE !mxE.
rewrite -(subnK m1_le_i) exprD -[x ^+ m1]subr0 -(rootP px0) horner_coef.
rewrite polySpred ?monic_neq0 // -/m1 big_ord_recr /= -lead_coefE.
rewrite opprD addrC (monicP mon_p) mul1r subrK !mulrN -mulNr !mulr_sumr.
apply: Msum => j _; rewrite mulrA mulrACA -exprD; apply: IHn.
  by rewrite -addnS addnC addnBA // leq_subLR leq_add.
by rewrite -mulN1r; do 2!apply: (genM) => //; apply: genR.
Qed.

Lemma integral_root_monic u p :
    p \is monic -> root p u -> {in p : seq K, integralRange RtoK} ->
  integralOver RtoK u.
Proof.
move=> mon_p pu0 intRp; rewrite -[u]hornerX.
apply: integral_horner_root mon_p pu0 intRp _.
by apply/integral_poly => i; rewrite coefX; apply: integral_nat.
Qed.

Let integral0_RtoK := integral0 RtoK.
Let integral1_RtoK := integral1 RtoK.
Let monicXsubC_K := @monicXsubC K.
Hint Resolve integral0_RtoK integral1_RtoK monicXsubC_K : core.

Let XsubC0 (u : K) : root ('X - u%:P) u. Proof. by rewrite root_XsubC. Qed.
Let intR_XsubC u :
  integralOver RtoK (- u) -> {in 'X - u%:P : seq K, integralRange RtoK}.
Proof. by move=> intRu v; rewrite polyseqXsubC !inE => /pred2P[]->. Qed.

Lemma integral_opp u : integralOver RtoK u -> integralOver RtoK (- u).
Proof. by rewrite -{1}[u]opprK => /intR_XsubC/integral_root_monic; apply. Qed.

Lemma integral_horner (p : {poly K}) u :
    {in p : seq K, integralRange RtoK} -> integralOver RtoK u ->
  integralOver RtoK p.[u].
Proof. by move=> ? /integral_opp/intR_XsubC/integral_horner_root; apply. Qed.

Lemma integral_sub u v :
  integralOver RtoK u -> integralOver RtoK v -> integralOver RtoK (u - v).
Proof.
move=> intRu /integral_opp/intR_XsubC/integral_horner/(_ intRu).
by rewrite !hornerE.
Qed.

Lemma integral_add u v :
  integralOver RtoK u -> integralOver RtoK v -> integralOver RtoK (u + v).
Proof. by rewrite -{2}[v]opprK => intRu /integral_opp; apply: integral_sub. Qed.

Lemma integral_mul u v :
  integralOver RtoK u -> integralOver RtoK v -> integralOver RtoK (u * v).
Proof.
rewrite -{2}[v]hornerX -hornerZ => intRu; apply: integral_horner.
by apply/integral_poly=> i; rewrite coefZ coefX mulr_natr mulrb; case: ifP.
Qed.

End IntegralOverComRing.

Section IntegralOverField.

Variables (F E : fieldType) (FtoE : {rmorphism F -> E}).

Definition algebraicOver (fFtoE : F -> E) u :=
  exists2 p, p != 0 & root (map_poly fFtoE p) u.

Notation mk_mon p := ((lead_coef p)^-1 *: p).

Lemma integral_algebraic u : algebraicOver FtoE u <-> integralOver FtoE u.
Proof.
split=> [] [p p_nz pu0]; last by exists p; rewrite ?monic_neq0.
exists (mk_mon p); first by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0.
by rewrite linearZ rootE hornerZ (rootP pu0) mulr0.
Qed.

Lemma algebraic_id a : algebraicOver FtoE (FtoE a).
Proof. exact/integral_algebraic/integral_id. Qed.

Lemma algebraic0 : algebraicOver FtoE 0.
Proof. exact/integral_algebraic/integral0. Qed.

Lemma algebraic1 : algebraicOver FtoE 1.
Proof. exact/integral_algebraic/integral1. Qed.

Lemma algebraic_opp x : algebraicOver FtoE x -> algebraicOver FtoE (- x).
Proof. by move/integral_algebraic/integral_opp/integral_algebraic. Qed.

Lemma algebraic_add x y :
  algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x + y).
Proof.
move/integral_algebraic=> intFx /integral_algebraic intFy.
exact/integral_algebraic/integral_add.
Qed.

Lemma algebraic_sub x y :
  algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x - y).
Proof. by move=> algFx /algebraic_opp; apply: algebraic_add. Qed.

Lemma algebraic_mul x y :
  algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x * y).
Proof.
move/integral_algebraic=> intFx /integral_algebraic intFy.
exact/integral_algebraic/integral_mul.
Qed.

Lemma algebraic_inv u : algebraicOver FtoE u -> algebraicOver FtoE u^-1.
Proof.
have [-> | /expf_neq0 nz_u_n] := eqVneq u 0; first by rewrite invr0.
case=> p nz_p pu0; exists (Poly (rev p)).
  apply/eqP=> /polyP/(_ 0); rewrite coef_Poly coef0 nth_rev ?size_poly_gt0 //.
  by apply/eqP; rewrite subn1 lead_coef_eq0.
apply/eqP/(mulfI (nz_u_n (size p).-1)); rewrite mulr0 -(rootP pu0).
rewrite (@horner_coef_wide _ (size p)); last first.
  by rewrite size_map_poly -(size_rev p) size_Poly.
rewrite horner_coef mulr_sumr size_map_poly.
rewrite [rhs in _ = rhs](reindex_inj rev_ord_inj) /=.
apply: eq_bigr => i _; rewrite !coef_map coef_Poly nth_rev // mulrCA.
by congr (_ * _); rewrite -{1}(subnKC (valP i)) addSn addnC exprD exprVn ?mulfK.
Qed.

Lemma algebraic_div x y :
  algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x / y).
Proof. by move=> algFx /algebraic_inv; apply: algebraic_mul. Qed.

Lemma integral_inv x : integralOver FtoE x -> integralOver FtoE x^-1.
Proof. by move/integral_algebraic/algebraic_inv/integral_algebraic. Qed.

Lemma integral_div x y :
  integralOver FtoE x -> integralOver FtoE y -> integralOver FtoE (x / y).
Proof. by move=> algFx /integral_inv; apply: integral_mul. Qed.

Lemma integral_root p u :
    p != 0 -> root p u -> {in p : seq E, integralRange FtoE} ->
  integralOver FtoE u.
Proof.
move=> nz_p pu0 algFp.
have mon_p1: mk_mon p \is monic.
  by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0.
have p1u0: root (mk_mon p) u by rewrite rootE hornerZ (rootP pu0) mulr0.
apply: integral_root_monic mon_p1 p1u0 _ => _ /(nthP 0)[i ltip <-].
rewrite coefZ mulrC; rewrite size_scale ?invr_eq0 ?lead_coef_eq0 // in ltip.
by apply: integral_div; apply/algFp/mem_nth; rewrite -?polySpred.
Qed.

End IntegralOverField.

(* Lifting term, formula, envs and eval to matrices. Wlog, and for the sake  *)
(* of simplicity, we only lift (tensor) envs to row vectors; we can always   *)
(* use mxvec/vec_mx to store and retrieve matrices.                          *)
(* We don't provide definitions for addition, subtraction, scaling, etc,     *)
(* because they have simple matrix expressions.                              *)
Module MatrixFormula.

Section MatrixFormula.

Variable F : fieldType.

Local Notation False := GRing.False.
Local Notation True := GRing.True.
Local Notation And := GRing.And (only parsing).
Local Notation Add := GRing.Add (only parsing).
Local Notation Bool b := (GRing.Bool b%bool).
Local Notation term := (GRing.term F).
Local Notation form := (GRing.formula F).
Local Notation eval := GRing.eval.
Local Notation holds := GRing.holds.
Local Notation qf_form := GRing.qf_form.
Local Notation qf_eval := GRing.qf_eval.

Definition eval_mx (e : seq F) := @map_mx term F (eval e).

Definition mx_term := @map_mx F term GRing.Const.

Lemma eval_mx_term e m n (A : 'M_(m, n)) : eval_mx e (mx_term A) = A.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.

Definition mulmx_term m n p (A : 'M[term]_(m, n)) (B : 'M_(n, p)) :=
  \matrix_(i, k) (\big[Add/0]_j (A i j * B j k))%T.

Lemma eval_mulmx e m n p (A : 'M[term]_(m, n)) (B : 'M_(n, p)) :
  eval_mx e (mulmx_term A B) = eval_mx e A *m eval_mx e B.
Proof.
apply/matrixP=> i k; rewrite !mxE /= ((big_morph (eval e)) 0 +%R) //=.
by apply: eq_bigr => j _; rewrite /= !mxE.
Qed.

Local Notation morphAnd f := ((big_morph f) true andb).

Let Schur m n (A : 'M[term]_(1 + m, 1 + n)) (a := A 0 0) :=
  \matrix_(i, j) (drsubmx A i j - a^-1 * dlsubmx A i 0%R * ursubmx A 0%R j)%T.

Fixpoint mxrank_form (r m n : nat) : 'M_(m, n) -> form :=
  match m, n return 'M_(m, n) -> form with
  | m'.+1, n'.+1 => fun A : 'M_(1 + m', 1 + n') =>
    let nzA k := A k.1 k.2 != 0 in
    let xSchur k := Schur (xrow k.1 0%R (xcol k.2 0%R A)) in
    let recf k := Bool (r > 0) /\ mxrank_form r.-1 (xSchur k) in
    GRing.Pick nzA recf (Bool (r == 0%N))
  | _, _ => fun _ => Bool (r == 0%N)
  end%T.

Lemma mxrank_form_qf r m n (A : 'M_(m, n)) : qf_form (mxrank_form r A).
Proof.
by elim: m r n A => [|m IHm] r [|n] A //=; rewrite GRing.Pick_form_qf /=.
Qed.

Lemma eval_mxrank e r m n (A : 'M_(m, n)) :
  qf_eval e (mxrank_form r A) = (\rank (eval_mx e A) == r).
Proof.
elim: m r n A => [|m IHm] r [|n] A /=; try by case r; rewrite unlock.
rewrite GRing.eval_Pick !unlock /=; set pf := fun _ => _.
rewrite -(@eq_pick _ pf) => [|k]; rewrite {}/pf ?mxE // eq_sym.
case: pick => [[i j]|] //=; set B := _ - _; have:= mxrankE B.
case: (Gaussian_elimination_ B) r => [[_ _] _] [|r] //= <-; rewrite {}IHm eqSS.
by congr (\rank _ == r); apply/matrixP=> k l; rewrite !(mxE, big_ord1) !tpermR.
Qed.

Lemma eval_vec_mx e m n (u : 'rV_(m * n)) :
  eval_mx e (vec_mx u) = vec_mx (eval_mx e u).
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.

Lemma eval_mxvec e m n (A : 'M_(m, n)) :
  eval_mx e (mxvec A) = mxvec (eval_mx e A).
Proof. by rewrite -{2}[A]mxvecK eval_vec_mx vec_mxK. Qed.

Section Subsetmx.

Variables (m1 m2 n : nat) (A : 'M[term]_(m1, n)) (B : 'M[term]_(m2, n)).

Definition submx_form :=
  \big[And/True]_(r < n.+1) (mxrank_form r (col_mx A B) ==> mxrank_form r B)%T.

Lemma eval_col_mx e :
  eval_mx e (col_mx A B) = col_mx (eval_mx e A) (eval_mx e B).
Proof. by apply/matrixP=> i j; do 2![rewrite !mxE //; case: split => ?]. Qed.

Lemma submx_form_qf : qf_form submx_form.
Proof.
by rewrite (morphAnd (@qf_form _)) ?big1 //= => r _; rewrite !mxrank_form_qf.
Qed.

Lemma eval_submx e : qf_eval e submx_form = (eval_mx e A <= eval_mx e B)%MS.
Proof.
rewrite (morphAnd (qf_eval e)) //= big_andE /=.
apply/forallP/idP=> /= [|sAB d]; last first.
  rewrite !eval_mxrank eval_col_mx -addsmxE; apply/implyP=> /eqP <-.
  by rewrite mxrank_leqif_sup ?addsmxSr // addsmx_sub sAB /=.
move/(_ (inord (\rank (eval_mx e (col_mx A B))))).
rewrite inordK ?ltnS ?rank_leq_col // !eval_mxrank eqxx /= eval_col_mx.
by rewrite -addsmxE mxrank_leqif_sup ?addsmxSr // addsmx_sub; case/andP.
Qed.

End Subsetmx.

Section Env.

Variable d : nat.

Definition seq_of_rV (v : 'rV_d) : seq F := fgraph [ffun i => v 0 i].

Lemma size_seq_of_rV v : size (seq_of_rV v) = d.
Proof. by rewrite tuple.size_tuple card_ord. Qed.

Lemma nth_seq_of_rV x0 v (i : 'I_d) : nth x0 (seq_of_rV v) i = v 0 i.
Proof. by rewrite nth_fgraph_ord ffunE. Qed.

Definition row_var k : 'rV[term]_d := \row_i ('X_(k * d + i))%T.

Definition row_env (e : seq 'rV_d) := flatten (map seq_of_rV e).

Lemma nth_row_env e k (i : 'I_d) : (row_env e)`_(k * d + i) = e`_k 0 i.
Proof.
elim: e k => [|v e IHe] k; first by rewrite !nth_nil mxE.
rewrite /row_env /= nth_cat size_seq_of_rV.
case: k => [|k]; first by rewrite (valP i) nth_seq_of_rV.
by rewrite mulSn -addnA -if_neg -leqNgt leq_addr addKn IHe.
Qed.

Lemma eval_row_var e k : eval_mx (row_env e) (row_var k) = e`_k :> 'rV_d.
Proof. by apply/rowP=> i; rewrite !mxE /= nth_row_env. Qed.

Definition Exists_row_form k (f : form) :=
  foldr GRing.Exists f (codom (fun i : 'I_d => k * d + i)%N).

Lemma Exists_rowP e k f :
  d > 0 ->
   ((exists v : 'rV[F]_d, holds (row_env (set_nth 0 e k v)) f)
      <-> holds (row_env e) (Exists_row_form k f)).
Proof.
move=> d_gt0; pose i_ j := Ordinal (ltn_pmod j d_gt0).
have d_eq j: (j = j %/ d * d + i_ j)%N := divn_eq j d.
split=> [[v f_v] | ]; last case/GRing.foldExistsP=> e' ee' f_e'.
  apply/GRing.foldExistsP; exists (row_env (set_nth 0 e k v)) => {f f_v}// j.
  rewrite [j]d_eq !nth_row_env nth_set_nth /=; case: eqP => // ->.
  by case/imageP; exists (i_ j).
exists (\row_i e'`_(k * d + i)); apply: eq_holds f_e' => j /=.
move/(_ j): ee'; rewrite [j]d_eq !nth_row_env nth_set_nth /=.
case: eqP => [-> | ne_j_k -> //]; first by rewrite mxE.
apply/mapP=> [[r lt_r_d]]; rewrite -d_eq => def_j; case: ne_j_k.
by rewrite def_j divnMDl // divn_small ?addn0.
Qed.

End Env.

End MatrixFormula.

End MatrixFormula.

Section ConjMx.
Context {F : fieldType}.

Definition conjmx (m n : nat)
 (V : 'M_(m, n)) (f : 'M[F]_n) : 'M_m :=  V *m f *m pinvmx V.
Notation restrictmx V := (conjmx (row_base V)).

Lemma stablemx_comp (m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) :
  stablemx W f -> stablemx V (conjmx W f) -> stablemx (V *m W) f.
Proof. by move=> Wf /(submxMr W); rewrite -mulmxA mulmxKpV// mulmxA. Qed.

Lemma stablemx_restrict m n (A : 'M[F]_n) (V : 'M_n) (W : 'M_(m, \rank V)):
  stablemx V A -> stablemx W (restrictmx V A) = stablemx (W *m row_base V) A.
Proof.
move=> A_stabV; rewrite mulmxA -[in RHS]mulmxA.
rewrite -(submxMfree _ W (row_base_free V)) mulmxKpV //.
by rewrite mulmx_sub ?stablemx_row_base.
Qed.

Lemma conjmxM (m n : nat) (V : 'M[F]_(m, n)) :
   {in [pred f | stablemx V f] &, {morph conjmx V : f g / f *m g}}.
Proof.
move=> f g; rewrite !inE => Vf Vg /=.
by rewrite /conjmx 2!mulmxA mulmxA mulmxKpV ?stablemx_row_base.
Qed.

Lemma conjMmx (m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) :
  row_free (V *m W) -> stablemx W f -> stablemx V (conjmx W f) ->
  conjmx (V *m W) f = conjmx V (conjmx W f).
Proof.
move=> rfVW Wf VWf; apply: (row_free_inj rfVW); rewrite mulmxKpV ?stablemx_comp//.
by rewrite mulmxA mulmxKpV// -[RHS]mulmxA mulmxKpV ?mulmxA.
Qed.

Lemma conjuMmx (m n : nat) (V : 'M[F]_m) (W : 'M_(m, n)) (f : 'M_n) :
  V \in unitmx -> row_free W -> stablemx W f ->
  conjmx (V *m W) f = conjmx V (conjmx W f).
Proof.
move=> Vu rfW Wf; rewrite conjMmx ?stablemx_unit//.
by rewrite /row_free mxrankMfree// -/(row_free V) row_free_unit.
Qed.

Lemma conjMumx (m n : nat) (V : 'M[F]_(m, n)) (W f : 'M_n) :
  W \in unitmx -> row_free V -> stablemx V (conjmx W f) ->
  conjmx (V *m W) f = conjmx V (conjmx W f).
Proof.
move=> Wu rfW Wf; rewrite conjMmx ?stablemx_unit//.
by rewrite /row_free mxrankMfree ?row_free_unit.
Qed.

Lemma conjuMumx (n : nat) (V W f : 'M[F]_n) :
  V \in unitmx -> W \in unitmx ->
  conjmx (V *m W) f = conjmx V (conjmx W f).
Proof. by move=> Vu Wu; rewrite conjuMmx ?stablemx_unit ?row_free_unit. Qed.

Lemma conjmx_scalar (m n : nat) (V : 'M[F]_(m, n)) (a : F) :
  row_free V -> conjmx V a%:M = a%:M.
Proof. by move=> rfV; rewrite /conjmx scalar_mxC mulmxKp. Qed.

Lemma conj0mx (m n : nat) f : conjmx (0 : 'M[F]_(m, n)) f = 0.
Proof. by rewrite /conjmx !mul0mx. Qed.

Lemma conjmx0 (m n : nat) (V : 'M[F]_(m, n)) : conjmx V 0 = 0.
Proof. by rewrite /conjmx mulmx0 mul0mx. Qed.

Lemma conjumx (n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx ->
  conjmx V f = V *m f *m invmx V.
Proof. by move=> uV; rewrite /conjmx pinvmxE. Qed.

Lemma conj1mx (n : nat) (f : 'M[F]_n) : conjmx 1%:M f = f.
Proof. by rewrite conjumx ?unitmx1// invmx1 mulmx1 mul1mx. Qed.

Lemma conjVmx (n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx ->
  conjmx (invmx V) f = invmx V *m f *m V.
Proof. by move=> Vunit; rewrite conjumx ?invmxK ?unitmx_inv. Qed.

Lemma conjmxK (n : nat) (V f : 'M[F]_n) :
  V \in unitmx -> conjmx (invmx V) (conjmx V f) = f.
Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulVmx ?conj1mx. Qed.

Lemma conjmxVK (n : nat) (V f : 'M[F]_n) :
  V \in unitmx -> conjmx V (conjmx (invmx V) f) = f.
Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulmxV ?conj1mx. Qed.

Lemma horner_mx_conj m n p (V : 'M[F]_(n.+1, m.+1)) (f : 'M_m.+1) :
   row_free V -> stablemx V f ->
   horner_mx (conjmx V f) p = conjmx V (horner_mx f p).
Proof.
move=> V_free V_stab; rewrite/conjmx; elim/poly_ind: p => [|p c].
  by rewrite !rmorph0 mulmx0 mul0mx.
rewrite !(rmorphD, rmorphM)/= !(horner_mx_X, horner_mx_C) => ->.
rewrite [_ * _]mulmxA [_ *m (V *m _)]mulmxA mulmxKpV ?horner_mx_stable//.
apply: (row_free_inj V_free); rewrite [_ *m V]mulmxDl.
pose stablemxE := (stablemxD, stablemxM, stablemxC, horner_mx_stable).
by rewrite !mulmxKpV -?[V *m _ *m _]mulmxA ?stablemxE// mulmxDr -scalar_mxC.
Qed.

Lemma horner_mx_uconj n p (V : 'M[F]_(n.+1)) (f : 'M_n.+1) :
   V \is a GRing.unit ->
   horner_mx (V *m f *m invmx V) p = V *m horner_mx f p *m invmx V.
Proof.
move=> V_unit; rewrite -!conjumx//.
by rewrite horner_mx_conj ?row_free_unit ?stablemx_unit.
Qed.

Lemma horner_mx_uconjC n p (V : 'M[F]_(n.+1)) (f : 'M_n.+1) :
   V \is a GRing.unit ->
   horner_mx (invmx V *m f *m V) p = invmx V *m horner_mx f p *m V.
Proof.
move=> V_unit; rewrite -[X in _ *m X](invmxK V).
by rewrite horner_mx_uconj ?invmxK ?unitmx_inv.
Qed.

Lemma mxminpoly_conj m n (V : 'M[F]_(m.+1, n.+1)) (f : 'M_n.+1) :
  row_free V -> stablemx V f -> mxminpoly (conjmx V f) %| mxminpoly f.
Proof.
by move=> *; rewrite mxminpoly_min// horner_mx_conj// mx_root_minpoly conjmx0.
Qed.

Lemma mxminpoly_uconj n (V : 'M[F]_(n.+1)) (f : 'M_n.+1) :
  V \in unitmx -> mxminpoly (conjmx V f) = mxminpoly f.
Proof.
have simp := (row_free_unit, stablemx_unit, unitmx_inv, unitmx1).
move=> Vu; apply/eqP; rewrite -eqp_monic ?mxminpoly_monic// /eqp.
apply/andP; split; first by rewrite mxminpoly_conj ?simp.
by rewrite -[f in X in X %| _](conjmxK _ Vu) mxminpoly_conj ?simp.
Qed.

Section fixed_stablemx_space.

Variables (m n : nat).

Implicit Types (V : 'M[F]_(m, n)) (A : 'M[F]_n).
Implicit Types (a : F) (p : {poly F}).

Section Sub.
Variable (k : nat).
Implicit Types (W : 'M[F]_(k, m)).

Lemma sub_kermxpoly_conjmx V f p W : stablemx V f -> row_free V ->
  (W <= kermxpoly (conjmx V f) p)%MS = (W *m V <= kermxpoly f p)%MS.
Proof.
case: n m => [|n'] [|m'] in V f W * => fV rfV; rewrite ?thinmx0//.
  by rewrite /row_free mxrank.unlock in rfV.
  by rewrite mul0mx !sub0mx.
apply/sub_kermxP/sub_kermxP; rewrite horner_mx_conj//; last first.
  by move=> /(congr1 (mulmxr (pinvmx V)))/=; rewrite mul0mx !mulmxA.
move=> /(congr1 (mulmxr V))/=; rewrite ![W *m _]mulmxA ?mul0mx mulmxKpV//.
by rewrite -mulmxA mulmx_sub// horner_mx_stable//.
Qed.

Lemma sub_eigenspace_conjmx V f a W : stablemx V f -> row_free V ->
  (W <= eigenspace (conjmx V f) a)%MS = (W *m V <= eigenspace f a)%MS.
Proof. by move=> fV rfV; rewrite !eigenspace_poly sub_kermxpoly_conjmx. Qed.
End Sub.

Lemma eigenpoly_conjmx V f : stablemx V f -> row_free V ->
  {subset eigenpoly (conjmx V f) <= eigenpoly f}.
Proof.
move=> fV rfV a /eigenpolyP [x]; rewrite sub_kermxpoly_conjmx//.
move=> xV_le_fa x_neq0; apply/eigenpolyP.
by exists (x *m V); rewrite ?mulmx_free_eq0.
Qed.

Lemma eigenvalue_conjmx V f : stablemx V f -> row_free V ->
  {subset eigenvalue (conjmx V f) <= eigenvalue f}.
Proof.
by move=> fV rfV a; rewrite ![_ \in _]eigenvalue_poly; apply: eigenpoly_conjmx.
Qed.

Lemma conjmx_eigenvalue a V f : (V <= eigenspace f a)%MS -> row_free V ->
  conjmx V f = a%:M.
Proof.
by move=> /eigenspaceP Vfa rfV; rewrite /conjmx Vfa -mul_scalar_mx mulmxKp.
Qed.

End fixed_stablemx_space.
End ConjMx.
Notation restrictmx V := (conjmx (row_base V)).

Definition simmx_to_for {F : fieldType} {m n}
  (P : 'M_(m, n)) A (S : {pred 'M[F]_m}) := S (conjmx P A).
Notation "A ~_ P '{' 'in' S '}'" := (simmx_to_for P A S)
  (at level 70, P at level 0, format "A  ~_ P  '{' 'in'  S '}'") :
  ring_scope.

Notation simmx_for P A B := (A ~_P {in PredOfSimpl.coerce (pred1 B)}).
Notation "A ~_ P B" :=  (simmx_for P A B)
  (at level 70, P at level 0, format "A  ~_ P  B").

Notation simmx_in S A B := (exists2 P, P \in S & A ~_P B).
Notation "A '~_{in' S '}' B" := (simmx_in S A B)
  (at level 70, format "A '~_{in'  S '}'  B").

Notation simmx_in_to S A S' := (exists2 P, P \in S & A ~_P {in S'}).
Notation "A '~_{in' S '}' '{' 'in' S' '}'" := (simmx_in_to S A S')
  (at level 70, format "A '~_{in'  S '}'  '{' 'in'  S' '}'").

Notation all_simmx_in S As S' :=
  (exists2 P, P \in S & all [pred A | A ~_P {in S'}] As).

Notation diagonalizable_for P A := (A ~_P {in is_diag_mx}).
Notation diagonalizable_in S A := (A ~_{in S} {in is_diag_mx}).
Notation diagonalizable A := (diagonalizable_in unitmx A).
Notation codiagonalizable_in S As := (all_simmx_in S As is_diag_mx).
Notation codiagonalizable As := (codiagonalizable_in unitmx As).

Section Simmxity.
Context {F : fieldType}.

Lemma simmxPp m n {P : 'M[F]_(m, n)} {A B} :
  stablemx P A -> A ~_P B -> P *m A = B *m P.
Proof. by move=> stablemxPA /eqP <-; rewrite mulmxKpV. Qed.

Lemma simmxW m n {P : 'M[F]_(m, n)} {A B} : row_free P ->
  P *m A = B *m P -> A ~_P B.
Proof. by rewrite /(_ ~__ _)/= /conjmx => fP ->; rewrite mulmxKp. Qed.

Section Simmx.

Context {n : nat}.
Implicit Types (A B P : 'M[F]_n) (As : seq 'M[F]_n) (d : 'rV[F]_n).

Lemma simmxP {P A B} : P \in unitmx ->
  reflect (P *m A = B *m P) (A ~_P B).
Proof.
move=> p_unit; apply: (iffP idP); first exact/simmxPp/stablemx_unit.
by apply: simmxW; rewrite row_free_unit.
Qed.

Lemma simmxRL {P A B} : P \in unitmx ->
  reflect (B = P *m A *m invmx P) (A ~_P B).
Proof. by move=> ?; apply: (iffP eqP); rewrite conjumx. Qed.

Lemma simmxLR {P A B} : P \in unitmx ->
  reflect (A = conjmx (invmx P) B) (A ~_P B).
Proof.
by move=> Pu; rewrite conjVmx//; apply: (iffP (simmxRL Pu)) => ->;
   rewrite !mulmxA ?(mulmxK, mulmxKV, mulVmx, mulmxV, mul1mx, mulmx1).
Qed.

End Simmx.

Lemma simmx_minpoly {n} {P A B : 'M[F]_n.+1} : P \in unitmx ->
  A ~_P B -> mxminpoly A = mxminpoly B.
Proof. by move=> Pu /eqP<-; rewrite mxminpoly_uconj. Qed.

Lemma diagonalizable_for_row_base m n (P : 'M[F]_(m, n)) (A : 'M_n) :
  diagonalizable_for (row_base P) A = is_diag_mx (restrictmx P A).
Proof. by []. Qed.

Lemma diagonalizable_forPp m n (P : 'M[F]_(m, n)) A :
  reflect (forall i j : 'I__, i != j :> nat -> conjmx P A i j = 0)
          (diagonalizable_for P A).
Proof. exact: @is_diag_mxP. Qed.

Lemma diagonalizable_forP n (P : 'M[F]_n) A : P \in unitmx ->
  reflect (forall i j : 'I__, i != j :> nat -> (P *m A *m invmx P) i j = 0)
          (diagonalizable_for P A).
Proof. by move=> Pu; rewrite -conjumx//; exact: is_diag_mxP. Qed.

Lemma diagonalizable_forPex {m} {n} {P : 'M[F]_(m, n)} {A} :
  reflect (exists D, A ~_P (diag_mx D)) (diagonalizable_for P A).
Proof. by apply: (iffP (diag_mxP _)) => -[D]/eqP; exists D. Qed.

Lemma diagonalizable_forLR n {P : 'M[F]_n} {A} : P \in unitmx ->
  reflect (exists D, A = conjmx (invmx P) (diag_mx D)) (diagonalizable_for P A).
Proof.
by move=> Punit; apply: (iffP diagonalizable_forPex) => -[D /(simmxLR Punit)]; exists D.
Qed.

Lemma diagonalizable_for_mxminpoly {n} {P A : 'M[F]_n.+1}
  (rs := undup [seq conjmx P A i i | i <- enum 'I_n.+1]) :
  P \in unitmx -> diagonalizable_for P A ->
  mxminpoly A = \prod_(r <- rs) ('X - r%:P).
Proof.
rewrite /rs => pu /(diagonalizable_forLR pu)[d {A rs}->].
rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag.
by rewrite [in X in _ = X](@eq_map _ _ _ (d 0))// => i; rewrite conjmxVK// mxE eqxx.
Qed.

End Simmxity.

Lemma diagonalizable_for_sum (F : fieldType) (m n : nat) (p_ : 'I_n -> nat)
      (V_ : forall i, 'M[F]_(p_ i, m)) (A : 'M[F]_m) :
    mxdirect (\sum_i <<V_ i>>) ->
    (forall i, stablemx (V_ i) A) ->
    (forall i, row_free (V_ i)) ->
  diagonalizable_for (\mxcol_i V_ i) A = [forall i, diagonalizable_for (V_ i) A].
Proof.
move=> Vd VA rAV; have aVA : stablemx (\mxcol_i V_ i) A.
  rewrite (eqmx_stable _ (eqmx_col _)) stablemx_sums//.
  by move=> i; rewrite (eqmx_stable _ (genmxE _)).
apply/diagonalizable_forPex/'forall_diagonalizable_forPex => /=
    [[D /(simmxPp aVA) +] i|/(_ _)/sigW DoA].
  rewrite mxcol_mul -[D]submxrowK diag_mxrow mul_mxdiag_mxcol.
  move=> /eq_mxcolP/(_ i); set D0 := (submxrow _ _) => VMeq.
  by exists D0; apply/simmxW.
exists (\mxrow_i tag (DoA i)); apply/simmxW.
   rewrite -row_leq_rank eqmx_col (mxdirectP Vd)/=.
   by under [leqRHS]eq_bigr do rewrite genmxE (eqP (rAV _)).
rewrite mxcol_mul diag_mxrow mul_mxdiag_mxcol; apply: eq_mxcol => i.
by case: DoA => /= k /(simmxPp); rewrite VA => /(_ isT) ->.
Qed.

Section Diag.
Variable (F : fieldType).

Lemma codiagonalizable1 n (A : 'M[F]_n) :
  codiagonalizable [:: A] <-> diagonalizable A.
Proof. by split=> -[P Punit PA]; exists P; move: PA; rewrite //= andbT. Qed.

Definition codiagonalizablePfull n (As : seq 'M[F]_n) :
  codiagonalizable As
  <-> exists m, exists2 P : 'M_(m, n), row_full P &
        all [pred A | diagonalizable_for P A] As.
Proof.
split => [[P Punit SPA]|[m [P Pfull SPA]]].
  by exists n => //; exists P; rewrite ?row_full_unit.
have Qfull := fullrowsub_unit Pfull.
exists (rowsub (fullrankfun Pfull) P) => //; apply/allP => A AAs/=.
have /allP /(_ _ AAs)/= /diagonalizable_forPex[d /simmxPp] := SPA.
rewrite submx_full// => /(_ isT) PA_eq.
apply/diagonalizable_forPex; exists (colsub (fullrankfun Pfull) d).
apply/simmxP => //; apply/row_matrixP => i.
rewrite !row_mul row_diag_mx -scalemxAl -rowE !row_rowsub !mxE.
have /(congr1 (row (fullrankfun Pfull i))) := PA_eq.
by rewrite !row_mul row_diag_mx -scalemxAl -rowE => ->.
Qed.

Lemma codiagonalizable_on m n (V_ : 'I_n -> 'M[F]_m) (As : seq 'M[F]_m) :
    (\sum_i V_ i :=: 1%:M)%MS -> mxdirect (\sum_i V_ i) ->
    (forall i, all (fun A => stablemx (V_ i) A) As) ->
    (forall i, codiagonalizable (map (restrictmx (V_ i)) As)) ->
  codiagonalizable As.
Proof.
move=> V1 Vdirect /(_ _)/allP AV /(_ _) /sig2W/= Pof.
pose P_ i := tag (Pof i).
have P_unit i : P_ i \in unitmx by rewrite /P_; case: {+}Pof.
have P_diag i A : A \in As -> diagonalizable_for (P_ i *m row_base (V_ i)) A.
  move=> AAs; rewrite /P_; case: {+}Pof => /= P Punit.
  rewrite all_map => /allP/(_ A AAs); rewrite /= !/(diagonalizable_for _ _).
  by rewrite conjuMmx ?row_base_free ?stablemx_row_base ?AV.
pose P := \mxcol_i (P_ i *m row_base (V_ i)).
have P_full i : row_full (P_ i) by rewrite row_full_unit.
have PrV i : (P_ i *m row_base (V_ i) :=: V_ i)%MS.
  exact/(eqmx_trans _ (eq_row_base _))/eqmxMfull.
apply/codiagonalizablePfull; eexists _; last exists P; rewrite /=.
- rewrite -sub1mx eqmx_col.
  by under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1.
apply/allP => A AAs /=; rewrite diagonalizable_for_sum.
- by apply/forallP => i; apply: P_diag.
- rewrite mxdirectE/=.
  under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1.
  by under eq_bigr do rewrite genmxE PrV; rewrite  -(mxdirectP Vdirect)//= V1.
- by move=> i; rewrite (eqmx_stable _ (PrV _)) ?AV.
- by move=> i; rewrite /row_free eqmxMfull ?eq_row_base ?row_full_unit.
Qed.

Lemma diagonalizable_diag {n} (d : 'rV[F]_n) : diagonalizable (diag_mx d).
Proof.
exists 1%:M; rewrite ?unitmx1// /(diagonalizable_for _ _).
by rewrite conj1mx diag_mx_is_diag.
Qed.
Hint Resolve diagonalizable_diag : core.

Lemma diagonalizable_scalar {n} (a : F) : diagonalizable (a%:M : 'M_n).
Proof. by rewrite -diag_const_mx. Qed.
Hint Resolve diagonalizable_scalar : core.

Lemma diagonalizable0 {n} : diagonalizable (0 : 'M[F]_n).
Proof.
by rewrite (_ : 0 = 0%:M)//; apply/matrixP => i j; rewrite !mxE// mul0rn.
Qed.
Hint Resolve diagonalizable0 : core.

Lemma diagonalizablePeigen {n} {A : 'M[F]_n} :
  diagonalizable A <->
  exists2 rs, uniq rs & (\sum_(r <- rs) eigenspace A r :=: 1%:M)%MS.
Proof.
split=> [df|[rs urs rsP]].
  suff [rs rsP] : exists rs, (\sum_(r <- rs) eigenspace A r :=: 1%:M)%MS.
    exists (undup rs); rewrite ?undup_uniq//; apply: eqmx_trans rsP.
    elim: rs => //= r rs IHrs; rewrite big_cons.
    case: ifPn => in_rs; rewrite ?big_cons; last exact: adds_eqmx.
    apply/(eqmx_trans IHrs)/eqmx_sym/addsmx_idPr.
    have rrs : (index r rs < size rs)%N by rewrite index_mem.
    rewrite (big_nth 0) big_mkord (sumsmx_sup (Ordinal rrs)) ?nth_index//.
  move: df => [P Punit /(diagonalizable_forLR Punit)[d ->]].
  exists [seq d 0 i | i <- enum 'I_n]; rewrite big_image/=.
  apply: (@eqmx_trans _ _ _ _ _ _ P); apply/eqmxP;
    rewrite ?sub1mx ?submx1 ?row_full_unit//.
  rewrite submx_full ?row_full_unit//=.
  apply/row_subP => i; rewrite rowE (sumsmx_sup i)//.
  apply/eigenspaceP; rewrite conjVmx// !mulmxA mulmxK//.
  by rewrite -rowE row_diag_mx scalemxAl.
have mxdirect_eigenspaces : mxdirect (\sum_(i < size rs) eigenspace A rs`_i).
  apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj.
  by apply: uniqP rsij; rewrite ?inE.
rewrite (big_nth 0) big_mkord in rsP; rewrite -codiagonalizable1.
apply/(codiagonalizable_on _ mxdirect_eigenspaces) => // i/=.
  case: n => [|n] in A {mxdirect_eigenspaces} rsP *.
    by rewrite thinmx0 sub0mx.
  by rewrite comm_mx_stable_eigenspace.
rewrite codiagonalizable1.
by rewrite (@conjmx_eigenvalue _ _ _ rs`_i) ?eq_row_base ?row_base_free.
Qed.

Lemma diagonalizableP n' (n := n'.+1) (A : 'M[F]_n) :
  diagonalizable A <->
  exists2 rs, uniq rs & mxminpoly A %| \prod_(x <- rs) ('X - x%:P).
Proof.
split=> [[P Punit /diagonalizable_forPex[d /(simmxLR Punit)->]]|].
  rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag.
  by eexists; [|by []]; rewrite undup_uniq.
rewrite diagonalizablePeigen => -[rs rsu rsP]; exists rs => //.
rewrite (big_nth 0) [X in (X :=: _)%MS](big_nth 0) !big_mkord in rsP *.
rewrite (eq_bigr _ (fun _ _ => eigenspace_poly _ _)).
apply: (eqmx_trans (eqmx_sym (kermxpoly_prod _ _)) (kermxpoly_min _)) => //.
by move=> i j _ _; rewrite coprimep_XsubC root_XsubC nth_uniq.
Qed.

Lemma diagonalizable_conj_diag m n (V : 'M[F]_(m, n)) (d : 'rV[F]_n) :
  stablemx V (diag_mx d) -> row_free V -> diagonalizable (conjmx V (diag_mx d)).
Proof.
case: m n => [|m] [|n] in V d * => Vd rdV; rewrite ?thinmx0//=.
  by rewrite /row_free mxrank.unlock in rdV.
apply/diagonalizableP; pose u := undup [seq d 0 i | i <- enum 'I_n.+1].
exists u; first by rewrite undup_uniq.
by rewrite (dvdp_trans (mxminpoly_conj (f:=diag_mx d) _ _))// mxminpoly_diag.
Qed.

Lemma codiagonalizableP n (As : seq 'M[F]_n) :
  {in As &, forall A B, comm_mx A B} /\ {in As, forall A, diagonalizable A}
  <-> codiagonalizable As.
Proof.
split => [cdAs|[P Punit /allP/= AsD]]/=; last first.
  split; last by exists P; rewrite // AsD.
  move=> A B AAs BAs; move=> /(_ _ _)/diagonalizable_forPex/sigW in AsD.
  have [[dA /simmxLR->//] [dB /simmxLR->//]] := (AsD _ AAs, AsD _ BAs).
  by rewrite /comm_mx -!conjmxM 1?diag_mxC// inE stablemx_unit ?unitmx_inv.
move: cdAs; rewrite (rwP (all_comm_mxP _)) => cdAs.
have [k] := ubnP (size As); elim: k => [|k IHk]//= in n As cdAs *.
case: As cdAs => [|A As]//=; first by exists 1%:M; rewrite ?unitmx1.
rewrite ltnS all_comm_mx_cons => -[/andP[/allP/(_ _ _)/eqP AAsC AsC dAAs]] Ask.
have /diagonalizablePeigen [rs urs rs1] := dAAs _ (mem_head _ _).
rewrite (big_nth 0) big_mkord in rs1.
have eAB (i : 'I_(size rs)) B : B \in A :: As -> stablemx (eigenspace A rs`_i) B.
   case: n => [|n'] in B A As AAsC AsC {dAAs rs1 Ask} * => B_AAs.
      by rewrite thinmx0 sub0mx.
  rewrite comm_mx_stable_eigenspace//.
  by move: B_AAs; rewrite !inE => /predU1P [->//|/AAsC].
apply/(@codiagonalizable_on _ _ _ (_ :: _) rs1) => [|i|i /=].
- apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj.
  by apply: uniqP rsij; rewrite ?inE.
- by apply/allP => B B_AAs; rewrite eAB.
rewrite (@conjmx_eigenvalue _ _ _ rs`_i) ?eq_row_base ?row_base_free//.
set Bs := map _ _; suff [P Punit /= PBs] : codiagonalizable Bs.
  exists P; rewrite /= ?PBs ?andbT// /(diagonalizable_for _ _).
  by rewrite conjmx_scalar ?mx_scalar_is_diag// row_free_unit.
apply: IHk; rewrite ?size_map/= ?ltnS//; split.
  apply/all_comm_mxP => _ _ /mapP[/= B BAs ->] /mapP[/= h hAs ->].
  rewrite -!conjmxM ?inE ?stablemx_row_base ?eAB ?inE ?BAs ?hAs ?orbT//.
  by rewrite (all_comm_mxP _ AsC).
move=> _ /mapP[/= B BAs ->].
have: stablemx (row_base (eigenspace A rs`_i)) B.
  by rewrite stablemx_row_base eAB// inE BAs orbT.
have := dAAs B; rewrite inE BAs orbT => /(_ isT) [P Punit].
move=> /diagonalizable_forPex[D /(simmxLR Punit)->] sePD.
have rAeP : row_free (row_base (eigenspace A rs`_i) *m invmx P).
  by rewrite /row_free mxrankMfree ?row_free_unit ?unitmx_inv// eq_row_base.
rewrite -conjMumx ?unitmx_inv ?row_base_free => [|//|//|//].
apply/diagonalizable_conj_diag => //.
by rewrite stablemx_comp// stablemx_unit ?unitmx_inv.
Qed.

End Diag.