1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice.
From mathcomp Require Import fintype bigop finset tuple.
From mathcomp Require Import div ssralg countalg binomial.
(******************************************************************************)
(* This file provides a library for univariate polynomials over ring *)
(* structures; it also provides an extended theory for polynomials whose *)
(* coefficients range over commutative rings and integral domains. *)
(* *)
(* {poly R} == the type of polynomials with coefficients of type R, *)
(* represented as lists with a non zero last element *)
(* (big endian representation); the coefficient type R *)
(* must have a canonical ringType structure cR. In fact *)
(* {poly R} denotes the concrete type polynomial cR; R *)
(* is just a phantom argument that lets type inference *)
(* reconstruct the (hidden) ringType structure cR. *)
(* p : seq R == the big-endian sequence of coefficients of p, via *)
(* the coercion polyseq : polynomial >-> seq. *)
(* Poly s == the polynomial with coefficient sequence s (ignoring *)
(* trailing zeroes). *)
(* \poly_(i < n) E(i) == the polynomial of degree at most n - 1 whose *)
(* coefficients are given by the general term E(i) *)
(* 0, 1, - p, p + q, == the usual ring operations: {poly R} has a canonical *)
(* p * q, p ^+ n, ... ringType structure, which is commutative / integral *)
(* when R is commutative / integral, respectively. *)
(* polyC c, c%:P == the constant polynomial c *)
(* 'X == the (unique) variable *)
(* 'X^n == a power of 'X; 'X^0 is 1, 'X^1 is convertible to 'X *)
(* p`_i == the coefficient of 'X^i in p; this is in fact just *)
(* the ring_scope notation generic seq-indexing using *)
(* nth 0%R, combined with the polyseq coercion. *)
(* *** The multi-rule coefE simplifies p`_i *)
(* coefp i == the linear function p |-> p`_i (self-exapanding). *)
(* size p == 1 + the degree of p, or 0 if p = 0 (this is the *)
(* generic seq function combined with polyseq). *)
(* lead_coef p == the coefficient of the highest monomial in p, or 0 *)
(* if p = 0 (hence lead_coef p = 0 iff p = 0) *)
(* p \is monic <=> lead_coef p == 1 (0 is not monic). *)
(* p \is a polyOver S <=> the coefficients of p satisfy S; S should have a *)
(* key that should be (at least) an addrPred. *)
(* p.[x] == the evaluation of a polynomial p at a point x using *)
(* the Horner scheme *)
(* *** The multi-rule hornerE (resp., hornerE_comm) unwinds *)
(* horner evaluation of a polynomial expression (resp., *)
(* in a non commutative ring, with side conditions). *)
(* p^`() == formal derivative of p *)
(* p^`(n) == formal n-derivative of p *)
(* p^`N(n) == formal n-derivative of p divided by n! *)
(* p \Po q == polynomial composition; because this is naturally a *)
(* a linear morphism in the first argument, this *)
(* notation is transposed (q comes before p for redex *)
(* selection, etc). *)
(* := \sum(i < size p) p`_i *: q ^+ i *)
(* odd_poly p == monomials of odd degree of p *)
(* even_poly p == monomials of even degree of p *)
(* take_poly n p == polynomial p without its monomials of degree >= n *)
(* drop_poly n p == polynomial p divided by X^n *)
(* comm_poly p x == x and p.[x] commute; this is a sufficient condition *)
(* for evaluating (q * p).[x] as q.[x] * p.[x] when R *)
(* is not commutative. *)
(* comm_coef p x == x commutes with all the coefficients of p (clearly, *)
(* this implies comm_poly p x). *)
(* root p x == x is a root of p, i.e., p.[x] = 0 *)
(* n.-unity_root x == x is an nth root of unity, i.e., a root of 'X^n - 1 *)
(* n.-primitive_root x == x is a primitive nth root of unity, i.e., n is the *)
(* least positive integer m > 0 such that x ^+ m = 1. *)
(* *** The submodule poly.UnityRootTheory can be used to *)
(* import selectively the part of the theory of roots *)
(* of unity that doesn't mention polynomials explicitly *)
(* map_poly f p == the image of the polynomial by the function f (which *)
(* (locally, p^f) is usually a ring morphism). *)
(* p^:P == p lifted to {poly {poly R}} (:= map_poly polyC p). *)
(* commr_rmorph f u == u commutes with the image of f (i.e., with all f x). *)
(* horner_morph cfu == given cfu : commr_rmorph f u, the function mapping p *)
(* to the value of map_poly f p at u; this is a ring *)
(* morphism from {poly R} to the codomain of f when f *)
(* is a ring morphism. *)
(* horner_eval u == the function mapping p to p.[u]; this function can *)
(* only be used for u in a commutative ring, so it is *)
(* always a linear ring morphism from {poly R} to R. *)
(* horner_alg a == given a in some R-algebra A, the function evaluating *)
(* a polynomial p at a; it is always a linear ring *)
(* morphism from {poly R} to A. *)
(* diff_roots x y == x and y are distinct roots; if R is a field, this *)
(* just means x != y, but this concept is generalized *)
(* to the case where R is only a ring with units (i.e., *)
(* a unitRingType); in which case it means that x and y *)
(* commute, and that the difference x - y is a unit *)
(* (i.e., has a multiplicative inverse) in R. *)
(* to just x != y). *)
(* uniq_roots s == s is a sequence or pairwise distinct roots, in the *)
(* sense of diff_roots p above. *)
(* *** We only show that these operations and properties are transferred by *)
(* morphisms whose domain is a field (thus ensuring injectivity). *)
(* We prove the factor_theorem, and the max_poly_roots inequality relating *)
(* the number of distinct roots of a polynomial and its size. *)
(* The some polynomial lemmas use following suffix interpretation : *)
(* C - constant polynomial (as in polyseqC : a%:P = nseq (a != 0) a). *)
(* X - the polynomial variable 'X (as in coefX : 'X`_i = (i == 1%N)). *)
(* Xn - power of 'X (as in monicXn : monic 'X^n). *)
(* *)
(* Pdeg2.Field (exported by the present library) : theory of the degree 2 *)
(* polynomials. *)
(* Pdeg2.FieldMonic : theory of Pdeg2.Field specialized to monic polynomials. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope unity_root_scope.
Import GRing.Theory.
Local Open Scope ring_scope.
Reserved Notation "{ 'poly' T }" (at level 0, format "{ 'poly' T }").
Reserved Notation "c %:P" (at level 2, format "c %:P").
Reserved Notation "p ^:P" (at level 2, format "p ^:P").
Reserved Notation "'X" (at level 0).
Reserved Notation "''X^' n" (at level 3, n at level 2, format "''X^' n").
Reserved Notation "\poly_ ( i < n ) E"
(at level 36, E at level 36, i, n at level 50,
format "\poly_ ( i < n ) E").
Reserved Notation "p \Po q" (at level 50).
Reserved Notation "p ^`N ( n )" (at level 8, format "p ^`N ( n )").
Reserved Notation "n .-unity_root" (at level 2, format "n .-unity_root").
Reserved Notation "n .-primitive_root"
(at level 2, format "n .-primitive_root").
Local Notation simp := Monoid.simpm.
Section Polynomial.
Variable R : semiRingType.
(* Defines a polynomial as a sequence with <> 0 last element *)
Record polynomial := Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.
HB.instance Definition _ := [isSub for polyseq].
HB.instance Definition _ := [Choice of polynomial by <:].
Lemma poly_inj : injective polyseq. Proof. exact: val_inj. Qed.
Definition coefp i (p : polynomial) := p`_i.
End Polynomial.
(* We need to break off the section here to let the Bind Scope directives *)
(* take effect. *)
Bind Scope ring_scope with polynomial.
Arguments polynomial R%type.
Arguments polyseq {R} p%R.
Arguments poly_inj {R} [p1%R p2%R] : rename.
Arguments coefp {R} i%N / p%R.
Notation "{ 'poly' T }" := (polynomial T) : type_scope.
Section SemiPolynomialTheory.
Variable R : semiRingType.
Implicit Types (a b c x y z : R) (p q r d : {poly R}).
Definition lead_coef p := p`_(size p).-1.
Lemma lead_coefE p : lead_coef p = p`_(size p).-1. Proof. by []. Qed.
Definition poly_nil := @Polynomial R [::] (oner_neq0 R).
Definition polyC c : {poly R} := insubd poly_nil [:: c].
Local Notation "c %:P" := (polyC c).
(* Remember the boolean (c != 0) is coerced to 1 if true and 0 if false *)
Lemma polyseqC c : c%:P = nseq (c != 0) c :> seq R.
Proof. by rewrite val_insubd /=; case: (c == 0). Qed.
Lemma size_polyC c : size c%:P = (c != 0).
Proof. by rewrite polyseqC size_nseq. Qed.
Lemma coefC c i : c%:P`_i = if i == 0 then c else 0.
Proof. by rewrite polyseqC; case: i => [|[]]; case: eqP. Qed.
Lemma polyCK : cancel polyC (coefp 0).
Proof. by move=> c; rewrite [coefp 0 _]coefC. Qed.
Lemma polyC_inj : injective polyC.
Proof. by move=> c1 c2 eqc12; have:= coefC c2 0; rewrite -eqc12 coefC. Qed.
Lemma lead_coefC c : lead_coef c%:P = c.
Proof. by rewrite /lead_coef polyseqC; case: eqP. Qed.
(* Extensional interpretation (poly <=> nat -> R) *)
Lemma polyP p q : nth 0 p =1 nth 0 q <-> p = q.
Proof.
split=> [eq_pq | -> //]; apply: poly_inj.
without loss lt_pq: p q eq_pq / size p < size q.
move=> IH; case: (ltngtP (size p) (size q)); try by move/IH->.
by move/(@eq_from_nth _ 0); apply.
case: q => q nz_q /= in lt_pq eq_pq *; case/eqP: nz_q.
by rewrite (last_nth 0) -(subnKC lt_pq) /= -eq_pq nth_default ?leq_addr.
Qed.
Lemma size1_polyC p : size p <= 1 -> p = (p`_0)%:P.
Proof.
move=> le_p_1; apply/polyP=> i; rewrite coefC.
by case: i => // i; rewrite nth_default // (leq_trans le_p_1).
Qed.
(* Builds a polynomial by extension. *)
Definition cons_poly c p : {poly R} :=
if p is Polynomial ((_ :: _) as s) ns then
@Polynomial R (c :: s) ns
else c%:P.
Lemma polyseq_cons c p :
cons_poly c p = (if ~~ nilp p then c :: p else c%:P) :> seq R.
Proof. by case: p => [[]]. Qed.
Lemma size_cons_poly c p :
size (cons_poly c p) = (if nilp p && (c == 0) then 0 else (size p).+1).
Proof. by case: p => [[|c' s] _] //=; rewrite size_polyC; case: eqP. Qed.
Lemma coef_cons c p i : (cons_poly c p)`_i = if i == 0 then c else p`_i.-1.
Proof.
by case: p i => [[|c' s] _] [] //=; rewrite polyseqC; case: eqP => //= _ [].
Qed.
(* Build a polynomial directly from a list of coefficients. *)
Definition Poly := foldr cons_poly 0%:P.
Lemma PolyK c s : last c s != 0 -> Poly s = s :> seq R.
Proof.
case: s => {c}/= [_ |c s]; first by rewrite polyseqC eqxx.
elim: s c => /= [|a s IHs] c nz_c; rewrite polyseq_cons ?{}IHs //.
by rewrite !polyseqC !eqxx nz_c.
Qed.
Lemma polyseqK p : Poly p = p.
Proof. by apply: poly_inj; apply: PolyK (valP p). Qed.
Lemma size_Poly s : size (Poly s) <= size s.
Proof.
elim: s => [|c s IHs] /=; first by rewrite polyseqC eqxx.
by rewrite polyseq_cons; case: ifP => // _; rewrite size_polyC; case: (~~ _).
Qed.
Lemma coef_Poly s i : (Poly s)`_i = s`_i.
Proof.
by elim: s i => [|c s IHs] /= [|i]; rewrite !(coefC, eqxx, coef_cons) /=.
Qed.
(* Build a polynomial from an infinite sequence of coefficients and a bound. *)
Definition poly_expanded_def n E := Poly (mkseq E n).
Fact poly_key : unit. Proof. by []. Qed.
Definition poly := locked_with poly_key poly_expanded_def.
Canonical poly_unlockable := [unlockable fun poly].
Local Notation "\poly_ ( i < n ) E" := (poly n (fun i : nat => E)).
Lemma polyseq_poly n E :
E n.-1 != 0 -> \poly_(i < n) E i = mkseq [eta E] n :> seq R.
Proof.
rewrite unlock; case: n => [|n] nzEn; first by rewrite polyseqC eqxx.
by rewrite (@PolyK 0) // -nth_last nth_mkseq size_mkseq.
Qed.
Lemma size_poly n E : size (\poly_(i < n) E i) <= n.
Proof. by rewrite unlock (leq_trans (size_Poly _)) ?size_mkseq. Qed.
Lemma size_poly_eq n E : E n.-1 != 0 -> size (\poly_(i < n) E i) = n.
Proof. by move/polyseq_poly->; apply: size_mkseq. Qed.
Lemma coef_poly n E k : (\poly_(i < n) E i)`_k = (if k < n then E k else 0).
Proof.
rewrite unlock coef_Poly.
have [lt_kn | le_nk] := ltnP k n; first by rewrite nth_mkseq.
by rewrite nth_default // size_mkseq.
Qed.
Lemma lead_coef_poly n E :
n > 0 -> E n.-1 != 0 -> lead_coef (\poly_(i < n) E i) = E n.-1.
Proof.
by case: n => // n _ nzE; rewrite /lead_coef size_poly_eq // coef_poly leqnn.
Qed.
Lemma coefK p : \poly_(i < size p) p`_i = p.
Proof.
by apply/polyP=> i; rewrite coef_poly; case: ltnP => // /(nth_default 0)->.
Qed.
(* Nmodule structure for polynomial *)
Definition add_poly_def p q := \poly_(i < maxn (size p) (size q)) (p`_i + q`_i).
Fact add_poly_key : unit. Proof. by []. Qed.
Definition add_poly := locked_with add_poly_key add_poly_def.
Canonical add_poly_unlockable := [unlockable fun add_poly].
Fact coef_add_poly p q i : (add_poly p q)`_i = p`_i + q`_i.
Proof.
rewrite unlock coef_poly; case: leqP => //.
by rewrite geq_max => /andP[le_p_i le_q_i]; rewrite !nth_default ?add0r.
Qed.
Fact add_polyA : associative add_poly.
Proof. by move=> p q r; apply/polyP=> i; rewrite !coef_add_poly addrA. Qed.
Fact add_polyC : commutative add_poly.
Proof. by move=> p q; apply/polyP=> i; rewrite !coef_add_poly addrC. Qed.
Fact add_poly0 : left_id 0%:P add_poly.
Proof.
by move=> p; apply/polyP=> i; rewrite coef_add_poly coefC if_same add0r.
Qed.
HB.instance Definition _ := GRing.isNmodule.Build (polynomial R)
add_polyA add_polyC add_poly0.
(* Properties of the zero polynomial *)
Lemma polyC0 : 0%:P = 0 :> {poly R}. Proof. by []. Qed.
Lemma polyseq0 : (0 : {poly R}) = [::] :> seq R.
Proof. by rewrite polyseqC eqxx. Qed.
Lemma size_poly0 : size (0 : {poly R}) = 0%N.
Proof. by rewrite polyseq0. Qed.
Lemma coef0 i : (0 : {poly R})`_i = 0.
Proof. by rewrite coefC if_same. Qed.
Lemma lead_coef0 : lead_coef 0 = 0 :> R. Proof. exact: lead_coefC. Qed.
Lemma size_poly_eq0 p : (size p == 0) = (p == 0).
Proof. by rewrite size_eq0 -polyseq0. Qed.
Lemma size_poly_leq0 p : (size p <= 0) = (p == 0).
Proof. by rewrite leqn0 size_poly_eq0. Qed.
Lemma size_poly_leq0P p : reflect (p = 0) (size p <= 0).
Proof. by apply: (iffP idP); rewrite size_poly_leq0; move/eqP. Qed.
Lemma size_poly_gt0 p : (0 < size p) = (p != 0).
Proof. by rewrite lt0n size_poly_eq0. Qed.
Lemma gt_size_poly_neq0 p n : (size p > n)%N -> p != 0.
Proof. by move=> /(leq_ltn_trans _) h; rewrite -size_poly_eq0 lt0n_neq0 ?h. Qed.
Lemma nil_poly p : nilp p = (p == 0).
Proof. exact: size_poly_eq0. Qed.
Lemma poly0Vpos p : {p = 0} + {size p > 0}.
Proof. by rewrite lt0n size_poly_eq0; case: eqVneq; [left | right]. Qed.
Lemma polySpred p : p != 0 -> size p = (size p).-1.+1.
Proof. by rewrite -size_poly_eq0 -lt0n => /prednK. Qed.
Lemma lead_coef_eq0 p : (lead_coef p == 0) = (p == 0).
Proof.
rewrite -nil_poly /lead_coef nth_last.
by case: p => [[|x s] /= /negbTE // _]; rewrite eqxx.
Qed.
Lemma polyC_eq0 (c : R) : (c%:P == 0) = (c == 0).
Proof. by rewrite -nil_poly polyseqC; case: (c == 0). Qed.
Lemma size_poly1P p : reflect (exists2 c, c != 0 & p = c%:P) (size p == 1).
Proof.
apply: (iffP eqP) => [pC | [c nz_c ->]]; last by rewrite size_polyC nz_c.
have def_p: p = (p`_0)%:P by rewrite -size1_polyC ?pC.
by exists p`_0; rewrite // -polyC_eq0 -def_p -size_poly_eq0 pC.
Qed.
Lemma size_polyC_leq1 (c : R) : (size c%:P <= 1)%N.
Proof. by rewrite size_polyC; case: (c == 0). Qed.
Lemma leq_sizeP p i : reflect (forall j, i <= j -> p`_j = 0) (size p <= i).
Proof.
apply: (iffP idP) => [hp j hij| hp].
by apply: nth_default; apply: leq_trans hij.
case: (eqVneq p) (lead_coef_eq0 p) => [->|p0]; first by rewrite size_poly0.
rewrite leqNgt; apply/contraFN => hs.
by apply/eqP/hp; rewrite -ltnS (ltn_predK hs).
Qed.
(* Size, leading coef, morphism properties of coef *)
Lemma coefD p q i : (p + q)`_i = p`_i + q`_i.
Proof. exact: coef_add_poly. Qed.
Lemma polyCD : {morph polyC : a b / a + b}.
Proof. by move=> a b; apply/polyP=> [[|i]]; rewrite coefD !coefC ?addr0. Qed.
Lemma size_add p q : size (p + q) <= maxn (size p) (size q).
Proof. by rewrite -[+%R]/add_poly unlock; apply: size_poly. Qed.
Lemma size_addl p q : size p > size q -> size (p + q) = size p.
Proof.
move=> ltqp; rewrite -[+%R]/add_poly unlock size_poly_eq (maxn_idPl (ltnW _))//.
by rewrite addrC nth_default ?simp ?nth_last //; case: p ltqp => [[]].
Qed.
Lemma size_sum I (r : seq I) (P : pred I) (F : I -> {poly R}) :
size (\sum_(i <- r | P i) F i) <= \max_(i <- r | P i) size (F i).
Proof.
elim/big_rec2: _ => [|i p q _ IHp]; first by rewrite size_poly0.
by rewrite -(maxn_idPr IHp) maxnA leq_max size_add.
Qed.
Lemma lead_coefDl p q : size p > size q -> lead_coef (p + q) = lead_coef p.
Proof.
move=> ltqp; rewrite /lead_coef coefD size_addl //.
by rewrite addrC nth_default ?simp // -ltnS (ltn_predK ltqp).
Qed.
Lemma lead_coefDr p q : size q > size p -> lead_coef (p + q) = lead_coef q.
Proof. by move/lead_coefDl<-; rewrite addrC. Qed.
(* Polynomial semiring structure. *)
Definition mul_poly_def p q :=
\poly_(i < (size p + size q).-1) (\sum_(j < i.+1) p`_j * q`_(i - j)).
Fact mul_poly_key : unit. Proof. by []. Qed.
Definition mul_poly := locked_with mul_poly_key mul_poly_def.
Canonical mul_poly_unlockable := [unlockable fun mul_poly].
Fact coef_mul_poly p q i :
(mul_poly p q)`_i = \sum_(j < i.+1) p`_j * q`_(i - j)%N.
Proof.
rewrite unlock coef_poly -subn1 ltn_subRL add1n; case: leqP => // le_pq_i1.
rewrite big1 // => j _; have [lq_q_ij | gt_q_ij] := leqP (size q) (i - j).
by rewrite [q`__]nth_default ?mulr0.
rewrite nth_default ?mul0r // -(leq_add2r (size q)) (leq_trans le_pq_i1) //.
by rewrite -leq_subLR -subnSK.
Qed.
Fact coef_mul_poly_rev p q i :
(mul_poly p q)`_i = \sum_(j < i.+1) p`_(i - j)%N * q`_j.
Proof.
rewrite coef_mul_poly (reindex_inj rev_ord_inj) /=.
by apply: eq_bigr => j _; rewrite (sub_ordK j).
Qed.
Fact mul_polyA : associative mul_poly.
Proof.
move=> p q r; apply/polyP=> i; rewrite coef_mul_poly coef_mul_poly_rev.
pose coef3 j k := p`_j * (q`_(i - j - k)%N * r`_k).
transitivity (\sum_(j < i.+1) \sum_(k < i.+1 | k <= i - j) coef3 j k).
apply: eq_bigr => /= j _; rewrite coef_mul_poly_rev big_distrr /=.
by rewrite (big_ord_narrow_leq (leq_subr _ _)).
rewrite (exchange_big_dep predT) //=; apply: eq_bigr => k _.
transitivity (\sum_(j < i.+1 | j <= i - k) coef3 j k).
apply: eq_bigl => j; rewrite -ltnS -(ltnS j) -!subSn ?leq_ord //.
by rewrite -subn_gt0 -(subn_gt0 j) -!subnDA addnC.
rewrite (big_ord_narrow_leq (leq_subr _ _)) coef_mul_poly big_distrl /=.
by apply: eq_bigr => j _; rewrite /coef3 -!subnDA addnC mulrA.
Qed.
Fact mul_1poly : left_id 1%:P mul_poly.
Proof.
move=> p; apply/polyP => i; rewrite coef_mul_poly big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp.
Qed.
Fact mul_poly1 : right_id 1%:P mul_poly.
Proof.
move=> p; apply/polyP => i; rewrite coef_mul_poly_rev big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp.
Qed.
Fact mul_polyDl : left_distributive mul_poly +%R.
Proof.
move=> p q r; apply/polyP=> i; rewrite coefD !coef_mul_poly -big_split.
by apply: eq_bigr => j _; rewrite coefD mulrDl.
Qed.
Fact mul_polyDr : right_distributive mul_poly +%R.
Proof.
move=> p q r; apply/polyP=> i; rewrite coefD !coef_mul_poly -big_split.
by apply: eq_bigr => j _; rewrite coefD mulrDr.
Qed.
Fact mul_0poly : left_zero 0%:P mul_poly.
Proof.
move=> p; apply/polyP => i; rewrite coef_mul_poly big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp // coefC; case: ifP.
Qed.
Fact mul_poly0 : right_zero 0%:P mul_poly.
Proof.
move=> p; apply/polyP => i; rewrite coef_mul_poly_rev big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp // coefC; case: ifP.
Qed.
Fact poly1_neq0 : 1%:P != 0 :> {poly R}.
Proof. by rewrite polyC_eq0 oner_neq0. Qed.
HB.instance Definition _ := GRing.Nmodule_isSemiRing.Build (polynomial R)
mul_polyA mul_1poly mul_poly1 mul_polyDl mul_polyDr mul_0poly mul_poly0
poly1_neq0.
Lemma polyC1 : 1%:P = 1 :> {poly R}. Proof. by []. Qed.
Lemma polyseq1 : (1 : {poly R}) = [:: 1] :> seq R.
Proof. by rewrite polyseqC oner_neq0. Qed.
Lemma size_poly1 : size (1 : {poly R}) = 1.
Proof. by rewrite polyseq1. Qed.
Lemma coef1 i : (1 : {poly R})`_i = (i == 0)%:R.
Proof. by case: i => [|i]; rewrite polyseq1 /= ?nth_nil. Qed.
Lemma lead_coef1 : lead_coef 1 = 1 :> R. Proof. exact: lead_coefC. Qed.
Lemma coefM p q i : (p * q)`_i = \sum_(j < i.+1) p`_j * q`_(i - j)%N.
Proof. exact: coef_mul_poly. Qed.
Lemma coefMr p q i : (p * q)`_i = \sum_(j < i.+1) p`_(i - j)%N * q`_j.
Proof. exact: coef_mul_poly_rev. Qed.
Lemma coef0M p q : (p * q)`_0 = p`_0 * q`_0.
Proof. by rewrite coefM big_ord1. Qed.
Lemma coef0_prod I rI (F : I -> {poly R}) P :
(\prod_(i <- rI| P i) F i)`_0 = \prod_(i <- rI | P i) (F i)`_0.
Proof. by apply: (big_morph _ coef0M); rewrite coef1 eqxx. Qed.
Lemma size_mul_leq p q : size (p * q) <= (size p + size q).-1.
Proof. by rewrite -[*%R]/mul_poly unlock size_poly. Qed.
Lemma mul_lead_coef p q :
lead_coef p * lead_coef q = (p * q)`_(size p + size q).-2.
Proof.
pose dp := (size p).-1; pose dq := (size q).-1.
have [-> | nz_p] := eqVneq p 0; first by rewrite lead_coef0 !mul0r coef0.
have [-> | nz_q] := eqVneq q 0; first by rewrite lead_coef0 !mulr0 coef0.
have ->: (size p + size q).-2 = (dp + dq)%N.
by do 2!rewrite polySpred // addSn addnC.
have lt_p_pq: dp < (dp + dq).+1 by rewrite ltnS leq_addr.
rewrite coefM (bigD1 (Ordinal lt_p_pq)) ?big1 ?simp ?addKn //= => i.
rewrite -val_eqE neq_ltn /= => /orP[lt_i_p | gt_i_p]; last first.
by rewrite nth_default ?mul0r //; rewrite -polySpred in gt_i_p.
rewrite [q`__]nth_default ?mulr0 //= -subSS -{1}addnS -polySpred //.
by rewrite addnC -addnBA ?leq_addr.
Qed.
Lemma size_proper_mul p q :
lead_coef p * lead_coef q != 0 -> size (p * q) = (size p + size q).-1.
Proof.
apply: contraNeq; rewrite mul_lead_coef eqn_leq size_mul_leq -ltnNge => lt_pq.
by rewrite nth_default // -subn1 -(leq_add2l 1) -leq_subLR leq_sub2r.
Qed.
Lemma lead_coef_proper_mul p q :
let c := lead_coef p * lead_coef q in c != 0 -> lead_coef (p * q) = c.
Proof. by move=> /= nz_c; rewrite mul_lead_coef -size_proper_mul. Qed.
Lemma size_prod_leq (I : finType) (P : pred I) (F : I -> {poly R}) :
size (\prod_(i | P i) F i) <= (\sum_(i | P i) size (F i)).+1 - #|P|.
Proof.
rewrite -sum1_card.
elim/big_rec3: _ => [|i n m p _ IHp]; first by rewrite size_poly1.
have [-> | nz_p] := eqVneq p 0; first by rewrite mulr0 size_poly0.
rewrite (leq_trans (size_mul_leq _ _)) // subnS -!subn1 leq_sub2r //.
rewrite -addnS -addnBA ?leq_add2l // ltnW // -subn_gt0 (leq_trans _ IHp) //.
by rewrite polySpred.
Qed.
Lemma coefCM c p i : (c%:P * p)`_i = c * p`_i.
Proof.
rewrite coefM big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp.
Qed.
Lemma coefMC c p i : (p * c%:P)`_i = p`_i * c.
Proof.
rewrite coefMr big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp.
Qed.
Lemma polyCM : {morph polyC : a b / a * b}.
Proof. by move=> a b; apply/polyP=> [[|i]]; rewrite coefCM !coefC ?simp. Qed.
Lemma size_exp_leq p n : size (p ^+ n) <= ((size p).-1 * n).+1.
Proof.
elim: n => [|n IHn]; first by rewrite size_poly1.
have [-> | nzp] := poly0Vpos p; first by rewrite exprS mul0r size_poly0.
rewrite exprS (leq_trans (size_mul_leq _ _)) //.
by rewrite -{1}(prednK nzp) mulnS -addnS leq_add2l.
Qed.
End SemiPolynomialTheory.
Section PolynomialTheory.
Variable R : ringType.
Implicit Types (a b c x y z : R) (p q r d : {poly R}).
Local Notation "c %:P" := (polyC c).
Local Notation "\poly_ ( i < n ) E" := (poly n (fun i : nat => E)).
(* Zmodule structure for polynomial *)
Definition opp_poly_def p := \poly_(i < size p) - p`_i.
Fact opp_poly_key : unit. Proof. by []. Qed.
Definition opp_poly := locked_with opp_poly_key opp_poly_def.
Canonical opp_poly_unlockable := [unlockable fun opp_poly].
Fact coef_opp_poly p i : (opp_poly p)`_i = - p`_i.
Proof.
rewrite unlock coef_poly /=.
by case: leqP => // le_p_i; rewrite nth_default ?oppr0.
Qed.
Fact add_polyN : left_inverse 0%:P opp_poly (@add_poly _).
Proof.
move=> p; apply/polyP=> i.
by rewrite coef_add_poly coef_opp_poly coefC if_same addNr.
Qed.
HB.instance Definition _ := GRing.Nmodule_isZmodule.Build (polynomial R)
add_polyN.
(* Size, leading coef, morphism properties of coef *)
Lemma coefN p i : (- p)`_i = - p`_i.
Proof. exact: coef_opp_poly. Qed.
Lemma coefB p q i : (p - q)`_i = p`_i - q`_i.
Proof. by rewrite coefD coefN. Qed.
HB.instance Definition _ i := GRing.isAdditive.Build {poly R} R (coefp i)
(fun p => (coefB p)^~ i).
Lemma coefMn p n i : (p *+ n)`_i = p`_i *+ n.
Proof. exact: (raddfMn (coefp i)). Qed.
Lemma coefMNn p n i : (p *- n)`_i = p`_i *- n.
Proof. by rewrite coefN coefMn. Qed.
Lemma coef_sum I (r : seq I) (P : pred I) (F : I -> {poly R}) k :
(\sum_(i <- r | P i) F i)`_k = \sum_(i <- r | P i) (F i)`_k.
Proof. exact: (raddf_sum (coefp k)). Qed.
Lemma polyCN : {morph (@polyC R) : c / - c}.
Proof. by move=> c; apply/polyP=> [[|i]]; rewrite coefN !coefC ?oppr0. Qed.
Lemma polyCB : {morph (@polyC R) : a b / a - b}.
Proof. by move=> a b; rewrite polyCD polyCN. Qed.
HB.instance Definition _ := GRing.isAdditive.Build R {poly R} (@polyC _) polyCB.
Lemma polyCMn n : {morph (@polyC R) : c / c *+ n}. Proof. exact: raddfMn. Qed.
Lemma size_opp p : size (- p) = size p.
Proof.
by apply/eqP; rewrite eqn_leq -{3}(opprK p) -[-%R]/opp_poly unlock !size_poly.
Qed.
Lemma lead_coefN p : lead_coef (- p) = - lead_coef p.
Proof. by rewrite /lead_coef size_opp coefN. Qed.
(* Polynomial ring structure. *)
Fact polyC_multiplicative : multiplicative (@polyC R).
Proof. by split; first apply: polyCM. Qed.
HB.instance Definition _ := GRing.isMultiplicative.Build R {poly R} (@polyC R)
polyC_multiplicative.
Lemma polyC_exp n : {morph (@polyC R) : c / c ^+ n}. Proof. exact: rmorphXn. Qed.
Lemma polyC_natr n : n%:R%:P = n%:R :> {poly R}.
Proof. by rewrite rmorph_nat. Qed.
Lemma char_poly : [char {poly R}] =i [char R].
Proof.
move=> p; rewrite !inE; congr (_ && _).
apply/eqP/eqP=> [/(congr1 val) /=|]; last by rewrite -polyC_natr => ->.
by rewrite polyseq0 -polyC_natr polyseqC; case: eqP.
Qed.
Lemma size_Msign p n : size ((-1) ^+ n * p) = size p.
Proof.
by rewrite -signr_odd; case: (odd n); rewrite ?mul1r // mulN1r size_opp.
Qed.
Fact coefp0_multiplicative : multiplicative (coefp 0 : {poly R} -> R).
Proof.
split=> [p q|]; last by rewrite polyCK.
by rewrite [coefp 0 _]coefM big_ord_recl big_ord0 addr0.
Qed.
HB.instance Definition _ := GRing.isMultiplicative.Build {poly R} R (coefp 0)
coefp0_multiplicative.
(* Algebra structure of polynomials. *)
Definition scale_poly_def a (p : {poly R}) := \poly_(i < size p) (a * p`_i).
Fact scale_poly_key : unit. Proof. by []. Qed.
Definition scale_poly := locked_with scale_poly_key scale_poly_def.
Canonical scale_poly_unlockable := [unlockable fun scale_poly].
Fact scale_polyE a p : scale_poly a p = a%:P * p.
Proof.
apply/polyP=> n; rewrite unlock coef_poly coefCM.
by case: leqP => // le_p_n; rewrite nth_default ?mulr0.
Qed.
Fact scale_polyA a b p : scale_poly a (scale_poly b p) = scale_poly (a * b) p.
Proof. by rewrite !scale_polyE mulrA polyCM. Qed.
Fact scale_1poly : left_id 1 scale_poly.
Proof. by move=> p; rewrite scale_polyE mul1r. Qed.
Fact scale_polyDr a : {morph scale_poly a : p q / p + q}.
Proof. by move=> p q; rewrite !scale_polyE mulrDr. Qed.
Fact scale_polyDl p : {morph scale_poly^~ p : a b / a + b}.
Proof. by move=> a b /=; rewrite !scale_polyE raddfD mulrDl. Qed.
Fact scale_polyAl a p q : scale_poly a (p * q) = scale_poly a p * q.
Proof. by rewrite !scale_polyE mulrA. Qed.
HB.instance Definition _ := GRing.Zmodule_isLmodule.Build R (polynomial R)
scale_polyA scale_1poly scale_polyDr scale_polyDl.
HB.instance Definition _ := GRing.Lmodule_isLalgebra.Build R (polynomial R)
scale_polyAl.
Lemma mul_polyC a p : a%:P * p = a *: p.
Proof. by rewrite -scale_polyE. Qed.
Lemma scale_polyC a b : a *: b%:P = (a * b)%:P.
Proof. by rewrite -mul_polyC polyCM. Qed.
Lemma alg_polyC a : a%:A = a%:P :> {poly R}.
Proof. by rewrite -mul_polyC mulr1. Qed.
Lemma coefZ a p i : (a *: p)`_i = a * p`_i.
Proof.
rewrite -[*:%R]/scale_poly unlock coef_poly.
by case: leqP => // le_p_n; rewrite nth_default ?mulr0.
Qed.
Lemma size_scale_leq a p : size (a *: p) <= size p.
Proof. by rewrite -[*:%R]/scale_poly unlock size_poly. Qed.
HB.instance Definition _ i := GRing.isScalable.Build R {poly R} R *%R (coefp i)
(fun a => (coefZ a) ^~ i).
HB.instance Definition _ := GRing.Linear.on (coefp 0).
(* The indeterminate, at last! *)
Definition polyX_def := @Poly R [:: 0; 1].
Fact polyX_key : unit. Proof. by []. Qed.
Definition polyX : {poly R} := locked_with polyX_key polyX_def.
Canonical polyX_unlockable := [unlockable of polyX].
Local Notation "'X" := polyX.
Lemma polyseqX : 'X = [:: 0; 1] :> seq R.
Proof. by rewrite unlock !polyseq_cons nil_poly eqxx /= polyseq1. Qed.
Lemma size_polyX : size 'X = 2. Proof. by rewrite polyseqX. Qed.
Lemma polyX_eq0 : ('X == 0) = false.
Proof. by rewrite -size_poly_eq0 size_polyX. Qed.
Lemma coefX i : 'X`_i = (i == 1)%:R.
Proof. by case: i => [|[|i]]; rewrite polyseqX //= nth_nil. Qed.
Lemma lead_coefX : lead_coef 'X = 1.
Proof. by rewrite /lead_coef polyseqX. Qed.
Lemma commr_polyX p : GRing.comm p 'X.
Proof.
apply/polyP=> i; rewrite coefMr coefM.
by apply: eq_bigr => j _; rewrite coefX commr_nat.
Qed.
Lemma coefMX p i : (p * 'X)`_i = (if (i == 0)%N then 0 else p`_i.-1).
Proof.
rewrite coefMr big_ord_recl coefX ?simp.
case: i => [|i]; rewrite ?big_ord0 //= big_ord_recl polyseqX subn1 /=.
by rewrite big1 ?simp // => j _; rewrite nth_nil !simp.
Qed.
Lemma coefXM p i : ('X * p)`_i = (if (i == 0)%N then 0 else p`_i.-1).
Proof. by rewrite -commr_polyX coefMX. Qed.
Lemma cons_poly_def p a : cons_poly a p = p * 'X + a%:P.
Proof.
apply/polyP=> i; rewrite coef_cons coefD coefMX coefC.
by case: ifP; rewrite !simp.
Qed.
Lemma poly_ind (K : {poly R} -> Type) :
K 0 -> (forall p c, K p -> K (p * 'X + c%:P)) -> (forall p, K p).
Proof.
move=> K0 Kcons p; rewrite -[p]polyseqK.
by elim: {p}(p : seq R) => //= p c IHp; rewrite cons_poly_def; apply: Kcons.
Qed.
Lemma polyseqXaddC a : 'X + a%:P = [:: a; 1] :> seq R.
Proof. by rewrite -['X]mul1r -cons_poly_def polyseq_cons polyseq1. Qed.
Lemma polyseqXsubC a : 'X - a%:P = [:: - a; 1] :> seq R.
Proof. by rewrite -polyCN polyseqXaddC. Qed.
Lemma size_XsubC a : size ('X - a%:P) = 2.
Proof. by rewrite polyseqXsubC. Qed.
Lemma size_XaddC b : size ('X + b%:P) = 2.
Proof. by rewrite -[b]opprK rmorphN size_XsubC. Qed.
Lemma lead_coefXaddC a : lead_coef ('X + a%:P) = 1.
Proof. by rewrite lead_coefE polyseqXaddC. Qed.
Lemma lead_coefXsubC a : lead_coef ('X - a%:P) = 1.
Proof. by rewrite lead_coefE polyseqXsubC. Qed.
Lemma polyXsubC_eq0 a : ('X - a%:P == 0) = false.
Proof. by rewrite -nil_poly polyseqXsubC. Qed.
Lemma size_MXaddC p c :
size (p * 'X + c%:P) = (if (p == 0) && (c == 0) then 0 else (size p).+1).
Proof. by rewrite -cons_poly_def size_cons_poly nil_poly. Qed.
Lemma polyseqMX p : p != 0 -> p * 'X = 0 :: p :> seq R.
Proof.
by move=> nz_p; rewrite -[p * _]addr0 -cons_poly_def polyseq_cons nil_poly nz_p.
Qed.
Lemma size_mulX p : p != 0 -> size (p * 'X) = (size p).+1.
Proof. by move/polyseqMX->. Qed.
Lemma lead_coefMX p : lead_coef (p * 'X) = lead_coef p.
Proof.
have [-> | nzp] := eqVneq p 0; first by rewrite mul0r.
by rewrite /lead_coef !nth_last polyseqMX.
Qed.
Lemma size_XmulC a : a != 0 -> size ('X * a%:P) = 2.
Proof.
by move=> nz_a; rewrite -commr_polyX size_mulX ?polyC_eq0 ?size_polyC nz_a.
Qed.
Local Notation "''X^' n" := ('X ^+ n).
Lemma coefXn n i : 'X^n`_i = (i == n)%:R.
Proof.
by elim: n i => [|n IHn] [|i]; rewrite ?coef1 // exprS coefXM ?IHn.
Qed.
Lemma polyseqXn n : 'X^n = rcons (nseq n 0) 1 :> seq R.
Proof.
elim: n => [|n IHn]; rewrite ?polyseq1 // exprSr.
by rewrite polyseqMX -?size_poly_eq0 IHn ?size_rcons.
Qed.
Lemma size_polyXn n : size 'X^n = n.+1.
Proof. by rewrite polyseqXn size_rcons size_nseq. Qed.
Lemma commr_polyXn p n : GRing.comm p 'X^n.
Proof. exact/commrX/commr_polyX. Qed.
Lemma lead_coefXn n : lead_coef 'X^n = 1.
Proof. by rewrite /lead_coef nth_last polyseqXn last_rcons. Qed.
Lemma lead_coefXnaddC n c : 0 < n -> lead_coef ('X^n + c%:P) = 1.
Proof.
move=> n_gt0; rewrite lead_coefDl ?lead_coefXn//.
by rewrite size_polyC size_polyXn ltnS (leq_trans (leq_b1 _)).
Qed.
Lemma lead_coefXnsubC n c : 0 < n -> lead_coef ('X^n - c%:P) = 1.
Proof. by move=> n_gt0; rewrite -polyCN lead_coefXnaddC. Qed.
Lemma size_XnaddC n c : 0 < n -> size ('X^n + c%:P) = n.+1.
Proof. by move=> *; rewrite size_addl ?size_polyXn// size_polyC; case: eqP. Qed.
Lemma size_XnsubC n c : 0 < n -> size ('X^n - c%:P) = n.+1.
Proof. by move=> *; rewrite -polyCN size_XnaddC. Qed.
Lemma polyseqMXn n p : p != 0 -> p * 'X^n = ncons n 0 p :> seq R.
Proof.
case: n => [|n] nz_p; first by rewrite mulr1.
elim: n => [|n IHn]; first exact: polyseqMX.
by rewrite exprSr mulrA polyseqMX -?nil_poly IHn.
Qed.
Lemma coefMXn n p i : (p * 'X^n)`_i = if i < n then 0 else p`_(i - n).
Proof.
have [-> | /polyseqMXn->] := eqVneq p 0; last exact: nth_ncons.
by rewrite mul0r !coef0 if_same.
Qed.
Lemma size_mulXn n p : p != 0 -> size (p * 'X^n) = (n + size p)%N.
Proof.
elim: n p => [p p_neq0| n IH p p_neq0]; first by rewrite mulr1.
by rewrite exprS mulrA IH -?size_poly_eq0 size_mulX // addnS.
Qed.
Lemma coefXnM n p i : ('X^n * p)`_i = if i < n then 0 else p`_(i - n).
Proof. by rewrite -commr_polyXn coefMXn. Qed.
Lemma coef_sumMXn I (r : seq I) (P : pred I) (p : I -> R) (n : I -> nat) k :
(\sum_(i <- r | P i) p i *: 'X^(n i))`_k =
\sum_(i <- r | P i && (n i == k)) p i.
Proof.
rewrite coef_sum big_mkcondr; apply: eq_bigr => i Pi.
by rewrite coefZ coefXn mulr_natr mulrb eq_sym.
Qed.
(* Expansion of a polynomial as an indexed sum *)
Lemma poly_def n E : \poly_(i < n) E i = \sum_(i < n) E i *: 'X^i.
Proof. by apply/polyP => i; rewrite coef_sumMXn coef_poly big_ord1_eq. Qed.
(* Monic predicate *)
Definition monic_pred := fun p => lead_coef p == 1.
Arguments monic_pred _ /.
Definition monic := [qualify p | monic_pred p].
Lemma monicE p : (p \is monic) = (lead_coef p == 1). Proof. by []. Qed.
Lemma monicP p : reflect (lead_coef p = 1) (p \is monic).
Proof. exact: eqP. Qed.
Lemma monic1 : 1 \is monic. Proof. exact/eqP/lead_coef1. Qed.
Lemma monicX : 'X \is monic. Proof. exact/eqP/lead_coefX. Qed.
Lemma monicXn n : 'X^n \is monic. Proof. exact/eqP/lead_coefXn. Qed.
Lemma monic_neq0 p : p \is monic -> p != 0.
Proof. by rewrite -lead_coef_eq0 => /eqP->; apply: oner_neq0. Qed.
Lemma lead_coef_monicM p q : p \is monic -> lead_coef (p * q) = lead_coef q.
Proof.
have [-> | nz_q] := eqVneq q 0; first by rewrite mulr0.
by move/monicP=> mon_p; rewrite lead_coef_proper_mul mon_p mul1r ?lead_coef_eq0.
Qed.
Lemma lead_coef_Mmonic p q : q \is monic -> lead_coef (p * q) = lead_coef p.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite mul0r.
by move/monicP=> mon_q; rewrite lead_coef_proper_mul mon_q mulr1 ?lead_coef_eq0.
Qed.
Lemma size_monicM p q :
p \is monic -> q != 0 -> size (p * q) = (size p + size q).-1.
Proof.
move/monicP=> mon_p nz_q.
by rewrite size_proper_mul // mon_p mul1r lead_coef_eq0.
Qed.
Lemma size_Mmonic p q :
p != 0 -> q \is monic -> size (p * q) = (size p + size q).-1.
Proof.
move=> nz_p /monicP mon_q.
by rewrite size_proper_mul // mon_q mulr1 lead_coef_eq0.
Qed.
Lemma monicMl p q : p \is monic -> (p * q \is monic) = (q \is monic).
Proof. by move=> mon_p; rewrite !monicE lead_coef_monicM. Qed.
Lemma monicMr p q : q \is monic -> (p * q \is monic) = (p \is monic).
Proof. by move=> mon_q; rewrite !monicE lead_coef_Mmonic. Qed.
Fact monic_mulr_closed : mulr_closed monic.
Proof. by split=> [|p q mon_p]; rewrite (monic1, monicMl). Qed.
HB.instance Definition _ := GRing.isMulClosed.Build {poly R} monic_pred
monic_mulr_closed.
Lemma monic_exp p n : p \is monic -> p ^+ n \is monic.
Proof. exact: rpredX. Qed.
Lemma monic_prod I rI (P : pred I) (F : I -> {poly R}):
(forall i, P i -> F i \is monic) -> \prod_(i <- rI | P i) F i \is monic.
Proof. exact: rpred_prod. Qed.
Lemma monicXaddC c : 'X + c%:P \is monic.
Proof. exact/eqP/lead_coefXaddC. Qed.
Lemma monicXsubC c : 'X - c%:P \is monic.
Proof. exact/eqP/lead_coefXsubC. Qed.
Lemma monic_prod_XsubC I rI (P : pred I) (F : I -> R) :
\prod_(i <- rI | P i) ('X - (F i)%:P) \is monic.
Proof. by apply: monic_prod => i _; apply: monicXsubC. Qed.
Lemma lead_coef_prod_XsubC I rI (P : pred I) (F : I -> R) :
lead_coef (\prod_(i <- rI | P i) ('X - (F i)%:P)) = 1.
Proof. exact/eqP/monic_prod_XsubC. Qed.
Lemma size_prod_XsubC I rI (F : I -> R) :
size (\prod_(i <- rI) ('X - (F i)%:P)) = (size rI).+1.
Proof.
elim: rI => [|i r /= <-]; rewrite ?big_nil ?size_poly1 // big_cons.
rewrite size_monicM ?monicXsubC ?monic_neq0 ?monic_prod_XsubC //.
by rewrite size_XsubC.
Qed.
Lemma size_exp_XsubC n a : size (('X - a%:P) ^+ n) = n.+1.
Proof.
rewrite -[n]card_ord -prodr_const -big_filter size_prod_XsubC.
by have [e _ _ [_ ->]] := big_enumP.
Qed.
Lemma monicXnaddC n c : 0 < n -> 'X^n + c%:P \is monic.
Proof. by move=> n_gt0; rewrite monicE lead_coefXnaddC. Qed.
Lemma monicXnsubC n c : 0 < n -> 'X^n - c%:P \is monic.
Proof. by move=> n_gt0; rewrite monicE lead_coefXnsubC. Qed.
(* Some facts about regular elements. *)
Lemma lreg_lead p : GRing.lreg (lead_coef p) -> GRing.lreg p.
Proof.
move/mulrI_eq0=> reg_p; apply: mulrI0_lreg => q /eqP; apply: contraTeq => nz_q.
by rewrite -lead_coef_eq0 lead_coef_proper_mul reg_p lead_coef_eq0.
Qed.
Lemma rreg_lead p : GRing.rreg (lead_coef p) -> GRing.rreg p.
Proof.
move/mulIr_eq0=> reg_p; apply: mulIr0_rreg => q /eqP; apply: contraTeq => nz_q.
by rewrite -lead_coef_eq0 lead_coef_proper_mul reg_p lead_coef_eq0.
Qed.
Lemma lreg_lead0 p : GRing.lreg (lead_coef p) -> p != 0.
Proof. by move/lreg_neq0; rewrite lead_coef_eq0. Qed.
Lemma rreg_lead0 p : GRing.rreg (lead_coef p) -> p != 0.
Proof. by move/rreg_neq0; rewrite lead_coef_eq0. Qed.
Lemma lreg_size c p : GRing.lreg c -> size (c *: p) = size p.
Proof.
move=> reg_c; have [-> | nz_p] := eqVneq p 0; first by rewrite scaler0.
rewrite -mul_polyC size_proper_mul; first by rewrite size_polyC lreg_neq0.
by rewrite lead_coefC mulrI_eq0 ?lead_coef_eq0.
Qed.
Lemma lreg_polyZ_eq0 c p : GRing.lreg c -> (c *: p == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 => /lreg_size->. Qed.
Lemma lead_coef_lreg c p :
GRing.lreg c -> lead_coef (c *: p) = c * lead_coef p.
Proof. by move=> reg_c; rewrite !lead_coefE coefZ lreg_size. Qed.
Lemma rreg_size c p : GRing.rreg c -> size (p * c%:P) = size p.
Proof.
move=> reg_c; have [-> | nz_p] := eqVneq p 0; first by rewrite mul0r.
rewrite size_proper_mul; first by rewrite size_polyC rreg_neq0 ?addn1.
by rewrite lead_coefC mulIr_eq0 ?lead_coef_eq0.
Qed.
Lemma rreg_polyMC_eq0 c p : GRing.rreg c -> (p * c%:P == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 => /rreg_size->. Qed.
Lemma rreg_div0 q r d :
GRing.rreg (lead_coef d) -> size r < size d ->
(q * d + r == 0) = (q == 0) && (r == 0).
Proof.
move=> reg_d lt_r_d; rewrite addrC addr_eq0.
have [-> | nz_q] := eqVneq q 0; first by rewrite mul0r oppr0.
apply: contraTF lt_r_d => /eqP->; rewrite -leqNgt size_opp.
rewrite size_proper_mul ?mulIr_eq0 ?lead_coef_eq0 //.
by rewrite (polySpred nz_q) leq_addl.
Qed.
Lemma monic_comreg p :
p \is monic -> GRing.comm p (lead_coef p)%:P /\ GRing.rreg (lead_coef p).
Proof. by move/monicP->; split; [apply: commr1 | apply: rreg1]. Qed.
Lemma monic_lreg p : p \is monic -> GRing.lreg p.
Proof. by move=> /eqP lp1; apply/lreg_lead; rewrite lp1; apply/lreg1. Qed.
Lemma monic_rreg p : p \is monic -> GRing.rreg p.
Proof. by move=> /eqP lp1; apply/rreg_lead; rewrite lp1; apply/rreg1. Qed.
(* Horner evaluation of polynomials *)
Implicit Types s rs : seq R.
Fixpoint horner_rec s x := if s is a :: s' then horner_rec s' x * x + a else 0.
Definition horner p := horner_rec p.
Local Notation "p .[ x ]" := (horner p x) : ring_scope.
Lemma horner0 x : (0 : {poly R}).[x] = 0.
Proof. by rewrite /horner polyseq0. Qed.
Lemma hornerC c x : (c%:P).[x] = c.
Proof. by rewrite /horner polyseqC; case: eqP; rewrite /= ?simp. Qed.
Lemma hornerX x : 'X.[x] = x.
Proof. by rewrite /horner polyseqX /= !simp. Qed.
Lemma horner_cons p c x : (cons_poly c p).[x] = p.[x] * x + c.
Proof.
rewrite /horner polyseq_cons; case: nilP => //= ->.
by rewrite !simp -/(_.[x]) hornerC.
Qed.
Lemma horner_coef0 p : p.[0] = p`_0.
Proof. by rewrite /horner; case: (p : seq R) => //= c p'; rewrite !simp. Qed.
Lemma hornerMXaddC p c x : (p * 'X + c%:P).[x] = p.[x] * x + c.
Proof. by rewrite -cons_poly_def horner_cons. Qed.
Lemma hornerMX p x : (p * 'X).[x] = p.[x] * x.
Proof. by rewrite -[p * 'X]addr0 hornerMXaddC addr0. Qed.
Lemma horner_Poly s x : (Poly s).[x] = horner_rec s x.
Proof. by elim: s => [|a s /= <-]; rewrite (horner0, horner_cons). Qed.
Lemma horner_coef p x : p.[x] = \sum_(i < size p) p`_i * x ^+ i.
Proof.
rewrite /horner.
elim: {p}(p : seq R) => /= [|a s ->]; first by rewrite big_ord0.
rewrite big_ord_recl simp addrC big_distrl /=.
by congr (_ + _); apply: eq_bigr => i _; rewrite -mulrA exprSr.
Qed.
Lemma horner_coef_wide n p x :
size p <= n -> p.[x] = \sum_(i < n) p`_i * x ^+ i.
Proof.
move=> le_p_n.
rewrite horner_coef (big_ord_widen n (fun i => p`_i * x ^+ i)) // big_mkcond.
by apply: eq_bigr => i _; case: ltnP => // le_p_i; rewrite nth_default ?simp.
Qed.
Lemma horner_poly n E x : (\poly_(i < n) E i).[x] = \sum_(i < n) E i * x ^+ i.
Proof.
rewrite (@horner_coef_wide n) ?size_poly //.
by apply: eq_bigr => i _; rewrite coef_poly ltn_ord.
Qed.
Lemma hornerN p x : (- p).[x] = - p.[x].
Proof.
rewrite -[-%R]/opp_poly unlock horner_poly horner_coef -sumrN /=.
by apply: eq_bigr => i _; rewrite mulNr.
Qed.
Lemma hornerD p q x : (p + q).[x] = p.[x] + q.[x].
Proof.
rewrite -[+%R]/(@add_poly R) unlock horner_poly; set m := maxn _ _.
rewrite !(@horner_coef_wide m) ?leq_max ?leqnn ?orbT // -big_split /=.
by apply: eq_bigr => i _; rewrite -mulrDl.
Qed.
Lemma hornerXsubC a x : ('X - a%:P).[x] = x - a.
Proof. by rewrite hornerD hornerN hornerC hornerX. Qed.
Lemma horner_sum I (r : seq I) (P : pred I) F x :
(\sum_(i <- r | P i) F i).[x] = \sum_(i <- r | P i) (F i).[x].
Proof. by elim/big_rec2: _ => [|i _ p _ <-]; rewrite (horner0, hornerD). Qed.
Lemma hornerCM a p x : (a%:P * p).[x] = a * p.[x].
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(mulr0, horner0).
by rewrite mulrDr mulrA -polyCM !hornerMXaddC IHp mulrDr mulrA.
Qed.
Lemma hornerZ c p x : (c *: p).[x] = c * p.[x].
Proof. by rewrite -mul_polyC hornerCM. Qed.
Lemma hornerMn n p x : (p *+ n).[x] = p.[x] *+ n.
Proof. by elim: n => [| n IHn]; rewrite ?horner0 // !mulrS hornerD IHn. Qed.
Definition comm_coef p x := forall i, p`_i * x = x * p`_i.
Definition comm_poly p x := x * p.[x] = p.[x] * x.
Lemma comm_coef_poly p x : comm_coef p x -> comm_poly p x.
Proof.
move=> cpx; rewrite /comm_poly !horner_coef big_distrl big_distrr /=.
by apply: eq_bigr => i _; rewrite /= mulrA -cpx -!mulrA commrX.
Qed.
Lemma comm_poly0 x : comm_poly 0 x.
Proof. by rewrite /comm_poly !horner0 !simp. Qed.
Lemma comm_poly1 x : comm_poly 1 x.
Proof. by rewrite /comm_poly !hornerC !simp. Qed.
Lemma comm_polyX x : comm_poly 'X x.
Proof. by rewrite /comm_poly !hornerX. Qed.
Lemma comm_polyD p q x: comm_poly p x -> comm_poly q x -> comm_poly (p + q) x.
Proof. by rewrite /comm_poly hornerD mulrDr mulrDl => -> ->. Qed.
Lemma commr_horner a b p : GRing.comm a b -> comm_coef p a -> GRing.comm a p.[b].
Proof.
move=> cab cpa; rewrite horner_coef; apply: commr_sum => i _.
by apply: commrM => //; apply: commrX.
Qed.
Lemma hornerM_comm p q x : comm_poly q x -> (p * q).[x] = p.[x] * q.[x].
Proof.
move=> comm_qx.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(simp, horner0).
rewrite mulrDl hornerD hornerCM -mulrA -commr_polyX mulrA hornerMX.
by rewrite {}IHp -mulrA -comm_qx mulrA -mulrDl hornerMXaddC.
Qed.
Lemma comm_polyM p q x: comm_poly p x -> comm_poly q x -> comm_poly (p * q) x.
Proof.
by move=> px qx; rewrite /comm_poly hornerM_comm// mulrA px -mulrA qx mulrA.
Qed.
Lemma horner_exp_comm p x n : comm_poly p x -> (p ^+ n).[x] = p.[x] ^+ n.
Proof.
move=> comm_px; elim: n => [|n IHn]; first by rewrite hornerC.
by rewrite !exprSr -IHn hornerM_comm.
Qed.
Lemma comm_poly_exp p n x: comm_poly p x -> comm_poly (p ^+ n) x.
Proof. by move=> px; rewrite /comm_poly !horner_exp_comm// commrX. Qed.
Lemma hornerXn x n : ('X^n).[x] = x ^+ n.
Proof. by rewrite horner_exp_comm /comm_poly hornerX. Qed.
Definition hornerE_comm :=
(hornerD, hornerN, hornerX, hornerC, horner_cons,
simp, hornerCM, hornerZ,
(fun p x => hornerM_comm p (comm_polyX x))).
Definition root p : pred R := fun x => p.[x] == 0.
Lemma mem_root p x : x \in root p = (p.[x] == 0).
Proof. by []. Qed.
Lemma rootE p x : (root p x = (p.[x] == 0)) * ((x \in root p) = (p.[x] == 0)).
Proof. by []. Qed.
Lemma rootP p x : reflect (p.[x] = 0) (root p x).
Proof. exact: eqP. Qed.
Lemma rootPt p x : reflect (p.[x] == 0) (root p x).
Proof. exact: idP. Qed.
Lemma rootPf p x : reflect ((p.[x] == 0) = false) (~~ root p x).
Proof. exact: negPf. Qed.
Lemma rootC a x : root a%:P x = (a == 0).
Proof. by rewrite rootE hornerC. Qed.
Lemma root0 x : root 0 x.
Proof. by rewrite rootC. Qed.
Lemma root1 x : ~~ root 1 x.
Proof. by rewrite rootC oner_eq0. Qed.
Lemma rootX x : root 'X x = (x == 0).
Proof. by rewrite rootE hornerX. Qed.
Lemma rootN p x : root (- p) x = root p x.
Proof. by rewrite rootE hornerN oppr_eq0. Qed.
Lemma root_size_gt1 a p : p != 0 -> root p a -> 1 < size p.
Proof.
rewrite ltnNge => nz_p; apply: contraL => /size1_polyC Dp.
by rewrite Dp rootC -polyC_eq0 -Dp.
Qed.
Lemma root_XsubC a x : root ('X - a%:P) x = (x == a).
Proof. by rewrite rootE hornerXsubC subr_eq0. Qed.
Lemma root_XaddC a x : root ('X + a%:P) x = (x == - a).
Proof. by rewrite -root_XsubC rmorphN opprK. Qed.
Theorem factor_theorem p a : reflect (exists q, p = q * ('X - a%:P)) (root p a).
Proof.
apply: (iffP eqP) => [pa0 | [q ->]]; last first.
by rewrite hornerM_comm /comm_poly hornerXsubC subrr ?simp.
exists (\poly_(i < size p) horner_rec (drop i.+1 p) a).
apply/polyP=> i; rewrite mulrBr coefB coefMX coefMC !coef_poly.
apply: canRL (addrK _) _; rewrite addrC; have [le_p_i | lt_i_p] := leqP.
rewrite nth_default // !simp drop_oversize ?if_same //.
exact: leq_trans (leqSpred _).
case: i => [|i] in lt_i_p *; last by rewrite ltnW // (drop_nth 0 lt_i_p).
by rewrite drop1 /= -{}pa0 /horner; case: (p : seq R) lt_i_p.
Qed.
Lemma multiplicity_XsubC p a :
{m | exists2 q, (p != 0) ==> ~~ root q a & p = q * ('X - a%:P) ^+ m}.
Proof.
have [n le_p_n] := ubnP (size p); elim: n => // n IHn in p le_p_n *.
have [-> | nz_p /=] := eqVneq p 0; first by exists 0, 0; rewrite ?mul0r.
have [/sig_eqW[p1 Dp] | nz_pa] := altP (factor_theorem p a); last first.
by exists 0%N, p; rewrite ?mulr1.
have nz_p1: p1 != 0 by apply: contraNneq nz_p => p1_0; rewrite Dp p1_0 mul0r.
have /IHn[m /sig2_eqW[q nz_qa Dp1]]: size p1 < n.
by rewrite Dp size_Mmonic ?monicXsubC // size_XsubC addn2 in le_p_n.
by exists m.+1, q; [rewrite nz_p1 in nz_qa | rewrite exprSr mulrA -Dp1].
Qed.
(* Roots of unity. *)
#[deprecated(since="mathcomp 2.3.0",note="Use size_XnsubC instead.")]
Lemma size_Xn_sub_1 n : n > 0 -> size ('X^n - 1 : {poly R}) = n.+1.
Proof. exact/size_XnsubC. Qed.
#[deprecated(since="mathcomp 2.3.0'",note="Use monicXnsubC instead.")]
Lemma monic_Xn_sub_1 n : n > 0 -> 'X^n - 1 \is monic.
Proof. exact/monicXnsubC. Qed.
Definition root_of_unity n : pred R := root ('X^n - 1).
Local Notation "n .-unity_root" := (root_of_unity n) : ring_scope.
Lemma unity_rootE n z : n.-unity_root z = (z ^+ n == 1).
Proof.
by rewrite /root_of_unity rootE hornerD hornerN hornerXn hornerC subr_eq0.
Qed.
Lemma unity_rootP n z : reflect (z ^+ n = 1) (n.-unity_root z).
Proof. by rewrite unity_rootE; apply: eqP. Qed.
Definition primitive_root_of_unity n z :=
(n > 0) && [forall i : 'I_n, i.+1.-unity_root z == (i.+1 == n)].
Local Notation "n .-primitive_root" := (primitive_root_of_unity n) : ring_scope.
Lemma prim_order_exists n z :
n > 0 -> z ^+ n = 1 -> {m | m.-primitive_root z & (m %| n)}.
Proof.
move=> n_gt0 zn1.
have: exists m, (m > 0) && (z ^+ m == 1) by exists n; rewrite n_gt0 /= zn1.
case/ex_minnP=> m /andP[m_gt0 /eqP zm1] m_min.
exists m.
apply/andP; split=> //; apply/eqfunP=> [[i]] /=.
rewrite leq_eqVlt unity_rootE.
case: eqP => [-> _ | _]; first by rewrite zm1 eqxx.
by apply: contraTF => zi1; rewrite -leqNgt m_min.
have: n %% m < m by rewrite ltn_mod.
apply: contraLR; rewrite -lt0n -leqNgt => nm_gt0; apply: m_min.
by rewrite nm_gt0 /= expr_mod ?zn1.
Qed.
Section OnePrimitive.
Variables (n : nat) (z : R).
Hypothesis prim_z : n.-primitive_root z.
Lemma prim_order_gt0 : n > 0. Proof. by case/andP: prim_z. Qed.
Let n_gt0 := prim_order_gt0.
Lemma prim_expr_order : z ^+ n = 1.
Proof.
case/andP: prim_z => _; rewrite -(prednK n_gt0) => /forallP/(_ ord_max).
by rewrite unity_rootE eqxx eqb_id => /eqP.
Qed.
Lemma prim_expr_mod i : z ^+ (i %% n) = z ^+ i.
Proof. exact: expr_mod prim_expr_order. Qed.
Lemma prim_order_dvd i : (n %| i) = (z ^+ i == 1).
Proof.
move: n_gt0; rewrite -prim_expr_mod /dvdn -(ltn_mod i).
case: {i}(i %% n)%N => [|i] lt_i; first by rewrite !eqxx.
case/andP: prim_z => _ /forallP/(_ (Ordinal (ltnW lt_i)))/eqP.
by rewrite unity_rootE eqn_leq andbC leqNgt lt_i.
Qed.
Lemma eq_prim_root_expr i j : (z ^+ i == z ^+ j) = (i == j %[mod n]).
Proof.
wlog le_ji: i j / j <= i.
move=> IH; case: (leqP j i) => [|/ltnW] /IH //.
by rewrite eq_sym (eq_sym (j %% n)%N).
rewrite -{1}(subnKC le_ji) exprD -prim_expr_mod eqn_mod_dvd //.
rewrite prim_order_dvd; apply/eqP/eqP=> [|->]; last by rewrite mulr1.
move/(congr1 ( *%R (z ^+ (n - j %% n)))); rewrite mulrA -exprD.
by rewrite subnK ?prim_expr_order ?mul1r // ltnW ?ltn_mod.
Qed.
Lemma exp_prim_root k : (n %/ gcdn k n).-primitive_root (z ^+ k).
Proof.
set d := gcdn k n; have d_gt0: (0 < d)%N by rewrite gcdn_gt0 orbC n_gt0.
have [d_dv_k d_dv_n]: (d %| k /\ d %| n)%N by rewrite dvdn_gcdl dvdn_gcdr.
set q := (n %/ d)%N; rewrite /q.-primitive_root ltn_divRL // n_gt0.
apply/forallP=> i; rewrite unity_rootE -exprM -prim_order_dvd.
rewrite -(divnK d_dv_n) -/q -(divnK d_dv_k) mulnAC dvdn_pmul2r //.
apply/eqP; apply/idP/idP=> [|/eqP->]; last by rewrite dvdn_mull.
rewrite Gauss_dvdr; first by rewrite eqn_leq ltn_ord; apply: dvdn_leq.
by rewrite /coprime gcdnC -(eqn_pmul2r d_gt0) mul1n muln_gcdl !divnK.
Qed.
Lemma dvdn_prim_root m : (m %| n)%N -> m.-primitive_root (z ^+ (n %/ m)).
Proof.
set k := (n %/ m)%N => m_dv_n; rewrite -{1}(mulKn m n_gt0) -divnA // -/k.
by rewrite -{1}(@gcdn_idPl k n _) ?exp_prim_root // -(divnK m_dv_n) dvdn_mulr.
Qed.
Lemma prim_root_eq0 : (z == 0) = (n == 0%N).
Proof.
rewrite gtn_eqF//; apply/eqP => z0; have /esym/eqP := prim_expr_order.
by rewrite z0 expr0n gtn_eqF//= oner_eq0.
Qed.
End OnePrimitive.
Lemma prim_root_exp_coprime n z k :
n.-primitive_root z -> n.-primitive_root (z ^+ k) = coprime k n.
Proof.
move=> prim_z; have n_gt0 := prim_order_gt0 prim_z.
apply/idP/idP=> [prim_zk | co_k_n].
set d := gcdn k n; have dv_d_n: (d %| n)%N := dvdn_gcdr _ _.
rewrite /coprime -/d -(eqn_pmul2r n_gt0) mul1n -{2}(gcdnMl n d).
rewrite -{2}(divnK dv_d_n) (mulnC _ d) -muln_gcdr (gcdn_idPr _) //.
rewrite (prim_order_dvd prim_zk) -exprM -(prim_order_dvd prim_z).
by rewrite muln_divCA_gcd dvdn_mulr.
have zkn_1: z ^+ k ^+ n = 1 by rewrite exprAC (prim_expr_order prim_z) expr1n.
have{zkn_1} [m prim_zk dv_m_n]:= prim_order_exists n_gt0 zkn_1.
suffices /eqP <-: m == n by [].
rewrite eqn_dvd dv_m_n -(@Gauss_dvdr n k m) 1?coprime_sym //=.
by rewrite (prim_order_dvd prim_z) exprM (prim_expr_order prim_zk).
Qed.
(* Lifting a ring predicate to polynomials. *)
Implicit Type S : {pred R}.
Definition polyOver_pred S := fun p : {poly R} => all (mem S) p.
Arguments polyOver_pred _ _ /.
Definition polyOver S := [qualify a p | polyOver_pred S p].
Lemma polyOverS (S1 S2 : {pred R}) :
{subset S1 <= S2} -> {subset polyOver S1 <= polyOver S2}.
Proof.
by move=> sS12 p /(all_nthP 0)S1p; apply/(all_nthP 0)=> i /S1p; apply: sS12.
Qed.
Lemma polyOver0 S : 0 \is a polyOver S.
Proof. by rewrite qualifE /= polyseq0. Qed.
Lemma polyOver_poly S n E :
(forall i, i < n -> E i \in S) -> \poly_(i < n) E i \is a polyOver S.
Proof.
move=> S_E; apply/(all_nthP 0)=> i lt_i_p /=; rewrite coef_poly.
by case: ifP => [/S_E// | /idP[]]; apply: leq_trans lt_i_p (size_poly n E).
Qed.
Section PolyOverAdd.
Variable S : addrClosed R.
Lemma polyOverP {p} : reflect (forall i, p`_i \in S) (p \in polyOver S).
Proof.
apply: (iffP (all_nthP 0)) => [Sp i | Sp i _]; last exact: Sp.
by have [/Sp // | /(nth_default 0)->] := ltnP i (size p); apply: rpred0.
Qed.
Lemma polyOverC c : (c%:P \in polyOver S) = (c \in S).
Proof.
by rewrite qualifE /= polyseqC; case: eqP => [->|] /=; rewrite ?andbT ?rpred0.
Qed.
Fact polyOver_addr_closed : addr_closed (polyOver S).
Proof.
split=> [|p q Sp Sq]; first exact: polyOver0.
by apply/polyOverP=> i; rewrite coefD rpredD ?(polyOverP _).
Qed.
HB.instance Definition _ := GRing.isAddClosed.Build {poly R} (polyOver_pred S)
polyOver_addr_closed.
End PolyOverAdd.
Section PolyOverSemiRing2.
Variable S : semiring2Closed R.
Lemma polyOver_mulr_2closed : GRing.mulr_2closed (polyOver S).
Proof.
move=> p q /polyOverP Sp /polyOverP Sq; apply/polyOverP=> i.
by rewrite coefM rpred_sum // => j _; rewrite rpredM.
Qed.
HB.instance Definition _ := GRing.isMul2Closed.Build {poly R} (polyOver_pred S)
polyOver_mulr_2closed.
End PolyOverSemiRing2.
Fact polyOverNr (zmodS : zmodClosed R) : oppr_closed (polyOver zmodS).
Proof.
by move=> p /polyOverP Sp; apply/polyOverP=> i; rewrite coefN rpredN.
Qed.
HB.instance Definition _ (zmodS : zmodClosed R) :=
GRing.isOppClosed.Build {poly R} (polyOver_pred zmodS) (@polyOverNr _).
Section PolyOverSemiring.
Variable S : semiringClosed R.
Fact polyOver_mul1_closed : 1 \in (polyOver S).
Proof. by rewrite polyOverC rpred1. Qed.
HB.instance Definition _ := GRing.isMul1Closed.Build {poly R} (polyOver_pred S)
polyOver_mul1_closed.
Lemma polyOverZ : {in S & polyOver S, forall c p, c *: p \is a polyOver S}.
Proof.
by move=> c p Sc /polyOverP Sp; apply/polyOverP=> i; rewrite coefZ rpredM ?Sp.
Qed.
Lemma polyOverX : 'X \in polyOver S.
Proof. by rewrite qualifE /= polyseqX /= rpred0 rpred1. Qed.
Lemma polyOverXn n : 'X^n \in polyOver S.
Proof. by rewrite rpredX// polyOverX. Qed.
Lemma rpred_horner : {in polyOver S & S, forall p x, p.[x] \in S}.
Proof.
move=> p x /polyOverP Sp Sx; rewrite horner_coef rpred_sum // => i _.
by rewrite rpredM ?rpredX.
Qed.
End PolyOverSemiring.
Section PolyOverRing.
Variable S : subringClosed R.
HB.instance Definition _ := GRing.MulClosed.on (polyOver_pred S).
Lemma polyOverXaddC c : ('X + c%:P \in polyOver S) = (c \in S).
Proof. by rewrite rpredDl ?polyOverX ?polyOverC. Qed.
Lemma polyOverXnaddC n c : ('X^n + c%:P \is a polyOver S) = (c \in S).
Proof. by rewrite rpredDl ?polyOverXn// ?polyOverC. Qed.
Lemma polyOverXsubC c : ('X - c%:P \in polyOver S) = (c \in S).
Proof. by rewrite rpredBl ?polyOverX ?polyOverC. Qed.
Lemma polyOverXnsubC n c : ('X^n - c%:P \is a polyOver S) = (c \in S).
Proof. by rewrite rpredBl ?polyOverXn// ?polyOverC. Qed.
End PolyOverRing.
(* Single derivative. *)
Definition deriv p := \poly_(i < (size p).-1) (p`_i.+1 *+ i.+1).
Local Notation "a ^` ()" := (deriv a).
Lemma coef_deriv p i : p^`()`_i = p`_i.+1 *+ i.+1.
Proof.
rewrite coef_poly -subn1 ltn_subRL.
by case: leqP => // /(nth_default 0) ->; rewrite mul0rn.
Qed.
Lemma polyOver_deriv (ringS : semiringClosed R) :
{in polyOver ringS, forall p, p^`() \is a polyOver ringS}.
Proof.
by move=> p /polyOverP Kp; apply/polyOverP=> i; rewrite coef_deriv rpredMn ?Kp.
Qed.
Lemma derivC c : c%:P^`() = 0.
Proof. by apply/polyP=> i; rewrite coef_deriv coef0 coefC mul0rn. Qed.
Lemma derivX : ('X)^`() = 1.
Proof. by apply/polyP=> [[|i]]; rewrite coef_deriv coef1 coefX ?mul0rn. Qed.
Lemma derivXn n : 'X^n^`() = 'X^n.-1 *+ n.
Proof.
case: n => [|n]; first exact: derivC.
apply/polyP=> i; rewrite coef_deriv coefMn !coefXn eqSS.
by case: eqP => [-> // | _]; rewrite !mul0rn.
Qed.
Fact deriv_is_linear : linear deriv.
Proof.
move=> k p q; apply/polyP=> i.
by rewrite !(coef_deriv, coefD, coefZ) mulrnDl mulrnAr.
Qed.
HB.instance Definition _ := GRing.isLinear.Build R {poly R} {poly R} _ deriv
deriv_is_linear.
Lemma deriv0 : 0^`() = 0.
Proof. exact: linear0. Qed.
Lemma derivD : {morph deriv : p q / p + q}.
Proof. exact: linearD. Qed.
Lemma derivN : {morph deriv : p / - p}.
Proof. exact: linearN. Qed.
Lemma derivB : {morph deriv : p q / p - q}.
Proof. exact: linearB. Qed.
Lemma derivXsubC (a : R) : ('X - a%:P)^`() = 1.
Proof. by rewrite derivB derivX derivC subr0. Qed.
Lemma derivMn n p : (p *+ n)^`() = p^`() *+ n.
Proof. exact: linearMn. Qed.
Lemma derivMNn n p : (p *- n)^`() = p^`() *- n.
Proof. exact: linearMNn. Qed.
Lemma derivZ c p : (c *: p)^`() = c *: p^`().
Proof. exact: linearZ. Qed.
Lemma deriv_mulC c p : (c%:P * p)^`() = c%:P * p^`().
Proof. by rewrite !mul_polyC derivZ. Qed.
Lemma derivMXaddC p c : (p * 'X + c%:P)^`() = p + p^`() * 'X.
Proof.
apply/polyP=> i; rewrite raddfD /= derivC addr0 coefD !(coefMX, coef_deriv).
by case: i; rewrite ?addr0.
Qed.
Lemma derivM p q : (p * q)^`() = p^`() * q + p * q^`().
Proof.
elim/poly_ind: p => [|p b IHp]; first by rewrite !(mul0r, add0r, derivC).
rewrite mulrDl -mulrA -commr_polyX mulrA -[_ * 'X]addr0 raddfD /= !derivMXaddC.
by rewrite deriv_mulC IHp !mulrDl -!mulrA !commr_polyX !addrA.
Qed.
Definition derivE := Eval lazy beta delta [morphism_2 morphism_1] in
(derivZ, deriv_mulC, derivC, derivX, derivMXaddC, derivXsubC, derivM, derivB,
derivD, derivN, derivXn, derivM, derivMn).
(* Iterated derivative. *)
Definition derivn n p := iter n deriv p.
Local Notation "a ^` ( n )" := (derivn n a) : ring_scope.
Lemma derivn0 p : p^`(0) = p.
Proof. by []. Qed.
Lemma derivn1 p : p^`(1) = p^`().
Proof. by []. Qed.
Lemma derivnS p n : p^`(n.+1) = p^`(n)^`().
Proof. by []. Qed.
Lemma derivSn p n : p^`(n.+1) = p^`()^`(n).
Proof. exact: iterSr. Qed.
Lemma coef_derivn n p i : p^`(n)`_i = p`_(n + i) *+ (n + i) ^_ n.
Proof.
elim: n i => [|n IHn] i; first by rewrite ffactn0 mulr1n.
by rewrite derivnS coef_deriv IHn -mulrnA ffactnSr addSnnS addKn.
Qed.
Lemma polyOver_derivn (ringS : semiringClosed R) :
{in polyOver ringS, forall p n, p^`(n) \is a polyOver ringS}.
Proof.
move=> p /polyOverP Kp /= n; apply/polyOverP=> i.
by rewrite coef_derivn rpredMn.
Qed.
Fact derivn_is_linear n : linear (derivn n).
Proof. by elim: n => // n IHn a p q; rewrite derivnS IHn linearP. Qed.
HB.instance Definition _ n :=
GRing.isLinear.Build R {poly R} {poly R} _ (derivn n)
(derivn_is_linear n).
Lemma derivnC c n : c%:P^`(n) = if n == 0 then c%:P else 0.
Proof. by case: n => // n; rewrite derivSn derivC linear0. Qed.
Lemma derivnD n : {morph derivn n : p q / p + q}.
Proof. exact: linearD. Qed.
Lemma derivnB n : {morph derivn n : p q / p - q}.
Proof. exact: linearB. Qed.
Lemma derivnMn n m p : (p *+ m)^`(n) = p^`(n) *+ m.
Proof. exact: linearMn. Qed.
Lemma derivnMNn n m p : (p *- m)^`(n) = p^`(n) *- m.
Proof. exact: linearMNn. Qed.
Lemma derivnN n : {morph derivn n : p / - p}.
Proof. exact: linearN. Qed.
Lemma derivnZ n : scalable (derivn n).
Proof. exact: linearZZ. Qed.
Lemma derivnXn m n : 'X^m^`(n) = 'X^(m - n) *+ m ^_ n.
Proof.
apply/polyP=>i; rewrite coef_derivn coefMn !coefXn.
case: (ltnP m n) => [lt_m_n | le_m_n].
by rewrite eqn_leq leqNgt ltn_addr // mul0rn ffact_small.
by rewrite -{1 3}(subnKC le_m_n) eqn_add2l; case: eqP => [->|]; rewrite ?mul0rn.
Qed.
Lemma derivnMXaddC n p c :
(p * 'X + c%:P)^`(n.+1) = p^`(n) *+ n.+1 + p^`(n.+1) * 'X.
Proof.
elim: n => [|n IHn]; first by rewrite derivn1 derivMXaddC.
rewrite derivnS IHn derivD derivM derivX mulr1 derivMn -!derivnS.
by rewrite addrA addrAC -mulrSr.
Qed.
Lemma derivn_poly0 p n : size p <= n -> p^`(n) = 0.
Proof.
move=> le_p_n; apply/polyP=> i; rewrite coef_derivn.
rewrite nth_default; first by rewrite mul0rn coef0.
exact/(leq_trans le_p_n)/leq_addr.
Qed.
Lemma lt_size_deriv (p : {poly R}) : p != 0 -> size p^`() < size p.
Proof. by move=> /polySpred->; apply: size_poly. Qed.
(* A normalising version of derivation to get the division by n! in Taylor *)
Definition nderivn n p := \poly_(i < size p - n) (p`_(n + i) *+ 'C(n + i, n)).
Local Notation "a ^`N ( n )" := (nderivn n a) : ring_scope.
Lemma coef_nderivn n p i : p^`N(n)`_i = p`_(n + i) *+ 'C(n + i, n).
Proof.
rewrite coef_poly ltn_subRL; case: leqP => // le_p_ni.
by rewrite nth_default ?mul0rn.
Qed.
(* Here is the division by n! *)
Lemma nderivn_def n p : p^`(n) = p^`N(n) *+ n`!.
Proof.
by apply/polyP=> i; rewrite coefMn coef_nderivn coef_derivn -mulrnA bin_ffact.
Qed.
Lemma polyOver_nderivn (ringS : semiringClosed R) :
{in polyOver ringS, forall p n, p^`N(n) \in polyOver ringS}.
Proof.
move=> p /polyOverP Sp /= n; apply/polyOverP=> i.
by rewrite coef_nderivn rpredMn.
Qed.
Lemma nderivn0 p : p^`N(0) = p.
Proof. by rewrite -[p^`N(0)](nderivn_def 0). Qed.
Lemma nderivn1 p : p^`N(1) = p^`().
Proof. by rewrite -[p^`N(1)](nderivn_def 1). Qed.
Lemma nderivnC c n : (c%:P)^`N(n) = if n == 0 then c%:P else 0.
Proof.
apply/polyP=> i; rewrite coef_nderivn.
by case: n => [|n]; rewrite ?bin0 // coef0 coefC mul0rn.
Qed.
Lemma nderivnXn m n : 'X^m^`N(n) = 'X^(m - n) *+ 'C(m, n).
Proof.
apply/polyP=> i; rewrite coef_nderivn coefMn !coefXn.
have [lt_m_n | le_n_m] := ltnP m n.
by rewrite eqn_leq leqNgt ltn_addr // mul0rn bin_small.
by rewrite -{1 3}(subnKC le_n_m) eqn_add2l; case: eqP => [->|]; rewrite ?mul0rn.
Qed.
Fact nderivn_is_linear n : linear (nderivn n).
Proof.
move=> k p q; apply/polyP=> i.
by rewrite !(coef_nderivn, coefD, coefZ) mulrnDl mulrnAr.
Qed.
HB.instance Definition _ n :=
GRing.isLinear.Build R {poly R} {poly R} _ (nderivn n)
(nderivn_is_linear n).
Lemma nderivnD n : {morph nderivn n : p q / p + q}.
Proof. exact: linearD. Qed.
Lemma nderivnB n : {morph nderivn n : p q / p - q}.
Proof. exact: linearB. Qed.
Lemma nderivnMn n m p : (p *+ m)^`N(n) = p^`N(n) *+ m.
Proof. exact: linearMn. Qed.
Lemma nderivnMNn n m p : (p *- m)^`N(n) = p^`N(n) *- m.
Proof. exact: linearMNn. Qed.
Lemma nderivnN n : {morph nderivn n : p / - p}.
Proof. exact: linearN. Qed.
Lemma nderivnZ n : scalable (nderivn n).
Proof. exact: linearZZ. Qed.
Lemma nderivnMXaddC n p c :
(p * 'X + c%:P)^`N(n.+1) = p^`N(n) + p^`N(n.+1) * 'X.
Proof.
apply/polyP=> i; rewrite coef_nderivn !coefD !coefMX coefC.
rewrite !addSn /= !coef_nderivn addr0 binS mulrnDr addrC; congr (_ + _).
by rewrite addSnnS; case: i; rewrite // addn0 bin_small.
Qed.
Lemma nderivn_poly0 p n : size p <= n -> p^`N(n) = 0.
Proof.
move=> le_p_n; apply/polyP=> i; rewrite coef_nderivn.
rewrite nth_default; first by rewrite mul0rn coef0.
exact/(leq_trans le_p_n)/leq_addr.
Qed.
Lemma nderiv_taylor p x h :
GRing.comm x h -> p.[x + h] = \sum_(i < size p) p^`N(i).[x] * h ^+ i.
Proof.
move/commrX=> cxh; elim/poly_ind: p => [|p c IHp].
by rewrite size_poly0 big_ord0 horner0.
rewrite hornerMXaddC size_MXaddC.
have [-> | nz_p] := eqVneq p 0.
rewrite horner0 !simp; have [-> | _] := c =P 0; first by rewrite big_ord0.
by rewrite size_poly0 big_ord_recl big_ord0 nderivn0 hornerC !simp.
rewrite big_ord_recl nderivn0 !simp hornerMXaddC addrAC; congr (_ + _).
rewrite mulrDr {}IHp !big_distrl polySpred //= big_ord_recl /= mulr1 -addrA.
rewrite nderivn0 /bump /(addn 1) /=; congr (_ + _).
rewrite !big_ord_recr /= nderivnMXaddC -mulrA -exprSr -polySpred // !addrA.
congr (_ + _); last by rewrite (nderivn_poly0 (leqnn _)) !simp.
rewrite addrC -big_split /=; apply: eq_bigr => i _.
by rewrite nderivnMXaddC !hornerE_comm /= mulrDl -!mulrA -exprSr cxh.
Qed.
Lemma nderiv_taylor_wide n p x h :
GRing.comm x h -> size p <= n ->
p.[x + h] = \sum_(i < n) p^`N(i).[x] * h ^+ i.
Proof.
move/nderiv_taylor=> -> le_p_n.
rewrite (big_ord_widen n (fun i => p^`N(i).[x] * h ^+ i)) // big_mkcond.
apply: eq_bigr => i _; case: leqP => // /nderivn_poly0->.
by rewrite horner0 simp.
Qed.
Lemma eq_poly n E1 E2 : (forall i, i < n -> E1 i = E2 i) ->
poly n E1 = poly n E2 :> {poly R}.
Proof. by move=> E; rewrite !poly_def; apply: eq_bigr => i _; rewrite E. Qed.
End PolynomialTheory.
Prenex Implicits polyC polyCK Poly polyseqK lead_coef root horner polyOver.
Arguments monic {R}.
Notation "\poly_ ( i < n ) E" := (poly n (fun i => E)) : ring_scope.
Notation "c %:P" := (polyC c) : ring_scope.
Notation "'X" := (polyX _) : ring_scope.
Notation "''X^' n" := ('X ^+ n) : ring_scope.
Notation "p .[ x ]" := (horner p x) : ring_scope.
Notation "n .-unity_root" := (root_of_unity n) : ring_scope.
Notation "n .-primitive_root" := (primitive_root_of_unity n) : ring_scope.
Notation "a ^` ()" := (deriv a) : ring_scope.
Notation "a ^` ( n )" := (derivn n a) : ring_scope.
Notation "a ^`N ( n )" := (nderivn n a) : ring_scope.
Arguments monic_pred _ _ /.
Arguments monicP {R p}.
Arguments rootP {R p x}.
Arguments rootPf {R p x}.
Arguments rootPt {R p x}.
Arguments unity_rootP {R n z}.
Arguments polyOver_pred _ _ _ /.
Arguments polyOverP {R S p}.
Arguments polyC_inj {R} [x1 x2] eq_x12P.
Arguments eq_poly {R n} [E1] E2 eq_E12.
Section IdomainPrimRoot.
Variables (R : idomainType) (n : nat) (z : R).
Hypothesis prim_z : n.-primitive_root z.
Import prime.
Let n_gt0 := prim_order_gt0 prim_z.
Lemma prim_root_charF p : (p %| n)%N -> p \in [char R] = false.
Proof.
move=> pn; apply: contraTF isT => char_p; have p_prime := charf_prime char_p.
have /dvdnP[[|k] n_eq_kp] := pn; first by rewrite n_eq_kp in (n_gt0).
have /eqP := prim_expr_order prim_z; rewrite n_eq_kp exprM.
rewrite -Frobenius_autE -(Frobenius_aut1 char_p) -subr_eq0 -rmorphB/=.
rewrite Frobenius_autE expf_eq0// prime_gt0//= subr_eq0 => /eqP.
move=> /eqP; rewrite -(prim_order_dvd prim_z) n_eq_kp.
rewrite -[X in _ %| X]muln1 dvdn_pmul2l ?dvdn1// => /eqP peq1.
by rewrite peq1 in p_prime.
Qed.
Lemma char_prim_root : [char R]^'.-nat n.
Proof. by apply/pnatP=> // p pp pn; rewrite inE/= prim_root_charF. Qed.
Lemma prim_root_pi_eq0 m : \pi(n).-nat m -> m%:R != 0 :> R.
Proof.
by rewrite natf_neq0; apply: sub_in_pnat => p _; apply: pnatPpi char_prim_root.
Qed.
Lemma prim_root_dvd_eq0 m : (m %| n)%N -> m%:R != 0 :> R.
Proof.
case: m => [|m mn]; first by rewrite dvd0n gtn_eqF.
by rewrite prim_root_pi_eq0 ?(sub_in_pnat (in1W (pi_of_dvd mn _))) ?pnat_pi.
Qed.
Lemma prim_root_natf_neq0 : n%:R != 0 :> R.
Proof. by rewrite prim_root_dvd_eq0. Qed.
End IdomainPrimRoot.
(* Container morphism. *)
Section MapPoly.
Section Definitions.
Variables (aR rR : ringType) (f : aR -> rR).
Definition map_poly (p : {poly aR}) := \poly_(i < size p) f p`_i.
(* Alternative definition; the one above is more convenient because it lets *)
(* us use the lemmas on \poly, e.g., size (map_poly p) <= size p is an *)
(* instance of size_poly. *)
Lemma map_polyE p : map_poly p = Poly (map f p).
Proof.
rewrite /map_poly unlock; congr Poly.
apply: (@eq_from_nth _ 0); rewrite size_mkseq ?size_map // => i lt_i_p.
by rewrite [RHS](nth_map 0) ?nth_mkseq.
Qed.
Definition commr_rmorph u := forall x, GRing.comm u (f x).
Definition horner_morph u of commr_rmorph u := fun p => (map_poly p).[u].
End Definitions.
Variables aR rR : ringType.
Section Combinatorial.
Variables (iR : ringType) (f : aR -> rR).
Local Notation "p ^f" := (map_poly f p) : ring_scope.
Lemma map_poly0 : 0^f = 0.
Proof. by rewrite map_polyE polyseq0. Qed.
Lemma eq_map_poly (g : aR -> rR) : f =1 g -> map_poly f =1 map_poly g.
Proof. by move=> eq_fg p; rewrite !map_polyE (eq_map eq_fg). Qed.
Lemma map_poly_id g (p : {poly iR}) :
{in (p : seq iR), g =1 id} -> map_poly g p = p.
Proof. by move=> g_id; rewrite map_polyE map_id_in ?polyseqK. Qed.
Lemma coef_map_id0 p i : f 0 = 0 -> (p^f)`_i = f p`_i.
Proof.
by move=> f0; rewrite coef_poly; case: ltnP => // le_p_i; rewrite nth_default.
Qed.
Lemma map_Poly_id0 s : f 0 = 0 -> (Poly s)^f = Poly (map f s).
Proof.
move=> f0; apply/polyP=> j; rewrite coef_map_id0 ?coef_Poly //.
have [/(nth_map 0 0)->// | le_s_j] := ltnP j (size s).
by rewrite !nth_default ?size_map.
Qed.
Lemma map_poly_comp_id0 (g : iR -> aR) p :
f 0 = 0 -> map_poly (f \o g) p = (map_poly g p)^f.
Proof. by move=> f0; rewrite map_polyE map_comp -map_Poly_id0 -?map_polyE. Qed.
Lemma size_map_poly_id0 p : f (lead_coef p) != 0 -> size p^f = size p.
Proof. by move=> nz_fp; apply: size_poly_eq. Qed.
Lemma map_poly_eq0_id0 p : f (lead_coef p) != 0 -> (p^f == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 => /size_map_poly_id0->. Qed.
Lemma lead_coef_map_id0 p :
f 0 = 0 -> f (lead_coef p) != 0 -> lead_coef p^f = f (lead_coef p).
Proof.
by move=> f0 nz_fp; rewrite lead_coefE coef_map_id0 ?size_map_poly_id0.
Qed.
Hypotheses (inj_f : injective f) (f_0 : f 0 = 0).
Lemma size_map_inj_poly p : size p^f = size p.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite map_poly0 !size_poly0.
by rewrite size_map_poly_id0 // -f_0 (inj_eq inj_f) lead_coef_eq0.
Qed.
Lemma map_inj_poly : injective (map_poly f).
Proof.
move=> p q /polyP eq_pq; apply/polyP=> i; apply: inj_f.
by rewrite -!coef_map_id0 ?eq_pq.
Qed.
Lemma lead_coef_map_inj p : lead_coef p^f = f (lead_coef p).
Proof. by rewrite !lead_coefE size_map_inj_poly coef_map_id0. Qed.
End Combinatorial.
Lemma map_polyK (f : aR -> rR) g :
cancel g f -> f 0 = 0 -> cancel (map_poly g) (map_poly f).
Proof.
by move=> gK f_0 p; rewrite /= -map_poly_comp_id0 ?map_poly_id // => x _ //=.
Qed.
Lemma eq_in_map_poly_id0 (f g : aR -> rR) (S : addrClosed aR) :
f 0 = 0 -> g 0 = 0 -> {in S, f =1 g} ->
{in polyOver S, map_poly f =1 map_poly g}.
Proof.
move=> f0 g0 eq_fg p pP; apply/polyP => i.
by rewrite !coef_map_id0// eq_fg// (polyOverP _).
Qed.
Lemma eq_in_map_poly (f g : {additive aR -> rR}) (S : addrClosed aR) :
{in S, f =1 g} -> {in polyOver S, map_poly f =1 map_poly g}.
Proof. by move=> /eq_in_map_poly_id0; apply; rewrite //?raddf0. Qed.
Section Additive.
Variables (iR : ringType) (f : {additive aR -> rR}).
Local Notation "p ^f" := (map_poly (GRing.Additive.sort f) p) : ring_scope.
Lemma coef_map p i : p^f`_i = f p`_i.
Proof. exact: coef_map_id0 (raddf0 f). Qed.
Lemma map_Poly s : (Poly s)^f = Poly (map f s).
Proof. exact: map_Poly_id0 (raddf0 f). Qed.
Lemma map_poly_comp (g : iR -> aR) p :
map_poly (f \o g) p = map_poly f (map_poly g p).
Proof. exact: map_poly_comp_id0 (raddf0 f). Qed.
Fact map_poly_is_additive : additive (map_poly f).
Proof. by move=> p q; apply/polyP=> i; rewrite !(coef_map, coefB) raddfB. Qed.
HB.instance Definition _ :=
GRing.isAdditive.Build {poly aR} {poly rR} (map_poly f) map_poly_is_additive.
Lemma map_polyC a : (a%:P)^f = (f a)%:P.
Proof. by apply/polyP=> i; rewrite !(coef_map, coefC) -!mulrb raddfMn. Qed.
Lemma lead_coef_map_eq p :
f (lead_coef p) != 0 -> lead_coef p^f = f (lead_coef p).
Proof. exact: lead_coef_map_id0 (raddf0 f). Qed.
End Additive.
Variable f : {rmorphism aR -> rR}.
Implicit Types p : {poly aR}.
Local Notation "p ^f" := (map_poly (GRing.RMorphism.sort f) p) : ring_scope.
Fact map_poly_is_multiplicative : multiplicative (map_poly f).
Proof.
split=> [p q|]; apply/polyP=> i; last first.
by rewrite !(coef_map, coef1) /= rmorph_nat.
rewrite coef_map /= !coefM /= !rmorph_sum; apply: eq_bigr => j _.
by rewrite !coef_map rmorphM.
Qed.
HB.instance Definition _ :=
GRing.isMultiplicative.Build {poly aR} {poly rR} (map_poly f)
map_poly_is_multiplicative.
Lemma map_polyZ c p : (c *: p)^f = f c *: p^f.
Proof. by apply/polyP=> i; rewrite !(coef_map, coefZ) /= rmorphM. Qed.
HB.instance Definition _ :=
GRing.isScalable.Build aR {poly aR} {poly rR} (f \; *:%R) (map_poly f)
map_polyZ.
Lemma map_polyX : ('X)^f = 'X.
Proof. by apply/polyP=> i; rewrite coef_map !coefX /= rmorph_nat. Qed.
Lemma map_polyXn n : ('X^n)^f = 'X^n.
Proof. by rewrite rmorphXn /= map_polyX. Qed.
Lemma map_polyXaddC x : ('X + x%:P)^f = 'X + (f x)%:P.
Proof. by rewrite raddfD/= map_polyX map_polyC. Qed.
Lemma map_polyXsubC x : ('X - x%:P)^f = 'X - (f x)%:P.
Proof. by rewrite raddfB/= map_polyX map_polyC. Qed.
Lemma map_prod_XsubC I (rI : seq I) P F :
(\prod_(i <- rI | P i) ('X - (F i)%:P))^f =
\prod_(i <- rI | P i) ('X - (f (F i))%:P).
Proof.
by rewrite rmorph_prod//; apply/eq_bigr => x /=; rewrite map_polyXsubC.
Qed.
Lemma prod_map_poly (ar : seq aR) P :
\prod_(x <- map f ar | P x) ('X - x%:P) =
(\prod_(x <- ar | P (f x)) ('X - x%:P))^f.
Proof. by rewrite big_map map_prod_XsubC. Qed.
Lemma monic_map p : p \is monic -> p^f \is monic.
Proof.
move/monicP=> mon_p; rewrite monicE.
by rewrite lead_coef_map_eq mon_p /= rmorph1 ?oner_neq0.
Qed.
Lemma horner_map p x : p^f.[f x] = f p.[x].
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(rmorph0, horner0).
rewrite hornerMXaddC !rmorphD !rmorphM /=.
by rewrite map_polyX map_polyC hornerMXaddC IHp.
Qed.
Lemma map_comm_poly p x : comm_poly p x -> comm_poly p^f (f x).
Proof. by rewrite /comm_poly horner_map -!rmorphM // => ->. Qed.
Lemma map_comm_coef p x : comm_coef p x -> comm_coef p^f (f x).
Proof. by move=> cpx i; rewrite coef_map -!rmorphM ?cpx. Qed.
Lemma rmorph_root p x : root p x -> root p^f (f x).
Proof. by move/eqP=> px0; rewrite rootE horner_map px0 rmorph0. Qed.
Lemma rmorph_unity_root n z : n.-unity_root z -> n.-unity_root (f z).
Proof.
move/rmorph_root; rewrite rootE rmorphB hornerD hornerN.
by rewrite /= map_polyXn rmorph1 hornerC hornerXn subr_eq0 unity_rootE.
Qed.
Section HornerMorph.
Variable u : rR.
Hypothesis cfu : commr_rmorph f u.
Lemma horner_morphC a : horner_morph cfu a%:P = f a.
Proof. by rewrite /horner_morph map_polyC hornerC. Qed.
Lemma horner_morphX : horner_morph cfu 'X = u.
Proof. by rewrite /horner_morph map_polyX hornerX. Qed.
Fact horner_is_linear : linear_for (f \; *%R) (horner_morph cfu).
Proof. by move=> c p q; rewrite /horner_morph linearP /= hornerD hornerZ. Qed.
Fact horner_is_multiplicative : multiplicative (horner_morph cfu).
Proof.
split=> [p q|]; last by rewrite /horner_morph rmorph1 hornerC.
rewrite /horner_morph rmorphM /= hornerM_comm //.
by apply: comm_coef_poly => i; rewrite coef_map cfu.
Qed.
HB.instance Definition _ :=
GRing.isLinear.Build aR {poly aR} rR _ (horner_morph cfu)
horner_is_linear.
HB.instance Definition _ :=
GRing.isMultiplicative.Build {poly aR} rR (horner_morph cfu)
horner_is_multiplicative.
End HornerMorph.
Lemma deriv_map p : p^f^`() = (p^`())^f.
Proof. by apply/polyP => i; rewrite !(coef_map, coef_deriv) //= rmorphMn. Qed.
Lemma derivn_map p n : p^f^`(n) = (p^`(n))^f.
Proof. by apply/polyP => i; rewrite !(coef_map, coef_derivn) //= rmorphMn. Qed.
Lemma nderivn_map p n : p^f^`N(n) = (p^`N(n))^f.
Proof. by apply/polyP => i; rewrite !(coef_map, coef_nderivn) //= rmorphMn. Qed.
End MapPoly.
Lemma mapf_root (F : fieldType) (R : ringType) (f : {rmorphism F -> R})
(p : {poly F}) (x : F) : root (map_poly f p) (f x) = root p x.
Proof. by rewrite !rootE horner_map fmorph_eq0. Qed.
(* Morphisms from the polynomial ring, and the initiality of polynomials *)
(* with respect to these. *)
Section MorphPoly.
Variable (aR rR : ringType) (pf : {rmorphism {poly aR} -> rR}).
Lemma poly_morphX_comm : commr_rmorph (pf \o polyC) (pf 'X).
Proof. by move=> a; rewrite /GRing.comm /= -!rmorphM // commr_polyX. Qed.
Lemma poly_initial : pf =1 horner_morph poly_morphX_comm.
Proof.
apply: poly_ind => [|p a IHp]; first by rewrite !rmorph0.
by rewrite !rmorphD !rmorphM /= -{}IHp horner_morphC ?horner_morphX.
Qed.
End MorphPoly.
Notation "p ^:P" := (map_poly polyC p) : ring_scope.
Section PolyCompose.
Variable R : ringType.
Implicit Types p q : {poly R}.
Definition comp_poly q p := p^:P.[q].
Local Notation "p \Po q" := (comp_poly q p) : ring_scope.
Lemma size_map_polyC p : size p^:P = size p.
Proof. exact/(size_map_inj_poly polyC_inj). Qed.
Lemma map_polyC_eq0 p : (p^:P == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 size_map_polyC. Qed.
Lemma root_polyC p x : root p^:P x%:P = root p x.
Proof. by rewrite rootE horner_map polyC_eq0. Qed.
Lemma comp_polyE p q : p \Po q = \sum_(i < size p) p`_i *: q^+i.
Proof.
by rewrite [p \Po q]horner_poly; apply: eq_bigr => i _; rewrite mul_polyC.
Qed.
Lemma coef_comp_poly p q n :
(p \Po q)`_n = \sum_(i < size p) p`_i * (q ^+ i)`_n.
Proof. by rewrite comp_polyE coef_sum; apply: eq_bigr => i; rewrite coefZ. Qed.
Lemma polyOver_comp (ringS : semiringClosed R) :
{in polyOver ringS &, forall p q, p \Po q \in polyOver ringS}.
Proof.
move=> p q /polyOverP Sp Sq; rewrite comp_polyE rpred_sum // => i _.
by rewrite polyOverZ ?rpredX.
Qed.
Lemma comp_polyCr p c : p \Po c%:P = p.[c]%:P.
Proof. exact: horner_map. Qed.
Lemma comp_poly0r p : p \Po 0 = (p`_0)%:P.
Proof. by rewrite comp_polyCr horner_coef0. Qed.
Lemma comp_polyC c p : c%:P \Po p = c%:P.
Proof. by rewrite /(_ \Po p) map_polyC hornerC. Qed.
Fact comp_poly_is_linear p : linear (comp_poly p).
Proof.
move=> a q r.
by rewrite /comp_poly rmorphD /= map_polyZ !hornerE_comm mul_polyC.
Qed.
HB.instance Definition _ p :=
GRing.isLinear.Build R {poly R} {poly R} _ (comp_poly p)
(comp_poly_is_linear p).
Lemma comp_poly0 p : 0 \Po p = 0.
Proof. exact: raddf0. Qed.
Lemma comp_polyD p q r : (p + q) \Po r = (p \Po r) + (q \Po r).
Proof. exact: raddfD. Qed.
Lemma comp_polyB p q r : (p - q) \Po r = (p \Po r) - (q \Po r).
Proof. exact: raddfB. Qed.
Lemma comp_polyZ c p q : (c *: p) \Po q = c *: (p \Po q).
Proof. exact: linearZZ. Qed.
Lemma comp_polyXr p : p \Po 'X = p.
Proof. by rewrite -{2}/(idfun p) poly_initial. Qed.
Lemma comp_polyX p : 'X \Po p = p.
Proof. by rewrite /(_ \Po p) map_polyX hornerX. Qed.
Lemma comp_poly_MXaddC c p q : (p * 'X + c%:P) \Po q = (p \Po q) * q + c%:P.
Proof.
by rewrite /(_ \Po q) rmorphD rmorphM /= map_polyX map_polyC hornerMXaddC.
Qed.
Lemma comp_polyXaddC_K p z : (p \Po ('X + z%:P)) \Po ('X - z%:P) = p.
Proof.
have addzK: ('X + z%:P) \Po ('X - z%:P) = 'X.
by rewrite raddfD /= comp_polyC comp_polyX subrK.
elim/poly_ind: p => [|p c IHp]; first by rewrite !comp_poly0.
rewrite comp_poly_MXaddC linearD /= comp_polyC {1}/comp_poly rmorphM /=.
by rewrite hornerM_comm /comm_poly -!/(_ \Po _) ?IHp ?addzK ?commr_polyX.
Qed.
Lemma size_comp_poly_leq p q :
size (p \Po q) <= ((size p).-1 * (size q).-1).+1.
Proof.
rewrite comp_polyE (leq_trans (size_sum _ _ _)) //; apply/bigmax_leqP => i _.
rewrite (leq_trans (size_scale_leq _ _)) // (leq_trans (size_exp_leq _ _)) //.
by rewrite ltnS mulnC leq_mul // -{2}(subnKC (valP i)) leq_addr.
Qed.
Lemma comp_Xn_poly p n : 'X^n \Po p = p ^+ n.
Proof. by rewrite /(_ \Po p) map_polyXn hornerXn. Qed.
Lemma coef_comp_poly_Xn p n i : 0 < n ->
(p \Po 'X^n)`_i = if n %| i then p`_(i %/ n) else 0.
Proof.
move=> n_gt0; rewrite comp_polyE; under eq_bigr do rewrite -exprM mulnC.
rewrite coef_sumMXn/=; case: dvdnP => [[j ->]|nD]; last first.
by rewrite big1// => j /eqP ?; case: nD; exists j.
under eq_bigl do rewrite eqn_mul2r gtn_eqF//.
by rewrite big_ord1_eq if_nth ?leqVgt ?mulnK.
Qed.
Lemma comp_poly_Xn p n : 0 < n ->
p \Po 'X^n = \poly_(i < size p * n) if n %| i then p`_(i %/ n) else 0.
Proof.
move=> n_gt0; apply/polyP => i; rewrite coef_comp_poly_Xn // coef_poly.
case: dvdnP => [[k ->]|]; last by rewrite if_same.
by rewrite mulnK // ltn_mul2r n_gt0 if_nth ?leqVgt.
Qed.
End PolyCompose.
Notation "p \Po q" := (comp_poly q p) : ring_scope.
Lemma map_comp_poly (aR rR : ringType) (f : {rmorphism aR -> rR}) p q :
map_poly f (p \Po q) = map_poly f p \Po map_poly f q.
Proof.
elim/poly_ind: p => [|p a IHp]; first by rewrite !raddf0.
rewrite comp_poly_MXaddC !rmorphD !rmorphM /= !map_polyC map_polyX.
by rewrite comp_poly_MXaddC -IHp.
Qed.
Section Surgery.
Variable R : ringType.
Implicit Type p q : {poly R}.
(* Even part of a polynomial *)
Definition even_poly p : {poly R} := \poly_(i < uphalf (size p)) p`_i.*2.
Lemma size_even_poly p : size (even_poly p) <= uphalf (size p).
Proof. exact: size_poly. Qed.
Lemma coef_even_poly p i : (even_poly p)`_i = p`_i.*2.
Proof. by rewrite coef_poly gtn_uphalf_double if_nth ?leqVgt. Qed.
Lemma even_polyE s p : size p <= s.*2 -> even_poly p = \poly_(i < s) p`_i.*2.
Proof.
move=> pLs2; apply/polyP => i; rewrite coef_even_poly !coef_poly if_nth //.
by case: ltnP => //= ?; rewrite (leq_trans pLs2) ?leq_double.
Qed.
Lemma size_even_poly_eq p : odd (size p) ->
size (even_poly p) = uphalf (size p).
Proof.
move=> p_even; rewrite size_poly_eq// double_pred odd_uphalfK//=.
by rewrite lead_coef_eq0 -size_poly_eq0; case: size p_even.
Qed.
Lemma even_polyD p q : even_poly (p + q) = even_poly p + even_poly q.
Proof. by apply/polyP => i; rewrite !(coef_even_poly, coefD). Qed.
Lemma even_polyZ k p : even_poly (k *: p) = k *: even_poly p.
Proof. by apply/polyP => i; rewrite !(coefZ, coef_even_poly). Qed.
Fact even_poly_is_linear : linear even_poly.
Proof. by move=> k p q; rewrite even_polyD even_polyZ. Qed.
HB.instance Definition _ := GRing.isLinear.Build R {poly R} {poly R} _ even_poly
even_poly_is_linear.
Lemma even_polyC (c : R) : even_poly c%:P = c%:P.
Proof. by apply/polyP => i; rewrite coef_even_poly !coefC; case: i. Qed.
(* Odd part of a polynomial *)
Definition odd_poly p : {poly R} := \poly_(i < (size p)./2) p`_i.*2.+1.
Lemma size_odd_poly p : size (odd_poly p) <= (size p)./2.
Proof. exact: size_poly. Qed.
Lemma coef_odd_poly p i : (odd_poly p)`_i = p`_i.*2.+1.
Proof. by rewrite coef_poly gtn_half_double if_nth ?leqVgt. Qed.
Lemma odd_polyE s p :
size p <= s.*2.+1 -> odd_poly p = \poly_(i < s) p`_i.*2.+1.
Proof.
move=> pLs2; apply/polyP => i; rewrite coef_odd_poly !coef_poly if_nth //.
by case: ltnP => //= ?; rewrite (leq_trans pLs2) ?ltnS ?leq_double.
Qed.
Lemma odd_polyC (c : R) : odd_poly c%:P = 0.
Proof. by apply/polyP => i; rewrite coef_odd_poly !coefC; case: i. Qed.
Lemma odd_polyD p q : odd_poly (p + q) = odd_poly p + odd_poly q.
Proof. by apply/polyP => i; rewrite !(coef_odd_poly, coefD). Qed.
Lemma odd_polyZ k p : odd_poly (k *: p) = k *: odd_poly p.
Proof. by apply/polyP => i; rewrite !(coefZ, coef_odd_poly). Qed.
Fact odd_poly_is_linear : linear odd_poly.
Proof. by move=> k p q; rewrite odd_polyD odd_polyZ. Qed.
HB.instance Definition _ := GRing.isLinear.Build R {poly R} {poly R} _ odd_poly
odd_poly_is_linear.
Lemma size_odd_poly_eq p : ~~ odd (size p) -> size (odd_poly p) = (size p)./2.
Proof.
have [->|p_neq0] := eqVneq p 0; first by rewrite odd_polyC size_poly0.
move=> p_odd; rewrite size_poly_eq// -subn1 doubleB subn2 even_halfK//.
rewrite prednK ?lead_coef_eq0// ltn_predRL.
by move: p_neq0 p_odd; rewrite -size_poly_eq0; case: (size p) => [|[]].
Qed.
Lemma odd_polyMX p : odd_poly (p * 'X) = even_poly p.
Proof.
have [->|pN0] := eqVneq p 0; first by rewrite mul0r even_polyC odd_polyC.
by apply/polyP => i; rewrite !coef_poly size_mulX // coefMX.
Qed.
Lemma even_polyMX p : even_poly (p * 'X) = odd_poly p * 'X.
Proof.
have [->|pN0] := eqVneq p 0; first by rewrite mul0r even_polyC odd_polyC mul0r.
by apply/polyP => -[|i]; rewrite !(coefMX, coef_poly, if_same, size_mulX).
Qed.
Lemma sum_even_poly p :
\sum_(i < size p | ~~ odd i) p`_i *: 'X^i = even_poly p \Po 'X^2.
Proof.
apply/polyP => i; rewrite coef_comp_poly_Xn// coef_sumMXn coef_even_poly.
rewrite (big_ord1_cond_eq _ _ (negb \o _))/= -dvdn2 andbC -muln2.
by case: dvdnP => //= -[k ->]; rewrite mulnK// if_nth ?leqVgt.
Qed.
Lemma sum_odd_poly p :
\sum_(i < size p | odd i) p`_i *: 'X^i = (odd_poly p \Po 'X^2) * 'X.
Proof.
apply/polyP => i; rewrite coefMX coef_comp_poly_Xn// coef_sumMXn coef_odd_poly/=.
case: i => [|i]//=; first by rewrite big_andbC big1// => -[[|j]//].
rewrite big_ord1_cond_eq/= -dvdn2 andbC -muln2.
by case: dvdnP => //= -[k ->]; rewrite mulnK// if_nth ?leqVgt.
Qed.
(* Decomposition in odd and even part *)
Lemma poly_even_odd p : even_poly p \Po 'X^2 + (odd_poly p \Po 'X^2) * 'X = p.
Proof.
rewrite -sum_even_poly -sum_odd_poly addrC -(bigID _ xpredT).
by rewrite -[RHS]coefK poly_def.
Qed.
(* take and drop for polynomials *)
Definition take_poly m p := \poly_(i < m) p`_i.
Lemma size_take_poly m p : size (take_poly m p) <= m.
Proof. exact: size_poly. Qed.
Lemma coef_take_poly m p i : (take_poly m p)`_i = if i < m then p`_i else 0.
Proof. exact: coef_poly. Qed.
Lemma take_poly_id m p : size p <= m -> take_poly m p = p.
Proof.
move=> /leq_trans gep; apply/polyP => i; rewrite coef_poly if_nth//=.
by case: ltnP => // /gep->.
Qed.
Lemma take_polyD m p q : take_poly m (p + q) = take_poly m p + take_poly m q.
Proof.
by apply/polyP => i; rewrite !(coefD, coef_poly); case: leqP; rewrite ?add0r.
Qed.
Lemma take_polyZ k m p : take_poly m (k *: p) = k *: take_poly m p.
Proof.
apply/polyP => i; rewrite !(coefZ, coef_take_poly); case: leqP => //.
by rewrite mulr0.
Qed.
Fact take_poly_is_linear m : linear (take_poly m).
Proof. by move=> k p q; rewrite take_polyD take_polyZ. Qed.
HB.instance Definition _ m :=
GRing.isLinear.Build R {poly R} {poly R} _ (take_poly m)
(take_poly_is_linear m).
Lemma take_poly_sum m I r P (p : I -> {poly R}) :
take_poly m (\sum_(i <- r | P i) p i) = \sum_(i <- r| P i) take_poly m (p i).
Proof. exact: linear_sum. Qed.
Lemma take_poly0l p : take_poly 0 p = 0.
Proof. exact/size_poly_leq0P/size_take_poly. Qed.
Lemma take_poly0r m : take_poly m 0 = 0.
Proof. exact: linear0. Qed.
Lemma take_polyMXn m n p :
take_poly m (p * 'X^n) = take_poly (m - n) p * 'X^n.
Proof.
have [->|/eqP p_neq0] := p =P 0; first by rewrite !(mul0r, take_poly0r).
apply/polyP => i; rewrite !(coef_take_poly, coefMXn).
by have [iLn|nLi] := leqP n i; rewrite ?if_same// ltn_sub2rE.
Qed.
Lemma take_polyMXn_0 n p : take_poly n (p * 'X^n) = 0.
Proof. by rewrite take_polyMXn subnn take_poly0l mul0r. Qed.
Lemma take_polyDMXn n p q : size p <= n -> take_poly n (p + q * 'X^n) = p.
Proof. by move=> ?; rewrite take_polyD take_poly_id// take_polyMXn_0 addr0. Qed.
Definition drop_poly m p := \poly_(i < size p - m) p`_(i + m).
Lemma coef_drop_poly m p i : (drop_poly m p)`_i = p`_(i + m).
Proof. by rewrite coef_poly ltn_subRL addnC if_nth ?leqVgt. Qed.
Lemma drop_poly_eq0 m p : size p <= m -> drop_poly m p = 0.
Proof.
move=> sLm; apply/polyP => i; rewrite coef_poly coef0 ltn_subRL addnC.
by rewrite if_nth ?leqVgt// nth_default// (leq_trans _ (leq_addl _ _)).
Qed.
Lemma size_drop_poly n p : size (drop_poly n p) = (size p - n)%N.
Proof.
have [pLn|nLp] := leqP (size p) n.
by rewrite (eqP pLn) drop_poly_eq0 ?size_poly0.
have p_neq0 : p != 0 by rewrite -size_poly_gt0 (leq_trans _ nLp).
by rewrite size_poly_eq// predn_sub subnK ?lead_coef_eq0// -ltnS -polySpred.
Qed.
Lemma sum_drop_poly n p :
\sum_(n <= i < size p) p`_i *: 'X^i = drop_poly n p * 'X^n.
Proof.
rewrite (big_addn 0) big_mkord /drop_poly poly_def mulr_suml.
by apply: eq_bigr => i _; rewrite exprD scalerAl.
Qed.
Lemma drop_polyD m p q : drop_poly m (p + q) = drop_poly m p + drop_poly m q.
Proof. by apply/polyP => i; rewrite coefD !coef_drop_poly coefD. Qed.
Lemma drop_polyZ k m p : drop_poly m (k *: p) = k *: drop_poly m p.
Proof. by apply/polyP => i; rewrite coefZ !coef_drop_poly coefZ. Qed.
Fact drop_poly_is_linear m : linear (drop_poly m).
Proof. by move=> k p q; rewrite drop_polyD drop_polyZ. Qed.
HB.instance Definition _ m :=
GRing.isLinear.Build R {poly R} {poly R} _ (drop_poly m)
(drop_poly_is_linear m).
Lemma drop_poly_sum m I r P (p : I -> {poly R}) :
drop_poly m (\sum_(i <- r | P i) p i) = \sum_(i <- r | P i) drop_poly m (p i).
Proof. exact: linear_sum. Qed.
Lemma drop_poly0l p : drop_poly 0 p = p.
Proof. by apply/polyP => i; rewrite coef_poly subn0 addn0 if_nth ?leqVgt. Qed.
Lemma drop_poly0r m : drop_poly m 0 = 0. Proof. exact: linear0. Qed.
Lemma drop_polyMXn m n p :
drop_poly m (p * 'X^n) = drop_poly (m - n) p * 'X^(n - m).
Proof.
have [->|p_neq0] := eqVneq p 0; first by rewrite mul0r !drop_poly0r mul0r.
apply/polyP => i; rewrite !(coefMXn, coef_drop_poly) ltn_subRL [(m + i)%N]addnC.
have [i_small|i_big]// := ltnP; congr nth.
by have [mn|/ltnW mn] := leqP m n;
rewrite (eqP mn) (addn0, subn0) (subnBA, addnBA).
Qed.
Lemma drop_polyMXn_id n p : drop_poly n (p * 'X^ n) = p.
Proof. by rewrite drop_polyMXn subnn drop_poly0l expr0 mulr1. Qed.
Lemma drop_polyDMXn n p q : size p <= n -> drop_poly n (p + q * 'X^n) = q.
Proof. by move=> ?; rewrite drop_polyD drop_poly_eq0// drop_polyMXn_id add0r. Qed.
Lemma poly_take_drop n p : take_poly n p + drop_poly n p * 'X^n = p.
Proof.
apply/polyP => i; rewrite coefD coefMXn coef_take_poly coef_drop_poly.
by case: ltnP => ni; rewrite ?addr0 ?add0r//= subnK.
Qed.
Lemma eqp_take_drop n p q :
take_poly n p = take_poly n q -> drop_poly n p = drop_poly n q -> p = q.
Proof.
by move=> tpq dpq; rewrite -[p](poly_take_drop n) -[q](poly_take_drop n) tpq dpq.
Qed.
End Surgery.
Definition coefE :=
(coef0, coef1, coefC, coefX, coefXn, coef_sumMXn,
coefZ, coefMC, coefCM, coefXnM, coefMXn, coefXM, coefMX, coefMNn, coefMn,
coefN, coefB, coefD, coef_even_poly, coef_odd_poly,
coef_take_poly, coef_drop_poly, coef_cons, coef_Poly, coef_poly,
coef_deriv, coef_nderivn, coef_derivn, coef_map, coef_sum,
coef_comp_poly_Xn, coef_comp_poly).
Section PolynomialComRing.
Variable R : comRingType.
Implicit Types p q : {poly R}.
Fact poly_mul_comm p q : p * q = q * p.
Proof.
apply/polyP=> i; rewrite coefM coefMr.
by apply: eq_bigr => j _; rewrite mulrC.
Qed.
HB.instance Definition _ := GRing.Ring_hasCommutativeMul.Build (polynomial R)
poly_mul_comm.
HB.instance Definition _ := GRing.Lalgebra_isComAlgebra.Build R (polynomial R).
Lemma coef_prod_XsubC (ps : seq R) (n : nat) :
(n <= size ps)%N ->
(\prod_(p <- ps) ('X - p%:P))`_n =
(-1) ^+ (size ps - n)%N *
\sum_(I in {set 'I_(size ps)} | #|I| == (size ps - n)%N)
\prod_(i in I) ps`_i.
Proof.
move=> nle.
under eq_bigr => i _ do rewrite addrC -raddfN/=.
rewrite -{1}(in_tupleE ps) -(map_tnth_enum (_ ps)) big_map.
rewrite enumT bigA_distr /= coef_sum.
transitivity (\sum_(I in {set 'I_(size ps)}) if #|I| == (size ps - n)%N then
\prod_(i < size ps | i \in I) - ps`_i else 0).
apply eq_bigr => I _.
rewrite big_if/= big_const iter_mulr_1 -rmorph_prod/= coefCM coefXn.
under eq_bigr => i _ do rewrite (tnth_nth 0)/=.
rewrite -[#|I| == _](eqn_add2r n) subnK//.
rewrite -[X in (_ + _)%N == X]card_ord -(cardC I) eqn_add2l.
by case: ifP; rewrite ?mulr1 ?mulr0.
by rewrite -big_mkcond mulr_sumr/=; apply: eq_bigr => I /eqP <-; rewrite prodrN.
Qed.
Lemma coefPn_prod_XsubC (ps : seq R) : size ps != 0 ->
(\prod_(p <- ps) ('X - p%:P))`_((size ps).-1) =
- \sum_(p <- ps) p.
Proof.
rewrite coef_prod_XsubC ?leq_pred// => ps0.
have -> : (size ps - (size ps).-1 = 1)%N.
by move: ps0; case: (size ps) => // n _; exact: subSnn.
rewrite expr1 mulN1r; congr GRing.opp.
set f : 'I_(size ps) -> {set 'I_(size ps)} := fun a => [set a].
transitivity (\sum_(I in imset f (mem setT)) \prod_(i in I) ps`_i).
apply: congr_big => // I /=.
by apply/cards1P/imsetP => [[a ->] | [a _ ->]]; exists a.
rewrite big_imset/=; last first.
by move=> i j _ _ ij; apply/set1P; rewrite -/(f j) -ij set11.
rewrite -[in RHS](in_tupleE ps) -(map_tnth_enum (_ ps)) big_map enumT.
apply: congr_big => // i; first exact: in_setT.
by rewrite big_set1 (tnth_nth 0).
Qed.
Lemma coef0_prod_XsubC (ps : seq R) :
(\prod_(p <- ps) ('X - p%:P))`_0 =
(-1) ^+ (size ps) * \prod_(p <- ps) p.
Proof.
rewrite coef_prod_XsubC// subn0; congr GRing.mul.
transitivity (\sum_(I in [set setT : {set 'I_(size ps)}]) \prod_(i in I) ps`_i).
apply: congr_big =>// i/=.
apply/idP/set1P => [/eqP cardE | ->]; last by rewrite cardsT card_ord.
by apply/eqP; rewrite eqEcard subsetT cardsT card_ord cardE leqnn.
rewrite big_set1 -[in RHS](in_tupleE ps) -(map_tnth_enum (_ ps)) big_map enumT.
apply: congr_big => // i; first exact: in_setT.
by rewrite (tnth_nth 0).
Qed.
Lemma hornerM p q x : (p * q).[x] = p.[x] * q.[x].
Proof. by rewrite hornerM_comm //; apply: mulrC. Qed.
Lemma horner_exp p x n : (p ^+ n).[x] = p.[x] ^+ n.
Proof. by rewrite horner_exp_comm //; apply: mulrC. Qed.
Lemma horner_prod I r (P : pred I) (F : I -> {poly R}) x :
(\prod_(i <- r | P i) F i).[x] = \prod_(i <- r | P i) (F i).[x].
Proof. by elim/big_rec2: _ => [|i _ p _ <-]; rewrite (hornerM, hornerC). Qed.
Definition hornerE :=
(hornerD, hornerN, hornerX, hornerC, horner_exp,
simp, hornerCM, hornerZ, hornerM, horner_cons).
Definition horner_eval (x : R) := horner^~ x.
Lemma horner_evalE x p : horner_eval x p = p.[x]. Proof. by []. Qed.
Fact horner_eval_is_linear x : linear_for *%R (horner_eval x).
Proof.
have cxid: commr_rmorph idfun x by apply: mulrC.
have evalE : horner_eval x =1 horner_morph cxid.
by move=> p; congr _.[x]; rewrite map_poly_id.
by move=> c p q; rewrite !evalE linearP.
Qed.
Fact horner_eval_is_multiplicative x : multiplicative (horner_eval x).
Proof.
have cxid: commr_rmorph idfun x by apply: mulrC.
have evalE : horner_eval x =1 horner_morph cxid.
by move=> p; congr _.[x]; rewrite map_poly_id.
by split=> [p q|]; rewrite !evalE ?rmorph1// rmorphM.
Qed.
HB.instance Definition _ x :=
GRing.isLinear.Build R {poly R} R _ (horner_eval x)
(horner_eval_is_linear x).
HB.instance Definition _ x :=
GRing.isMultiplicative.Build {poly R} R (horner_eval x)
(horner_eval_is_multiplicative x).
Section HornerAlg.
Variable A : algType R. (* For univariate polys, commutativity is not needed *)
Section Defs.
Variable a : A.
Lemma in_alg_comm : commr_rmorph (in_alg A) a.
Proof. move=> r /=; by rewrite /GRing.comm comm_alg. Qed.
Definition horner_alg := horner_morph in_alg_comm.
Lemma horner_algC c : horner_alg c%:P = c%:A.
Proof. exact: horner_morphC. Qed.
Lemma horner_algX : horner_alg 'X = a.
Proof. exact: horner_morphX. Qed.
HB.instance Definition _ := GRing.LRMorphism.on horner_alg.
End Defs.
Variable (pf : {lrmorphism {poly R} -> A}).
Lemma poly_alg_initial : pf =1 horner_alg (pf 'X).
Proof.
apply: poly_ind => [|p a IHp]; first by rewrite !rmorph0.
rewrite !rmorphD !rmorphM /= -{}IHp horner_algC ?horner_algX.
by rewrite -alg_polyC rmorph_alg.
Qed.
End HornerAlg.
Fact comp_poly_multiplicative q : multiplicative (comp_poly q).
Proof.
split=> [p1 p2|]; last by rewrite comp_polyC.
by rewrite /comp_poly rmorphM hornerM_comm //; apply: mulrC.
Qed.
HB.instance Definition _ q := GRing.isMultiplicative.Build _ _ (comp_poly q)
(comp_poly_multiplicative q).
Lemma comp_polyM p q r : (p * q) \Po r = (p \Po r) * (q \Po r).
Proof. exact: rmorphM. Qed.
Lemma comp_polyA p q r : p \Po (q \Po r) = (p \Po q) \Po r.
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !comp_polyC.
by rewrite !comp_polyD !comp_polyM !comp_polyX IHp !comp_polyC.
Qed.
Lemma horner_comp p q x : (p \Po q).[x] = p.[q.[x]].
Proof. by apply: polyC_inj; rewrite -!comp_polyCr comp_polyA. Qed.
Lemma root_comp p q x : root (p \Po q) x = root p (q.[x]).
Proof. by rewrite !rootE horner_comp. Qed.
Lemma deriv_comp p q : (p \Po q) ^`() = (p ^`() \Po q) * q^`().
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(deriv0, comp_poly0) mul0r.
rewrite comp_poly_MXaddC derivD derivC derivM IHp derivMXaddC comp_polyD.
by rewrite comp_polyM comp_polyX addr0 addrC mulrAC -mulrDl.
Qed.
Lemma deriv_exp p n : (p ^+ n)^`() = p^`() * p ^+ n.-1 *+ n.
Proof.
elim: n => [|n IHn]; first by rewrite expr0 mulr0n derivC.
by rewrite exprS derivM {}IHn (mulrC p) mulrnAl -mulrA -exprSr mulrS; case n.
Qed.
Definition derivCE := (derivE, deriv_exp).
End PolynomialComRing.
Section PolynomialIdomain.
(* Integral domain structure on poly *)
Variable R : idomainType.
Implicit Types (a b x y : R) (p q r m : {poly R}).
Lemma size_mul p q : p != 0 -> q != 0 -> size (p * q) = (size p + size q).-1.
Proof.
by move=> nz_p nz_q; rewrite -size_proper_mul ?mulf_neq0 ?lead_coef_eq0.
Qed.
Fact poly_idomainAxiom p q : p * q = 0 -> (p == 0) || (q == 0).
Proof.
move=> pq0; apply/norP=> [[p_nz q_nz]]; move/eqP: (size_mul p_nz q_nz).
by rewrite eq_sym pq0 size_poly0 (polySpred p_nz) (polySpred q_nz) addnS.
Qed.
Definition poly_unit : pred {poly R} :=
fun p => (size p == 1) && (p`_0 \in GRing.unit).
Definition poly_inv p := if p \in poly_unit then (p`_0)^-1%:P else p.
Fact poly_mulVp : {in poly_unit, left_inverse 1 poly_inv *%R}.
Proof.
move=> p Up; rewrite /poly_inv Up.
by case/andP: Up => /size_poly1P[c _ ->]; rewrite coefC -polyCM => /mulVr->.
Qed.
Fact poly_intro_unit p q : q * p = 1 -> p \in poly_unit.
Proof.
move=> pq1; apply/andP; split; last first.
apply/unitrP; exists q`_0.
by rewrite 2!mulrC -!/(coefp 0 _) -rmorphM pq1 rmorph1.
have: size (q * p) == 1 by rewrite pq1 size_poly1.
have [-> | nz_p] := eqVneq p 0; first by rewrite mulr0 size_poly0.
have [-> | nz_q] := eqVneq q 0; first by rewrite mul0r size_poly0.
rewrite size_mul // (polySpred nz_p) (polySpred nz_q) addnS addSn !eqSS.
by rewrite addn_eq0 => /andP[].
Qed.
Fact poly_inv_out : {in [predC poly_unit], poly_inv =1 id}.
Proof. by rewrite /poly_inv => p /negbTE/= ->. Qed.
HB.instance Definition _ := GRing.ComRing_hasMulInverse.Build (polynomial R)
poly_mulVp poly_intro_unit poly_inv_out.
HB.instance Definition _ := GRing.ComUnitRing_isIntegral.Build (polynomial R)
poly_idomainAxiom.
Lemma poly_unitE p :
(p \in GRing.unit) = (size p == 1) && (p`_0 \in GRing.unit).
Proof. by []. Qed.
Lemma poly_invE p : p ^-1 = if p \in GRing.unit then (p`_0)^-1%:P else p.
Proof. by []. Qed.
Lemma polyCV c : c%:P^-1 = (c^-1)%:P.
Proof.
have [/rmorphV-> // | nUc] := boolP (c \in GRing.unit).
by rewrite !invr_out // poly_unitE coefC (negbTE nUc) andbF.
Qed.
Lemma rootM p q x : root (p * q) x = root p x || root q x.
Proof. by rewrite !rootE hornerM mulf_eq0. Qed.
Lemma rootZ x a p : a != 0 -> root (a *: p) x = root p x.
Proof. by move=> nz_a; rewrite -mul_polyC rootM rootC (negPf nz_a). Qed.
Lemma root_exp p n a: comm_poly p a -> (0 < n)%N -> root (p ^+ n) a = root p a.
Proof. by move=> ? n0; rewrite !rootE horner_exp_comm// expf_eq0 n0. Qed.
Lemma size_scale a p : a != 0 -> size (a *: p) = size p.
Proof. by move/lregP/lreg_size->. Qed.
Lemma size_Cmul a p : a != 0 -> size (a%:P * p) = size p.
Proof. by rewrite mul_polyC => /size_scale->. Qed.
Lemma lead_coefM p q : lead_coef (p * q) = lead_coef p * lead_coef q.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite !(mul0r, lead_coef0).
have [-> | nz_q] := eqVneq q 0; first by rewrite !(mulr0, lead_coef0).
by rewrite lead_coef_proper_mul // mulf_neq0 ?lead_coef_eq0.
Qed.
Lemma lead_coef_prod I rI (P : {pred I}) (p : I -> {poly R}) :
lead_coef (\prod_(i <- rI | P i) p i) = \prod_(i <- rI | P i) lead_coef (p i).
Proof. by apply/big_morph/lead_coef1; apply: lead_coefM. Qed.
Lemma lead_coefZ a p : lead_coef (a *: p) = a * lead_coef p.
Proof. by rewrite -mul_polyC lead_coefM lead_coefC. Qed.
Lemma scale_poly_eq0 a p : (a *: p == 0) = (a == 0) || (p == 0).
Proof. by rewrite -mul_polyC mulf_eq0 polyC_eq0. Qed.
Lemma size_prod (I : finType) (P : pred I) (F : I -> {poly R}) :
(forall i, P i -> F i != 0) ->
size (\prod_(i | P i) F i) = ((\sum_(i | P i) size (F i)).+1 - #|P|)%N.
Proof.
move=> nzF; transitivity (\sum_(i | P i) (size (F i)).-1).+1; last first.
apply: canRL (addKn _) _; rewrite addnS -sum1_card -big_split /=.
by congr _.+1; apply: eq_bigr => i /nzF/polySpred.
elim/big_rec2: _ => [|i d p /nzF nzFi IHp]; first by rewrite size_poly1.
by rewrite size_mul // -?size_poly_eq0 IHp // addnS polySpred.
Qed.
Lemma size_prod_seq (I : eqType) (s : seq I) (F : I -> {poly R}) :
(forall i, i \in s -> F i != 0) ->
size (\prod_(i <- s) F i) = ((\sum_(i <- s) size (F i)).+1 - size s)%N.
Proof.
move=> nzF; rewrite big_tnth size_prod; last by move=> i; rewrite nzF ?mem_tnth.
by rewrite cardT /= size_enum_ord [in RHS]big_tnth.
Qed.
Lemma size_mul_eq1 p q : (size (p * q) == 1) = ((size p == 1) && (size q == 1)).
Proof.
have [->|pNZ] := eqVneq p 0; first by rewrite mul0r size_poly0.
have [->|qNZ] := eqVneq q 0; first by rewrite mulr0 size_poly0 andbF.
rewrite size_mul //.
by move: pNZ qNZ; rewrite -!size_poly_gt0; (do 2 case: size) => //= n [|[|]].
Qed.
Lemma size_prod_seq_eq1 (I : eqType) (s : seq I) (P : pred I) (F : I -> {poly R}) :
reflect (forall i, P i && (i \in s) -> size (F i) = 1)
(size (\prod_(i <- s | P i) F i) == 1%N).
Proof.
rewrite (big_morph _ (id1:=true) size_mul_eq1) ?size_polyC ?oner_neq0//.
rewrite big_all_cond; apply/(iffP allP).
by move=> h i /andP[Pi ins]; apply/eqP/(implyP (h i ins) Pi).
by move=> h i ins; apply/implyP => Pi; rewrite h ?Pi.
Qed.
Lemma size_prod_eq1 (I : finType) (P : pred I) (F : I -> {poly R}) :
reflect (forall i, P i -> size (F i) = 1)
(size (\prod_(i | P i) F i) == 1).
Proof.
apply: (iffP (size_prod_seq_eq1 _ _ _)) => Hi i.
by move=> Pi; apply: Hi; rewrite Pi /= mem_index_enum.
by rewrite mem_index_enum andbT; apply: Hi.
Qed.
Lemma size_exp p n : (size (p ^+ n)).-1 = ((size p).-1 * n)%N.
Proof.
elim: n => [|n IHn]; first by rewrite size_poly1 muln0.
have [-> | nz_p] := eqVneq p 0; first by rewrite exprS mul0r size_poly0.
rewrite exprS size_mul ?expf_neq0 // mulnS -{}IHn.
by rewrite polySpred // [size (p ^+ n)]polySpred ?expf_neq0 ?addnS.
Qed.
Lemma lead_coef_exp p n : lead_coef (p ^+ n) = lead_coef p ^+ n.
Proof.
elim: n => [|n IHn]; first by rewrite !expr0 lead_coef1.
by rewrite !exprS lead_coefM IHn.
Qed.
Lemma root_prod_XsubC rs x :
root (\prod_(a <- rs) ('X - a%:P)) x = (x \in rs).
Proof.
elim: rs => [|a rs IHrs]; first by rewrite rootE big_nil hornerC oner_eq0.
by rewrite big_cons rootM IHrs root_XsubC.
Qed.
Lemma root_exp_XsubC n a x : root (('X - a%:P) ^+ n.+1) x = (x == a).
Proof. by rewrite rootE horner_exp expf_eq0 [_ == 0]root_XsubC. Qed.
Lemma size_comp_poly p q :
(size (p \Po q)).-1 = ((size p).-1 * (size q).-1)%N.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite comp_poly0 size_poly0.
have [/size1_polyC-> | nc_q] := leqP (size q) 1.
by rewrite comp_polyCr !size_polyC -!sub1b -!subnS muln0.
have nz_q: q != 0 by rewrite -size_poly_eq0 -(subnKC nc_q).
rewrite mulnC comp_polyE (polySpred nz_p) /= big_ord_recr /= addrC.
rewrite size_addl size_scale ?lead_coef_eq0 ?size_exp //=.
rewrite [ltnRHS]polySpred ?expf_neq0 // ltnS size_exp.
rewrite (leq_trans (size_sum _ _ _)) //; apply/bigmax_leqP => i _.
rewrite (leq_trans (size_scale_leq _ _)) // polySpred ?expf_neq0 //.
by rewrite size_exp -(subnKC nc_q) ltn_pmul2l.
Qed.
Lemma lead_coef_comp p q : size q > 1 ->
lead_coef (p \Po q) = (lead_coef p) * lead_coef q ^+ (size p).-1.
Proof.
move=> q_gt1; rewrite !lead_coefE coef_comp_poly size_comp_poly.
have [->|nz_p] := eqVneq p 0; first by rewrite size_poly0 big_ord0 coef0 mul0r.
rewrite polySpred //= big_ord_recr /= big1 ?add0r => [|i _].
by rewrite -!lead_coefE -lead_coef_exp !lead_coefE size_exp mulnC.
rewrite [X in _ * X]nth_default ?mulr0 ?(leq_trans (size_exp_leq _ _)) //.
by rewrite mulnC ltn_mul2r -subn1 subn_gt0 q_gt1 /=.
Qed.
Lemma comp_poly_eq0 p q : size q > 1 -> (p \Po q == 0) = (p == 0).
Proof.
move=> sq_gt1; rewrite -!lead_coef_eq0 lead_coef_comp //.
rewrite mulf_eq0 expf_eq0 !lead_coef_eq0 -[q == 0]size_poly_leq0.
by rewrite [_ <= 0]leqNgt (leq_ltn_trans _ sq_gt1) ?andbF ?orbF.
Qed.
Lemma size_comp_poly2 p q : size q = 2 -> size (p \Po q) = size p.
Proof.
move=> sq2; have [->|pN0] := eqVneq p 0; first by rewrite comp_polyC.
by rewrite polySpred ?size_comp_poly ?comp_poly_eq0 ?sq2 // muln1 polySpred.
Qed.
Lemma comp_poly2_eq0 p q : size q = 2 -> (p \Po q == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 => /size_comp_poly2->. Qed.
Theorem max_poly_roots p rs :
p != 0 -> all (root p) rs -> uniq rs -> size rs < size p.
Proof.
elim: rs p => [p pn0 _ _ | r rs ihrs p pn0] /=; first by rewrite size_poly_gt0.
case/andP => rpr arrs /andP [rnrs urs]; case/factor_theorem: rpr => q epq.
have [q0 | ?] := eqVneq q 0; first by move: pn0; rewrite epq q0 mul0r eqxx.
have -> : size p = (size q).+1.
by rewrite epq size_Mmonic ?monicXsubC // size_XsubC addnC.
suff /eq_in_all h : {in rs, root q =1 root p} by apply: ihrs => //; rewrite h.
move=> x xrs; rewrite epq rootM root_XsubC orbC; case: (eqVneq x r) => // exr.
by move: rnrs; rewrite -exr xrs.
Qed.
Lemma roots_geq_poly_eq0 p (rs : seq R) : all (root p) rs -> uniq rs ->
(size rs >= size p)%N -> p = 0.
Proof. by move=> ??; apply: contraTeq => ?; rewrite leqNgt max_poly_roots. Qed.
End PolynomialIdomain.
(* FIXME: these are seamingly artificial ways to close the inheritance graph *)
(* We make parameters more and more precise to trigger completion by HB *)
HB.instance Definition _ (R : countRingType) :=
[Countable of polynomial R by <:].
HB.instance Definition _ (R : countComRingType) :=
[Countable of polynomial R by <:].
HB.instance Definition _ (R : countUnitRingType) :=
[Countable of polynomial R by <:].
HB.instance Definition _ (R : countComUnitRingType) :=
[Countable of polynomial R by <:].
HB.instance Definition _ (R : countIdomainType) :=
[Countable of polynomial R by <:].
Section MapFieldPoly.
Variables (F : fieldType) (R : ringType) (f : {rmorphism F -> R}).
Local Notation "p ^f" := (map_poly f p) : ring_scope.
Lemma size_map_poly p : size p^f = size p.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite rmorph0 !size_poly0.
by rewrite size_poly_eq // fmorph_eq0 // lead_coef_eq0.
Qed.
Lemma lead_coef_map p : lead_coef p^f = f (lead_coef p).
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite !(rmorph0, lead_coef0).
by rewrite lead_coef_map_eq // fmorph_eq0 // lead_coef_eq0.
Qed.
Lemma map_poly_eq0 p : (p^f == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 size_map_poly. Qed.
Lemma map_poly_inj : injective (map_poly f).
Proof.
move=> p q eqfpq; apply/eqP; rewrite -subr_eq0 -map_poly_eq0.
by rewrite rmorphB /= eqfpq subrr.
Qed.
Lemma map_monic p : (p^f \is monic) = (p \is monic).
Proof. by rewrite [in LHS]monicE lead_coef_map fmorph_eq1. Qed.
Lemma map_poly_com p x : comm_poly p^f (f x).
Proof. exact: map_comm_poly (mulrC x _). Qed.
Lemma fmorph_root p x : root p^f (f x) = root p x.
Proof. by rewrite rootE horner_map // fmorph_eq0. Qed.
Lemma fmorph_unity_root n z : n.-unity_root (f z) = n.-unity_root z.
Proof. by rewrite !unity_rootE -(inj_eq (fmorph_inj f)) rmorphXn ?rmorph1. Qed.
Lemma fmorph_primitive_root n z :
n.-primitive_root (f z) = n.-primitive_root z.
Proof.
by congr (_ && _); apply: eq_forallb => i; rewrite fmorph_unity_root.
Qed.
End MapFieldPoly.
Arguments map_poly_inj {F R} f [p1 p2] : rename.
Section MaxRoots.
Variable R : unitRingType.
Implicit Types (x y : R) (rs : seq R) (p : {poly R}).
Definition diff_roots (x y : R) := (x * y == y * x) && (y - x \in GRing.unit).
Fixpoint uniq_roots rs :=
if rs is x :: rs' then all (diff_roots x) rs' && uniq_roots rs' else true.
Lemma uniq_roots_prod_XsubC p rs :
all (root p) rs -> uniq_roots rs ->
exists q, p = q * \prod_(z <- rs) ('X - z%:P).
Proof.
elim: rs => [|z rs IHrs] /=; first by rewrite big_nil; exists p; rewrite mulr1.
case/andP=> rpz rprs /andP[drs urs]; case: IHrs => {urs rprs}// q def_p.
have [|q' def_q] := factor_theorem q z _; last first.
by exists q'; rewrite big_cons mulrA -def_q.
rewrite {p}def_p in rpz.
elim/last_ind: rs drs rpz => [|rs t IHrs] /=; first by rewrite big_nil mulr1.
rewrite all_rcons => /andP[/andP[/eqP czt Uzt] /IHrs{}IHrs].
rewrite -cats1 big_cat big_seq1 /= mulrA rootE hornerM_comm; last first.
by rewrite /comm_poly hornerXsubC mulrBl mulrBr czt.
rewrite hornerXsubC -opprB mulrN oppr_eq0 -(mul0r (t - z)).
by rewrite (inj_eq (mulIr Uzt)) => /IHrs.
Qed.
Theorem max_ring_poly_roots p rs :
p != 0 -> all (root p) rs -> uniq_roots rs -> size rs < size p.
Proof.
move=> nz_p _ /(@uniq_roots_prod_XsubC p)[// | q def_p]; rewrite def_p in nz_p *.
have nz_q: q != 0 by apply: contraNneq nz_p => ->; rewrite mul0r.
rewrite size_Mmonic ?monic_prod_XsubC // (polySpred nz_q) addSn /=.
by rewrite size_prod_XsubC leq_addl.
Qed.
Lemma all_roots_prod_XsubC p rs :
size p = (size rs).+1 -> all (root p) rs -> uniq_roots rs ->
p = lead_coef p *: \prod_(z <- rs) ('X - z%:P).
Proof.
move=> size_p /uniq_roots_prod_XsubC def_p Urs.
case/def_p: Urs => q -> {p def_p} in size_p *.
have [q0 | nz_q] := eqVneq q 0; first by rewrite q0 mul0r size_poly0 in size_p.
have{q nz_q size_p} /size_poly1P[c _ ->]: size q == 1.
rewrite -(eqn_add2r (size rs)) add1n -size_p.
by rewrite size_Mmonic ?monic_prod_XsubC // size_prod_XsubC addnS.
by rewrite lead_coef_Mmonic ?monic_prod_XsubC // lead_coefC mul_polyC.
Qed.
End MaxRoots.
Section FieldRoots.
Variable F : fieldType.
Implicit Types (p : {poly F}) (rs : seq F).
Lemma poly2_root p : size p = 2 -> {r | root p r}.
Proof.
case: p => [[|p0 [|p1 []]] //= nz_p1]; exists (- p0 / p1).
by rewrite /root addr_eq0 /= mul0r add0r mulrC divfK ?opprK.
Qed.
Lemma uniq_rootsE rs : uniq_roots rs = uniq rs.
Proof.
elim: rs => //= r rs ->; congr (_ && _); rewrite -has_pred1 -all_predC.
by apply: eq_all => t; rewrite /diff_roots mulrC eqxx unitfE subr_eq0.
Qed.
Lemma root_ZXsubC (a b r : F) : a != 0 ->
root (a *: 'X - b%:P) r = (r == b / a).
Proof.
move=> a0; rewrite rootE !hornerE.
by rewrite -[r in RHS]divr1 eqr_div ?oner_neq0// mulr1 mulrC subr_eq0.
Qed.
Section UnityRoots.
Variable n : nat.
Lemma max_unity_roots rs :
n > 0 -> all n.-unity_root rs -> uniq rs -> size rs <= n.
Proof.
move=> n_gt0 rs_n_1 Urs; have szPn := size_XnsubC (1 : F) n_gt0.
by rewrite -ltnS -szPn max_poly_roots -?size_poly_eq0 ?szPn.
Qed.
Lemma mem_unity_roots rs :
n > 0 -> all n.-unity_root rs -> uniq rs -> size rs = n ->
n.-unity_root =i rs.
Proof.
move=> n_gt0 rs_n_1 Urs sz_rs_n x; rewrite -topredE /=.
apply/idP/idP=> xn1; last exact: (allP rs_n_1).
apply: contraFT (ltnn n) => not_rs_x.
by rewrite -{1}sz_rs_n (@max_unity_roots (x :: rs)) //= ?xn1 ?not_rs_x.
Qed.
(* Showing the existence of a primitive root requires the theory in cyclic. *)
Variable z : F.
Hypothesis prim_z : n.-primitive_root z.
Let zn := [seq z ^+ i | i <- index_iota 0 n].
Lemma factor_Xn_sub_1 : \prod_(0 <= i < n) ('X - (z ^+ i)%:P) = 'X^n - 1.
Proof.
transitivity (\prod_(w <- zn) ('X - w%:P)); first by rewrite big_map.
have n_gt0: n > 0 := prim_order_gt0 prim_z.
rewrite (@all_roots_prod_XsubC _ ('X^n - 1) zn); first 1 last.
- by rewrite size_XnsubC // size_map size_iota subn0.
- apply/allP=> _ /mapP[i _ ->] /=; rewrite rootE !hornerE.
by rewrite exprAC (prim_expr_order prim_z) expr1n subrr.
- rewrite uniq_rootsE map_inj_in_uniq ?iota_uniq // => i j.
rewrite !mem_index_iota => ltin ltjn /eqP.
by rewrite (eq_prim_root_expr prim_z) !modn_small // => /eqP.
by rewrite (monicP (monicXnsubC 1 n_gt0)) scale1r.
Qed.
Lemma prim_rootP x : x ^+ n = 1 -> {i : 'I_n | x = z ^+ i}.
Proof.
move=> xn1; pose logx := [pred i : 'I_n | x == z ^+ i].
case: (pickP logx) => [i /eqP-> | no_i]; first by exists i.
case: notF; suffices{no_i}: x \in zn.
case/mapP=> i; rewrite mem_index_iota => lt_i_n def_x.
by rewrite -(no_i (Ordinal lt_i_n)) /= -def_x.
rewrite -root_prod_XsubC big_map factor_Xn_sub_1.
by rewrite [root _ x]unity_rootE xn1.
Qed.
End UnityRoots.
End FieldRoots.
Section MapPolyRoots.
Variables (F : fieldType) (R : unitRingType) (f : {rmorphism F -> R}).
Lemma map_diff_roots x y : diff_roots (f x) (f y) = (x != y).
Proof.
rewrite /diff_roots -rmorphB // fmorph_unit // subr_eq0 //.
by rewrite rmorph_comm // eqxx eq_sym.
Qed.
Lemma map_uniq_roots s : uniq_roots (map f s) = uniq s.
Proof.
elim: s => //= x s ->; congr (_ && _); elim: s => //= y s ->.
by rewrite map_diff_roots -negb_or.
Qed.
End MapPolyRoots.
Section AutPolyRoot.
(* The action of automorphisms on roots of unity. *)
Variable F : fieldType.
Implicit Types u v : {rmorphism F -> F}.
Lemma aut_prim_rootP u z n :
n.-primitive_root z -> {k | coprime k n & u z = z ^+ k}.
Proof.
move=> prim_z; have:= prim_z; rewrite -(fmorph_primitive_root u) => prim_uz.
have [[k _] /= def_uz] := prim_rootP prim_z (prim_expr_order prim_uz).
by exists k; rewrite // -(prim_root_exp_coprime _ prim_z) -def_uz.
Qed.
Lemma aut_unity_rootP u z n : n > 0 -> z ^+ n = 1 -> {k | u z = z ^+ k}.
Proof.
by move=> _ /prim_order_exists[// | m /(aut_prim_rootP u)[k]]; exists k.
Qed.
Lemma aut_unity_rootC u v z n : n > 0 -> z ^+ n = 1 -> u (v z) = v (u z).
Proof.
move=> n_gt0 /(aut_unity_rootP _ n_gt0) def_z.
have [[i def_uz] [j def_vz]] := (def_z u, def_z v).
by rewrite def_vz def_uz !rmorphXn /= def_vz def_uz exprAC.
Qed.
End AutPolyRoot.
Module UnityRootTheory.
Notation "n .-unity_root" := (root_of_unity n) : unity_root_scope.
Notation "n .-primitive_root" := (primitive_root_of_unity n) : unity_root_scope.
Open Scope unity_root_scope.
Definition unity_rootE := unity_rootE.
Definition unity_rootP := @unity_rootP.
Arguments unity_rootP {R n z}.
Definition prim_order_exists := prim_order_exists.
Notation prim_order_gt0 := prim_order_gt0.
Notation prim_expr_order := prim_expr_order.
Definition prim_expr_mod := prim_expr_mod.
Definition prim_order_dvd := prim_order_dvd.
Definition eq_prim_root_expr := eq_prim_root_expr.
Definition rmorph_unity_root := rmorph_unity_root.
Definition fmorph_unity_root := fmorph_unity_root.
Definition fmorph_primitive_root := fmorph_primitive_root.
Definition max_unity_roots := max_unity_roots.
Definition mem_unity_roots := mem_unity_roots.
Definition prim_rootP := prim_rootP.
End UnityRootTheory.
Module Export Pdeg2.
Module Export Field.
Section Pdeg2Field.
Variable F : fieldType.
Hypothesis nz2 : 2 != 0 :> F.
Variable p : {poly F}.
Hypothesis degp : size p = 3.
Let a := p`_2.
Let b := p`_1.
Let c := p`_0.
Let pneq0 : p != 0. Proof. by rewrite -size_poly_gt0 degp. Qed.
Let aneq0 : a != 0.
Proof. by move: pneq0; rewrite -lead_coef_eq0 lead_coefE degp. Qed.
Let a2neq0 : 2 * a != 0. Proof. by rewrite mulf_neq0. Qed.
Let sqa2neq0 : (2 * a) ^+ 2 != 0. Proof. exact: expf_neq0. Qed.
Let aa4 : 4 * a * a = (2 * a)^+2.
Proof. by rewrite expr2 mulrACA mulrA -natrM. Qed.
Let splitr (x : F) : x = x / 2 + x / 2.
Proof.
by apply: (mulIf nz2); rewrite -mulrDl mulfVK// mulr_natr mulr2n.
Qed.
Let pE : p = a *: 'X^2 + b *: 'X + c%:P.
Proof.
apply/polyP => + /[!coefE] => -[|[|[|i]]] /=; rewrite !Monoid.simpm//.
by rewrite nth_default// degp.
Qed.
Let delta := b ^+ 2 - 4 * a * c.
Lemma deg2_poly_canonical :
p = a *: (('X + (b / (2 * a))%:P)^+2 - (delta / (4 * a ^+ 2))%:P).
Proof.
rewrite pE sqrrD -!addrA scalerDr; congr +%R; rewrite addrA scalerDr; congr +%R.
- rewrite -mulrDr -polyCD -!mul_polyC mulrA mulrAC -polyCM.
by rewrite [a * _]mulrC mulrDl invfM -!mulrA mulVf// mulr1 -splitr.
- rewrite [a ^+ 2]expr2 mulrA aa4 -polyC_exp -polyCB expr_div_n -mulrBl subKr.
by rewrite scale_polyC mulrCA mulrACA aa4 mulrCA mulfV// mulr1.
Qed.
Variable r : F.
Hypothesis r_sqrt_delta : r ^+ 2 = delta.
Let r1 := (- b - r) / (2 * a).
Let r2 := (- b + r) / (2 * a).
Lemma deg2_poly_factor : p = a *: ('X - r1%:P) * ('X - r2%:P).
Proof.
rewrite [p]deg2_poly_canonical//= -/a -/b -/c -/delta /r1 /r2.
rewrite ![(- b + _) * _]mulrDl 2!polyCD 2!opprD 2!addrA !mulNr !polyCN !opprK.
rewrite -scalerAl [in RHS]mulrC -subr_sqr -polyC_exp -[4]/(2 * 2)%:R natrM.
by rewrite -expr2 -exprMn [in RHS]exprMn exprVn r_sqrt_delta.
Qed.
Lemma deg2_poly_root1 : root p r1.
Proof.
apply/factor_theorem.
by exists (a *: ('X - r2%:P)); rewrite deg2_poly_factor -!scalerAl mulrC.
Qed.
Lemma deg2_poly_root2 : root p r2.
Proof.
apply/factor_theorem.
by exists (a *: ('X - r1%:P)); rewrite deg2_poly_factor -!scalerAl.
Qed.
End Pdeg2Field.
End Field.
Module FieldMonic.
Section Pdeg2FieldMonic.
Variable F : fieldType.
Hypothesis nz2 : 2 != 0 :> F.
Variable p : {poly F}.
Hypothesis degp : size p = 3.
Hypothesis monicp : p \is monic.
Let a := p`_2.
Let b := p`_1.
Let c := p`_0.
Let a1 : a = 1. Proof. by move: (monicP monicp); rewrite lead_coefE degp. Qed.
Let delta := b ^+ 2 - 4 * c.
Lemma deg2_poly_canonical : p = (('X + (b / 2)%:P)^+2 - (delta / 4)%:P).
Proof. by rewrite [p]deg2_poly_canonical// -/a a1 scale1r expr1n !mulr1. Qed.
Variable r : F.
Hypothesis r_sqrt_delta : r ^+ 2 = delta.
Let r1 := (- b - r) / 2.
Let r2 := (- b + r) / 2.
Lemma deg2_poly_factor : p = ('X - r1%:P) * ('X - r2%:P).
Proof.
by rewrite [p](@deg2_poly_factor _ _ _ _ r)// -/a a1 !mulr1 ?scale1r.
Qed.
Lemma deg2_poly_root1 : root p r1.
Proof.
rewrite /r1 -[2]mulr1 -[X in 2 * X]a1.
by apply: deg2_poly_root1; rewrite // -/a a1 mulr1.
Qed.
Lemma deg2_poly_root2 : root p r2.
Proof.
rewrite /r2 -[2]mulr1 -[X in 2 * X]a1.
by apply: deg2_poly_root2; rewrite // -/a a1 mulr1.
Qed.
End Pdeg2FieldMonic.
End FieldMonic.
End Pdeg2.
Section DecField.
Variable F : decFieldType.
Lemma dec_factor_theorem (p : {poly F}) :
{s : seq F & {q : {poly F} | p = q * \prod_(x <- s) ('X - x%:P)
/\ (q != 0 -> forall x, ~~ root q x)}}.
Proof.
pose polyT (p : seq F) := (foldr (fun c f => f * 'X_0 + c%:T) (0%R)%:T p)%T.
have eval_polyT (q : {poly F}) x : GRing.eval [:: x] (polyT q) = q.[x].
by rewrite /horner; elim: (val q) => //= ? ? ->.
have [n] := ubnP (size p); elim: n => // n IHn in p *.
have /decPcases /= := @satP F [::] ('exists 'X_0, polyT p == 0%T).
case: ifP => [_ /sig_eqW[x]|_ noroot]; last first.
exists [::], p; rewrite big_nil mulr1; split => // p_neq0 x.
by apply/negP=> /rootP rpx; apply: noroot; exists x; rewrite eval_polyT.
rewrite eval_polyT => /rootP/factor_theorem/sig_eqW[p1 ->].
have [->|nz_p1] := eqVneq p1 0; first by exists [::], 0; rewrite !mul0r eqxx.
rewrite size_Mmonic ?monicXsubC // size_XsubC addn2 => /IHn[s [q [-> irr_q]]].
by exists (rcons s x), q; rewrite -cats1 big_cat big_seq1 mulrA.
Qed.
End DecField.
Module PreClosedField.
Section UseAxiom.
Variable F : fieldType.
Hypothesis closedF : GRing.closed_field_axiom F.
Implicit Type p : {poly F}.
Lemma closed_rootP p : reflect (exists x, root p x) (size p != 1).
Proof.
have [-> | nz_p] := eqVneq p 0.
by rewrite size_poly0; left; exists 0; rewrite root0.
rewrite neq_ltn [in _ < 1]polySpred //=.
apply: (iffP idP) => [p_gt1 | [a]]; last exact: root_size_gt1.
pose n := (size p).-1; have n_gt0: n > 0 by rewrite -ltnS -polySpred.
have [a Dan] := closedF (fun i => - p`_i / lead_coef p) n_gt0.
exists a; apply/rootP; rewrite horner_coef polySpred // big_ord_recr /= -/n.
rewrite {}Dan mulr_sumr -big_split big1 //= => i _.
by rewrite -!mulrA mulrCA mulNr mulVKf ?subrr ?lead_coef_eq0.
Qed.
Lemma closed_nonrootP p : reflect (exists x, ~~ root p x) (p != 0).
Proof.
apply: (iffP idP) => [nz_p | [x]]; last first.
by apply: contraNneq => ->; apply: root0.
have [[x /rootP p1x0]|] := altP (closed_rootP (p - 1)).
by exists x; rewrite -[p](subrK 1) /root hornerD p1x0 add0r hornerC oner_eq0.
rewrite negbK => /size_poly1P[c _ /(canRL (subrK 1)) Dp].
by exists 0; rewrite Dp -raddfD polyC_eq0 rootC in nz_p *.
Qed.
End UseAxiom.
End PreClosedField.
Section ClosedField.
Variable F : closedFieldType.
Implicit Type p : {poly F}.
Let closedF := @solve_monicpoly F.
Lemma closed_rootP p : reflect (exists x, root p x) (size p != 1).
Proof. exact: PreClosedField.closed_rootP. Qed.
Lemma closed_nonrootP p : reflect (exists x, ~~ root p x) (p != 0).
Proof. exact: PreClosedField.closed_nonrootP. Qed.
Lemma closed_field_poly_normal p :
{r : seq F | p = lead_coef p *: \prod_(z <- r) ('X - z%:P)}.
Proof.
apply: sig_eqW; have [r [q [->]]] /= := dec_factor_theorem p.
have [->|] := eqVneq; first by exists [::]; rewrite mul0r lead_coef0 scale0r.
have [[x rqx ? /(_ isT x) /negP /(_ rqx)] //|] := altP (closed_rootP q).
rewrite negbK => /size_poly1P [c c_neq0-> _ _]; exists r.
rewrite mul_polyC lead_coefZ (monicP _) ?mulr1 //.
by rewrite monic_prod => // i; rewrite monicXsubC.
Qed.
End ClosedField.
|