1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq.
From mathcomp Require Import div fintype tuple finfun bigop fingroup perm.
From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv.
(******************************************************************************)
(* This file provides basic support for formal computation with matrices, *)
(* mainly results combining matrices and univariate polynomials, such as the *)
(* Cayley-Hamilton theorem; it also contains an extension of the first order *)
(* representation of algebra introduced in ssralg (GRing.term/formula). *)
(* rVpoly v == the little-endian decoding of the row vector v as a *)
(* polynomial p = \sum_i (v 0 i)%:P * 'X^i. *)
(* poly_rV p == the partial inverse to rVpoly, for polynomials of degree *)
(* less than d to 'rV_d (d is inferred from the context). *)
(* Sylvester_mx p q == the Sylvester matrix of p and q. *)
(* resultant p q == the resultant of p and q, i.e., \det (Sylvester_mx p q). *)
(* horner_mx A == the morphism from {poly R} to 'M_n (n of the form n'.+1) *)
(* mapping a (scalar) polynomial p to the value of its *)
(* scalar matrix interpretation at A (this is an instance of *)
(* the generic horner_morph construct defined in poly). *)
(* powers_mx A d == the d x (n ^ 2) matrix whose rows are the mxvec encodings *)
(* of the first d powers of A (n of the form n'.+1). Thus, *)
(* vec_mx (v *m powers_mx A d) = horner_mx A (rVpoly v). *)
(* char_poly A == the characteristic polynomial of A. *)
(* char_poly_mx A == a matrix whose determinant is char_poly A. *)
(* companionmx p == a matrix whose char_poly is p *)
(* mxminpoly A == the minimal polynomial of A, i.e., the smallest monic *)
(* polynomial that annihilates A (A must be nontrivial). *)
(* degree_mxminpoly A == the (positive) degree of mxminpoly A. *)
(* mx_inv_horner A == the inverse of horner_mx A for polynomials of degree *)
(* smaller than degree_mxminpoly A. *)
(* kermxpoly g p == the kernel of p(g) *)
(* geigenspace g a == the generalized eigenspace of g for eigenvalue a *)
(* := kermxpoly g ('X ^ n - a%:P) where g : 'M_n *)
(* eigenpoly g p <=> p is an eigen polynomial for g, i.e. kermxpoly g p != 0 *)
(* integralOver RtoK u <-> u is in the integral closure of the image of R *)
(* under RtoK : R -> K, i.e. u is a root of the image of a *)
(* monic polynomial in R. *)
(* algebraicOver FtoE u <-> u : E is algebraic over E; it is a root of the *)
(* image of a nonzero polynomial under FtoE; as F must be a *)
(* fieldType, this is equivalent to integralOver FtoE u. *)
(* integralRange RtoK <-> the integral closure of the image of R contains *)
(* all of K (:= forall u, integralOver RtoK u). *)
(* This toolkit for building formal matrix expressions is packaged in the *)
(* MatrixFormula submodule, and comprises the following: *)
(* eval_mx e == GRing.eval lifted to matrices (:= map_mx (GRing.eval e)). *)
(* mx_term A == GRing.Const lifted to matrices. *)
(* mulmx_term A B == the formal product of two matrices of terms. *)
(* mxrank_form m A == a GRing.formula asserting that the interpretation of *)
(* the term matrix A has rank m. *)
(* submx_form A B == a GRing.formula asserting that the row space of the *)
(* interpretation of the term matrix A is included in the *)
(* row space of the interpretation of B. *)
(* seq_of_rV v == the seq corresponding to a row vector. *)
(* row_env e == the flattening of a tensored environment e : seq 'rV_d. *)
(* row_var F d k == the term vector of width d such that for e : seq 'rV[F]_d *)
(* we have eval e 'X_k = eval_mx (row_env e) (row_var d k). *)
(* conjmx V f := V *m f *m pinvmx V *)
(* == the conjugation of f by V, i.e. "the" matrix of f *)
(* in the basis of row vectors of V. *)
(* Although this makes sense only when f stabilizes V, *)
(* the definition can be stated more generally. *)
(* restrictmx V := conjmx (row_base V) *)
(* A ~_P {in S'} == where P is a base change matrix, A is a matrix, and S *)
(* is a boolean predicate representing a set of matrices, *)
(* this states that conjmx P A is in S, *)
(* which means A is similar to a matrix in S. *)
(* From the latter, we derive several related notions: *)
(* A ~_P B := A ~_P {in pred1 B} *)
(* A is similar to B, with base change matrix P *)
(* A ~_{in S} B := exists P, P \in S /\ A ~_P B *)
(* == A is similar to B, with a base change matrix in S *)
(* A ~_{in S} {in S'} := exists P, P \in S /\ A ~_P {in S'} *)
(* == A is similar to a matrix in the class S', *)
(* with a base change matrix in S *)
(* all_simmx_in S As S' == all the matrices in the sequence As are *)
(* similar to some matrix in the predicate S', *)
(* with a base change matrix in S. *)
(* *)
(* We also specialize the class S' to diagonalizability: *)
(* diagonalizable_for P A := A ~_P {in is_diag_mx}. *)
(* diagonalizable_in S A := A ~_{in S} {in is_diag_mx}. *)
(* diagonalizable A := diagonalizable_in unitmx A. *)
(* codiagonalizable_in S As := all_simmx_in S As is_diag_mx. *)
(* codiagonalizable As := codiagonalizable_in unitmx As. *)
(* *)
(* The main results in diagnonalization theory are: *)
(* - diagonalizablePeigen: *)
(* a matrix is diagonalizable iff there is a sequence *)
(* of scalars r, such that the sum of the associated *)
(* eigenspaces is full. *)
(* - diagonalizableP: *)
(* a matrix is diagonalizable iff its minimal polynomial *)
(* divides a split polynomial with simple roots. *)
(* - codiagonalizableP: *)
(* a sequence of matrices are diagonalizable in the same basis *)
(* iff they are all diagonalizable and commute pairwize. *)
(* *)
(* Naming conventions: *)
(* - p, q are polynomials *)
(* - A, B, C are matrices *)
(* - f, g are matrices that are viewed as linear maps *)
(* - V, W are matrices that are viewed as subspaces *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory.
Import Monoid.Theory.
Local Open Scope ring_scope.
Import Pdiv.Idomain.
(* Row vector <-> bounded degree polynomial bijection *)
Section RowPoly.
Variables (R : ringType) (d : nat).
Implicit Types u v : 'rV[R]_d.
Implicit Types p q : {poly R}.
Definition rVpoly v := \poly_(k < d) (if insub k is Some i then v 0 i else 0).
Definition poly_rV p := \row_(i < d) p`_i.
Lemma coef_rVpoly v k : (rVpoly v)`_k = if insub k is Some i then v 0 i else 0.
Proof. by rewrite coef_poly; case: insubP => [i ->|]; rewrite ?if_same. Qed.
Lemma coef_rVpoly_ord v (i : 'I_d) : (rVpoly v)`_i = v 0 i.
Proof. by rewrite coef_rVpoly valK. Qed.
Lemma rVpoly_delta i : rVpoly (delta_mx 0 i) = 'X^i.
Proof.
apply/polyP=> j; rewrite coef_rVpoly coefXn.
case: insubP => [k _ <- | j_ge_d]; first by rewrite mxE.
by case: eqP j_ge_d => // ->; rewrite ltn_ord.
Qed.
Lemma rVpolyK : cancel rVpoly poly_rV.
Proof. by move=> u; apply/rowP=> i; rewrite mxE coef_rVpoly_ord. Qed.
Lemma poly_rV_K p : size p <= d -> rVpoly (poly_rV p) = p.
Proof.
move=> le_p_d; apply/polyP=> k; rewrite coef_rVpoly.
case: insubP => [i _ <- | ]; first by rewrite mxE.
by rewrite -ltnNge => le_d_l; rewrite nth_default ?(leq_trans le_p_d).
Qed.
Lemma poly_rV_is_linear : linear poly_rV.
Proof. by move=> a p q; apply/rowP=> i; rewrite !mxE coefD coefZ. Qed.
HB.instance Definition _ := GRing.isLinear.Build R {poly R} 'rV_d _ poly_rV
poly_rV_is_linear.
Lemma rVpoly_is_linear : linear rVpoly.
Proof.
move=> a u v; apply/polyP=> k; rewrite coefD coefZ !coef_rVpoly.
by case: insubP => [i _ _ | _]; rewrite ?mxE // mulr0 addr0.
Qed.
HB.instance Definition _ := GRing.isLinear.Build R 'rV_d {poly R} _ rVpoly
rVpoly_is_linear.
End RowPoly.
Prenex Implicits rVpoly rVpolyK.
Arguments poly_rV {R d}.
Arguments poly_rV_K {R d} [p] le_p_d.
Section Resultant.
Variables (R : ringType) (p q : {poly R}).
Let dS := ((size q).-1 + (size p).-1)%N.
Local Notation band r := (lin1_mx (poly_rV \o r \o* rVpoly)).
Definition Sylvester_mx : 'M[R]_dS := col_mx (band p) (band q).
Lemma Sylvester_mxE (i j : 'I_dS) :
let S_ r k := r`_(j - k) *+ (k <= j) in
Sylvester_mx i j = match split i with inl k => S_ p k | inr k => S_ q k end.
Proof.
move=> S_ /[1!mxE]; case: {i}(split i) => i /[!mxE]/=;
by rewrite rVpoly_delta coefXnM ltnNge if_neg -mulrb.
Qed.
Definition resultant := \det Sylvester_mx.
End Resultant.
Prenex Implicits Sylvester_mx resultant.
Lemma resultant_in_ideal (R : comRingType) (p q : {poly R}) :
size p > 1 -> size q > 1 ->
{uv : {poly R} * {poly R} | size uv.1 < size q /\ size uv.2 < size p
& (resultant p q)%:P = uv.1 * p + uv.2 * q}.
Proof.
move=> p_nc q_nc; pose dp := (size p).-1; pose dq := (size q).-1.
pose S := Sylvester_mx p q; pose dS := (dq + dp)%N.
have dS_gt0: dS > 0 by rewrite /dS /dq -(subnKC q_nc).
pose j0 := Ordinal dS_gt0.
pose Ss0 := col_mx (p *: \col_(i < dq) 'X^i) (q *: \col_(i < dp) 'X^i).
pose Ss := \matrix_(i, j) (if j == j0 then Ss0 i 0 else (S i j)%:P).
pose u ds s := \sum_(i < ds) cofactor Ss (s i) j0 * 'X^i.
exists (u _ (lshift dp), u _ ((rshift dq) _)).
suffices sz_u ds s: ds > 1 -> size (u ds.-1 s) < ds by rewrite !sz_u.
move/ltn_predK=> {2}<-; apply: leq_trans (size_sum _ _ _) _.
apply/bigmax_leqP=> i _.
have ->: cofactor Ss (s i) j0 = (cofactor S (s i) j0)%:P.
rewrite rmorphM /= rmorph_sign -det_map_mx; congr (_ * \det _).
by apply/matrixP=> i' j'; rewrite !mxE.
apply: leq_trans (size_mul_leq _ _) (leq_trans _ (valP i)).
by rewrite size_polyC size_polyXn addnS /= -add1n leq_add2r leq_b1.
transitivity (\det Ss); last first.
rewrite (expand_det_col Ss j0) big_split_ord !big_distrl /=.
by congr (_ + _); apply: eq_bigr => i _;
rewrite mxE eqxx (col_mxEu, col_mxEd) !mxE mulrC mulrA mulrAC.
pose S_ j1 := map_mx polyC (\matrix_(i, j) S i (if j == j0 then j1 else j)).
pose Ss0_ i dj := \poly_(j < dj) S i (insubd j0 j).
pose Ss_ dj := \matrix_(i, j) (if j == j0 then Ss0_ i dj else (S i j)%:P).
have{Ss u} ->: Ss = Ss_ dS.
apply/matrixP=> i j; rewrite mxE [in RHS]mxE; case: (j == j0) => {j}//.
apply/polyP=> k; rewrite coef_poly Sylvester_mxE mxE.
have [k_ge_dS | k_lt_dS] := leqP dS k.
case: (split i) => {}i; rewrite !mxE coefMXn;
case: ifP => // /negbT; rewrite -ltnNge ltnS => hi.
apply: (leq_sizeP _ _ (leqnn (size p))); rewrite -(ltn_predK p_nc).
by rewrite ltn_subRL (leq_trans _ k_ge_dS) // ltn_add2r.
- apply: (leq_sizeP _ _ (leqnn (size q))); rewrite -(ltn_predK q_nc).
by rewrite ltn_subRL (leq_trans _ k_ge_dS) // addnC ltn_add2l.
by rewrite insubdK //; case: (split i) => {}i;
rewrite !mxE coefMXn; case: leqP.
case: (ubnPgeq dS) (dS_gt0); elim=> // dj IHj ltjS _; pose j1 := Ordinal ltjS.
pose rj0T (A : 'M[{poly R}]_dS) := row j0 A^T.
have: rj0T (Ss_ dj.+1) = 'X^dj *: rj0T (S_ j1) + 1 *: rj0T (Ss_ dj).
apply/rowP=> i; apply/polyP=> k; rewrite scale1r !(Sylvester_mxE, mxE) eqxx.
rewrite coefD coefXnM coefC !coef_poly ltnS subn_eq0 ltn_neqAle andbC.
have [k_le_dj | k_gt_dj] /= := leqP k dj; last by rewrite addr0.
rewrite Sylvester_mxE insubdK; last exact: leq_ltn_trans (ltjS).
by have [->|] := eqP; rewrite (addr0, add0r).
rewrite -det_tr => /determinant_multilinear->;
try by apply/matrixP=> i j; rewrite !mxE lift_eqF.
have [dj0 | dj_gt0] := posnP dj; rewrite ?dj0 !mul1r.
rewrite !det_tr det_map_mx addrC (expand_det_col _ j0) big1 => [|i _].
rewrite add0r; congr (\det _)%:P.
apply/matrixP=> i j; rewrite [in RHS]mxE; case: eqP => // ->.
by congr (S i _); apply: val_inj.
by rewrite mxE /= [Ss0_ _ _]poly_def big_ord0 mul0r.
have /determinant_alternate->: j1 != j0 by rewrite -val_eqE -lt0n.
by rewrite mulr0 add0r det_tr IHj // ltnW.
by move=> i; rewrite !mxE if_same.
Qed.
Lemma resultant_eq0 (R : idomainType) (p q : {poly R}) :
(resultant p q == 0) = (size (gcdp p q) > 1).
Proof.
have dvdpp := dvdpp; set r := gcdp p q.
pose dp := (size p).-1; pose dq := (size q).-1.
have /andP[r_p r_q]: (r %| p) && (r %| q) by rewrite -dvdp_gcd.
apply/det0P/idP=> [[uv nz_uv] | r_nonC].
have [p0 _ | p_nz] := eqVneq p 0.
have: dq + dp > 0.
rewrite lt0n; apply: contraNneq nz_uv => dqp0.
by rewrite dqp0 in uv *; rewrite [uv]thinmx0.
by rewrite /dp /dq /r p0 size_poly0 addn0 gcd0p -subn1 subn_gt0.
do [rewrite -[uv]hsubmxK -{1}row_mx0 mul_row_col !mul_rV_lin1 /=] in nz_uv *.
set u := rVpoly _; set v := rVpoly _; pose m := gcdp (v * p) (v * q).
have lt_vp: size v < size p by rewrite (polySpred p_nz) ltnS size_poly.
move/(congr1 rVpoly)/eqP; rewrite -linearD linear0 poly_rV_K; last first.
rewrite (leq_trans (size_add _ _)) // geq_max.
rewrite !(leq_trans (size_mul_leq _ _)) // -subn1 leq_subLR.
by rewrite addnC addnA leq_add ?leqSpred ?size_poly.
by rewrite addnCA leq_add ?leqSpred ?size_poly.
rewrite addrC addr_eq0 => /eqP vq_up.
have nz_v: v != 0.
apply: contraNneq nz_uv => v0; apply/eqP.
congr row_mx; apply: (can_inj rVpolyK); rewrite linear0 // -/u.
by apply: contra_eq vq_up; rewrite v0 mul0r -addr_eq0 add0r => /mulf_neq0->.
have r_nz: r != 0 := dvdpN0 r_p p_nz.
have /dvdpP [[c w] /= nz_c wv]: v %| m by rewrite dvdp_gcd !dvdp_mulr.
have m_wd d: m %| v * d -> w %| d.
case/dvdpP=> [[k f]] /= nz_k /(congr1 ( *:%R c)).
rewrite mulrC scalerA scalerAl scalerAr wv mulrA => /(mulIf nz_v)def_fw.
by apply/dvdpP; exists (c * k, f); rewrite //= mulf_neq0.
have w_r: w %| r by rewrite dvdp_gcd !m_wd ?dvdp_gcdl ?dvdp_gcdr.
have w_nz: w != 0 := dvdpN0 w_r r_nz.
have p_m: p %| m by rewrite dvdp_gcd vq_up -mulNr !dvdp_mull.
rewrite (leq_trans _ (dvdp_leq r_nz w_r)) // -(ltn_add2l (size v)).
rewrite addnC -ltn_subRL subn1 -size_mul // mulrC -wv size_scale //.
rewrite (leq_trans lt_vp) // dvdp_leq // -size_poly_eq0.
by rewrite -(size_scale _ nz_c) size_poly_eq0 wv mulf_neq0.
have [[c p'] /= nz_c p'r] := dvdpP _ _ r_p.
have [[k q'] /= nz_k q'r] := dvdpP _ _ r_q.
have def_r := subnKC r_nonC; have r_nz: r != 0 by rewrite -size_poly_eq0 -def_r.
have le_p'_dp: size p' <= dp.
have [-> | nz_p'] := eqVneq p' 0; first by rewrite size_poly0.
by rewrite /dp -(size_scale p nz_c) p'r size_mul // addnC -def_r leq_addl.
have le_q'_dq: size q' <= dq.
have [-> | nz_q'] := eqVneq q' 0; first by rewrite size_poly0.
by rewrite /dq -(size_scale q nz_k) q'r size_mul // addnC -def_r leq_addl.
exists (row_mx (- c *: poly_rV q') (k *: poly_rV p')); last first.
rewrite mul_row_col scaleNr mulNmx !mul_rV_lin1 /= 2!linearZ /= !poly_rV_K //.
by rewrite !scalerCA p'r q'r mulrCA addNr.
apply: contraNneq r_nz; rewrite -row_mx0 => /eq_row_mx[/eqP].
rewrite scaleNr oppr_eq0 gcdp_eq0 -!size_poly_eq0 => /eqP q0 p0.
rewrite -(size_scale p nz_c) -(size_scale (c *: p) nz_k) p'r.
rewrite -(size_scale q nz_k) -(size_scale (k *: q) nz_c) q'r !scalerAl.
rewrite -(poly_rV_K le_p'_dp) -(poly_rV_K le_q'_dq).
by rewrite -2![_ *: rVpoly _]linearZ p0 q0 !linear0 mul0r size_poly0.
Qed.
Section HornerMx.
Variables (R : comRingType) (n' : nat).
Local Notation n := n'.+1.
Implicit Types (A B : 'M[R]_n) (p q : {poly R}).
Section OneMatrix.
Variable A : 'M[R]_n.
Definition horner_mx := horner_morph (comm_mx_scalar^~ A).
HB.instance Definition _ := GRing.RMorphism.on horner_mx.
Lemma horner_mx_C a : horner_mx a%:P = a%:M.
Proof. exact: horner_morphC. Qed.
Lemma horner_mx_X : horner_mx 'X = A. Proof. exact: horner_morphX. Qed.
Lemma horner_mxZ : scalable horner_mx.
Proof.
move=> a p /=; rewrite -mul_polyC rmorphM /=.
by rewrite horner_mx_C [_ * _]mul_scalar_mx.
Qed.
HB.instance Definition _ := GRing.isScalable.Build R _ _ *:%R horner_mx
horner_mxZ.
Definition powers_mx d := \matrix_(i < d) mxvec (A ^+ i).
Lemma horner_rVpoly m (u : 'rV_m) :
horner_mx (rVpoly u) = vec_mx (u *m powers_mx m).
Proof.
rewrite mulmx_sum_row [rVpoly u]poly_def 2!linear_sum; apply: eq_bigr => i _.
by rewrite valK /= 2!linearZ rmorphXn/= horner_mx_X rowK mxvecK.
Qed.
End OneMatrix.
Lemma horner_mx_diag (d : 'rV[R]_n) (p : {poly R}) :
horner_mx (diag_mx d) p = diag_mx (map_mx (horner p) d).
Proof.
apply/matrixP => i j; rewrite !mxE.
elim/poly_ind: p => [|p c ihp]; first by rewrite rmorph0 horner0 mxE mul0rn.
rewrite !hornerE mulrnDl rmorphD rmorphM /= horner_mx_X horner_mx_C !mxE.
rewrite (bigD1 j)//= ihp mxE eqxx mulr1n -mulrnAl big1 ?addr0.
by have [->|_] := eqVneq; rewrite /= !(mulr1n, addr0, mul0r).
by move=> k /negPf nkF; rewrite mxE nkF mulr0.
Qed.
Lemma comm_mx_horner A B p : comm_mx A B -> comm_mx A (horner_mx B p).
Proof.
move=> fg; apply: commr_horner => // i.
by rewrite coef_map; apply/comm_scalar_mx.
Qed.
Lemma comm_horner_mx A B p : comm_mx A B -> comm_mx (horner_mx A p) B.
Proof. by move=> ?; apply/comm_mx_sym/comm_mx_horner/comm_mx_sym. Qed.
Lemma comm_horner_mx2 A p q : GRing.comm (horner_mx A p) (horner_mx A q).
Proof. exact/comm_mx_horner/comm_horner_mx. Qed.
End HornerMx.
Lemma horner_mx_stable (K : fieldType) m n p
(V : 'M[K]_(n.+1, m.+1)) (f : 'M_m.+1) :
stablemx V f -> stablemx V (horner_mx f p).
Proof.
move=> V_fstab; elim/poly_ind: p => [|p c]; first by rewrite rmorph0 stablemx0.
move=> fp_stable; rewrite rmorphD rmorphM/= horner_mx_X horner_mx_C.
by rewrite stablemxD ?stablemxM ?fp_stable ?stablemxC.
Qed.
Prenex Implicits horner_mx powers_mx.
Section CharPoly.
Variables (R : ringType) (n : nat) (A : 'M[R]_n).
Implicit Types p q : {poly R}.
Definition char_poly_mx := 'X%:M - map_mx (@polyC R) A.
Definition char_poly := \det char_poly_mx.
Let diagA := [seq A i i | i <- index_enum _ & true].
Let size_diagA : size diagA = n.
Proof. by rewrite -[n]card_ord size_map; have [e _ _ []] := big_enumP. Qed.
Let split_diagA :
exists2 q, \prod_(x <- diagA) ('X - x%:P) + q = char_poly & size q <= n.-1.
Proof.
rewrite [char_poly](bigD1 1%g) //=; set q := \sum_(s | _) _; exists q.
congr (_ + _); rewrite odd_perm1 mul1r big_map big_filter /=.
by apply: eq_bigr => i _; rewrite !mxE perm1 eqxx.
apply: leq_trans {q}(size_sum _ _ _) _; apply/bigmax_leqP=> s nt_s.
have{nt_s} [i nfix_i]: exists i, s i != i.
apply/existsP; rewrite -negb_forall; apply: contra nt_s => s_1.
by apply/eqP/permP=> i; apply/eqP; rewrite perm1 (forallP s_1).
apply: leq_trans (_ : #|[pred j | s j == j]|.+1 <= n.-1).
rewrite -sum1_card (@big_mkcond nat) /= size_Msign.
apply: (big_ind2 (fun p m => size p <= m.+1)) => [| p mp q mq IHp IHq | j _].
- by rewrite size_poly1.
- apply: leq_trans (size_mul_leq _ _) _.
by rewrite -subn1 -addnS leq_subLR addnA leq_add.
rewrite !mxE eq_sym !inE; case: (s j == j); first by rewrite polyseqXsubC.
by rewrite sub0r size_opp size_polyC leq_b1.
rewrite -[n in n.-1]card_ord -(cardC (pred2 (s i) i)) card2 nfix_i !ltnS.
apply/subset_leq_card/subsetP=> j /(_ =P j) fix_j.
rewrite !inE -{1}fix_j (inj_eq perm_inj) orbb.
by apply: contraNneq nfix_i => <-; rewrite fix_j.
Qed.
Lemma size_char_poly : size char_poly = n.+1.
Proof.
have [q <- lt_q_n] := split_diagA; have le_q_n := leq_trans lt_q_n (leq_pred n).
by rewrite size_addl size_prod_XsubC size_diagA.
Qed.
Lemma char_poly_monic : char_poly \is monic.
Proof.
rewrite monicE -(monicP (monic_prod_XsubC diagA xpredT id)).
rewrite !lead_coefE size_char_poly.
have [q <- lt_q_n] := split_diagA; have le_q_n := leq_trans lt_q_n (leq_pred n).
by rewrite size_prod_XsubC size_diagA coefD (nth_default 0 le_q_n) addr0.
Qed.
Lemma char_poly_trace : n > 0 -> char_poly`_n.-1 = - \tr A.
Proof.
move=> n_gt0; have [q <- lt_q_n] := split_diagA; set p := \prod_(x <- _) _.
rewrite coefD {q lt_q_n}(nth_default 0 lt_q_n) addr0.
have{n_gt0} ->: p`_n.-1 = ('X * p)`_n by rewrite coefXM eqn0Ngt n_gt0.
have ->: \tr A = \sum_(x <- diagA) x by rewrite big_map big_filter.
rewrite -size_diagA {}/p; elim: diagA => [|x d IHd].
by rewrite !big_nil mulr1 coefX oppr0.
rewrite !big_cons coefXM mulrBl coefB IHd opprD addrC; congr (- _ + _).
rewrite mul_polyC coefZ [size _]/= -(size_prod_XsubC _ id) -lead_coefE.
by rewrite (monicP _) ?monic_prod_XsubC ?mulr1.
Qed.
Lemma char_poly_det : char_poly`_0 = (- 1) ^+ n * \det A.
Proof.
rewrite big_distrr coef_sum [0%N]lock /=; apply: eq_bigr => s _.
rewrite -{1}rmorphN -rmorphXn mul_polyC coefZ /=.
rewrite mulrA -exprD addnC exprD -mulrA -lock; congr (_ * _).
transitivity (\prod_(i < n) - A i (s i)); last by rewrite prodrN card_ord.
elim: (index_enum _) => [|i e IHe]; rewrite !(big_nil, big_cons) ?coef1 //.
by rewrite coefM big_ord1 IHe !mxE coefB coefC coefMn coefX mul0rn sub0r.
Qed.
End CharPoly.
Prenex Implicits char_poly_mx char_poly.
Lemma mx_poly_ring_isom (R : ringType) n' (n := n'.+1) :
exists phi : {rmorphism 'M[{poly R}]_n -> {poly 'M[R]_n}},
[/\ bijective phi,
forall p, phi p%:M = map_poly scalar_mx p,
forall A, phi (map_mx polyC A) = A%:P
& forall A i j k, (phi A)`_k i j = (A i j)`_k].
Proof.
set M_RX := 'M[{poly R}]_n; set MR_X := ({poly 'M[R]_n}).
pose Msize (A : M_RX) := \max_i \max_j size (A i j).
pose phi (A : M_RX) := \poly_(k < Msize A) \matrix_(i, j) (A i j)`_k.
have coef_phi A i j k: (phi A)`_k i j = (A i j)`_k.
rewrite coef_poly; case: (ltnP k _) => le_m_k; rewrite mxE // nth_default //.
by apply: leq_trans (leq_trans (leq_bigmax i) le_m_k); apply: (leq_bigmax j).
have phi_is_additive : additive phi.
move=> A B; apply/polyP => k; apply/matrixP => i j.
by rewrite !(coef_phi, mxE, coefD, coefN).
have phi_is_multiplicative : multiplicative phi.
split=> [A B|]; apply/polyP => k; apply/matrixP => i j; last first.
by rewrite coef_phi mxE coefMn !coefC; case: (k == _); rewrite ?mxE ?mul0rn.
rewrite !coef_phi !mxE !coefM summxE coef_sum.
pose F k1 k2 := (A i k1)`_k2 * (B k1 j)`_(k - k2).
transitivity (\sum_k1 \sum_(k2 < k.+1) F k1 k2); rewrite {}/F.
by apply: eq_bigr=> k1 _; rewrite coefM.
rewrite exchange_big /=; apply: eq_bigr => k2 _.
by rewrite mxE; apply: eq_bigr => k1 _; rewrite !coef_phi.
have bij_phi: bijective phi.
exists (fun P : MR_X => \matrix_(i, j) \poly_(k < size P) P`_k i j) => [A|P].
apply/matrixP=> i j; rewrite mxE; apply/polyP=> k.
rewrite coef_poly -coef_phi.
by case: leqP => // P_le_k; rewrite nth_default ?mxE.
apply/polyP=> k; apply/matrixP=> i j; rewrite coef_phi mxE coef_poly.
by case: leqP => // P_le_k; rewrite nth_default ?mxE.
pose phiaM := GRing.isAdditive.Build _ _ phi phi_is_additive.
pose phimM := GRing.isMultiplicative.Build _ _ phi phi_is_multiplicative.
pose phiRM : {rmorphism _ -> _} := HB.pack phi phiaM phimM.
exists phiRM; split=> // [p | A]; apply/polyP=> k; apply/matrixP=> i j.
by rewrite coef_phi coef_map !mxE coefMn.
by rewrite coef_phi !mxE !coefC; case k; last rewrite /= mxE.
Qed.
Theorem Cayley_Hamilton (R : comRingType) n' (A : 'M[R]_n'.+1) :
horner_mx A (char_poly A) = 0.
Proof.
have [phi [_ phiZ phiC _]] := mx_poly_ring_isom R n'.
apply/rootP/factor_theorem; rewrite -phiZ -mul_adj_mx rmorphM /=.
by move: (phi _) => q; exists q; rewrite rmorphB phiC phiZ map_polyX.
Qed.
Lemma eigenvalue_root_char (F : fieldType) n (A : 'M[F]_n) a :
eigenvalue A a = root (char_poly A) a.
Proof.
transitivity (\det (a%:M - A) == 0).
apply/eigenvalueP/det0P=> [[v Av_av v_nz] | [v v_nz Av_av]]; exists v => //.
by rewrite mulmxBr Av_av mul_mx_scalar subrr.
by apply/eqP; rewrite -mul_mx_scalar eq_sym -subr_eq0 -mulmxBr Av_av.
congr (_ == 0); rewrite horner_sum; apply: eq_bigr => s _.
rewrite hornerM horner_exp !hornerE; congr (_ * _).
rewrite (big_morph _ (fun p q => hornerM p q a) (hornerC 1 a)).
by apply: eq_bigr => i _; rewrite !mxE !(hornerE, hornerMn).
Qed.
Lemma char_poly_trig {R : comRingType} n (A : 'M[R]_n) : is_trig_mx A ->
char_poly A = \prod_(i < n) ('X - (A i i)%:P).
Proof.
move=> /is_trig_mxP Atrig; rewrite /char_poly det_trig.
by apply: eq_bigr => i; rewrite !mxE eqxx.
by apply/is_trig_mxP => i j lt_ij; rewrite !mxE -val_eqE ltn_eqF ?Atrig ?subrr.
Qed.
Definition companionmx {R : ringType} (p : seq R) (d := (size p).-1) :=
\matrix_(i < d, j < d)
if (i == d.-1 :> nat) then - p`_j else (i.+1 == j :> nat)%:R.
Lemma companionmxK {R : comRingType} (p : {poly R}) :
p \is monic -> char_poly (companionmx p) = p.
Proof.
pose D n : 'M[{poly R}]_n := \matrix_(i, j)
('X *+ (i == j.+1 :> nat) - ((i == j)%:R)%:P).
have detD n : \det (D n) = (-1) ^+ n.
elim: n => [|n IHn]; first by rewrite det_mx00.
rewrite (expand_det_row _ ord0) big_ord_recl !mxE /= sub0r.
rewrite big1 ?addr0; last by move=> i _; rewrite !mxE /= subrr mul0r.
rewrite /cofactor mul1r [X in \det X](_ : _ = D _) ?IHn ?exprS//.
by apply/matrixP=> i j; rewrite !mxE /= /bump !add1n eqSS.
elim/poly_ind: p => [|p c IHp].
by rewrite monicE lead_coef0 eq_sym oner_eq0.
have [->|p_neq0] := eqVneq p 0.
rewrite mul0r add0r monicE lead_coefC => /eqP->.
by rewrite /companionmx /char_poly size_poly1 det_mx00.
rewrite monicE lead_coefDl ?lead_coefMX => [p_monic|]; last first.
rewrite size_polyC size_mulX ?polyX_eq0// ltnS.
by rewrite (leq_trans (leq_b1 _)) ?size_poly_gt0.
rewrite -[in RHS]IHp // /companionmx size_MXaddC (negPf p_neq0) /=.
rewrite /char_poly polySpred //.
have [->|spV1_gt0] := posnP (size p).-1.
rewrite [X in \det X]mx11_scalar det_scalar1 !mxE ?eqxx det_mx00.
by rewrite mul1r -horner_coef0 hornerMXaddC mulr0 add0r rmorphN opprK.
rewrite (expand_det_col _ ord0) /= -[(size p).-1]prednK //.
rewrite big_ord_recr big_ord_recl/= big1 ?add0r //=; last first.
move=> i _; rewrite !mxE -val_eqE /= /bump leq0n add1n eqSS.
by rewrite ltn_eqF ?subrr ?mul0r.
rewrite !mxE ?subnn -horner_coef0 /= hornerMXaddC.
rewrite !(eqxx, mulr0, add0r, addr0, subr0, rmorphN, opprK)/=.
rewrite mulrC /cofactor; congr (_ * 'X + _).
rewrite /cofactor -signr_odd oddD addbb mul1r; congr (\det _).
apply/matrixP => i j; rewrite !mxE -val_eqE coefD coefMX coefC.
by rewrite /= /bump /= !add1n !eqSS addr0.
rewrite /cofactor [X in \det X](_ : _ = D _).
by rewrite detD /= addn0 -signr_odd -signr_addb addbb mulr1.
apply/matrixP=> i j; rewrite !mxE -!val_eqE /= /bump /=.
by rewrite leqNgt ltn_ord add0n add1n [_ == _.-2.+1]ltn_eqF.
Qed.
Lemma mulmx_delta_companion (R : ringType) (p : seq R)
(i: 'I_(size p).-1) (i_small : i.+1 < (size p).-1):
delta_mx 0 i *m companionmx p = delta_mx 0 (Ordinal i_small) :> 'rV__.
Proof.
apply/rowP => j; rewrite !mxE (bigD1 i) //= ?(=^~val_eqE, mxE) /= eqxx mul1r.
rewrite ltn_eqF ?big1 ?addr0 1?eq_sym //; last first.
by rewrite -ltnS prednK // (leq_trans _ i_small).
by move=> k /negPf ki_eqF; rewrite !mxE eqxx ki_eqF mul0r.
Qed.
Lemma row'_col'_char_poly_mx {R : ringType} m i (M : 'M[R]_m) :
row' i (col' i (char_poly_mx M)) = char_poly_mx (row' i (col' i M)).
Proof. by apply/matrixP => k l; rewrite !mxE (inj_eq lift_inj). Qed.
Lemma char_block_diag_mx {R : ringType} m n (A : 'M[R]_m) (B : 'M[R]_n) :
char_poly_mx (block_mx A 0 0 B) =
block_mx (char_poly_mx A) 0 0 (char_poly_mx B).
Proof.
rewrite /char_poly_mx map_block_mx/= !map_mx0.
by rewrite scalar_mx_block opp_block_mx add_block_mx !subr0.
Qed.
Section MinPoly.
Variables (F : fieldType) (n' : nat).
Local Notation n := n'.+1.
Variable A : 'M[F]_n.
Implicit Types p q : {poly F}.
Fact degree_mxminpoly_proof : exists d, \rank (powers_mx A d.+1) <= d.
Proof. by exists (n ^ 2)%N; rewrite rank_leq_col. Qed.
Definition degree_mxminpoly := ex_minn degree_mxminpoly_proof.
Local Notation d := degree_mxminpoly.
Local Notation Ad := (powers_mx A d).
Lemma mxminpoly_nonconstant : d > 0.
Proof.
rewrite /d; case: ex_minnP => -[] //; rewrite leqn0 mxrank_eq0; move/eqP.
by move/row_matrixP/(_ 0)/eqP; rewrite rowK row0 mxvec_eq0 -mxrank_eq0 mxrank1.
Qed.
Lemma minpoly_mx1 : (1%:M \in Ad)%MS.
Proof.
by apply: (eq_row_sub (Ordinal mxminpoly_nonconstant)); rewrite rowK.
Qed.
Lemma minpoly_mx_free : row_free Ad.
Proof.
have:= mxminpoly_nonconstant; rewrite /d; case: ex_minnP => -[] // d' _ /(_ d').
by move/implyP; rewrite ltnn implybF -ltnS ltn_neqAle rank_leq_row andbT negbK.
Qed.
Lemma horner_mx_mem p : (horner_mx A p \in Ad)%MS.
Proof.
elim/poly_ind: p => [|p a IHp]; first by rewrite rmorph0 // linear0 sub0mx.
rewrite rmorphD rmorphM /= horner_mx_C horner_mx_X.
rewrite addrC -scalemx1 linearP /= -(mul_vec_lin (mulmxr A)).
case/submxP: IHp => u ->{p}.
have: (powers_mx A (1 + d) <= Ad)%MS.
rewrite -(geq_leqif (mxrank_leqif_sup _)).
by rewrite (eqnP minpoly_mx_free) /d; case: ex_minnP.
rewrite addnC; apply/row_subP=> i.
by apply: eq_row_sub (lshift 1 i) _; rewrite !rowK.
apply: submx_trans; rewrite addmx_sub ?scalemx_sub //.
by apply: (eq_row_sub 0); rewrite rowK.
rewrite -mulmxA mulmx_sub {u}//; apply/row_subP=> i.
rewrite row_mul rowK mul_vec_lin /= mulmxE -exprSr.
by apply: (eq_row_sub (rshift 1 i)); rewrite rowK.
Qed.
Definition mx_inv_horner B := rVpoly (mxvec B *m pinvmx Ad).
Lemma mx_inv_horner0 : mx_inv_horner 0 = 0.
Proof. by rewrite /mx_inv_horner !(linear0, mul0mx). Qed.
Lemma mx_inv_hornerK B : (B \in Ad)%MS -> horner_mx A (mx_inv_horner B) = B.
Proof. by move=> sBAd; rewrite horner_rVpoly mulmxKpV ?mxvecK. Qed.
Lemma minpoly_mxM B C : (B \in Ad -> C \in Ad -> B * C \in Ad)%MS.
Proof.
move=> AdB AdC; rewrite -(mx_inv_hornerK AdB) -(mx_inv_hornerK AdC).
by rewrite -rmorphM ?horner_mx_mem.
Qed.
Lemma minpoly_mx_ring : mxring Ad.
Proof.
apply/andP; split; first exact/mulsmx_subP/minpoly_mxM.
apply/mxring_idP; exists 1%:M; split=> *; rewrite ?mulmx1 ?mul1mx //.
by rewrite -mxrank_eq0 mxrank1.
exact: minpoly_mx1.
Qed.
Definition mxminpoly := 'X^d - mx_inv_horner (A ^+ d).
Local Notation p_A := mxminpoly.
Lemma size_mxminpoly : size p_A = d.+1.
Proof. by rewrite size_addl ?size_polyXn // size_opp ltnS size_poly. Qed.
Lemma mxminpoly_monic : p_A \is monic.
Proof.
rewrite monicE /lead_coef size_mxminpoly coefB coefXn eqxx /=.
by rewrite nth_default ?size_poly // subr0.
Qed.
Lemma size_mod_mxminpoly p : size (p %% p_A) <= d.
Proof.
by rewrite -ltnS -size_mxminpoly ltn_modp // -size_poly_eq0 size_mxminpoly.
Qed.
Lemma mx_root_minpoly : horner_mx A p_A = 0.
Proof.
rewrite rmorphB -{3}(horner_mx_X A) -rmorphXn /=.
by rewrite mx_inv_hornerK ?subrr ?horner_mx_mem.
Qed.
Lemma horner_rVpolyK (u : 'rV_d) :
mx_inv_horner (horner_mx A (rVpoly u)) = rVpoly u.
Proof.
congr rVpoly; rewrite horner_rVpoly vec_mxK.
by apply: (row_free_inj minpoly_mx_free); rewrite mulmxKpV ?submxMl.
Qed.
Lemma horner_mxK p : mx_inv_horner (horner_mx A p) = p %% p_A.
Proof.
rewrite {1}(Pdiv.IdomainMonic.divp_eq mxminpoly_monic p) rmorphD rmorphM /=.
rewrite mx_root_minpoly mulr0 add0r.
by rewrite -(poly_rV_K (size_mod_mxminpoly _)) horner_rVpolyK.
Qed.
Lemma mxminpoly_min p : horner_mx A p = 0 -> p_A %| p.
Proof. by move=> pA0; rewrite /dvdp -horner_mxK pA0 mx_inv_horner0. Qed.
Lemma mxminpoly_minP p : reflect (horner_mx A p = 0) (p_A %| p).
Proof.
apply: (iffP idP); last exact: mxminpoly_min.
by move=> /Pdiv.Field.dvdpP[q ->]; rewrite rmorphM/= mx_root_minpoly mulr0.
Qed.
Lemma dvd_mxminpoly p : (p_A %| p) = (horner_mx A p == 0).
Proof. exact/mxminpoly_minP/eqP. Qed.
Lemma horner_rVpoly_inj : injective (horner_mx A \o rVpoly : 'rV_d -> 'M_n).
Proof.
apply: can_inj (poly_rV \o mx_inv_horner) _ => u /=.
by rewrite horner_rVpolyK rVpolyK.
Qed.
Lemma mxminpoly_linear_is_scalar : (d <= 1) = is_scalar_mx A.
Proof.
have scalP := has_non_scalar_mxP minpoly_mx1.
rewrite leqNgt -(eqnP minpoly_mx_free); apply/scalP/idP=> [|[[B]]].
case scalA: (is_scalar_mx A); [by right | left].
by exists A; rewrite ?scalA // -{1}(horner_mx_X A) horner_mx_mem.
move/mx_inv_hornerK=> <- nsB; case/is_scalar_mxP=> a defA; case/negP: nsB.
move: {B}(_ B); apply: poly_ind => [|p c].
by rewrite rmorph0 ?mx0_is_scalar.
rewrite rmorphD ?rmorphM /= horner_mx_X defA; case/is_scalar_mxP=> b ->.
by rewrite -rmorphM horner_mx_C -rmorphD /= scalar_mx_is_scalar.
Qed.
Lemma mxminpoly_dvd_char : p_A %| char_poly A.
Proof. exact/mxminpoly_min/Cayley_Hamilton. Qed.
Lemma eigenvalue_root_min a : eigenvalue A a = root p_A a.
Proof.
apply/idP/idP=> Aa; last first.
rewrite eigenvalue_root_char !root_factor_theorem in Aa *.
exact: dvdp_trans Aa mxminpoly_dvd_char.
have{Aa} [v Av_av v_nz] := eigenvalueP Aa.
apply: contraR v_nz => pa_nz; rewrite -{pa_nz}(eqmx_eq0 (eqmx_scale _ pa_nz)).
apply/eqP; rewrite -(mulmx0 _ v) -mx_root_minpoly.
elim/poly_ind: p_A => [|p c IHp].
by rewrite rmorph0 horner0 scale0r mulmx0.
rewrite !hornerE rmorphD rmorphM /= horner_mx_X horner_mx_C scalerDl.
by rewrite -scalerA mulmxDr mul_mx_scalar mulmxA -IHp -scalemxAl Av_av.
Qed.
Lemma root_mxminpoly a : root p_A a = root (char_poly A) a.
Proof. by rewrite -eigenvalue_root_min eigenvalue_root_char. Qed.
End MinPoly.
Lemma mxminpoly_diag {F : fieldType} {n} (d : 'rV[F]_n.+1)
(u := undup [seq d 0 i | i <- enum 'I_n.+1]) :
mxminpoly (diag_mx d) = \prod_(r <- u) ('X - r%:P).
Proof.
apply/eqP; rewrite -eqp_monic ?mxminpoly_monic ?monic_prod_XsubC// /eqp.
rewrite mxminpoly_min/=; last first.
rewrite horner_mx_diag; apply/matrixP => i j; rewrite !mxE horner_prod.
case: (altP (i =P j)) => [->|neq_ij//]; rewrite mulr1n.
rewrite (bigD1_seq (d 0 j)) ?undup_uniq ?mem_undup ?map_f// /=.
by rewrite hornerD hornerN hornerX hornerC subrr mul0r.
apply: uniq_roots_dvdp; last by rewrite uniq_rootsE undup_uniq.
apply/allP => x; rewrite mem_undup root_mxminpoly char_poly_trig//.
rewrite -(big_map _ predT (fun x => _ - x%:P)) root_prod_XsubC.
by move=> /mapP[i _ ->]; apply/mapP; exists i; rewrite ?(mxE, eqxx).
Qed.
Prenex Implicits degree_mxminpoly mxminpoly mx_inv_horner.
Arguments mx_inv_hornerK {F n' A} [B] AnB.
Arguments horner_rVpoly_inj {F n' A} [u1 u2] eq_u12A : rename.
(* Parametricity. *)
Section MapRingMatrix.
Variables (aR rR : ringType) (f : {rmorphism aR -> rR}).
Local Notation "A ^f" := (map_mx (GRing.RMorphism.sort f) A) : ring_scope.
Local Notation fp := (map_poly (GRing.RMorphism.sort f)).
Variables (d n : nat) (A : 'M[aR]_n).
Lemma map_rVpoly (u : 'rV_d) : fp (rVpoly u) = rVpoly u^f.
Proof.
apply/polyP=> k; rewrite coef_map !coef_rVpoly.
by case: (insub k) => [i|]; rewrite /= ?rmorph0 // mxE.
Qed.
Lemma map_poly_rV p : (poly_rV p)^f = poly_rV (fp p) :> 'rV_d.
Proof. by apply/rowP=> j; rewrite !mxE coef_map. Qed.
Lemma map_char_poly_mx : map_mx fp (char_poly_mx A) = char_poly_mx A^f.
Proof.
rewrite raddfB /= map_scalar_mx /= map_polyX; congr (_ - _).
by apply/matrixP=> i j; rewrite !mxE map_polyC.
Qed.
Lemma map_char_poly : fp (char_poly A) = char_poly A^f.
Proof. by rewrite -det_map_mx map_char_poly_mx. Qed.
End MapRingMatrix.
Section MapResultant.
Lemma map_resultant (aR rR : ringType) (f : {rmorphism {poly aR} -> rR}) p q :
f (lead_coef p) != 0 -> f (lead_coef q) != 0 ->
f (resultant p q)= resultant (map_poly f p) (map_poly f q).
Proof.
move=> nz_fp nz_fq; rewrite /resultant /Sylvester_mx !size_map_poly_id0 //.
rewrite -det_map_mx /= map_col_mx; congr (\det (col_mx _ _));
by apply: map_lin1_mx => v; rewrite map_poly_rV rmorphM /= map_rVpoly.
Qed.
End MapResultant.
Section MapComRing.
Variables (aR rR : comRingType) (f : {rmorphism aR -> rR}).
Local Notation "A ^f" := (map_mx f A) : ring_scope.
Local Notation fp := (map_poly f).
Variables (n' : nat) (A : 'M[aR]_n'.+1).
Lemma map_powers_mx e : (powers_mx A e)^f = powers_mx A^f e.
Proof. by apply/row_matrixP=> i; rewrite -map_row !rowK map_mxvec rmorphXn. Qed.
Lemma map_horner_mx p : (horner_mx A p)^f = horner_mx A^f (fp p).
Proof.
rewrite -[p](poly_rV_K (leqnn _)) map_rVpoly.
by rewrite !horner_rVpoly map_vec_mx map_mxM map_powers_mx.
Qed.
End MapComRing.
Section MapField.
Variables (aF rF : fieldType) (f : {rmorphism aF -> rF}).
Local Notation "A ^f" := (map_mx f A) : ring_scope.
Local Notation fp := (map_poly f).
Variables (n' : nat) (A : 'M[aF]_n'.+1) (p : {poly aF}).
Lemma map_mx_companion (e := congr1 predn (size_map_poly _ _)) :
(companionmx p)^f = castmx (e, e) (companionmx (fp p)).
Proof.
apply/matrixP => i j; rewrite !(castmxE, mxE) /= (fun_if f).
by rewrite rmorphN coef_map size_map_poly rmorph_nat.
Qed.
Lemma companion_map_poly (e := esym (congr1 predn (size_map_poly _ _))) :
companionmx (fp p) = castmx (e, e) (companionmx p)^f.
Proof. by rewrite map_mx_companion castmx_comp castmx_id. Qed.
Lemma degree_mxminpoly_map : degree_mxminpoly A^f = degree_mxminpoly A.
Proof. by apply: eq_ex_minn => e; rewrite -map_powers_mx mxrank_map. Qed.
Lemma mxminpoly_map : mxminpoly A^f = fp (mxminpoly A).
Proof.
rewrite rmorphB; congr (_ - _).
by rewrite /= map_polyXn degree_mxminpoly_map.
rewrite degree_mxminpoly_map -rmorphXn /=.
apply/polyP=> i; rewrite coef_map //= !coef_rVpoly degree_mxminpoly_map.
case/insub: i => [i|]; last by rewrite rmorph0.
by rewrite -map_powers_mx -map_pinvmx // -map_mxvec -map_mxM // mxE.
Qed.
Lemma map_mx_inv_horner u : fp (mx_inv_horner A u) = mx_inv_horner A^f u^f.
Proof.
rewrite map_rVpoly map_mxM map_mxvec map_pinvmx map_powers_mx.
by rewrite /mx_inv_horner degree_mxminpoly_map.
Qed.
End MapField.
Section KernelLemmas.
Variable K : fieldType.
(* convertible to kermx (horner_mx g p) when n = n.+1 *)
Definition kermxpoly n (g : 'M_n) (p : {poly K}) : 'M_n :=
kermx ((if n is n.+1 then horner_mx^~ p : 'M_n.+1 -> 'M_n.+1 else \0) g).
Lemma kermxpolyC n (g : 'M_n) c : c != 0 -> kermxpoly g c%:P = 0.
Proof.
move=> c_neq0; case: n => [|n] in g *; first by rewrite thinmx0.
apply/eqP; rewrite /kermxpoly horner_mx_C kermx_eq0 row_free_unit.
by rewrite -scalemx1 scaler_unit ?unitmx1// unitfE.
Qed.
Lemma kermxpoly1 n (g : 'M_n) : kermxpoly g 1 = 0.
Proof. by rewrite kermxpolyC ?oner_eq0. Qed.
Lemma kermxpolyX n (g : 'M_n) : kermxpoly g 'X = kermx g.
Proof.
case: n => [|n] in g *; first by rewrite !thinmx0.
by rewrite /kermxpoly horner_mx_X.
Qed.
Lemma kermxpoly_min n (g : 'M[K]_n.+1) p :
mxminpoly g %| p -> (kermxpoly g p :=: 1)%MS.
Proof. by rewrite /kermxpoly => /mxminpoly_minP ->; apply: kermx0. Qed.
Lemma comm_mx_stable_kermxpoly n (f g : 'M_n) (p : {poly K}) : comm_mx f g ->
stablemx (kermxpoly f p) g.
Proof.
case: n => [|n] in f g *; first by rewrite !thinmx0.
move=> fg; rewrite /kermxpoly; apply: comm_mx_stable_ker.
by apply/comm_mx_sym/comm_mx_horner/comm_mx_sym.
Qed.
Lemma mxdirect_kermxpoly n (g : 'M_n) (p q : {poly K}) :
coprimep p q -> (kermxpoly g p :&: kermxpoly g q = 0)%MS.
Proof.
case: n => [|n] in g *; first by rewrite thinmx0 ?cap0mx ?submx_refl.
move=> /Bezout_eq1_coprimepP [[/= u v]]; rewrite mulrC [v * _]mulrC => cpq.
apply/eqP/rowV0P => x.
rewrite sub_capmx => /andP[/sub_kermxP xgp0 /sub_kermxP xgq0].
move: cpq => /(congr1 (mulmx x \o horner_mx g))/=.
rewrite !(rmorphM, rmorphD, rmorph1, mulmx1, mulmxDr, mulmxA).
by rewrite xgp0 xgq0 !mul0mx add0r.
Qed.
Lemma kermxpolyM n (g : 'M_n) (p q : {poly K}) : coprimep p q ->
(kermxpoly g (p * q) :=: kermxpoly g p + kermxpoly g q)%MS.
Proof.
case: n => [|n] in g *; first by rewrite !thinmx0.
move=> /Bezout_eq1_coprimepP [[/= u v]]; rewrite mulrC [v * _]mulrC => cpq.
apply/eqmxP/andP; split; last first.
apply/sub_kermxP/eqmx0P; rewrite !addsmxMr [in X in (_ + X)%MS]mulrC.
by rewrite !rmorphM/= !mulmxA !mulmx_ker !mul0mx !addsmx0 submx_refl.
move: cpq => /(congr1 (horner_mx g))/=; rewrite rmorph1 rmorphD/=.
rewrite -[X in (X <= _)%MS]mulr1 => <-; rewrite mulrDr [p * u]mulrC addrC.
rewrite addmx_sub_adds//; apply/sub_kermxP; rewrite mulmxE -mulrA -rmorphM.
by rewrite mulrAC [q * p]mulrC rmorphM/= mulrA -!mulmxE mulmx_ker mul0mx.
rewrite -[_ * _ * q]mulrA [u * _]mulrC.
by rewrite rmorphM mulrA -!mulmxE mulmx_ker mul0mx.
Qed.
Lemma kermxpoly_prod n (g : 'M_n)
(I : finType) (P : {pred I}) (p_ : I -> {poly K}) :
{in P &, forall i j, j != i -> coprimep (p_ i) (p_ j)} ->
(kermxpoly g (\prod_(i | P i) p_ i) :=: \sum_(i | P i) kermxpoly g (p_ i))%MS.
Proof.
move=> p_coprime; elim: index_enum (index_enum_uniq I).
by rewrite !big_nil ?kermxpoly1 ?submx_refl//.
move=> j js ihjs /= /andP[jNjs js_uniq]; apply/eqmxP.
rewrite !big_cons; case: ifP => [Pj|PNj]; rewrite ?ihjs ?submx_refl//.
suff cjjs: coprimep (p_ j) (\prod_(i <- js | P i) p_ i).
by rewrite !kermxpolyM// !(adds_eqmx (eqmx_refl _) (ihjs _)) ?submx_refl.
rewrite (@big_morph _ _ _ true andb) ?big_all_cond ?coprimep1//; last first.
by move=> p q; rewrite coprimepMr.
apply/allP => i i_js; apply/implyP => Pi; apply: p_coprime => //.
by apply: contraNneq jNjs => <-.
Qed.
Lemma mxdirect_sum_kermx n (g : 'M_n)
(I : finType) (P : {pred I}) (p_ : I -> {poly K}) :
{in P &, forall i j, j != i -> coprimep (p_ i) (p_ j)} ->
mxdirect (\sum_(i | P i) kermxpoly g (p_ i))%MS.
Proof.
move=> p_coprime; apply/mxdirect_sumsP => i Pi; apply/eqmx0P.
have cpNi : {in [pred j | P j && (j != i)] &,
forall j k : I, k != j -> coprimep (p_ j) (p_ k)}.
by move=> j k /andP[Pj _] /andP[Pk _]; apply: p_coprime.
rewrite -!(cap_eqmx (eqmx_refl _) (kermxpoly_prod g _))//.
rewrite mxdirect_kermxpoly ?submx_refl//.
rewrite (@big_morph _ _ _ true andb) ?big_all_cond ?coprimep1//; last first.
by move=> p q; rewrite coprimepMr.
by apply/allP => j _; apply/implyP => /andP[Pj neq_ji]; apply: p_coprime.
Qed.
Lemma eigenspace_poly n a (f : 'M_n) :
eigenspace f a = kermxpoly f ('X - a%:P).
Proof.
case: n => [|m] in a f *; first by rewrite !thinmx0.
by congr (kermx _); rewrite rmorphB /= ?horner_mx_X ?horner_mx_C.
Qed.
Definition geigenspace n (g : 'M_n) a := kermxpoly g (('X - a%:P) ^+ n).
Lemma geigenspaceE n' (g : 'M_n'.+1) a :
geigenspace g a = kermx ((g - a%:M) ^+ n'.+1).
Proof.
by rewrite /geigenspace /kermxpoly rmorphXn/= rmorphB/= horner_mx_X horner_mx_C.
Qed.
Lemma eigenspace_sub_geigen n (g : 'M_n) a :
(eigenspace g a <= geigenspace g a)%MS.
Proof.
case: n => [|n] in g *; rewrite ?thinmx0 ?sub0mx// geigenspaceE.
by apply/sub_kermxP; rewrite exprS mulmxA mulmx_ker mul0mx.
Qed.
Lemma mxdirect_sum_geigenspace
(I : finType) (n : nat) (g : 'M_n) (P : {pred I}) (a_ : I -> K) :
{in P &, injective a_} -> mxdirect (\sum_(i | P i) geigenspace g (a_ i)).
Proof.
move=> /inj_in_eq eq_a; apply: mxdirect_sum_kermx => i j Pi Pj Nji.
by rewrite coprimep_expr ?coprimep_expl// coprimep_XsubC root_XsubC eq_a.
Qed.
Definition eigenpoly n (g : 'M_n) : pred {poly K} :=
(fun p => kermxpoly g p != 0).
Lemma eigenpolyP n (g : 'M_n) (p : {poly K}) :
reflect (exists2 v : 'rV_n, (v <= kermxpoly g p)%MS & v != 0) (eigenpoly g p).
Proof. exact: rowV0Pn. Qed.
Lemma eigenvalue_poly n a (f : 'M_n) : eigenvalue f a = eigenpoly f ('X - a%:P).
Proof. by rewrite /eigenpoly /eigenvalue eigenspace_poly. Qed.
Lemma comm_mx_stable_geigenspace n (f g : 'M_n) a : comm_mx f g ->
stablemx (geigenspace f a) g.
Proof. exact: comm_mx_stable_kermxpoly. Qed.
End KernelLemmas.
Section MapKermxPoly.
Variables (aF rF : fieldType) (f : {rmorphism aF -> rF}).
Lemma map_kermxpoly (n : nat) (g : 'M_n) (p : {poly aF}) :
map_mx f (kermxpoly g p) = kermxpoly (map_mx f g) (map_poly f p).
Proof.
by case: n => [|n] in g *; rewrite ?thinmx0// map_kermx map_horner_mx.
Qed.
Lemma map_geigenspace (n : nat) (g : 'M_n) (a : aF) :
map_mx f (geigenspace g a) = geigenspace (map_mx f g) (f a).
Proof. by rewrite map_kermxpoly rmorphXn/= rmorphB /= map_polyX map_polyC. Qed.
Lemma eigenpoly_map n (g : 'M_n) (p : {poly aF}) :
eigenpoly (map_mx f g) (map_poly f p) = eigenpoly g p.
Proof. by rewrite /eigenpoly -map_kermxpoly map_mx_eq0. Qed.
End MapKermxPoly.
Section IntegralOverRing.
Definition integralOver (R K : ringType) (RtoK : R -> K) (z : K) :=
exists2 p, p \is monic & root (map_poly RtoK p) z.
Definition integralRange R K RtoK := forall z, @integralOver R K RtoK z.
Variables (B R K : ringType) (BtoR : B -> R) (RtoK : {rmorphism R -> K}).
Lemma integral_rmorph x :
integralOver BtoR x -> integralOver (RtoK \o BtoR) (RtoK x).
Proof. by case=> p; exists p; rewrite // map_poly_comp rmorph_root. Qed.
Lemma integral_id x : integralOver RtoK (RtoK x).
Proof. by exists ('X - x%:P); rewrite ?monicXsubC ?rmorph_root ?root_XsubC. Qed.
Lemma integral_nat n : integralOver RtoK n%:R.
Proof. by rewrite -(rmorph_nat RtoK); apply: integral_id. Qed.
Lemma integral0 : integralOver RtoK 0. Proof. exact: (integral_nat 0). Qed.
Lemma integral1 : integralOver RtoK 1. Proof. exact: (integral_nat 1). Qed.
Lemma integral_poly (p : {poly K}) :
(forall i, integralOver RtoK p`_i) <-> {in p : seq K, integralRange RtoK}.
Proof.
split=> intRp => [_ /(nthP 0)[i _ <-] // | i]; rewrite -[p]coefK coef_poly.
by case: ifP => [ltip | _]; [apply/intRp/mem_nth | apply: integral0].
Qed.
End IntegralOverRing.
Section IntegralOverComRing.
Variables (R K : comRingType) (RtoK : {rmorphism R -> K}).
Lemma integral_horner_root w (p q : {poly K}) :
p \is monic -> root p w ->
{in p : seq K, integralRange RtoK} -> {in q : seq K, integralRange RtoK} ->
integralOver RtoK q.[w].
Proof.
move=> mon_p pw0 intRp intRq.
pose memR y := exists x, y = RtoK x.
have memRid x: memR (RtoK x) by exists x.
have memR_nat n: memR n%:R by rewrite -(rmorph_nat RtoK) /=.
have [memR0 memR1]: memR 0 * memR 1 := (memR_nat 0, memR_nat 1).
have memRN1: memR (- 1) by exists (- 1); rewrite rmorphN1.
pose rVin (E : K -> Prop) n (a : 'rV[K]_n) := forall i, E (a 0 i).
pose pXin (E : K -> Prop) (r : {poly K}) := forall i, E r`_i.
pose memM E n (X : 'rV_n) y := exists a, rVin E n a /\ y = (a *m X^T) 0 0.
pose finM E S := exists n, exists X, forall y, memM E n X y <-> S y.
have tensorM E n1 n2 X Y: finM E (memM (memM E n2 Y) n1 X).
exists (n1 * n2)%N, (mxvec (X^T *m Y)) => y.
split=> [[a [Ea Dy]] | [a1 [/fin_all_exists[a /all_and2[Ea Da1]] ->]]].
exists (Y *m (vec_mx a)^T); split=> [i|].
exists (row i (vec_mx a)); split=> [j|]; first by rewrite !mxE; apply: Ea.
by rewrite -row_mul -{1}[Y]trmxK -trmx_mul !mxE.
by rewrite -[Y]trmxK -!trmx_mul mulmxA -mxvec_dotmul trmx_mul trmxK vec_mxK.
exists (mxvec (\matrix_i a i)); split.
by case/mxvec_indexP=> i j; rewrite mxvecE mxE; apply: Ea.
rewrite -[mxvec _]trmxK -trmx_mul mxvec_dotmul -mulmxA trmx_mul !mxE.
apply: eq_bigr => i _; rewrite Da1 !mxE; congr (_ * _).
by apply: eq_bigr => j _; rewrite !mxE.
suffices [m [X [[u [_ Du]] idealM]]]: exists m,
exists X, let M := memM memR m X in M 1 /\ forall y, M y -> M (q.[w] * y).
- do [set M := memM _ m X; move: q.[w] => z] in idealM *.
have MX i: M (X 0 i).
by exists (delta_mx 0 i); split=> [j|]; rewrite -?rowE !mxE.
have /fin_all_exists[a /all_and2[Fa Da1]] i := idealM _ (MX i).
have /fin_all_exists[r Dr] i := fin_all_exists (Fa i).
pose A := \matrix_(i, j) r j i; pose B := z%:M - map_mx RtoK A.
have XB0: X *m B = 0.
apply/eqP; rewrite mulmxBr mul_mx_scalar subr_eq0; apply/eqP/rowP=> i.
by rewrite !mxE Da1 mxE; apply: eq_bigr=> j _; rewrite !mxE mulrC Dr.
exists (char_poly A); first exact: char_poly_monic.
have: (\det B *: (u *m X^T)) 0 0 == 0.
rewrite scalemxAr -linearZ -mul_mx_scalar -mul_mx_adj mulmxA XB0 /=.
by rewrite mul0mx trmx0 mulmx0 mxE.
rewrite mxE -Du mulr1 rootE -horner_evalE -!det_map_mx; congr (\det _ == 0).
rewrite !raddfB /= !map_scalar_mx /= map_polyX horner_evalE hornerX.
by apply/matrixP=> i j; rewrite !mxE map_polyC /horner_eval hornerC.
pose gen1 x E y := exists2 r, pXin E r & y = r.[x]; pose gen := foldr gen1 memR.
have gen1S (E : K -> Prop) x y: E 0 -> E y -> gen1 x E y.
by exists y%:P => [i|]; rewrite ?hornerC ?coefC //; case: ifP.
have genR S y: memR y -> gen S y.
by elim: S => //= x S IH in y * => /IH; apply/gen1S/IH.
have gen0 := genR _ 0 memR0; have gen_1 := genR _ 1 memR1.
have{gen1S} genS S y: y \in S -> gen S y.
elim: S => //= x S IH /predU1P[-> | /IH//]; last exact: gen1S.
by exists 'X => [i|]; rewrite ?hornerX // coefX; apply: genR.
pose propD (R : K -> Prop) := forall x y, R x -> R y -> R (x + y).
have memRD: propD memR.
by move=> _ _ [a ->] [b ->]; exists (a + b); rewrite rmorphD.
have genD S: propD (gen S).
elim: S => //= x S IH _ _ [r1 Sr1 ->] [r2 Sr2 ->]; rewrite -hornerD.
by exists (r1 + r2) => // i; rewrite coefD; apply: IH.
have gen_sum S := big_ind _ (gen0 S) (genD S).
pose propM (R : K -> Prop) := forall x y, R x -> R y -> R (x * y).
have memRM: propM memR.
by move=> _ _ [a ->] [b ->]; exists (a * b); rewrite rmorphM.
have genM S: propM (gen S).
elim: S => //= x S IH _ _ [r1 Sr1 ->] [r2 Sr2 ->]; rewrite -hornerM.
by exists (r1 * r2) => // i; rewrite coefM; apply: gen_sum => j _; apply: IH.
have gen_horner S r y: pXin (gen S) r -> gen S y -> gen S r.[y].
move=> Sq Sy; rewrite horner_coef; apply: gen_sum => [[i _] /= _].
by elim: {2}i => [|n IHn]; rewrite ?mulr1 // exprSr mulrA; apply: genM.
pose S := w :: q ++ p; suffices [m [X defX]]: finM memR (gen S).
exists m, X => M; split=> [|y /defX Xy]; first exact/defX.
apply/defX/genM => //; apply: gen_horner => // [i|]; last exact/genS/mem_head.
rewrite -[q]coefK coef_poly; case: ifP => // lt_i_q.
by apply: genS; rewrite inE mem_cat mem_nth ?orbT.
pose intR R y := exists r, [/\ r \is monic, root r y & pXin R r].
pose fix genI s := if s is y :: s1 then intR (gen s1) y /\ genI s1 else True.
have{mon_p pw0 intRp intRq}: genI S.
split; set S1 := _ ++ _; first exists p.
split=> // i; rewrite -[p]coefK coef_poly; case: ifP => // lt_i_p.
by apply: genS; rewrite mem_cat orbC mem_nth.
set S2 := S1; have: all [in S1] S2 by apply/allP.
elim: S2 => //= y S2 IH /andP[S1y S12]; split; last exact: IH.
have{q S S1 IH S1y S12 intRp intRq} [q mon_q qx0]: integralOver RtoK y.
by move: S1y; rewrite mem_cat => /orP[]; [apply: intRq | apply: intRp].
exists (map_poly RtoK q); split=> // [|i]; first exact: monic_map.
by rewrite coef_map /=; apply: genR.
elim: {w p q}S => /= [_|x S IH [[p [mon_p px0 Sp]] /IH{IH}[m2 [X2 defS]]]].
exists 1, 1 => y; split=> [[a [Fa ->]] | Fy].
by rewrite tr_scalar_mx mulmx1; apply: Fa.
by exists y%:M; split=> [i|]; rewrite 1?ord1 ?tr_scalar_mx ?mulmx1 mxE.
pose m1 := (size p).-1; pose X1 := \row_(i < m1) x ^+ i.
have [m [X defM]] := tensorM memR m1 m2 X1 X2; set M := memM _ _ _ in defM.
exists m, X => y; rewrite -/M; split=> [/defM[a [M2a]] | [q Sq]] -> {y}.
exists (rVpoly a) => [i|].
by rewrite coef_rVpoly; case/insub: i => // i; apply/defS/M2a.
rewrite mxE (horner_coef_wide _ (size_poly _ _)) -/(rVpoly a).
by apply: eq_bigr => i _; rewrite coef_rVpoly_ord !mxE.
have M_0: M 0 by exists 0; split=> [i|]; rewrite ?mul0mx mxE.
have M_D: propD M.
move=> _ _ [a [Fa ->]] [b [Fb ->]]; exists (a + b).
by rewrite mulmxDl !mxE; split=> // i /[1!mxE]; apply: memRD.
have{M_0 M_D} Msum := big_ind _ M_0 M_D.
rewrite horner_coef; apply: (Msum) => i _; case: i q`_i {Sq}(Sq i) => /=.
elim: {q}(size q) => // n IHn i i_le_n y Sy.
have [i_lt_m1 | m1_le_i] := ltnP i m1.
apply/defM; exists (y *: delta_mx 0 (Ordinal i_lt_m1)); split=> [j|].
by apply/defS; rewrite !mxE /= mulr_natr; case: eqP.
by rewrite -scalemxAl -rowE !mxE.
rewrite -(subnK m1_le_i) exprD -[x ^+ m1]subr0 -(rootP px0) horner_coef.
rewrite polySpred ?monic_neq0 // -/m1 big_ord_recr /= -lead_coefE.
rewrite opprD addrC (monicP mon_p) mul1r subrK !mulrN -mulNr !mulr_sumr.
apply: Msum => j _; rewrite mulrA mulrACA -exprD; apply: IHn.
by rewrite -addnS addnC addnBA // leq_subLR leq_add.
by rewrite -mulN1r; do 2!apply: (genM) => //; apply: genR.
Qed.
Lemma integral_root_monic u p :
p \is monic -> root p u -> {in p : seq K, integralRange RtoK} ->
integralOver RtoK u.
Proof.
move=> mon_p pu0 intRp; rewrite -[u]hornerX.
apply: integral_horner_root mon_p pu0 intRp _.
by apply/integral_poly => i; rewrite coefX; apply: integral_nat.
Qed.
Let integral0_RtoK := integral0 RtoK.
Let integral1_RtoK := integral1 RtoK.
Let monicXsubC_K := @monicXsubC K.
Hint Resolve integral0_RtoK integral1_RtoK monicXsubC_K : core.
Let XsubC0 (u : K) : root ('X - u%:P) u. Proof. by rewrite root_XsubC. Qed.
Let intR_XsubC u :
integralOver RtoK (- u) -> {in 'X - u%:P : seq K, integralRange RtoK}.
Proof. by move=> intRu v; rewrite polyseqXsubC !inE => /pred2P[]->. Qed.
Lemma integral_opp u : integralOver RtoK u -> integralOver RtoK (- u).
Proof. by rewrite -{1}[u]opprK => /intR_XsubC/integral_root_monic; apply. Qed.
Lemma integral_horner (p : {poly K}) u :
{in p : seq K, integralRange RtoK} -> integralOver RtoK u ->
integralOver RtoK p.[u].
Proof. by move=> ? /integral_opp/intR_XsubC/integral_horner_root; apply. Qed.
Lemma integral_sub u v :
integralOver RtoK u -> integralOver RtoK v -> integralOver RtoK (u - v).
Proof.
move=> intRu /integral_opp/intR_XsubC/integral_horner/(_ intRu).
by rewrite !hornerE.
Qed.
Lemma integral_add u v :
integralOver RtoK u -> integralOver RtoK v -> integralOver RtoK (u + v).
Proof. by rewrite -{2}[v]opprK => intRu /integral_opp; apply: integral_sub. Qed.
Lemma integral_mul u v :
integralOver RtoK u -> integralOver RtoK v -> integralOver RtoK (u * v).
Proof.
rewrite -{2}[v]hornerX -hornerZ => intRu; apply: integral_horner.
by apply/integral_poly=> i; rewrite coefZ coefX mulr_natr mulrb; case: ifP.
Qed.
End IntegralOverComRing.
Section IntegralOverField.
Variables (F E : fieldType) (FtoE : {rmorphism F -> E}).
Definition algebraicOver (fFtoE : F -> E) u :=
exists2 p, p != 0 & root (map_poly fFtoE p) u.
Notation mk_mon p := ((lead_coef p)^-1 *: p).
Lemma integral_algebraic u : algebraicOver FtoE u <-> integralOver FtoE u.
Proof.
split=> [] [p p_nz pu0]; last by exists p; rewrite ?monic_neq0.
exists (mk_mon p); first by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0.
by rewrite linearZ rootE hornerZ (rootP pu0) mulr0.
Qed.
Lemma algebraic_id a : algebraicOver FtoE (FtoE a).
Proof. exact/integral_algebraic/integral_id. Qed.
Lemma algebraic0 : algebraicOver FtoE 0.
Proof. exact/integral_algebraic/integral0. Qed.
Lemma algebraic1 : algebraicOver FtoE 1.
Proof. exact/integral_algebraic/integral1. Qed.
Lemma algebraic_opp x : algebraicOver FtoE x -> algebraicOver FtoE (- x).
Proof. by move/integral_algebraic/integral_opp/integral_algebraic. Qed.
Lemma algebraic_add x y :
algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x + y).
Proof.
move/integral_algebraic=> intFx /integral_algebraic intFy.
exact/integral_algebraic/integral_add.
Qed.
Lemma algebraic_sub x y :
algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x - y).
Proof. by move=> algFx /algebraic_opp; apply: algebraic_add. Qed.
Lemma algebraic_mul x y :
algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x * y).
Proof.
move/integral_algebraic=> intFx /integral_algebraic intFy.
exact/integral_algebraic/integral_mul.
Qed.
Lemma algebraic_inv u : algebraicOver FtoE u -> algebraicOver FtoE u^-1.
Proof.
have [-> | /expf_neq0 nz_u_n] := eqVneq u 0; first by rewrite invr0.
case=> p nz_p pu0; exists (Poly (rev p)).
apply/eqP=> /polyP/(_ 0); rewrite coef_Poly coef0 nth_rev ?size_poly_gt0 //.
by apply/eqP; rewrite subn1 lead_coef_eq0.
apply/eqP/(mulfI (nz_u_n (size p).-1)); rewrite mulr0 -(rootP pu0).
rewrite (@horner_coef_wide _ (size p)); last first.
by rewrite size_map_poly -(size_rev p) size_Poly.
rewrite horner_coef mulr_sumr size_map_poly.
rewrite [rhs in _ = rhs](reindex_inj rev_ord_inj) /=.
apply: eq_bigr => i _; rewrite !coef_map coef_Poly nth_rev // mulrCA.
by congr (_ * _); rewrite -{1}(subnKC (valP i)) addSn addnC exprD exprVn ?mulfK.
Qed.
Lemma algebraic_div x y :
algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x / y).
Proof. by move=> algFx /algebraic_inv; apply: algebraic_mul. Qed.
Lemma integral_inv x : integralOver FtoE x -> integralOver FtoE x^-1.
Proof. by move/integral_algebraic/algebraic_inv/integral_algebraic. Qed.
Lemma integral_div x y :
integralOver FtoE x -> integralOver FtoE y -> integralOver FtoE (x / y).
Proof. by move=> algFx /integral_inv; apply: integral_mul. Qed.
Lemma integral_root p u :
p != 0 -> root p u -> {in p : seq E, integralRange FtoE} ->
integralOver FtoE u.
Proof.
move=> nz_p pu0 algFp.
have mon_p1: mk_mon p \is monic.
by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0.
have p1u0: root (mk_mon p) u by rewrite rootE hornerZ (rootP pu0) mulr0.
apply: integral_root_monic mon_p1 p1u0 _ => _ /(nthP 0)[i ltip <-].
rewrite coefZ mulrC; rewrite size_scale ?invr_eq0 ?lead_coef_eq0 // in ltip.
by apply: integral_div; apply/algFp/mem_nth; rewrite -?polySpred.
Qed.
End IntegralOverField.
(* Lifting term, formula, envs and eval to matrices. Wlog, and for the sake *)
(* of simplicity, we only lift (tensor) envs to row vectors; we can always *)
(* use mxvec/vec_mx to store and retrieve matrices. *)
(* We don't provide definitions for addition, subtraction, scaling, etc, *)
(* because they have simple matrix expressions. *)
Module MatrixFormula.
Section MatrixFormula.
Variable F : fieldType.
Local Notation False := GRing.False.
Local Notation True := GRing.True.
Local Notation And := GRing.And (only parsing).
Local Notation Add := GRing.Add (only parsing).
Local Notation Bool b := (GRing.Bool b%bool).
Local Notation term := (GRing.term F).
Local Notation form := (GRing.formula F).
Local Notation eval := GRing.eval.
Local Notation holds := GRing.holds.
Local Notation qf_form := GRing.qf_form.
Local Notation qf_eval := GRing.qf_eval.
Definition eval_mx (e : seq F) := @map_mx term F (eval e).
Definition mx_term := @map_mx F term GRing.Const.
Lemma eval_mx_term e m n (A : 'M_(m, n)) : eval_mx e (mx_term A) = A.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Definition mulmx_term m n p (A : 'M[term]_(m, n)) (B : 'M_(n, p)) :=
\matrix_(i, k) (\big[Add/0]_j (A i j * B j k))%T.
Lemma eval_mulmx e m n p (A : 'M[term]_(m, n)) (B : 'M_(n, p)) :
eval_mx e (mulmx_term A B) = eval_mx e A *m eval_mx e B.
Proof.
apply/matrixP=> i k; rewrite !mxE /= ((big_morph (eval e)) 0 +%R) //=.
by apply: eq_bigr => j _; rewrite /= !mxE.
Qed.
Local Notation morphAnd f := ((big_morph f) true andb).
Let Schur m n (A : 'M[term]_(1 + m, 1 + n)) (a := A 0 0) :=
\matrix_(i, j) (drsubmx A i j - a^-1 * dlsubmx A i 0%R * ursubmx A 0%R j)%T.
Fixpoint mxrank_form (r m n : nat) : 'M_(m, n) -> form :=
match m, n return 'M_(m, n) -> form with
| m'.+1, n'.+1 => fun A : 'M_(1 + m', 1 + n') =>
let nzA k := A k.1 k.2 != 0 in
let xSchur k := Schur (xrow k.1 0%R (xcol k.2 0%R A)) in
let recf k := Bool (r > 0) /\ mxrank_form r.-1 (xSchur k) in
GRing.Pick nzA recf (Bool (r == 0%N))
| _, _ => fun _ => Bool (r == 0%N)
end%T.
Lemma mxrank_form_qf r m n (A : 'M_(m, n)) : qf_form (mxrank_form r A).
Proof.
by elim: m r n A => [|m IHm] r [|n] A //=; rewrite GRing.Pick_form_qf /=.
Qed.
Lemma eval_mxrank e r m n (A : 'M_(m, n)) :
qf_eval e (mxrank_form r A) = (\rank (eval_mx e A) == r).
Proof.
elim: m r n A => [|m IHm] r [|n] A /=; try by case r; rewrite unlock.
rewrite GRing.eval_Pick !unlock /=; set pf := fun _ => _.
rewrite -(@eq_pick _ pf) => [|k]; rewrite {}/pf ?mxE // eq_sym.
case: pick => [[i j]|] //=; set B := _ - _; have:= mxrankE B.
case: (Gaussian_elimination_ B) r => [[_ _] _] [|r] //= <-; rewrite {}IHm eqSS.
by congr (\rank _ == r); apply/matrixP=> k l; rewrite !(mxE, big_ord1) !tpermR.
Qed.
Lemma eval_vec_mx e m n (u : 'rV_(m * n)) :
eval_mx e (vec_mx u) = vec_mx (eval_mx e u).
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma eval_mxvec e m n (A : 'M_(m, n)) :
eval_mx e (mxvec A) = mxvec (eval_mx e A).
Proof. by rewrite -{2}[A]mxvecK eval_vec_mx vec_mxK. Qed.
Section Subsetmx.
Variables (m1 m2 n : nat) (A : 'M[term]_(m1, n)) (B : 'M[term]_(m2, n)).
Definition submx_form :=
\big[And/True]_(r < n.+1) (mxrank_form r (col_mx A B) ==> mxrank_form r B)%T.
Lemma eval_col_mx e :
eval_mx e (col_mx A B) = col_mx (eval_mx e A) (eval_mx e B).
Proof. by apply/matrixP=> i j; do 2![rewrite !mxE //; case: split => ?]. Qed.
Lemma submx_form_qf : qf_form submx_form.
Proof.
by rewrite (morphAnd (@qf_form _)) ?big1 //= => r _; rewrite !mxrank_form_qf.
Qed.
Lemma eval_submx e : qf_eval e submx_form = (eval_mx e A <= eval_mx e B)%MS.
Proof.
rewrite (morphAnd (qf_eval e)) //= big_andE /=.
apply/forallP/idP=> /= [|sAB d]; last first.
rewrite !eval_mxrank eval_col_mx -addsmxE; apply/implyP=> /eqP <-.
by rewrite mxrank_leqif_sup ?addsmxSr // addsmx_sub sAB /=.
move/(_ (inord (\rank (eval_mx e (col_mx A B))))).
rewrite inordK ?ltnS ?rank_leq_col // !eval_mxrank eqxx /= eval_col_mx.
by rewrite -addsmxE mxrank_leqif_sup ?addsmxSr // addsmx_sub; case/andP.
Qed.
End Subsetmx.
Section Env.
Variable d : nat.
Definition seq_of_rV (v : 'rV_d) : seq F := fgraph [ffun i => v 0 i].
Lemma size_seq_of_rV v : size (seq_of_rV v) = d.
Proof. by rewrite tuple.size_tuple card_ord. Qed.
Lemma nth_seq_of_rV x0 v (i : 'I_d) : nth x0 (seq_of_rV v) i = v 0 i.
Proof. by rewrite nth_fgraph_ord ffunE. Qed.
Definition row_var k : 'rV[term]_d := \row_i ('X_(k * d + i))%T.
Definition row_env (e : seq 'rV_d) := flatten (map seq_of_rV e).
Lemma nth_row_env e k (i : 'I_d) : (row_env e)`_(k * d + i) = e`_k 0 i.
Proof.
elim: e k => [|v e IHe] k; first by rewrite !nth_nil mxE.
rewrite /row_env /= nth_cat size_seq_of_rV.
case: k => [|k]; first by rewrite (valP i) nth_seq_of_rV.
by rewrite mulSn -addnA -if_neg -leqNgt leq_addr addKn IHe.
Qed.
Lemma eval_row_var e k : eval_mx (row_env e) (row_var k) = e`_k :> 'rV_d.
Proof. by apply/rowP=> i; rewrite !mxE /= nth_row_env. Qed.
Definition Exists_row_form k (f : form) :=
foldr GRing.Exists f (codom (fun i : 'I_d => k * d + i)%N).
Lemma Exists_rowP e k f :
d > 0 ->
((exists v : 'rV[F]_d, holds (row_env (set_nth 0 e k v)) f)
<-> holds (row_env e) (Exists_row_form k f)).
Proof.
move=> d_gt0; pose i_ j := Ordinal (ltn_pmod j d_gt0).
have d_eq j: (j = j %/ d * d + i_ j)%N := divn_eq j d.
split=> [[v f_v] | ]; last case/GRing.foldExistsP=> e' ee' f_e'.
apply/GRing.foldExistsP; exists (row_env (set_nth 0 e k v)) => {f f_v}// j.
rewrite [j]d_eq !nth_row_env nth_set_nth /=; case: eqP => // ->.
by case/imageP; exists (i_ j).
exists (\row_i e'`_(k * d + i)); apply: eq_holds f_e' => j /=.
move/(_ j): ee'; rewrite [j]d_eq !nth_row_env nth_set_nth /=.
case: eqP => [-> | ne_j_k -> //]; first by rewrite mxE.
apply/mapP=> [[r lt_r_d]]; rewrite -d_eq => def_j; case: ne_j_k.
by rewrite def_j divnMDl // divn_small ?addn0.
Qed.
End Env.
End MatrixFormula.
End MatrixFormula.
Section ConjMx.
Context {F : fieldType}.
Definition conjmx (m n : nat)
(V : 'M_(m, n)) (f : 'M[F]_n) : 'M_m := V *m f *m pinvmx V.
Notation restrictmx V := (conjmx (row_base V)).
Lemma stablemx_comp (m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) :
stablemx W f -> stablemx V (conjmx W f) -> stablemx (V *m W) f.
Proof. by move=> Wf /(submxMr W); rewrite -mulmxA mulmxKpV// mulmxA. Qed.
Lemma stablemx_restrict m n (A : 'M[F]_n) (V : 'M_n) (W : 'M_(m, \rank V)):
stablemx V A -> stablemx W (restrictmx V A) = stablemx (W *m row_base V) A.
Proof.
move=> A_stabV; rewrite mulmxA -[in RHS]mulmxA.
rewrite -(submxMfree _ W (row_base_free V)) mulmxKpV //.
by rewrite mulmx_sub ?stablemx_row_base.
Qed.
Lemma conjmxM (m n : nat) (V : 'M[F]_(m, n)) :
{in [pred f | stablemx V f] &, {morph conjmx V : f g / f *m g}}.
Proof.
move=> f g; rewrite !inE => Vf Vg /=.
by rewrite /conjmx 2!mulmxA mulmxA mulmxKpV ?stablemx_row_base.
Qed.
Lemma conjMmx (m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) :
row_free (V *m W) -> stablemx W f -> stablemx V (conjmx W f) ->
conjmx (V *m W) f = conjmx V (conjmx W f).
Proof.
move=> rfVW Wf VWf; apply: (row_free_inj rfVW); rewrite mulmxKpV ?stablemx_comp//.
by rewrite mulmxA mulmxKpV// -[RHS]mulmxA mulmxKpV ?mulmxA.
Qed.
Lemma conjuMmx (m n : nat) (V : 'M[F]_m) (W : 'M_(m, n)) (f : 'M_n) :
V \in unitmx -> row_free W -> stablemx W f ->
conjmx (V *m W) f = conjmx V (conjmx W f).
Proof.
move=> Vu rfW Wf; rewrite conjMmx ?stablemx_unit//.
by rewrite /row_free mxrankMfree// -/(row_free V) row_free_unit.
Qed.
Lemma conjMumx (m n : nat) (V : 'M[F]_(m, n)) (W f : 'M_n) :
W \in unitmx -> row_free V -> stablemx V (conjmx W f) ->
conjmx (V *m W) f = conjmx V (conjmx W f).
Proof.
move=> Wu rfW Wf; rewrite conjMmx ?stablemx_unit//.
by rewrite /row_free mxrankMfree ?row_free_unit.
Qed.
Lemma conjuMumx (n : nat) (V W f : 'M[F]_n) :
V \in unitmx -> W \in unitmx ->
conjmx (V *m W) f = conjmx V (conjmx W f).
Proof. by move=> Vu Wu; rewrite conjuMmx ?stablemx_unit ?row_free_unit. Qed.
Lemma conjmx_scalar (m n : nat) (V : 'M[F]_(m, n)) (a : F) :
row_free V -> conjmx V a%:M = a%:M.
Proof. by move=> rfV; rewrite /conjmx scalar_mxC mulmxKp. Qed.
Lemma conj0mx (m n : nat) f : conjmx (0 : 'M[F]_(m, n)) f = 0.
Proof. by rewrite /conjmx !mul0mx. Qed.
Lemma conjmx0 (m n : nat) (V : 'M[F]_(m, n)) : conjmx V 0 = 0.
Proof. by rewrite /conjmx mulmx0 mul0mx. Qed.
Lemma conjumx (n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx ->
conjmx V f = V *m f *m invmx V.
Proof. by move=> uV; rewrite /conjmx pinvmxE. Qed.
Lemma conj1mx (n : nat) (f : 'M[F]_n) : conjmx 1%:M f = f.
Proof. by rewrite conjumx ?unitmx1// invmx1 mulmx1 mul1mx. Qed.
Lemma conjVmx (n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx ->
conjmx (invmx V) f = invmx V *m f *m V.
Proof. by move=> Vunit; rewrite conjumx ?invmxK ?unitmx_inv. Qed.
Lemma conjmxK (n : nat) (V f : 'M[F]_n) :
V \in unitmx -> conjmx (invmx V) (conjmx V f) = f.
Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulVmx ?conj1mx. Qed.
Lemma conjmxVK (n : nat) (V f : 'M[F]_n) :
V \in unitmx -> conjmx V (conjmx (invmx V) f) = f.
Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulmxV ?conj1mx. Qed.
Lemma horner_mx_conj m n p (V : 'M[F]_(n.+1, m.+1)) (f : 'M_m.+1) :
row_free V -> stablemx V f ->
horner_mx (conjmx V f) p = conjmx V (horner_mx f p).
Proof.
move=> V_free V_stab; rewrite/conjmx; elim/poly_ind: p => [|p c].
by rewrite !rmorph0 mulmx0 mul0mx.
rewrite !(rmorphD, rmorphM)/= !(horner_mx_X, horner_mx_C) => ->.
rewrite [_ * _]mulmxA [_ *m (V *m _)]mulmxA mulmxKpV ?horner_mx_stable//.
apply: (row_free_inj V_free); rewrite [_ *m V]mulmxDl.
pose stablemxE := (stablemxD, stablemxM, stablemxC, horner_mx_stable).
by rewrite !mulmxKpV -?[V *m _ *m _]mulmxA ?stablemxE// mulmxDr -scalar_mxC.
Qed.
Lemma horner_mx_uconj n p (V : 'M[F]_(n.+1)) (f : 'M_n.+1) :
V \is a GRing.unit ->
horner_mx (V *m f *m invmx V) p = V *m horner_mx f p *m invmx V.
Proof.
move=> V_unit; rewrite -!conjumx//.
by rewrite horner_mx_conj ?row_free_unit ?stablemx_unit.
Qed.
Lemma horner_mx_uconjC n p (V : 'M[F]_(n.+1)) (f : 'M_n.+1) :
V \is a GRing.unit ->
horner_mx (invmx V *m f *m V) p = invmx V *m horner_mx f p *m V.
Proof.
move=> V_unit; rewrite -[X in _ *m X](invmxK V).
by rewrite horner_mx_uconj ?invmxK ?unitmx_inv.
Qed.
Lemma mxminpoly_conj m n (V : 'M[F]_(m.+1, n.+1)) (f : 'M_n.+1) :
row_free V -> stablemx V f -> mxminpoly (conjmx V f) %| mxminpoly f.
Proof.
by move=> *; rewrite mxminpoly_min// horner_mx_conj// mx_root_minpoly conjmx0.
Qed.
Lemma mxminpoly_uconj n (V : 'M[F]_(n.+1)) (f : 'M_n.+1) :
V \in unitmx -> mxminpoly (conjmx V f) = mxminpoly f.
Proof.
have simp := (row_free_unit, stablemx_unit, unitmx_inv, unitmx1).
move=> Vu; apply/eqP; rewrite -eqp_monic ?mxminpoly_monic// /eqp.
apply/andP; split; first by rewrite mxminpoly_conj ?simp.
by rewrite -[f in X in X %| _](conjmxK _ Vu) mxminpoly_conj ?simp.
Qed.
Section fixed_stablemx_space.
Variables (m n : nat).
Implicit Types (V : 'M[F]_(m, n)) (A : 'M[F]_n).
Implicit Types (a : F) (p : {poly F}).
Section Sub.
Variable (k : nat).
Implicit Types (W : 'M[F]_(k, m)).
Lemma sub_kermxpoly_conjmx V f p W : stablemx V f -> row_free V ->
(W <= kermxpoly (conjmx V f) p)%MS = (W *m V <= kermxpoly f p)%MS.
Proof.
case: n m => [|n'] [|m'] in V f W * => fV rfV; rewrite ?thinmx0//.
by rewrite /row_free mxrank.unlock in rfV.
by rewrite mul0mx !sub0mx.
apply/sub_kermxP/sub_kermxP; rewrite horner_mx_conj//; last first.
by move=> /(congr1 (mulmxr (pinvmx V)))/=; rewrite mul0mx !mulmxA.
move=> /(congr1 (mulmxr V))/=; rewrite ![W *m _]mulmxA ?mul0mx mulmxKpV//.
by rewrite -mulmxA mulmx_sub// horner_mx_stable//.
Qed.
Lemma sub_eigenspace_conjmx V f a W : stablemx V f -> row_free V ->
(W <= eigenspace (conjmx V f) a)%MS = (W *m V <= eigenspace f a)%MS.
Proof. by move=> fV rfV; rewrite !eigenspace_poly sub_kermxpoly_conjmx. Qed.
End Sub.
Lemma eigenpoly_conjmx V f : stablemx V f -> row_free V ->
{subset eigenpoly (conjmx V f) <= eigenpoly f}.
Proof.
move=> fV rfV a /eigenpolyP [x]; rewrite sub_kermxpoly_conjmx//.
move=> xV_le_fa x_neq0; apply/eigenpolyP.
by exists (x *m V); rewrite ?mulmx_free_eq0.
Qed.
Lemma eigenvalue_conjmx V f : stablemx V f -> row_free V ->
{subset eigenvalue (conjmx V f) <= eigenvalue f}.
Proof.
by move=> fV rfV a; rewrite ![_ \in _]eigenvalue_poly; apply: eigenpoly_conjmx.
Qed.
Lemma conjmx_eigenvalue a V f : (V <= eigenspace f a)%MS -> row_free V ->
conjmx V f = a%:M.
Proof.
by move=> /eigenspaceP Vfa rfV; rewrite /conjmx Vfa -mul_scalar_mx mulmxKp.
Qed.
End fixed_stablemx_space.
End ConjMx.
Notation restrictmx V := (conjmx (row_base V)).
Definition simmx_to_for {F : fieldType} {m n}
(P : 'M_(m, n)) A (S : {pred 'M[F]_m}) := S (conjmx P A).
Notation "A ~_ P '{' 'in' S '}'" := (simmx_to_for P A S)
(at level 70, P at level 0, format "A ~_ P '{' 'in' S '}'") :
ring_scope.
Notation simmx_for P A B := (A ~_P {in PredOfSimpl.coerce (pred1 B)}).
Notation "A ~_ P B" := (simmx_for P A B)
(at level 70, P at level 0, format "A ~_ P B").
Notation simmx_in S A B := (exists2 P, P \in S & A ~_P B).
Notation "A '~_{in' S '}' B" := (simmx_in S A B)
(at level 70, format "A '~_{in' S '}' B").
Notation simmx_in_to S A S' := (exists2 P, P \in S & A ~_P {in S'}).
Notation "A '~_{in' S '}' '{' 'in' S' '}'" := (simmx_in_to S A S')
(at level 70, format "A '~_{in' S '}' '{' 'in' S' '}'").
Notation all_simmx_in S As S' :=
(exists2 P, P \in S & all [pred A | A ~_P {in S'}] As).
Notation diagonalizable_for P A := (A ~_P {in is_diag_mx}).
Notation diagonalizable_in S A := (A ~_{in S} {in is_diag_mx}).
Notation diagonalizable A := (diagonalizable_in unitmx A).
Notation codiagonalizable_in S As := (all_simmx_in S As is_diag_mx).
Notation codiagonalizable As := (codiagonalizable_in unitmx As).
Section Simmxity.
Context {F : fieldType}.
Lemma simmxPp m n {P : 'M[F]_(m, n)} {A B} :
stablemx P A -> A ~_P B -> P *m A = B *m P.
Proof. by move=> stablemxPA /eqP <-; rewrite mulmxKpV. Qed.
Lemma simmxW m n {P : 'M[F]_(m, n)} {A B} : row_free P ->
P *m A = B *m P -> A ~_P B.
Proof. by rewrite /(_ ~__ _)/= /conjmx => fP ->; rewrite mulmxKp. Qed.
Section Simmx.
Context {n : nat}.
Implicit Types (A B P : 'M[F]_n) (As : seq 'M[F]_n) (d : 'rV[F]_n).
Lemma simmxP {P A B} : P \in unitmx ->
reflect (P *m A = B *m P) (A ~_P B).
Proof.
move=> p_unit; apply: (iffP idP); first exact/simmxPp/stablemx_unit.
by apply: simmxW; rewrite row_free_unit.
Qed.
Lemma simmxRL {P A B} : P \in unitmx ->
reflect (B = P *m A *m invmx P) (A ~_P B).
Proof. by move=> ?; apply: (iffP eqP); rewrite conjumx. Qed.
Lemma simmxLR {P A B} : P \in unitmx ->
reflect (A = conjmx (invmx P) B) (A ~_P B).
Proof.
by move=> Pu; rewrite conjVmx//; apply: (iffP (simmxRL Pu)) => ->;
rewrite !mulmxA ?(mulmxK, mulmxKV, mulVmx, mulmxV, mul1mx, mulmx1).
Qed.
End Simmx.
Lemma simmx_minpoly {n} {P A B : 'M[F]_n.+1} : P \in unitmx ->
A ~_P B -> mxminpoly A = mxminpoly B.
Proof. by move=> Pu /eqP<-; rewrite mxminpoly_uconj. Qed.
Lemma diagonalizable_for_row_base m n (P : 'M[F]_(m, n)) (A : 'M_n) :
diagonalizable_for (row_base P) A = is_diag_mx (restrictmx P A).
Proof. by []. Qed.
Lemma diagonalizable_forPp m n (P : 'M[F]_(m, n)) A :
reflect (forall i j : 'I__, i != j :> nat -> conjmx P A i j = 0)
(diagonalizable_for P A).
Proof. exact: @is_diag_mxP. Qed.
Lemma diagonalizable_forP n (P : 'M[F]_n) A : P \in unitmx ->
reflect (forall i j : 'I__, i != j :> nat -> (P *m A *m invmx P) i j = 0)
(diagonalizable_for P A).
Proof. by move=> Pu; rewrite -conjumx//; exact: is_diag_mxP. Qed.
Lemma diagonalizable_forPex {m} {n} {P : 'M[F]_(m, n)} {A} :
reflect (exists D, A ~_P (diag_mx D)) (diagonalizable_for P A).
Proof. by apply: (iffP (diag_mxP _)) => -[D]/eqP; exists D. Qed.
Lemma diagonalizable_forLR n {P : 'M[F]_n} {A} : P \in unitmx ->
reflect (exists D, A = conjmx (invmx P) (diag_mx D)) (diagonalizable_for P A).
Proof.
by move=> Punit; apply: (iffP diagonalizable_forPex) => -[D /(simmxLR Punit)]; exists D.
Qed.
Lemma diagonalizable_for_mxminpoly {n} {P A : 'M[F]_n.+1}
(rs := undup [seq conjmx P A i i | i <- enum 'I_n.+1]) :
P \in unitmx -> diagonalizable_for P A ->
mxminpoly A = \prod_(r <- rs) ('X - r%:P).
Proof.
rewrite /rs => pu /(diagonalizable_forLR pu)[d {A rs}->].
rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag.
by rewrite [in X in _ = X](@eq_map _ _ _ (d 0))// => i; rewrite conjmxVK// mxE eqxx.
Qed.
End Simmxity.
Lemma diagonalizable_for_sum (F : fieldType) (m n : nat) (p_ : 'I_n -> nat)
(V_ : forall i, 'M[F]_(p_ i, m)) (A : 'M[F]_m) :
mxdirect (\sum_i <<V_ i>>) ->
(forall i, stablemx (V_ i) A) ->
(forall i, row_free (V_ i)) ->
diagonalizable_for (\mxcol_i V_ i) A = [forall i, diagonalizable_for (V_ i) A].
Proof.
move=> Vd VA rAV; have aVA : stablemx (\mxcol_i V_ i) A.
rewrite (eqmx_stable _ (eqmx_col _)) stablemx_sums//.
by move=> i; rewrite (eqmx_stable _ (genmxE _)).
apply/diagonalizable_forPex/'forall_diagonalizable_forPex => /=
[[D /(simmxPp aVA) +] i|/(_ _)/sigW DoA].
rewrite mxcol_mul -[D]submxrowK diag_mxrow mul_mxdiag_mxcol.
move=> /eq_mxcolP/(_ i); set D0 := (submxrow _ _) => VMeq.
by exists D0; apply/simmxW.
exists (\mxrow_i tag (DoA i)); apply/simmxW.
rewrite -row_leq_rank eqmx_col (mxdirectP Vd)/=.
by under [leqRHS]eq_bigr do rewrite genmxE (eqP (rAV _)).
rewrite mxcol_mul diag_mxrow mul_mxdiag_mxcol; apply: eq_mxcol => i.
by case: DoA => /= k /(simmxPp); rewrite VA => /(_ isT) ->.
Qed.
Section Diag.
Variable (F : fieldType).
Lemma codiagonalizable1 n (A : 'M[F]_n) :
codiagonalizable [:: A] <-> diagonalizable A.
Proof. by split=> -[P Punit PA]; exists P; move: PA; rewrite //= andbT. Qed.
Definition codiagonalizablePfull n (As : seq 'M[F]_n) :
codiagonalizable As
<-> exists m, exists2 P : 'M_(m, n), row_full P &
all [pred A | diagonalizable_for P A] As.
Proof.
split => [[P Punit SPA]|[m [P Pfull SPA]]].
by exists n => //; exists P; rewrite ?row_full_unit.
have Qfull := fullrowsub_unit Pfull.
exists (rowsub (fullrankfun Pfull) P) => //; apply/allP => A AAs/=.
have /allP /(_ _ AAs)/= /diagonalizable_forPex[d /simmxPp] := SPA.
rewrite submx_full// => /(_ isT) PA_eq.
apply/diagonalizable_forPex; exists (colsub (fullrankfun Pfull) d).
apply/simmxP => //; apply/row_matrixP => i.
rewrite !row_mul row_diag_mx -scalemxAl -rowE !row_rowsub !mxE.
have /(congr1 (row (fullrankfun Pfull i))) := PA_eq.
by rewrite !row_mul row_diag_mx -scalemxAl -rowE => ->.
Qed.
Lemma codiagonalizable_on m n (V_ : 'I_n -> 'M[F]_m) (As : seq 'M[F]_m) :
(\sum_i V_ i :=: 1%:M)%MS -> mxdirect (\sum_i V_ i) ->
(forall i, all (fun A => stablemx (V_ i) A) As) ->
(forall i, codiagonalizable (map (restrictmx (V_ i)) As)) ->
codiagonalizable As.
Proof.
move=> V1 Vdirect /(_ _)/allP AV /(_ _) /sig2W/= Pof.
pose P_ i := tag (Pof i).
have P_unit i : P_ i \in unitmx by rewrite /P_; case: {+}Pof.
have P_diag i A : A \in As -> diagonalizable_for (P_ i *m row_base (V_ i)) A.
move=> AAs; rewrite /P_; case: {+}Pof => /= P Punit.
rewrite all_map => /allP/(_ A AAs); rewrite /= !/(diagonalizable_for _ _).
by rewrite conjuMmx ?row_base_free ?stablemx_row_base ?AV.
pose P := \mxcol_i (P_ i *m row_base (V_ i)).
have P_full i : row_full (P_ i) by rewrite row_full_unit.
have PrV i : (P_ i *m row_base (V_ i) :=: V_ i)%MS.
exact/(eqmx_trans _ (eq_row_base _))/eqmxMfull.
apply/codiagonalizablePfull; eexists _; last exists P; rewrite /=.
- rewrite -sub1mx eqmx_col.
by under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1.
apply/allP => A AAs /=; rewrite diagonalizable_for_sum.
- by apply/forallP => i; apply: P_diag.
- rewrite mxdirectE/=.
under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1.
by under eq_bigr do rewrite genmxE PrV; rewrite -(mxdirectP Vdirect)//= V1.
- by move=> i; rewrite (eqmx_stable _ (PrV _)) ?AV.
- by move=> i; rewrite /row_free eqmxMfull ?eq_row_base ?row_full_unit.
Qed.
Lemma diagonalizable_diag {n} (d : 'rV[F]_n) : diagonalizable (diag_mx d).
Proof.
exists 1%:M; rewrite ?unitmx1// /(diagonalizable_for _ _).
by rewrite conj1mx diag_mx_is_diag.
Qed.
Hint Resolve diagonalizable_diag : core.
Lemma diagonalizable_scalar {n} (a : F) : diagonalizable (a%:M : 'M_n).
Proof. by rewrite -diag_const_mx. Qed.
Hint Resolve diagonalizable_scalar : core.
Lemma diagonalizable0 {n} : diagonalizable (0 : 'M[F]_n).
Proof.
by rewrite (_ : 0 = 0%:M)//; apply/matrixP => i j; rewrite !mxE// mul0rn.
Qed.
Hint Resolve diagonalizable0 : core.
Lemma diagonalizablePeigen {n} {A : 'M[F]_n} :
diagonalizable A <->
exists2 rs, uniq rs & (\sum_(r <- rs) eigenspace A r :=: 1%:M)%MS.
Proof.
split=> [df|[rs urs rsP]].
suff [rs rsP] : exists rs, (\sum_(r <- rs) eigenspace A r :=: 1%:M)%MS.
exists (undup rs); rewrite ?undup_uniq//; apply: eqmx_trans rsP.
elim: rs => //= r rs IHrs; rewrite big_cons.
case: ifPn => in_rs; rewrite ?big_cons; last exact: adds_eqmx.
apply/(eqmx_trans IHrs)/eqmx_sym/addsmx_idPr.
have rrs : (index r rs < size rs)%N by rewrite index_mem.
rewrite (big_nth 0) big_mkord (sumsmx_sup (Ordinal rrs)) ?nth_index//.
move: df => [P Punit /(diagonalizable_forLR Punit)[d ->]].
exists [seq d 0 i | i <- enum 'I_n]; rewrite big_image/=.
apply: (@eqmx_trans _ _ _ _ _ _ P); apply/eqmxP;
rewrite ?sub1mx ?submx1 ?row_full_unit//.
rewrite submx_full ?row_full_unit//=.
apply/row_subP => i; rewrite rowE (sumsmx_sup i)//.
apply/eigenspaceP; rewrite conjVmx// !mulmxA mulmxK//.
by rewrite -rowE row_diag_mx scalemxAl.
have mxdirect_eigenspaces : mxdirect (\sum_(i < size rs) eigenspace A rs`_i).
apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj.
by apply: uniqP rsij; rewrite ?inE.
rewrite (big_nth 0) big_mkord in rsP; rewrite -codiagonalizable1.
apply/(codiagonalizable_on _ mxdirect_eigenspaces) => // i/=.
case: n => [|n] in A {mxdirect_eigenspaces} rsP *.
by rewrite thinmx0 sub0mx.
by rewrite comm_mx_stable_eigenspace.
rewrite codiagonalizable1.
by rewrite (@conjmx_eigenvalue _ _ _ rs`_i) ?eq_row_base ?row_base_free.
Qed.
Lemma diagonalizableP n' (n := n'.+1) (A : 'M[F]_n) :
diagonalizable A <->
exists2 rs, uniq rs & mxminpoly A %| \prod_(x <- rs) ('X - x%:P).
Proof.
split=> [[P Punit /diagonalizable_forPex[d /(simmxLR Punit)->]]|].
rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag.
by eexists; [|by []]; rewrite undup_uniq.
rewrite diagonalizablePeigen => -[rs rsu rsP]; exists rs => //.
rewrite (big_nth 0) [X in (X :=: _)%MS](big_nth 0) !big_mkord in rsP *.
rewrite (eq_bigr _ (fun _ _ => eigenspace_poly _ _)).
apply: (eqmx_trans (eqmx_sym (kermxpoly_prod _ _)) (kermxpoly_min _)) => //.
by move=> i j _ _; rewrite coprimep_XsubC root_XsubC nth_uniq.
Qed.
Lemma diagonalizable_conj_diag m n (V : 'M[F]_(m, n)) (d : 'rV[F]_n) :
stablemx V (diag_mx d) -> row_free V -> diagonalizable (conjmx V (diag_mx d)).
Proof.
case: m n => [|m] [|n] in V d * => Vd rdV; rewrite ?thinmx0//=.
by rewrite /row_free mxrank.unlock in rdV.
apply/diagonalizableP; pose u := undup [seq d 0 i | i <- enum 'I_n.+1].
exists u; first by rewrite undup_uniq.
by rewrite (dvdp_trans (mxminpoly_conj (f:=diag_mx d) _ _))// mxminpoly_diag.
Qed.
Lemma codiagonalizableP n (As : seq 'M[F]_n) :
{in As &, forall A B, comm_mx A B} /\ {in As, forall A, diagonalizable A}
<-> codiagonalizable As.
Proof.
split => [cdAs|[P Punit /allP/= AsD]]/=; last first.
split; last by exists P; rewrite // AsD.
move=> A B AAs BAs; move=> /(_ _ _)/diagonalizable_forPex/sigW in AsD.
have [[dA /simmxLR->//] [dB /simmxLR->//]] := (AsD _ AAs, AsD _ BAs).
by rewrite /comm_mx -!conjmxM 1?diag_mxC// inE stablemx_unit ?unitmx_inv.
move: cdAs; rewrite (rwP (all_comm_mxP _)) => cdAs.
have [k] := ubnP (size As); elim: k => [|k IHk]//= in n As cdAs *.
case: As cdAs => [|A As]//=; first by exists 1%:M; rewrite ?unitmx1.
rewrite ltnS all_comm_mx_cons => -[/andP[/allP/(_ _ _)/eqP AAsC AsC dAAs]] Ask.
have /diagonalizablePeigen [rs urs rs1] := dAAs _ (mem_head _ _).
rewrite (big_nth 0) big_mkord in rs1.
have eAB (i : 'I_(size rs)) B : B \in A :: As -> stablemx (eigenspace A rs`_i) B.
case: n => [|n'] in B A As AAsC AsC {dAAs rs1 Ask} * => B_AAs.
by rewrite thinmx0 sub0mx.
rewrite comm_mx_stable_eigenspace//.
by move: B_AAs; rewrite !inE => /predU1P [->//|/AAsC].
apply/(@codiagonalizable_on _ _ _ (_ :: _) rs1) => [|i|i /=].
- apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj.
by apply: uniqP rsij; rewrite ?inE.
- by apply/allP => B B_AAs; rewrite eAB.
rewrite (@conjmx_eigenvalue _ _ _ rs`_i) ?eq_row_base ?row_base_free//.
set Bs := map _ _; suff [P Punit /= PBs] : codiagonalizable Bs.
exists P; rewrite /= ?PBs ?andbT// /(diagonalizable_for _ _).
by rewrite conjmx_scalar ?mx_scalar_is_diag// row_free_unit.
apply: IHk; rewrite ?size_map/= ?ltnS//; split.
apply/all_comm_mxP => _ _ /mapP[/= B BAs ->] /mapP[/= h hAs ->].
rewrite -!conjmxM ?inE ?stablemx_row_base ?eAB ?inE ?BAs ?hAs ?orbT//.
by rewrite (all_comm_mxP _ AsC).
move=> _ /mapP[/= B BAs ->].
have: stablemx (row_base (eigenspace A rs`_i)) B.
by rewrite stablemx_row_base eAB// inE BAs orbT.
have := dAAs B; rewrite inE BAs orbT => /(_ isT) [P Punit].
move=> /diagonalizable_forPex[D /(simmxLR Punit)->] sePD.
have rAeP : row_free (row_base (eigenspace A rs`_i) *m invmx P).
by rewrite /row_free mxrankMfree ?row_free_unit ?unitmx_inv// eq_row_base.
rewrite -conjMumx ?unitmx_inv ?row_base_free => [|//|//|//].
apply/diagonalizable_conj_diag => //.
by rewrite stablemx_comp// stablemx_unit ?unitmx_inv.
Qed.
End Diag.
|