File: poly.v

package info (click to toggle)
ssreflect 2.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,536 kB
  • sloc: ml: 506; sh: 190; lisp: 39; makefile: 39
file content (3420 lines) | stat: -rw-r--r-- 122,145 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice.
From mathcomp Require Import fintype bigop finset tuple.
From mathcomp Require Import div ssralg countalg binomial.

(******************************************************************************)
(* This file provides a library for univariate polynomials over ring          *)
(* structures; it also provides an extended theory for polynomials whose      *)
(* coefficients range over commutative rings and integral domains.            *)
(*                                                                            *)
(*           {poly R} == the type of polynomials with coefficients of type R, *)
(*                       represented as lists with a non zero last element    *)
(*                       (big endian representation); the coefficient type R  *)
(*                       must have a canonical ringType structure cR. In fact *)
(*                       {poly R} denotes the concrete type polynomial cR; R  *)
(*                       is just a phantom argument that lets type inference  *)
(*                       reconstruct the (hidden) ringType structure cR.      *)
(*          p : seq R == the big-endian sequence of coefficients of p, via    *)
(*                       the coercion polyseq : polynomial >-> seq.           *)
(*             Poly s == the polynomial with coefficient sequence s (ignoring *)
(*                       trailing zeroes).                                    *)
(* \poly_(i < n) E(i) == the polynomial of degree at most n - 1 whose         *)
(*                       coefficients are given by the general term E(i)      *)
(*  0, 1, - p, p + q, == the usual ring operations: {poly R} has a canonical  *)
(* p * q, p ^+ n, ...    ringType structure, which is commutative / integral  *)
(*                       when R is commutative / integral, respectively.      *)
(*      polyC c, c%:P == the constant polynomial c                            *)
(*                 'X == the (unique) variable                                *)
(*               'X^n == a power of 'X; 'X^0 is 1, 'X^1 is convertible to 'X  *)
(*               p`_i == the coefficient of 'X^i in p; this is in fact just   *)
(*                       the ring_scope notation generic seq-indexing using   *)
(*                       nth 0%R, combined with the polyseq coercion.         *)
(*                   *** The multi-rule coefE simplifies p`_i                 *)
(*            coefp i == the linear function p |-> p`_i (self-exapanding).    *)
(*             size p == 1 + the degree of p, or 0 if p = 0 (this is the      *)
(*                       generic seq function combined with polyseq).         *)
(*        lead_coef p == the coefficient of the highest monomial in p, or 0   *)
(*                       if p = 0 (hence lead_coef p = 0 iff p = 0)           *)
(*        p \is monic <=> lead_coef p == 1 (0 is not monic).                  *)
(* p \is a polyOver S <=> the coefficients of p satisfy S; S should have a    *)
(*                        key that should be (at least) an addrPred.          *)
(*             p.[x]  == the evaluation of a polynomial p at a point x using  *)
(*                       the Horner scheme                                    *)
(*                   *** The multi-rule hornerE (resp., hornerE_comm) unwinds *)
(*                       horner evaluation of a polynomial expression (resp., *)
(*                       in a non commutative ring, with side conditions).    *)
(*             p^`()  == formal derivative of p                               *)
(*             p^`(n) == formal n-derivative of p                             *)
(*            p^`N(n) == formal n-derivative of p divided by n!               *)
(*            p \Po q == polynomial composition; because this is naturally a  *)
(*                       a linear morphism in the first argument, this        *)
(*                       notation is transposed (q comes before p for redex   *)
(*                       selection, etc).                                     *)
(*                      := \sum(i < size p) p`_i *: q ^+ i                    *)
(*      odd_poly p    == monomials of odd degree of p                         *)
(*      even_poly p   == monomials of even degree of p                        *)
(*      take_poly n p == polynomial p without its monomials of degree >= n    *)
(*      drop_poly n p == polynomial p divided by X^n                          *)
(*      comm_poly p x == x and p.[x] commute; this is a sufficient condition  *)
(*                       for evaluating (q * p).[x] as q.[x] * p.[x] when R   *)
(*                       is not commutative.                                  *)
(*      comm_coef p x == x commutes with all the coefficients of p (clearly,  *)
(*                       this implies comm_poly p x).                         *)
(*           root p x == x is a root of p, i.e., p.[x] = 0                    *)
(*    n.-unity_root x == x is an nth root of unity, i.e., a root of 'X^n - 1  *)
(* n.-primitive_root x == x is a primitive nth root of unity, i.e., n is the  *)
(*                       least positive integer m > 0 such that x ^+ m = 1.   *)
(*                   *** The submodule poly.UnityRootTheory can be used to    *)
(*                       import selectively the part of the theory of roots   *)
(*                       of unity that doesn't mention polynomials explicitly *)
(*       map_poly f p == the image of the polynomial by the function f (which *)
(*     (locally, p^f)    is usually a ring morphism).                         *)
(*               p^:P == p lifted to {poly {poly R}} (:= map_poly polyC p).   *)
(*   commr_rmorph f u == u commutes with the image of f (i.e., with all f x). *)
(*   horner_morph cfu == given cfu : commr_rmorph f u, the function mapping p *)
(*                       to the value of map_poly f p at u; this is a ring    *)
(*                       morphism from {poly R} to the codomain of f when f   *)
(*                       is a ring morphism.                                  *)
(*      horner_eval u == the function mapping p to p.[u]; this function can   *)
(*                       only be used for u in a commutative ring, so it is   *)
(*                       always a linear ring morphism from {poly R} to R.    *)
(*       horner_alg a == given a in some R-algebra A, the function evaluating *)
(*                       a polynomial p at a; it is always a linear ring      *)
(*                       morphism from {poly R} to A.                         *)
(*     diff_roots x y == x and y are distinct roots; if R is a field, this    *)
(*                       just means x != y, but this concept is generalized   *)
(*                       to the case where R is only a ring with units (i.e., *)
(*                       a unitRingType); in which case it means that x and y *)
(*                       commute, and that the difference x - y is a unit     *)
(*                       (i.e., has a multiplicative inverse) in R.           *)
(*                       to just x != y).                                     *)
(*       uniq_roots s == s is a sequence or pairwise distinct roots, in the   *)
(*                       sense of diff_roots p above.                         *)
(*   *** We only show that these operations and properties are transferred by *)
(*       morphisms whose domain is a field (thus ensuring injectivity).       *)
(* We prove the factor_theorem, and the max_poly_roots inequality relating    *)
(* the number of distinct roots of a polynomial and its size.                 *)
(*   The some polynomial lemmas use following suffix interpretation :         *)
(*   C - constant polynomial (as in polyseqC : a%:P = nseq (a != 0) a).       *)
(*   X - the polynomial variable 'X (as in coefX : 'X`_i = (i == 1%N)).       *)
(*   Xn - power of 'X (as in monicXn : monic 'X^n).                           *)
(*                                                                            *)
(* Pdeg2.Field (exported by the present library) : theory of the degree 2     *)
(*   polynomials.                                                             *)
(* Pdeg2.FieldMonic : theory of Pdeg2.Field specialized to monic polynomials. *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Declare Scope unity_root_scope.

Import GRing.Theory.
Local Open Scope ring_scope.

Reserved Notation "{ 'poly' T }" (at level 0, format "{ 'poly'  T }").
Reserved Notation "c %:P" (at level 2, format "c %:P").
Reserved Notation "p ^:P" (at level 2, format "p ^:P").
Reserved Notation "'X" (at level 0).
Reserved Notation "''X^' n" (at level 3, n at level 2, format "''X^' n").
Reserved Notation "\poly_ ( i < n ) E"
  (at level 36, E at level 36, i, n at level 50,
   format "\poly_ ( i  <  n )  E").
Reserved Notation "p \Po q" (at level 50).
Reserved Notation "p ^`N ( n )" (at level 8, format "p ^`N ( n )").
Reserved Notation "n .-unity_root" (at level 2, format "n .-unity_root").
Reserved Notation "n .-primitive_root"
  (at level 2, format "n .-primitive_root").

Local Notation simp := Monoid.simpm.

Section Polynomial.

Variable R : semiRingType.

(* Defines a polynomial as a sequence with <> 0 last element *)
Record polynomial := Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.

HB.instance Definition _ := [isSub for polyseq].
HB.instance Definition _ := [Choice of polynomial by <:].

Lemma poly_inj : injective polyseq. Proof. exact: val_inj. Qed.

Definition coefp i (p : polynomial) := p`_i.

End Polynomial.

(* We need to break off the section here to let the Bind Scope directives     *)
(* take effect.                                                               *)
Bind Scope ring_scope with polynomial.
Arguments polynomial R%type.
Arguments polyseq {R} p%R.
Arguments poly_inj {R} [p1%R p2%R] : rename.
Arguments coefp {R} i%N / p%R.
Notation "{ 'poly' T }" := (polynomial T) : type_scope.

Section SemiPolynomialTheory.

Variable R : semiRingType.
Implicit Types (a b c x y z : R) (p q r d : {poly R}).

Definition lead_coef p := p`_(size p).-1.
Lemma lead_coefE p : lead_coef p = p`_(size p).-1. Proof. by []. Qed.

Definition poly_nil := @Polynomial R [::] (oner_neq0 R).
Definition polyC c : {poly R} := insubd poly_nil [:: c].

Local Notation "c %:P" := (polyC c).

(* Remember the boolean (c != 0) is coerced to 1 if true and 0 if false *)
Lemma polyseqC c : c%:P = nseq (c != 0) c :> seq R.
Proof. by rewrite val_insubd /=; case: (c == 0). Qed.

Lemma size_polyC c : size c%:P = (c != 0).
Proof. by rewrite polyseqC size_nseq. Qed.

Lemma coefC c i : c%:P`_i = if i == 0 then c else 0.
Proof. by rewrite polyseqC; case: i => [|[]]; case: eqP. Qed.

Lemma polyCK : cancel polyC (coefp 0).
Proof. by move=> c; rewrite [coefp 0 _]coefC. Qed.

Lemma polyC_inj : injective polyC.
Proof. by move=> c1 c2 eqc12; have:= coefC c2 0; rewrite -eqc12 coefC. Qed.

Lemma lead_coefC c : lead_coef c%:P = c.
Proof. by rewrite /lead_coef polyseqC; case: eqP. Qed.

(* Extensional interpretation (poly <=> nat -> R) *)
Lemma polyP p q : nth 0 p =1 nth 0 q <-> p = q.
Proof.
split=> [eq_pq | -> //]; apply: poly_inj.
without loss lt_pq: p q eq_pq / size p < size q.
  move=> IH; case: (ltngtP (size p) (size q)); try by move/IH->.
  by move/(@eq_from_nth _ 0); apply.
case: q => q nz_q /= in lt_pq eq_pq *; case/eqP: nz_q.
by rewrite (last_nth 0) -(subnKC lt_pq) /= -eq_pq nth_default ?leq_addr.
Qed.

Lemma size1_polyC p : size p <= 1 -> p = (p`_0)%:P.
Proof.
move=> le_p_1; apply/polyP=> i; rewrite coefC.
by case: i => // i; rewrite nth_default // (leq_trans le_p_1).
Qed.

(* Builds a polynomial by extension. *)
Definition cons_poly c p : {poly R} :=
  if p is Polynomial ((_ :: _) as s) ns then
    @Polynomial R (c :: s) ns
  else c%:P.

Lemma polyseq_cons c p :
  cons_poly c p = (if ~~ nilp p then c :: p else c%:P) :> seq R.
Proof. by case: p => [[]]. Qed.

Lemma size_cons_poly c p :
  size (cons_poly c p) = (if nilp p && (c == 0) then 0 else (size p).+1).
Proof. by case: p => [[|c' s] _] //=; rewrite size_polyC; case: eqP. Qed.

Lemma coef_cons c p i : (cons_poly c p)`_i = if i == 0 then c else p`_i.-1.
Proof.
by case: p i => [[|c' s] _] [] //=; rewrite polyseqC; case: eqP => //= _ [].
Qed.

(* Build a polynomial directly from a list of coefficients. *)
Definition Poly := foldr cons_poly 0%:P.

Lemma PolyK c s : last c s != 0 -> Poly s = s :> seq R.
Proof.
case: s => {c}/= [_ |c s]; first by rewrite polyseqC eqxx.
elim: s c => /= [|a s IHs] c nz_c; rewrite polyseq_cons ?{}IHs //.
by rewrite !polyseqC !eqxx nz_c.
Qed.

Lemma polyseqK p : Poly p = p.
Proof. by apply: poly_inj; apply: PolyK (valP p). Qed.

Lemma size_Poly s : size (Poly s) <= size s.
Proof.
elim: s => [|c s IHs] /=; first by rewrite polyseqC eqxx.
by rewrite polyseq_cons; case: ifP => // _; rewrite size_polyC; case: (~~ _).
Qed.

Lemma coef_Poly s i : (Poly s)`_i = s`_i.
Proof.
by elim: s i => [|c s IHs] /= [|i]; rewrite !(coefC, eqxx, coef_cons) /=.
Qed.

(* Build a polynomial from an infinite sequence of coefficients and a bound. *)
Definition poly_expanded_def n E := Poly (mkseq E n).
Fact poly_key : unit. Proof. by []. Qed.
Definition poly := locked_with poly_key poly_expanded_def.
Canonical poly_unlockable := [unlockable fun poly].
Local Notation "\poly_ ( i < n ) E" := (poly n (fun i : nat => E)).

Lemma polyseq_poly n E :
  E n.-1 != 0 -> \poly_(i < n) E i = mkseq [eta E] n :> seq R.
Proof.
rewrite unlock; case: n => [|n] nzEn; first by rewrite polyseqC eqxx.
by rewrite (@PolyK 0) // -nth_last nth_mkseq size_mkseq.
Qed.

Lemma size_poly n E : size (\poly_(i < n) E i) <= n.
Proof. by rewrite unlock (leq_trans (size_Poly _)) ?size_mkseq. Qed.

Lemma size_poly_eq n E : E n.-1 != 0 -> size (\poly_(i < n) E i) = n.
Proof. by move/polyseq_poly->; apply: size_mkseq. Qed.

Lemma coef_poly n E k : (\poly_(i < n) E i)`_k = (if k < n then E k else 0).
Proof.
rewrite unlock coef_Poly.
have [lt_kn | le_nk] := ltnP k n; first by rewrite nth_mkseq.
by rewrite nth_default // size_mkseq.
Qed.

Lemma lead_coef_poly n E :
  n > 0 -> E n.-1 != 0 -> lead_coef (\poly_(i < n) E i) = E n.-1.
Proof.
by case: n => // n _ nzE; rewrite /lead_coef size_poly_eq // coef_poly leqnn.
Qed.

Lemma coefK p : \poly_(i < size p) p`_i = p.
Proof.
by apply/polyP=> i; rewrite coef_poly; case: ltnP => // /(nth_default 0)->.
Qed.

(* Nmodule structure for polynomial *)
Definition add_poly_def p q := \poly_(i < maxn (size p) (size q)) (p`_i + q`_i).
Fact add_poly_key : unit. Proof. by []. Qed.
Definition add_poly := locked_with add_poly_key add_poly_def.
Canonical add_poly_unlockable := [unlockable fun add_poly].

Fact coef_add_poly p q i : (add_poly p q)`_i = p`_i + q`_i.
Proof.
rewrite unlock coef_poly; case: leqP => //.
by rewrite geq_max => /andP[le_p_i le_q_i]; rewrite !nth_default ?add0r.
Qed.

Fact add_polyA : associative add_poly.
Proof. by move=> p q r; apply/polyP=> i; rewrite !coef_add_poly addrA. Qed.

Fact add_polyC : commutative add_poly.
Proof. by move=> p q; apply/polyP=> i; rewrite !coef_add_poly addrC. Qed.

Fact add_poly0 : left_id 0%:P add_poly.
Proof.
by move=> p; apply/polyP=> i; rewrite coef_add_poly coefC if_same add0r.
Qed.

HB.instance Definition _ := GRing.isNmodule.Build (polynomial R)
  add_polyA add_polyC add_poly0.

(* Properties of the zero polynomial *)
Lemma polyC0 : 0%:P = 0 :> {poly R}. Proof. by []. Qed.

Lemma polyseq0 : (0 : {poly R}) = [::] :> seq R.
Proof. by rewrite polyseqC eqxx. Qed.

Lemma size_poly0 : size (0 : {poly R}) = 0%N.
Proof. by rewrite polyseq0. Qed.

Lemma coef0 i : (0 : {poly R})`_i = 0.
Proof. by rewrite coefC if_same. Qed.

Lemma lead_coef0 : lead_coef 0 = 0 :> R. Proof. exact: lead_coefC. Qed.

Lemma size_poly_eq0 p : (size p == 0) = (p == 0).
Proof. by rewrite size_eq0 -polyseq0. Qed.

Lemma size_poly_leq0 p : (size p <= 0) = (p == 0).
Proof. by rewrite leqn0 size_poly_eq0. Qed.

Lemma size_poly_leq0P p : reflect (p = 0) (size p <= 0).
Proof. by apply: (iffP idP); rewrite size_poly_leq0; move/eqP. Qed.

Lemma size_poly_gt0 p : (0 < size p) = (p != 0).
Proof. by rewrite lt0n size_poly_eq0. Qed.

Lemma gt_size_poly_neq0 p n : (size p > n)%N -> p != 0.
Proof. by move=> /(leq_ltn_trans _) h; rewrite -size_poly_eq0 lt0n_neq0 ?h. Qed.

Lemma nil_poly p : nilp p = (p == 0).
Proof. exact: size_poly_eq0. Qed.

Lemma poly0Vpos p : {p = 0} + {size p > 0}.
Proof. by rewrite lt0n size_poly_eq0; case: eqVneq; [left | right]. Qed.

Lemma polySpred p : p != 0 -> size p = (size p).-1.+1.
Proof. by rewrite -size_poly_eq0 -lt0n => /prednK. Qed.

Lemma lead_coef_eq0 p : (lead_coef p == 0) = (p == 0).
Proof.
rewrite -nil_poly /lead_coef nth_last.
by case: p => [[|x s] /= /negbTE // _]; rewrite eqxx.
Qed.

Lemma polyC_eq0 (c : R) : (c%:P == 0) = (c == 0).
Proof. by rewrite -nil_poly polyseqC; case: (c == 0). Qed.

Lemma size_poly1P p : reflect (exists2 c, c != 0 & p = c%:P) (size p == 1).
Proof.
apply: (iffP eqP) => [pC | [c nz_c ->]]; last by rewrite size_polyC nz_c.
have def_p: p = (p`_0)%:P by rewrite -size1_polyC ?pC.
by exists p`_0; rewrite // -polyC_eq0 -def_p -size_poly_eq0 pC.
Qed.

Lemma size_polyC_leq1 (c : R) : (size c%:P <= 1)%N.
Proof. by rewrite size_polyC; case: (c == 0). Qed.

Lemma leq_sizeP p i : reflect (forall j, i <= j -> p`_j = 0) (size p <= i).
Proof.
apply: (iffP idP) => [hp j hij| hp].
  by apply: nth_default; apply: leq_trans hij.
case: (eqVneq p) (lead_coef_eq0 p) => [->|p0]; first by rewrite size_poly0.
rewrite leqNgt; apply/contraFN => hs.
by apply/eqP/hp; rewrite -ltnS (ltn_predK hs).
Qed.

(* Size, leading coef, morphism properties of coef *)

Lemma coefD p q i : (p + q)`_i = p`_i + q`_i.
Proof. exact: coef_add_poly. Qed.

Lemma polyCD : {morph polyC : a b / a + b}.
Proof. by move=> a b; apply/polyP=> [[|i]]; rewrite coefD !coefC ?addr0. Qed.

Lemma size_add p q : size (p + q) <= maxn (size p) (size q).
Proof. by rewrite -[+%R]/add_poly unlock; apply: size_poly. Qed.

Lemma size_addl p q : size p > size q -> size (p + q) = size p.
Proof.
move=> ltqp; rewrite -[+%R]/add_poly unlock size_poly_eq (maxn_idPl (ltnW _))//.
by rewrite addrC nth_default ?simp ?nth_last //; case: p ltqp => [[]].
Qed.

Lemma size_sum I (r : seq I) (P : pred I) (F : I -> {poly R}) :
  size (\sum_(i <- r | P i) F i) <= \max_(i <- r | P i) size (F i).
Proof.
elim/big_rec2: _ => [|i p q _ IHp]; first by rewrite size_poly0.
by rewrite -(maxn_idPr IHp) maxnA leq_max size_add.
Qed.

Lemma lead_coefDl p q : size p > size q -> lead_coef (p + q) = lead_coef p.
Proof.
move=> ltqp; rewrite /lead_coef coefD size_addl //.
by rewrite addrC nth_default ?simp // -ltnS (ltn_predK ltqp).
Qed.

Lemma lead_coefDr p q : size q > size p -> lead_coef (p + q) = lead_coef q.
Proof. by move/lead_coefDl<-; rewrite addrC. Qed.

(* Polynomial semiring structure. *)

Definition mul_poly_def p q :=
  \poly_(i < (size p + size q).-1) (\sum_(j < i.+1) p`_j * q`_(i - j)).
Fact mul_poly_key : unit. Proof. by []. Qed.
Definition mul_poly := locked_with mul_poly_key mul_poly_def.
Canonical mul_poly_unlockable := [unlockable fun mul_poly].

Fact coef_mul_poly p q i :
  (mul_poly p q)`_i = \sum_(j < i.+1) p`_j * q`_(i - j)%N.
Proof.
rewrite unlock coef_poly -subn1 ltn_subRL add1n; case: leqP => // le_pq_i1.
rewrite big1 // => j _; have [lq_q_ij | gt_q_ij] := leqP (size q) (i - j).
  by rewrite [q`__]nth_default ?mulr0.
rewrite nth_default ?mul0r // -(leq_add2r (size q)) (leq_trans le_pq_i1) //.
by rewrite -leq_subLR -subnSK.
Qed.

Fact coef_mul_poly_rev p q i :
  (mul_poly p q)`_i = \sum_(j < i.+1) p`_(i - j)%N * q`_j.
Proof.
rewrite coef_mul_poly (reindex_inj rev_ord_inj) /=.
by apply: eq_bigr => j _; rewrite (sub_ordK j).
Qed.

Fact mul_polyA : associative mul_poly.
Proof.
move=> p q r; apply/polyP=> i; rewrite coef_mul_poly coef_mul_poly_rev.
pose coef3 j k := p`_j * (q`_(i - j - k)%N * r`_k).
transitivity (\sum_(j < i.+1) \sum_(k < i.+1 | k <= i - j) coef3 j k).
  apply: eq_bigr => /= j _; rewrite coef_mul_poly_rev big_distrr /=.
  by rewrite (big_ord_narrow_leq (leq_subr _ _)).
rewrite (exchange_big_dep predT) //=; apply: eq_bigr => k _.
transitivity (\sum_(j < i.+1 | j <= i - k) coef3 j k).
  apply: eq_bigl => j; rewrite -ltnS -(ltnS j) -!subSn ?leq_ord //.
  by rewrite -subn_gt0 -(subn_gt0 j) -!subnDA addnC.
rewrite (big_ord_narrow_leq (leq_subr _ _)) coef_mul_poly big_distrl /=.
by apply: eq_bigr => j _; rewrite /coef3 -!subnDA addnC mulrA.
Qed.

Fact mul_1poly : left_id 1%:P mul_poly.
Proof.
move=> p; apply/polyP => i; rewrite coef_mul_poly big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp.
Qed.

Fact mul_poly1 : right_id 1%:P mul_poly.
Proof.
move=> p; apply/polyP => i; rewrite coef_mul_poly_rev big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp.
Qed.

Fact mul_polyDl : left_distributive mul_poly +%R.
Proof.
move=> p q r; apply/polyP=> i; rewrite coefD !coef_mul_poly -big_split.
by apply: eq_bigr => j _; rewrite coefD mulrDl.
Qed.

Fact mul_polyDr : right_distributive mul_poly +%R.
Proof.
move=> p q r; apply/polyP=> i; rewrite coefD !coef_mul_poly -big_split.
by apply: eq_bigr => j _; rewrite coefD mulrDr.
Qed.

Fact mul_0poly : left_zero 0%:P mul_poly.
Proof.
move=> p; apply/polyP => i; rewrite coef_mul_poly big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp // coefC; case: ifP.
Qed.

Fact mul_poly0 : right_zero 0%:P mul_poly.
Proof.
move=> p; apply/polyP => i; rewrite coef_mul_poly_rev big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp // coefC; case: ifP.
Qed.

Fact poly1_neq0 : 1%:P != 0 :> {poly R}.
Proof. by rewrite polyC_eq0 oner_neq0. Qed.

HB.instance Definition _ := GRing.Nmodule_isSemiRing.Build (polynomial R)
  mul_polyA mul_1poly mul_poly1 mul_polyDl mul_polyDr mul_0poly mul_poly0
  poly1_neq0.

Lemma polyC1 : 1%:P = 1 :> {poly R}. Proof. by []. Qed.

Lemma polyseq1 : (1 : {poly R}) = [:: 1] :> seq R.
Proof. by rewrite polyseqC oner_neq0. Qed.

Lemma size_poly1 : size (1 : {poly R}) = 1.
Proof. by rewrite polyseq1. Qed.

Lemma coef1 i : (1 : {poly R})`_i = (i == 0)%:R.
Proof. by case: i => [|i]; rewrite polyseq1 /= ?nth_nil. Qed.

Lemma lead_coef1 : lead_coef 1 = 1 :> R. Proof. exact: lead_coefC. Qed.

Lemma coefM p q i : (p * q)`_i = \sum_(j < i.+1) p`_j * q`_(i - j)%N.
Proof. exact: coef_mul_poly. Qed.

Lemma coefMr p q i : (p * q)`_i = \sum_(j < i.+1) p`_(i - j)%N * q`_j.
Proof. exact: coef_mul_poly_rev. Qed.

Lemma coef0M p q : (p * q)`_0 = p`_0 * q`_0.
Proof. by rewrite coefM big_ord1. Qed.

Lemma coef0_prod I rI (F : I -> {poly R}) P :
  (\prod_(i <- rI| P i) F i)`_0 = \prod_(i <- rI | P i) (F i)`_0.
Proof. by apply: (big_morph _ coef0M); rewrite coef1 eqxx. Qed.

Lemma size_mul_leq p q : size (p * q) <= (size p + size q).-1.
Proof. by rewrite -[*%R]/mul_poly unlock size_poly. Qed.

Lemma mul_lead_coef p q :
  lead_coef p * lead_coef q = (p * q)`_(size p + size q).-2.
Proof.
pose dp := (size p).-1; pose dq := (size q).-1.
have [-> | nz_p] := eqVneq p 0; first by rewrite lead_coef0 !mul0r coef0.
have [-> | nz_q] := eqVneq q 0; first by rewrite lead_coef0 !mulr0 coef0.
have ->: (size p + size q).-2 = (dp + dq)%N.
  by do 2!rewrite polySpred // addSn addnC.
have lt_p_pq: dp < (dp + dq).+1 by rewrite ltnS leq_addr.
rewrite coefM (bigD1 (Ordinal lt_p_pq)) ?big1 ?simp ?addKn //= => i.
rewrite -val_eqE neq_ltn /= => /orP[lt_i_p | gt_i_p]; last first.
  by rewrite nth_default ?mul0r //; rewrite -polySpred in gt_i_p.
rewrite [q`__]nth_default ?mulr0 //= -subSS -{1}addnS -polySpred //.
by rewrite addnC -addnBA ?leq_addr.
Qed.

Lemma size_proper_mul p q :
  lead_coef p * lead_coef q != 0 -> size (p * q) = (size p + size q).-1.
Proof.
apply: contraNeq; rewrite mul_lead_coef eqn_leq size_mul_leq -ltnNge => lt_pq.
by rewrite nth_default // -subn1 -(leq_add2l 1) -leq_subLR leq_sub2r.
Qed.

Lemma lead_coef_proper_mul p q :
  let c := lead_coef p * lead_coef q in c != 0 -> lead_coef (p * q) = c.
Proof. by move=> /= nz_c; rewrite mul_lead_coef -size_proper_mul. Qed.

Lemma size_prod_leq (I : finType) (P : pred I) (F : I -> {poly R}) :
  size (\prod_(i | P i) F i) <= (\sum_(i | P i) size (F i)).+1 - #|P|.
Proof.
rewrite -sum1_card.
elim/big_rec3: _ => [|i n m p _ IHp]; first by rewrite size_poly1.
have [-> | nz_p] := eqVneq p 0; first by rewrite mulr0 size_poly0.
rewrite (leq_trans (size_mul_leq _ _)) // subnS -!subn1 leq_sub2r //.
rewrite -addnS -addnBA ?leq_add2l // ltnW // -subn_gt0 (leq_trans _ IHp) //.
by rewrite polySpred.
Qed.

Lemma coefCM c p i : (c%:P * p)`_i = c * p`_i.
Proof.
rewrite coefM big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp.
Qed.

Lemma coefMC c p i : (p * c%:P)`_i = p`_i * c.
Proof.
rewrite coefMr big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp.
Qed.

Lemma polyCM : {morph polyC : a b / a * b}.
Proof. by move=> a b; apply/polyP=> [[|i]]; rewrite coefCM !coefC ?simp. Qed.

Lemma size_exp_leq p n : size (p ^+ n) <= ((size p).-1 * n).+1.
Proof.
elim: n => [|n IHn]; first by rewrite size_poly1.
have [-> | nzp] := poly0Vpos p; first by rewrite exprS mul0r size_poly0.
rewrite exprS (leq_trans (size_mul_leq _ _)) //.
by rewrite -{1}(prednK nzp) mulnS -addnS leq_add2l.
Qed.

End SemiPolynomialTheory.

Section PolynomialTheory.

Variable R : ringType.
Implicit Types (a b c x y z : R) (p q r d : {poly R}).

Local Notation "c %:P" := (polyC c).

Local Notation "\poly_ ( i < n ) E" := (poly n (fun i : nat => E)).

(* Zmodule structure for polynomial *)
Definition opp_poly_def p := \poly_(i < size p) - p`_i.
Fact opp_poly_key : unit. Proof. by []. Qed.
Definition opp_poly := locked_with opp_poly_key opp_poly_def.
Canonical opp_poly_unlockable := [unlockable fun opp_poly].

Fact coef_opp_poly p i : (opp_poly p)`_i = - p`_i.
Proof.
rewrite unlock coef_poly /=.
by case: leqP => // le_p_i; rewrite nth_default ?oppr0.
Qed.

Fact add_polyN : left_inverse 0%:P opp_poly (@add_poly _).
Proof.
move=> p; apply/polyP=> i.
by rewrite coef_add_poly coef_opp_poly coefC if_same addNr.
Qed.

HB.instance Definition _ := GRing.Nmodule_isZmodule.Build (polynomial R)
  add_polyN.

(* Size, leading coef, morphism properties of coef *)

Lemma coefN p i : (- p)`_i = - p`_i.
Proof. exact: coef_opp_poly. Qed.

Lemma coefB p q i : (p - q)`_i = p`_i - q`_i.
Proof. by rewrite coefD coefN. Qed.

HB.instance Definition _ i := GRing.isAdditive.Build {poly R} R (coefp i)
  (fun p => (coefB p)^~ i).

Lemma coefMn p n i : (p *+ n)`_i = p`_i *+ n.
Proof. exact: (raddfMn (coefp i)). Qed.

Lemma coefMNn p n i : (p *- n)`_i = p`_i *- n.
Proof. by rewrite coefN coefMn. Qed.

Lemma coef_sum I (r : seq I) (P : pred I) (F : I -> {poly R}) k :
  (\sum_(i <- r | P i) F i)`_k = \sum_(i <- r | P i) (F i)`_k.
Proof. exact: (raddf_sum (coefp k)). Qed.

Lemma polyCN : {morph (@polyC R) : c / - c}.
Proof. by move=> c; apply/polyP=> [[|i]]; rewrite coefN !coefC ?oppr0. Qed.

Lemma polyCB : {morph (@polyC R) : a b / a - b}.
Proof. by move=> a b; rewrite polyCD polyCN. Qed.

HB.instance Definition _ := GRing.isAdditive.Build R {poly R} (@polyC _) polyCB.

Lemma polyCMn n : {morph (@polyC R) : c / c *+ n}. Proof. exact: raddfMn. Qed.

Lemma size_opp p : size (- p) = size p.
Proof.
by apply/eqP; rewrite eqn_leq -{3}(opprK p) -[-%R]/opp_poly unlock !size_poly.
Qed.

Lemma lead_coefN p : lead_coef (- p) = - lead_coef p.
Proof. by rewrite /lead_coef size_opp coefN. Qed.

(* Polynomial ring structure. *)

Fact polyC_multiplicative : multiplicative (@polyC R).
Proof. by split; first apply: polyCM. Qed.
HB.instance Definition _ := GRing.isMultiplicative.Build R {poly R} (@polyC R)
  polyC_multiplicative.

Lemma polyC_exp n : {morph (@polyC R) : c / c ^+ n}. Proof. exact: rmorphXn. Qed.

Lemma polyC_natr n : n%:R%:P = n%:R :> {poly R}.
Proof. by rewrite rmorph_nat. Qed.

Lemma char_poly : [char {poly R}] =i [char R].
Proof.
move=> p; rewrite !inE; congr (_ && _).
apply/eqP/eqP=> [/(congr1 val) /=|]; last by rewrite -polyC_natr => ->.
by rewrite polyseq0 -polyC_natr polyseqC; case: eqP.
Qed.

Lemma size_Msign p n : size ((-1) ^+ n * p) = size p.
Proof.
by rewrite -signr_odd; case: (odd n); rewrite ?mul1r // mulN1r size_opp.
Qed.

Fact coefp0_multiplicative : multiplicative (coefp 0 : {poly R} -> R).
Proof.
split=> [p q|]; last by rewrite polyCK.
by rewrite [coefp 0 _]coefM big_ord_recl big_ord0 addr0.
Qed.

HB.instance Definition _ := GRing.isMultiplicative.Build {poly R} R (coefp 0)
  coefp0_multiplicative.

(* Algebra structure of polynomials. *)
Definition scale_poly_def a (p : {poly R}) := \poly_(i < size p) (a * p`_i).
Fact scale_poly_key : unit. Proof. by []. Qed.
Definition scale_poly := locked_with scale_poly_key scale_poly_def.
Canonical scale_poly_unlockable := [unlockable fun scale_poly].

Fact scale_polyE a p : scale_poly a p = a%:P * p.
Proof.
apply/polyP=> n; rewrite unlock coef_poly coefCM.
by case: leqP => // le_p_n; rewrite nth_default ?mulr0.
Qed.

Fact scale_polyA a b p : scale_poly a (scale_poly b p) = scale_poly (a * b) p.
Proof. by rewrite !scale_polyE mulrA polyCM. Qed.

Fact scale_1poly : left_id 1 scale_poly.
Proof. by move=> p; rewrite scale_polyE mul1r. Qed.

Fact scale_polyDr a : {morph scale_poly a : p q / p + q}.
Proof. by move=> p q; rewrite !scale_polyE mulrDr. Qed.

Fact scale_polyDl p : {morph scale_poly^~ p : a b / a + b}.
Proof. by move=> a b /=; rewrite !scale_polyE raddfD mulrDl. Qed.

Fact scale_polyAl a p q : scale_poly a (p * q) = scale_poly a p * q.
Proof. by rewrite !scale_polyE mulrA. Qed.

HB.instance Definition _ := GRing.Zmodule_isLmodule.Build R (polynomial R)
  scale_polyA scale_1poly scale_polyDr scale_polyDl.
HB.instance Definition _ := GRing.Lmodule_isLalgebra.Build R (polynomial R)
  scale_polyAl.

Lemma mul_polyC a p : a%:P * p = a *: p.
Proof. by rewrite -scale_polyE. Qed.

Lemma scale_polyC a b : a *: b%:P = (a * b)%:P.
Proof. by rewrite -mul_polyC polyCM. Qed.

Lemma alg_polyC a : a%:A = a%:P :> {poly R}.
Proof. by rewrite -mul_polyC mulr1. Qed.

Lemma coefZ a p i : (a *: p)`_i = a * p`_i.
Proof.
rewrite -[*:%R]/scale_poly unlock coef_poly.
by case: leqP => // le_p_n; rewrite nth_default ?mulr0.
Qed.

Lemma size_scale_leq a p : size (a *: p) <= size p.
Proof. by rewrite -[*:%R]/scale_poly unlock size_poly. Qed.

HB.instance Definition _ i := GRing.isScalable.Build R {poly R} R *%R (coefp i)
  (fun a => (coefZ a) ^~ i).
HB.instance Definition _ := GRing.Linear.on (coefp 0).

(* The indeterminate, at last! *)
Definition polyX_def := @Poly R [:: 0; 1].
Fact polyX_key : unit. Proof. by []. Qed.
Definition polyX : {poly R} := locked_with polyX_key polyX_def.
Canonical polyX_unlockable := [unlockable of polyX].
Local Notation "'X" := polyX.

Lemma polyseqX : 'X = [:: 0; 1] :> seq R.
Proof. by rewrite unlock !polyseq_cons nil_poly eqxx /= polyseq1. Qed.

Lemma size_polyX : size 'X = 2. Proof. by rewrite polyseqX. Qed.

Lemma polyX_eq0 : ('X == 0) = false.
Proof. by rewrite -size_poly_eq0 size_polyX. Qed.

Lemma coefX i : 'X`_i = (i == 1)%:R.
Proof. by case: i => [|[|i]]; rewrite polyseqX //= nth_nil. Qed.

Lemma lead_coefX : lead_coef 'X = 1.
Proof. by rewrite /lead_coef polyseqX. Qed.

Lemma commr_polyX p : GRing.comm p 'X.
Proof.
apply/polyP=> i; rewrite coefMr coefM.
by apply: eq_bigr => j _; rewrite coefX commr_nat.
Qed.

Lemma coefMX p i : (p * 'X)`_i = (if (i == 0)%N then 0 else p`_i.-1).
Proof.
rewrite coefMr big_ord_recl coefX ?simp.
case: i => [|i]; rewrite ?big_ord0 //= big_ord_recl polyseqX subn1 /=.
by rewrite big1 ?simp // => j _; rewrite nth_nil !simp.
Qed.

Lemma coefXM p i : ('X * p)`_i = (if (i == 0)%N then 0 else p`_i.-1).
Proof. by rewrite -commr_polyX coefMX. Qed.

Lemma cons_poly_def p a : cons_poly a p = p * 'X + a%:P.
Proof.
apply/polyP=> i; rewrite coef_cons coefD coefMX coefC.
by case: ifP; rewrite !simp.
Qed.

Lemma poly_ind (K : {poly R} -> Type) :
  K 0 -> (forall p c, K p -> K (p * 'X + c%:P)) -> (forall p, K p).
Proof.
move=> K0 Kcons p; rewrite -[p]polyseqK.
by elim: {p}(p : seq R) => //= p c IHp; rewrite cons_poly_def; apply: Kcons.
Qed.

Lemma polyseqXaddC a : 'X + a%:P = [:: a; 1] :> seq R.
Proof. by rewrite -['X]mul1r -cons_poly_def polyseq_cons polyseq1. Qed.

Lemma polyseqXsubC a : 'X - a%:P = [:: - a; 1] :> seq R.
Proof. by rewrite -polyCN polyseqXaddC. Qed.

Lemma size_XsubC a : size ('X - a%:P) = 2.
Proof. by rewrite polyseqXsubC. Qed.

Lemma size_XaddC b : size ('X + b%:P) = 2.
Proof. by rewrite -[b]opprK rmorphN size_XsubC. Qed.

Lemma lead_coefXaddC a : lead_coef ('X + a%:P) = 1.
Proof. by rewrite lead_coefE polyseqXaddC. Qed.

Lemma lead_coefXsubC a : lead_coef ('X - a%:P) = 1.
Proof. by rewrite lead_coefE polyseqXsubC. Qed.

Lemma polyXsubC_eq0 a : ('X - a%:P == 0) = false.
Proof. by rewrite -nil_poly polyseqXsubC. Qed.

Lemma size_MXaddC p c :
  size (p * 'X + c%:P) = (if (p == 0) && (c == 0) then 0 else (size p).+1).
Proof. by rewrite -cons_poly_def size_cons_poly nil_poly. Qed.

Lemma polyseqMX p : p != 0 -> p * 'X = 0 :: p :> seq R.
Proof.
by move=> nz_p; rewrite -[p * _]addr0 -cons_poly_def polyseq_cons nil_poly nz_p.
Qed.

Lemma size_mulX p : p != 0 -> size (p * 'X) = (size p).+1.
Proof. by move/polyseqMX->. Qed.

Lemma lead_coefMX p : lead_coef (p * 'X) = lead_coef p.
Proof.
have [-> | nzp] := eqVneq p 0; first by rewrite mul0r.
by rewrite /lead_coef !nth_last polyseqMX.
Qed.

Lemma size_XmulC a : a != 0 -> size ('X * a%:P) = 2.
Proof.
by move=> nz_a; rewrite -commr_polyX size_mulX ?polyC_eq0 ?size_polyC nz_a.
Qed.

Local Notation "''X^' n" := ('X ^+ n).

Lemma coefXn n i : 'X^n`_i = (i == n)%:R.
Proof.
by elim: n i => [|n IHn] [|i]; rewrite ?coef1 // exprS coefXM ?IHn.
Qed.

Lemma polyseqXn n : 'X^n = rcons (nseq n 0) 1 :> seq R.
Proof.
elim: n => [|n IHn]; rewrite ?polyseq1 // exprSr.
by rewrite polyseqMX -?size_poly_eq0 IHn ?size_rcons.
Qed.

Lemma size_polyXn n : size 'X^n = n.+1.
Proof. by rewrite polyseqXn size_rcons size_nseq. Qed.

Lemma commr_polyXn p n : GRing.comm p 'X^n.
Proof. exact/commrX/commr_polyX. Qed.

Lemma lead_coefXn n : lead_coef 'X^n = 1.
Proof. by rewrite /lead_coef nth_last polyseqXn last_rcons. Qed.

Lemma lead_coefXnaddC n c : 0 < n -> lead_coef ('X^n + c%:P) = 1.
Proof.
move=> n_gt0; rewrite lead_coefDl ?lead_coefXn//.
by rewrite size_polyC size_polyXn ltnS (leq_trans (leq_b1 _)).
Qed.

Lemma lead_coefXnsubC n c : 0 < n -> lead_coef ('X^n - c%:P) = 1.
Proof. by move=> n_gt0; rewrite -polyCN lead_coefXnaddC. Qed.

Lemma size_XnaddC n c : 0 < n -> size ('X^n + c%:P) = n.+1.
Proof. by move=> *; rewrite size_addl ?size_polyXn// size_polyC; case: eqP. Qed.

Lemma size_XnsubC n c : 0 < n -> size ('X^n - c%:P) = n.+1.
Proof. by move=> *; rewrite -polyCN size_XnaddC. Qed.

Lemma polyseqMXn n p : p != 0 -> p * 'X^n = ncons n 0 p :> seq R.
Proof.
case: n => [|n] nz_p; first by rewrite mulr1.
elim: n => [|n IHn]; first exact: polyseqMX.
by rewrite exprSr mulrA polyseqMX -?nil_poly IHn.
Qed.

Lemma coefMXn n p i : (p * 'X^n)`_i = if i < n then 0 else p`_(i - n).
Proof.
have [-> | /polyseqMXn->] := eqVneq p 0; last exact: nth_ncons.
by rewrite mul0r !coef0 if_same.
Qed.

Lemma size_mulXn n p : p != 0 -> size (p * 'X^n) = (n + size p)%N.
Proof.
elim: n p => [p p_neq0| n IH p p_neq0]; first by rewrite mulr1.
by rewrite exprS mulrA IH -?size_poly_eq0 size_mulX // addnS.
Qed.

Lemma coefXnM n p i : ('X^n * p)`_i = if i < n then 0 else p`_(i - n).
Proof. by rewrite -commr_polyXn coefMXn. Qed.

Lemma coef_sumMXn I (r : seq I) (P : pred I) (p : I -> R) (n : I -> nat) k :
  (\sum_(i <- r | P i) p i *: 'X^(n i))`_k =
    \sum_(i <- r | P i && (n i == k)) p i.
Proof.
rewrite coef_sum big_mkcondr; apply: eq_bigr => i Pi.
by rewrite coefZ coefXn mulr_natr mulrb eq_sym.
Qed.

(* Expansion of a polynomial as an indexed sum *)
Lemma poly_def n E : \poly_(i < n) E i = \sum_(i < n) E i *: 'X^i.
Proof. by apply/polyP => i; rewrite coef_sumMXn coef_poly big_ord1_eq. Qed.

(* Monic predicate *)
Definition monic_pred := fun p => lead_coef p == 1.
Arguments monic_pred _ /.
Definition monic := [qualify p | monic_pred p].

Lemma monicE p : (p \is monic) = (lead_coef p == 1). Proof. by []. Qed.
Lemma monicP p : reflect (lead_coef p = 1) (p \is monic).
Proof. exact: eqP. Qed.

Lemma monic1 : 1 \is monic. Proof. exact/eqP/lead_coef1. Qed.
Lemma monicX : 'X \is monic. Proof. exact/eqP/lead_coefX. Qed.
Lemma monicXn n : 'X^n \is monic. Proof. exact/eqP/lead_coefXn. Qed.

Lemma monic_neq0 p : p \is monic -> p != 0.
Proof. by rewrite -lead_coef_eq0 => /eqP->; apply: oner_neq0. Qed.

Lemma lead_coef_monicM p q : p \is monic -> lead_coef (p * q) = lead_coef q.
Proof.
have [-> | nz_q] := eqVneq q 0; first by rewrite mulr0.
by move/monicP=> mon_p; rewrite lead_coef_proper_mul mon_p mul1r ?lead_coef_eq0.
Qed.

Lemma lead_coef_Mmonic p q : q \is monic -> lead_coef (p * q) = lead_coef p.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite mul0r.
by move/monicP=> mon_q; rewrite lead_coef_proper_mul mon_q mulr1 ?lead_coef_eq0.
Qed.

Lemma size_monicM p q :
  p \is monic -> q != 0 -> size (p * q) = (size p + size q).-1.
Proof.
move/monicP=> mon_p nz_q.
by rewrite size_proper_mul // mon_p mul1r lead_coef_eq0.
Qed.

Lemma size_Mmonic p q :
  p != 0 -> q \is monic -> size (p * q) = (size p + size q).-1.
Proof.
move=> nz_p /monicP mon_q.
by rewrite size_proper_mul // mon_q mulr1 lead_coef_eq0.
Qed.

Lemma monicMl p q : p \is monic -> (p * q \is monic) = (q \is monic).
Proof. by move=> mon_p; rewrite !monicE lead_coef_monicM. Qed.

Lemma monicMr p q : q \is monic -> (p * q \is monic) = (p \is monic).
Proof. by move=> mon_q; rewrite !monicE lead_coef_Mmonic. Qed.

Fact monic_mulr_closed : mulr_closed monic.
Proof. by split=> [|p q mon_p]; rewrite (monic1, monicMl). Qed.
HB.instance Definition _ := GRing.isMulClosed.Build {poly R} monic_pred
  monic_mulr_closed.

Lemma monic_exp p n : p \is monic -> p ^+ n \is monic.
Proof. exact: rpredX. Qed.

Lemma monic_prod I rI (P : pred I) (F : I -> {poly R}):
  (forall i, P i -> F i \is monic) -> \prod_(i <- rI | P i) F i \is monic.
Proof. exact: rpred_prod. Qed.

Lemma monicXaddC c : 'X + c%:P \is monic.
Proof. exact/eqP/lead_coefXaddC. Qed.

Lemma monicXsubC c : 'X - c%:P \is monic.
Proof. exact/eqP/lead_coefXsubC. Qed.

Lemma monic_prod_XsubC I rI (P : pred I) (F : I -> R) :
  \prod_(i <- rI | P i) ('X - (F i)%:P) \is monic.
Proof. by apply: monic_prod => i _; apply: monicXsubC. Qed.

Lemma lead_coef_prod_XsubC I rI (P : pred I) (F : I -> R) :
  lead_coef (\prod_(i <- rI | P i) ('X - (F i)%:P)) = 1.
Proof. exact/eqP/monic_prod_XsubC. Qed.

Lemma size_prod_XsubC I rI (F : I -> R) :
  size (\prod_(i <- rI) ('X - (F i)%:P)) = (size rI).+1.
Proof.
elim: rI => [|i r /= <-]; rewrite ?big_nil ?size_poly1 // big_cons.
rewrite size_monicM ?monicXsubC ?monic_neq0 ?monic_prod_XsubC //.
by rewrite size_XsubC.
Qed.

Lemma size_exp_XsubC n a : size (('X - a%:P) ^+ n) = n.+1.
Proof.
rewrite -[n]card_ord -prodr_const -big_filter size_prod_XsubC.
by have [e _ _ [_ ->]] := big_enumP.
Qed.

Lemma monicXnaddC n c : 0 < n -> 'X^n + c%:P \is monic.
Proof. by move=> n_gt0; rewrite monicE lead_coefXnaddC. Qed.

Lemma monicXnsubC n c : 0 < n -> 'X^n - c%:P \is monic.
Proof. by move=> n_gt0; rewrite monicE lead_coefXnsubC. Qed.

(* Some facts about regular elements. *)

Lemma lreg_lead p : GRing.lreg (lead_coef p) -> GRing.lreg p.
Proof.
move/mulrI_eq0=> reg_p; apply: mulrI0_lreg => q /eqP; apply: contraTeq => nz_q.
by rewrite -lead_coef_eq0 lead_coef_proper_mul reg_p lead_coef_eq0.
Qed.

Lemma rreg_lead p : GRing.rreg (lead_coef p) -> GRing.rreg p.
Proof.
move/mulIr_eq0=> reg_p; apply: mulIr0_rreg => q /eqP; apply: contraTeq => nz_q.
by rewrite -lead_coef_eq0 lead_coef_proper_mul reg_p lead_coef_eq0.
Qed.

Lemma lreg_lead0 p : GRing.lreg (lead_coef p) -> p != 0.
Proof. by move/lreg_neq0; rewrite lead_coef_eq0. Qed.

Lemma rreg_lead0 p : GRing.rreg (lead_coef p) -> p != 0.
Proof. by move/rreg_neq0; rewrite lead_coef_eq0. Qed.

Lemma lreg_size c p : GRing.lreg c -> size (c *: p) = size p.
Proof.
move=> reg_c; have [-> | nz_p] := eqVneq p 0; first by rewrite scaler0.
rewrite -mul_polyC size_proper_mul; first by rewrite size_polyC lreg_neq0.
by rewrite lead_coefC mulrI_eq0 ?lead_coef_eq0.
Qed.

Lemma lreg_polyZ_eq0 c p : GRing.lreg c -> (c *: p == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 => /lreg_size->. Qed.

Lemma lead_coef_lreg c p :
  GRing.lreg c -> lead_coef (c *: p) = c * lead_coef p.
Proof. by move=> reg_c; rewrite !lead_coefE coefZ lreg_size. Qed.

Lemma rreg_size c p : GRing.rreg c -> size (p * c%:P) =  size p.
Proof.
move=> reg_c; have [-> | nz_p] := eqVneq p 0; first by rewrite mul0r.
rewrite size_proper_mul; first by rewrite size_polyC rreg_neq0 ?addn1.
by rewrite lead_coefC mulIr_eq0 ?lead_coef_eq0.
Qed.

Lemma rreg_polyMC_eq0 c p : GRing.rreg c -> (p * c%:P == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 => /rreg_size->. Qed.

Lemma rreg_div0 q r d :
    GRing.rreg (lead_coef d) -> size r < size d ->
  (q * d + r == 0) = (q == 0) && (r == 0).
Proof.
move=> reg_d lt_r_d; rewrite addrC addr_eq0.
have [-> | nz_q] := eqVneq q 0; first by rewrite mul0r oppr0.
apply: contraTF lt_r_d => /eqP->; rewrite -leqNgt size_opp.
rewrite size_proper_mul ?mulIr_eq0 ?lead_coef_eq0 //.
by rewrite (polySpred nz_q) leq_addl.
Qed.

Lemma monic_comreg p :
  p \is monic -> GRing.comm p (lead_coef p)%:P /\ GRing.rreg (lead_coef p).
Proof. by move/monicP->; split; [apply: commr1 | apply: rreg1]. Qed.

Lemma monic_lreg p : p \is monic -> GRing.lreg p.
Proof. by move=> /eqP lp1; apply/lreg_lead; rewrite lp1; apply/lreg1. Qed.

Lemma monic_rreg p : p \is monic -> GRing.rreg p.
Proof. by move=> /eqP lp1; apply/rreg_lead; rewrite lp1; apply/rreg1. Qed.

(* Horner evaluation of polynomials *)
Implicit Types s rs : seq R.
Fixpoint horner_rec s x := if s is a :: s' then horner_rec s' x * x + a else 0.
Definition horner p := horner_rec p.

Local Notation "p .[ x ]" := (horner p x) : ring_scope.

Lemma horner0 x : (0 : {poly R}).[x] = 0.
Proof. by rewrite /horner polyseq0. Qed.

Lemma hornerC c x : (c%:P).[x] = c.
Proof. by rewrite /horner polyseqC; case: eqP; rewrite /= ?simp. Qed.

Lemma hornerX x : 'X.[x] = x.
Proof. by rewrite /horner polyseqX /= !simp. Qed.

Lemma horner_cons p c x : (cons_poly c p).[x] = p.[x] * x + c.
Proof.
rewrite /horner polyseq_cons; case: nilP => //= ->.
by rewrite !simp -/(_.[x]) hornerC.
Qed.

Lemma horner_coef0 p : p.[0] = p`_0.
Proof. by rewrite /horner; case: (p : seq R) => //= c p'; rewrite !simp. Qed.

Lemma hornerMXaddC p c x : (p * 'X + c%:P).[x] = p.[x] * x + c.
Proof. by rewrite -cons_poly_def horner_cons. Qed.

Lemma hornerMX p x : (p * 'X).[x] = p.[x] * x.
Proof. by rewrite -[p * 'X]addr0 hornerMXaddC addr0. Qed.

Lemma horner_Poly s x : (Poly s).[x] = horner_rec s x.
Proof. by elim: s => [|a s /= <-]; rewrite (horner0, horner_cons). Qed.

Lemma horner_coef p x : p.[x] = \sum_(i < size p) p`_i * x ^+ i.
Proof.
rewrite /horner.
elim: {p}(p : seq R) => /= [|a s ->]; first by rewrite big_ord0.
rewrite big_ord_recl simp addrC big_distrl /=.
by congr (_ + _); apply: eq_bigr => i _; rewrite -mulrA exprSr.
Qed.

Lemma horner_coef_wide n p x :
  size p <= n -> p.[x] = \sum_(i < n) p`_i * x ^+ i.
Proof.
move=> le_p_n.
rewrite horner_coef (big_ord_widen n (fun i => p`_i * x ^+ i)) // big_mkcond.
by apply: eq_bigr => i _; case: ltnP => // le_p_i; rewrite nth_default ?simp.
Qed.

Lemma horner_poly n E x : (\poly_(i < n) E i).[x] = \sum_(i < n) E i * x ^+ i.
Proof.
rewrite (@horner_coef_wide n) ?size_poly //.
by apply: eq_bigr => i _; rewrite coef_poly ltn_ord.
Qed.

Lemma hornerN p x : (- p).[x] = - p.[x].
Proof.
rewrite -[-%R]/opp_poly unlock horner_poly horner_coef -sumrN /=.
by apply: eq_bigr => i _; rewrite mulNr.
Qed.

Lemma hornerD p q x : (p + q).[x] = p.[x] + q.[x].
Proof.
rewrite -[+%R]/(@add_poly R) unlock horner_poly; set m := maxn _ _.
rewrite !(@horner_coef_wide m) ?leq_max ?leqnn ?orbT // -big_split /=.
by apply: eq_bigr => i _; rewrite -mulrDl.
Qed.

Lemma hornerXsubC a x : ('X - a%:P).[x] = x - a.
Proof. by rewrite hornerD hornerN hornerC hornerX. Qed.

Lemma horner_sum I (r : seq I) (P : pred I) F x :
  (\sum_(i <- r | P i) F i).[x] = \sum_(i <- r | P i) (F i).[x].
Proof. by elim/big_rec2: _ => [|i _ p _ <-]; rewrite (horner0, hornerD). Qed.

Lemma hornerCM a p x : (a%:P * p).[x] = a * p.[x].
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(mulr0, horner0).
by rewrite mulrDr mulrA -polyCM !hornerMXaddC IHp mulrDr mulrA.
Qed.

Lemma hornerZ c p x : (c *: p).[x] = c * p.[x].
Proof. by rewrite -mul_polyC hornerCM. Qed.

Lemma hornerMn n p x : (p *+ n).[x] = p.[x] *+ n.
Proof. by elim: n => [| n IHn]; rewrite ?horner0 // !mulrS hornerD IHn. Qed.

Definition comm_coef p x := forall i, p`_i * x = x * p`_i.

Definition comm_poly p x := x * p.[x] = p.[x] * x.

Lemma comm_coef_poly p x : comm_coef p x -> comm_poly p x.
Proof.
move=> cpx; rewrite /comm_poly !horner_coef big_distrl big_distrr /=.
by apply: eq_bigr => i _; rewrite /= mulrA -cpx -!mulrA commrX.
Qed.

Lemma comm_poly0 x : comm_poly 0 x.
Proof. by rewrite /comm_poly !horner0 !simp. Qed.

Lemma comm_poly1 x : comm_poly 1 x.
Proof. by rewrite /comm_poly !hornerC !simp. Qed.

Lemma comm_polyX x : comm_poly 'X x.
Proof. by rewrite /comm_poly !hornerX. Qed.

Lemma comm_polyD p q x: comm_poly p x -> comm_poly q x -> comm_poly (p + q) x.
Proof. by rewrite /comm_poly hornerD mulrDr mulrDl => -> ->. Qed.

Lemma commr_horner a b p : GRing.comm a b -> comm_coef p a -> GRing.comm a p.[b].
Proof.
move=> cab cpa; rewrite horner_coef; apply: commr_sum => i _.
by apply: commrM => //; apply: commrX.
Qed.

Lemma hornerM_comm p q x : comm_poly q x -> (p * q).[x] = p.[x] * q.[x].
Proof.
move=> comm_qx.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(simp, horner0).
rewrite mulrDl hornerD hornerCM -mulrA -commr_polyX mulrA hornerMX.
by rewrite {}IHp -mulrA -comm_qx mulrA -mulrDl hornerMXaddC.
Qed.

Lemma comm_polyM p q x: comm_poly p x -> comm_poly q x -> comm_poly (p * q) x.
Proof.
by move=> px qx; rewrite /comm_poly hornerM_comm// mulrA px -mulrA qx mulrA.
Qed.

Lemma horner_exp_comm p x n : comm_poly p x -> (p ^+ n).[x] = p.[x] ^+ n.
Proof.
move=> comm_px; elim: n => [|n IHn]; first by rewrite hornerC.
by rewrite !exprSr -IHn hornerM_comm.
Qed.

Lemma comm_poly_exp p n x: comm_poly p x -> comm_poly (p ^+ n) x.
Proof. by move=> px; rewrite /comm_poly !horner_exp_comm// commrX. Qed.

Lemma hornerXn x n : ('X^n).[x] = x ^+ n.
Proof. by rewrite horner_exp_comm /comm_poly hornerX. Qed.

Definition hornerE_comm :=
  (hornerD, hornerN, hornerX, hornerC, horner_cons,
   simp, hornerCM, hornerZ,
   (fun p x => hornerM_comm p (comm_polyX x))).

Definition root p : pred R := fun x => p.[x] == 0.

Lemma mem_root p x : x \in root p = (p.[x] == 0).
Proof. by []. Qed.

Lemma rootE p x : (root p x = (p.[x] == 0)) * ((x \in root p) = (p.[x] == 0)).
Proof. by []. Qed.

Lemma rootP p x : reflect (p.[x] = 0) (root p x).
Proof. exact: eqP. Qed.

Lemma rootPt p x : reflect (p.[x] == 0) (root p x).
Proof. exact: idP. Qed.

Lemma rootPf p x : reflect ((p.[x] == 0) = false) (~~ root p x).
Proof. exact: negPf. Qed.

Lemma rootC a x : root a%:P x = (a == 0).
Proof. by rewrite rootE hornerC. Qed.

Lemma root0 x : root 0 x.
Proof. by rewrite rootC. Qed.

Lemma root1 x : ~~ root 1 x.
Proof. by rewrite rootC oner_eq0. Qed.

Lemma rootX x : root 'X x = (x == 0).
Proof. by rewrite rootE hornerX. Qed.

Lemma rootN p x : root (- p) x = root p x.
Proof. by rewrite rootE hornerN oppr_eq0. Qed.

Lemma root_size_gt1 a p : p != 0 -> root p a -> 1 < size p.
Proof.
rewrite ltnNge => nz_p; apply: contraL => /size1_polyC Dp.
by rewrite Dp rootC -polyC_eq0 -Dp.
Qed.

Lemma root_XsubC a x : root ('X - a%:P) x = (x == a).
Proof. by rewrite rootE hornerXsubC subr_eq0. Qed.

Lemma root_XaddC a x : root ('X + a%:P) x = (x == - a).
Proof. by rewrite -root_XsubC rmorphN opprK. Qed.

Theorem factor_theorem p a : reflect (exists q, p = q * ('X - a%:P)) (root p a).
Proof.
apply: (iffP eqP) => [pa0 | [q ->]]; last first.
  by rewrite hornerM_comm /comm_poly hornerXsubC subrr ?simp.
exists (\poly_(i < size p) horner_rec (drop i.+1 p) a).
apply/polyP=> i; rewrite mulrBr coefB coefMX coefMC !coef_poly.
apply: canRL (addrK _) _; rewrite addrC; have [le_p_i | lt_i_p] := leqP.
  rewrite nth_default // !simp drop_oversize ?if_same //.
  exact: leq_trans (leqSpred _).
case: i => [|i] in lt_i_p *; last by rewrite ltnW // (drop_nth 0 lt_i_p).
by rewrite drop1 /= -{}pa0 /horner; case: (p : seq R) lt_i_p.
Qed.

Lemma multiplicity_XsubC p a :
  {m | exists2 q, (p != 0) ==> ~~ root q a & p = q * ('X - a%:P) ^+ m}.
Proof.
have [n le_p_n] := ubnP (size p); elim: n => // n IHn in p le_p_n *.
have [-> | nz_p /=] := eqVneq p 0; first by exists 0, 0; rewrite ?mul0r.
have [/sig_eqW[p1 Dp] | nz_pa] := altP (factor_theorem p a); last first.
  by exists 0%N, p; rewrite ?mulr1.
have nz_p1: p1 != 0 by apply: contraNneq nz_p => p1_0; rewrite Dp p1_0 mul0r.
have /IHn[m /sig2_eqW[q nz_qa Dp1]]: size p1 < n.
  by rewrite Dp size_Mmonic ?monicXsubC // size_XsubC addn2 in le_p_n.
by exists m.+1, q; [rewrite nz_p1 in nz_qa | rewrite exprSr mulrA -Dp1].
Qed.

(* Roots of unity. *)

#[deprecated(since="mathcomp 2.3.0",note="Use size_XnsubC instead.")]
Lemma size_Xn_sub_1 n : n > 0 -> size ('X^n - 1 : {poly R}) = n.+1.
Proof. exact/size_XnsubC. Qed.

#[deprecated(since="mathcomp 2.3.0'",note="Use monicXnsubC instead.")]
Lemma monic_Xn_sub_1 n : n > 0 -> 'X^n - 1 \is monic.
Proof. exact/monicXnsubC. Qed.

Definition root_of_unity n : pred R := root ('X^n - 1).
Local Notation "n .-unity_root" := (root_of_unity n) : ring_scope.

Lemma unity_rootE n z : n.-unity_root z = (z ^+ n == 1).
Proof.
by rewrite /root_of_unity rootE hornerD hornerN hornerXn hornerC subr_eq0.
Qed.

Lemma unity_rootP n z : reflect (z ^+ n = 1) (n.-unity_root z).
Proof. by rewrite unity_rootE; apply: eqP. Qed.

Definition primitive_root_of_unity n z :=
  (n > 0) && [forall i : 'I_n, i.+1.-unity_root z == (i.+1 == n)].
Local Notation "n .-primitive_root" := (primitive_root_of_unity n) : ring_scope.

Lemma prim_order_exists n z :
  n > 0 -> z ^+ n = 1 -> {m | m.-primitive_root z & (m %| n)}.
Proof.
move=> n_gt0 zn1.
have: exists m, (m > 0) && (z ^+ m == 1) by exists n; rewrite n_gt0 /= zn1.
case/ex_minnP=> m /andP[m_gt0 /eqP zm1] m_min.
exists m.
  apply/andP; split=> //; apply/eqfunP=> [[i]] /=.
  rewrite leq_eqVlt unity_rootE.
  case: eqP => [-> _ | _]; first by rewrite zm1 eqxx.
  by apply: contraTF => zi1; rewrite -leqNgt m_min.
have: n %% m < m by rewrite ltn_mod.
apply: contraLR; rewrite -lt0n -leqNgt => nm_gt0; apply: m_min.
by rewrite nm_gt0 /= expr_mod ?zn1.
Qed.

Section OnePrimitive.

Variables (n : nat) (z : R).
Hypothesis prim_z : n.-primitive_root z.

Lemma prim_order_gt0 : n > 0. Proof. by case/andP: prim_z. Qed.
Let n_gt0 := prim_order_gt0.

Lemma prim_expr_order : z ^+ n = 1.
Proof.
case/andP: prim_z => _; rewrite -(prednK n_gt0) => /forallP/(_ ord_max).
by rewrite unity_rootE eqxx eqb_id => /eqP.
Qed.

Lemma prim_expr_mod i : z ^+ (i %% n) = z ^+ i.
Proof. exact: expr_mod prim_expr_order. Qed.

Lemma prim_order_dvd i : (n %| i) = (z ^+ i == 1).
Proof.
move: n_gt0; rewrite -prim_expr_mod /dvdn -(ltn_mod i).
case: {i}(i %% n)%N => [|i] lt_i; first by rewrite !eqxx.
case/andP: prim_z => _ /forallP/(_ (Ordinal (ltnW lt_i)))/eqP.
by rewrite unity_rootE eqn_leq andbC leqNgt lt_i.
Qed.

Lemma eq_prim_root_expr i j : (z ^+ i == z ^+ j) = (i == j %[mod n]).
Proof.
wlog le_ji: i j / j <= i.
  move=> IH; case: (leqP j i) => [|/ltnW] /IH //.
  by rewrite eq_sym (eq_sym (j %% n)%N).
rewrite -{1}(subnKC le_ji) exprD -prim_expr_mod eqn_mod_dvd //.
rewrite prim_order_dvd; apply/eqP/eqP=> [|->]; last by rewrite mulr1.
move/(congr1 ( *%R (z ^+ (n - j %% n)))); rewrite mulrA -exprD.
by rewrite subnK ?prim_expr_order ?mul1r // ltnW ?ltn_mod.
Qed.

Lemma exp_prim_root k : (n %/ gcdn k n).-primitive_root (z ^+ k).
Proof.
set d := gcdn k n; have d_gt0: (0 < d)%N by rewrite gcdn_gt0 orbC n_gt0.
have [d_dv_k d_dv_n]: (d %| k /\ d %| n)%N by rewrite dvdn_gcdl dvdn_gcdr.
set q := (n %/ d)%N; rewrite /q.-primitive_root ltn_divRL // n_gt0.
apply/forallP=> i; rewrite unity_rootE -exprM -prim_order_dvd.
rewrite -(divnK d_dv_n) -/q -(divnK d_dv_k) mulnAC dvdn_pmul2r //.
apply/eqP; apply/idP/idP=> [|/eqP->]; last by rewrite dvdn_mull.
rewrite Gauss_dvdr; first by rewrite eqn_leq ltn_ord; apply: dvdn_leq.
by rewrite /coprime gcdnC -(eqn_pmul2r d_gt0) mul1n muln_gcdl !divnK.
Qed.

Lemma dvdn_prim_root m : (m %| n)%N -> m.-primitive_root (z ^+ (n %/ m)).
Proof.
set k := (n %/ m)%N => m_dv_n; rewrite -{1}(mulKn m n_gt0) -divnA // -/k.
by rewrite -{1}(@gcdn_idPl k n _) ?exp_prim_root // -(divnK m_dv_n) dvdn_mulr.
Qed.

Lemma prim_root_eq0 : (z == 0) = (n == 0%N).
Proof.
rewrite gtn_eqF//; apply/eqP => z0; have /esym/eqP := prim_expr_order.
by rewrite z0 expr0n gtn_eqF//= oner_eq0.
Qed.

End OnePrimitive.

Lemma prim_root_exp_coprime n z k :
  n.-primitive_root z -> n.-primitive_root (z ^+ k) = coprime k n.
Proof.
move=> prim_z; have n_gt0 := prim_order_gt0 prim_z.
apply/idP/idP=> [prim_zk | co_k_n].
  set d := gcdn k n; have dv_d_n: (d %| n)%N := dvdn_gcdr _ _.
  rewrite /coprime -/d -(eqn_pmul2r n_gt0) mul1n -{2}(gcdnMl n d).
  rewrite -{2}(divnK dv_d_n) (mulnC _ d) -muln_gcdr (gcdn_idPr _) //.
  rewrite (prim_order_dvd prim_zk) -exprM -(prim_order_dvd prim_z).
  by rewrite muln_divCA_gcd dvdn_mulr.
have zkn_1: z ^+ k ^+ n = 1 by rewrite exprAC (prim_expr_order prim_z) expr1n.
have{zkn_1} [m prim_zk dv_m_n]:= prim_order_exists n_gt0 zkn_1.
suffices /eqP <-: m == n by [].
rewrite eqn_dvd dv_m_n -(@Gauss_dvdr n k m) 1?coprime_sym //=.
by rewrite (prim_order_dvd prim_z) exprM (prim_expr_order prim_zk).
Qed.

(* Lifting a ring predicate to polynomials. *)

Implicit Type S : {pred R}.

Definition polyOver_pred S := fun p : {poly R} => all (mem S) p.
Arguments polyOver_pred _ _ /.
Definition polyOver S := [qualify a p | polyOver_pred S p].

Lemma polyOverS (S1 S2 : {pred R}) :
  {subset S1 <= S2} -> {subset polyOver S1 <= polyOver S2}.
Proof.
by move=> sS12 p /(all_nthP 0)S1p; apply/(all_nthP 0)=> i /S1p; apply: sS12.
Qed.

Lemma polyOver0 S : 0 \is a polyOver S.
Proof. by rewrite qualifE /= polyseq0. Qed.

Lemma polyOver_poly S n E :
  (forall i, i < n -> E i \in S) -> \poly_(i < n) E i \is a polyOver S.
Proof.
move=> S_E; apply/(all_nthP 0)=> i lt_i_p /=; rewrite coef_poly.
by case: ifP => [/S_E// | /idP[]]; apply: leq_trans lt_i_p (size_poly n E).
Qed.

Section PolyOverAdd.

Variable S : addrClosed R.

Lemma polyOverP {p} : reflect (forall i, p`_i \in S) (p \in polyOver S).
Proof.
apply: (iffP (all_nthP 0)) => [Sp i | Sp i _]; last exact: Sp.
by have [/Sp // | /(nth_default 0)->] := ltnP i (size p); apply: rpred0.
Qed.

Lemma polyOverC c : (c%:P \in polyOver S) = (c \in S).
Proof.
by rewrite qualifE /= polyseqC; case: eqP => [->|] /=; rewrite ?andbT ?rpred0.
Qed.

Fact polyOver_addr_closed : addr_closed (polyOver S).
Proof.
split=> [|p q Sp Sq]; first exact: polyOver0.
by apply/polyOverP=> i; rewrite coefD rpredD ?(polyOverP _).
Qed.
HB.instance Definition _ := GRing.isAddClosed.Build {poly R} (polyOver_pred S)
  polyOver_addr_closed.

End PolyOverAdd.

Section PolyOverSemiRing2.

Variable S : semiring2Closed R.

Lemma polyOver_mulr_2closed : GRing.mulr_2closed (polyOver S).
Proof.
move=> p q /polyOverP Sp /polyOverP Sq; apply/polyOverP=> i.
by rewrite coefM rpred_sum // => j _; rewrite rpredM.
Qed.
HB.instance Definition _ := GRing.isMul2Closed.Build {poly R} (polyOver_pred S)
  polyOver_mulr_2closed.

End PolyOverSemiRing2.

Fact polyOverNr (zmodS : zmodClosed R) : oppr_closed (polyOver zmodS).
Proof.
by move=> p /polyOverP Sp; apply/polyOverP=> i; rewrite coefN rpredN.
Qed.
HB.instance Definition _ (zmodS : zmodClosed R) :=
  GRing.isOppClosed.Build {poly R} (polyOver_pred zmodS) (@polyOverNr _).

Section PolyOverSemiring.

Variable S : semiringClosed R.

Fact polyOver_mul1_closed : 1 \in (polyOver S).
Proof. by rewrite polyOverC rpred1. Qed.
HB.instance Definition _ := GRing.isMul1Closed.Build {poly R} (polyOver_pred S)
  polyOver_mul1_closed.

Lemma polyOverZ : {in S & polyOver S, forall c p, c *: p \is a polyOver S}.
Proof.
by move=> c p Sc /polyOverP Sp; apply/polyOverP=> i; rewrite coefZ rpredM ?Sp.
Qed.

Lemma polyOverX : 'X \in polyOver S.
Proof. by rewrite qualifE /= polyseqX /= rpred0 rpred1. Qed.

Lemma polyOverXn n : 'X^n \in polyOver S.
Proof. by rewrite rpredX// polyOverX. Qed.

Lemma rpred_horner : {in polyOver S & S, forall p x, p.[x] \in S}.
Proof.
move=> p x /polyOverP Sp Sx; rewrite horner_coef rpred_sum // => i _.
by rewrite rpredM ?rpredX.
Qed.

End PolyOverSemiring.

Section PolyOverRing.

Variable S : subringClosed R.

HB.instance Definition _ := GRing.MulClosed.on (polyOver_pred S).

Lemma polyOverXaddC c : ('X + c%:P \in polyOver S) = (c \in S).
Proof. by rewrite rpredDl ?polyOverX ?polyOverC. Qed.

Lemma polyOverXnaddC n c : ('X^n + c%:P \is a polyOver S) = (c \in S).
Proof. by rewrite rpredDl ?polyOverXn// ?polyOverC. Qed.

Lemma polyOverXsubC c : ('X - c%:P \in polyOver S) = (c \in S).
Proof. by rewrite rpredBl ?polyOverX ?polyOverC. Qed.

Lemma polyOverXnsubC n c : ('X^n - c%:P \is a polyOver S) = (c \in S).
Proof. by rewrite rpredBl ?polyOverXn// ?polyOverC. Qed.

End PolyOverRing.

(* Single derivative. *)

Definition deriv p := \poly_(i < (size p).-1) (p`_i.+1 *+ i.+1).

Local Notation "a ^` ()" := (deriv a).

Lemma coef_deriv p i : p^`()`_i = p`_i.+1 *+ i.+1.
Proof.
rewrite coef_poly -subn1 ltn_subRL.
by case: leqP => // /(nth_default 0) ->; rewrite mul0rn.
Qed.

Lemma polyOver_deriv (ringS : semiringClosed R) :
  {in polyOver ringS, forall p, p^`() \is a polyOver ringS}.
Proof.
by move=> p /polyOverP Kp; apply/polyOverP=> i; rewrite coef_deriv rpredMn ?Kp.
Qed.

Lemma derivC c : c%:P^`() = 0.
Proof. by apply/polyP=> i; rewrite coef_deriv coef0 coefC mul0rn. Qed.

Lemma derivX : ('X)^`() = 1.
Proof. by apply/polyP=> [[|i]]; rewrite coef_deriv coef1 coefX ?mul0rn. Qed.

Lemma derivXn n : 'X^n^`() = 'X^n.-1 *+ n.
Proof.
case: n => [|n]; first exact: derivC.
apply/polyP=> i; rewrite coef_deriv coefMn !coefXn eqSS.
by case: eqP => [-> // | _]; rewrite !mul0rn.
Qed.

Fact deriv_is_linear : linear deriv.
Proof.
move=> k p q; apply/polyP=> i.
by rewrite !(coef_deriv, coefD, coefZ) mulrnDl mulrnAr.
Qed.
HB.instance Definition _ := GRing.isLinear.Build R {poly R} {poly R} _ deriv
  deriv_is_linear.

Lemma deriv0 : 0^`() = 0.
Proof. exact: linear0. Qed.

Lemma derivD : {morph deriv : p q / p + q}.
Proof. exact: linearD. Qed.

Lemma derivN : {morph deriv : p / - p}.
Proof. exact: linearN. Qed.

Lemma derivB : {morph deriv : p q / p - q}.
Proof. exact: linearB. Qed.

Lemma derivXsubC (a : R) : ('X - a%:P)^`() = 1.
Proof. by rewrite derivB derivX derivC subr0. Qed.

Lemma derivMn n p : (p *+ n)^`() = p^`() *+ n.
Proof. exact: linearMn. Qed.

Lemma derivMNn n p : (p *- n)^`() = p^`() *- n.
Proof. exact: linearMNn. Qed.

Lemma derivZ c p : (c *: p)^`() = c *: p^`().
Proof. exact: linearZ. Qed.

Lemma deriv_mulC c p : (c%:P * p)^`() = c%:P * p^`().
Proof. by rewrite !mul_polyC derivZ. Qed.

Lemma derivMXaddC p c : (p * 'X + c%:P)^`() = p + p^`() * 'X.
Proof.
apply/polyP=> i; rewrite raddfD /= derivC addr0 coefD !(coefMX, coef_deriv).
by case: i; rewrite ?addr0.
Qed.

Lemma derivM p q : (p * q)^`() = p^`() * q + p * q^`().
Proof.
elim/poly_ind: p => [|p b IHp]; first by rewrite !(mul0r, add0r, derivC).
rewrite mulrDl -mulrA -commr_polyX mulrA -[_ * 'X]addr0 raddfD /= !derivMXaddC.
by rewrite deriv_mulC IHp !mulrDl -!mulrA !commr_polyX !addrA.
Qed.

Definition derivE := Eval lazy beta delta [morphism_2 morphism_1] in
  (derivZ, deriv_mulC, derivC, derivX, derivMXaddC, derivXsubC, derivM, derivB,
   derivD, derivN, derivXn, derivM, derivMn).

(* Iterated derivative. *)
Definition derivn n p := iter n deriv p.

Local Notation "a ^` ( n )" := (derivn n a) : ring_scope.

Lemma derivn0 p : p^`(0) = p.
Proof. by []. Qed.

Lemma derivn1 p : p^`(1) = p^`().
Proof. by []. Qed.

Lemma derivnS p n : p^`(n.+1) = p^`(n)^`().
Proof. by []. Qed.

Lemma derivSn p n : p^`(n.+1) = p^`()^`(n).
Proof. exact: iterSr. Qed.

Lemma coef_derivn n p i : p^`(n)`_i = p`_(n + i) *+ (n + i) ^_ n.
Proof.
elim: n i => [|n IHn] i; first by rewrite ffactn0 mulr1n.
by rewrite derivnS coef_deriv IHn -mulrnA ffactnSr addSnnS addKn.
Qed.

Lemma polyOver_derivn (ringS : semiringClosed R) :
  {in polyOver ringS, forall p n, p^`(n) \is a polyOver ringS}.
Proof.
move=> p /polyOverP Kp /= n; apply/polyOverP=> i.
by rewrite coef_derivn rpredMn.
Qed.

Fact derivn_is_linear n : linear (derivn n).
Proof. by elim: n => // n IHn a p q; rewrite derivnS IHn linearP. Qed.
HB.instance Definition _ n :=
  GRing.isLinear.Build R {poly R} {poly R} _ (derivn n)
    (derivn_is_linear n).

Lemma derivnC c n : c%:P^`(n) = if n == 0 then c%:P else 0.
Proof. by case: n => // n; rewrite derivSn derivC linear0. Qed.

Lemma derivnD n : {morph derivn n : p q / p + q}.
Proof. exact: linearD. Qed.

Lemma derivnB n : {morph derivn n : p q / p - q}.
Proof. exact: linearB. Qed.

Lemma derivnMn n m p : (p *+ m)^`(n) = p^`(n) *+ m.
Proof. exact: linearMn. Qed.

Lemma derivnMNn n m p : (p *- m)^`(n) = p^`(n) *- m.
Proof. exact: linearMNn. Qed.

Lemma derivnN n : {morph derivn n : p / - p}.
Proof. exact: linearN. Qed.

Lemma derivnZ n : scalable (derivn n).
Proof. exact: linearZZ. Qed.

Lemma derivnXn m n : 'X^m^`(n) = 'X^(m - n) *+ m ^_ n.
Proof.
apply/polyP=>i; rewrite coef_derivn coefMn !coefXn.
case: (ltnP m n) => [lt_m_n | le_m_n].
  by rewrite eqn_leq leqNgt ltn_addr // mul0rn ffact_small.
by rewrite -{1 3}(subnKC le_m_n) eqn_add2l; case: eqP => [->|]; rewrite ?mul0rn.
Qed.

Lemma derivnMXaddC n p c :
  (p * 'X + c%:P)^`(n.+1) = p^`(n) *+ n.+1 + p^`(n.+1) * 'X.
Proof.
elim: n => [|n IHn]; first by rewrite derivn1 derivMXaddC.
rewrite derivnS IHn derivD derivM derivX mulr1 derivMn -!derivnS.
by rewrite addrA addrAC -mulrSr.
Qed.

Lemma derivn_poly0 p n : size p <= n -> p^`(n) = 0.
Proof.
move=> le_p_n; apply/polyP=> i; rewrite coef_derivn.
rewrite nth_default; first by rewrite mul0rn coef0.
exact/(leq_trans le_p_n)/leq_addr.
Qed.

Lemma lt_size_deriv (p : {poly R}) : p != 0 -> size p^`() < size p.
Proof. by move=> /polySpred->; apply: size_poly. Qed.

(* A normalising version of derivation to get the division by n! in Taylor *)

Definition nderivn n p := \poly_(i < size p - n) (p`_(n + i) *+ 'C(n + i, n)).

Local Notation "a ^`N ( n )" := (nderivn n a) : ring_scope.

Lemma coef_nderivn n p i : p^`N(n)`_i = p`_(n + i) *+  'C(n + i, n).
Proof.
rewrite coef_poly ltn_subRL; case: leqP => // le_p_ni.
by rewrite nth_default ?mul0rn.
Qed.

(* Here is the division by n! *)
Lemma nderivn_def n p : p^`(n) = p^`N(n) *+ n`!.
Proof.
by apply/polyP=> i; rewrite coefMn coef_nderivn coef_derivn -mulrnA bin_ffact.
Qed.

Lemma polyOver_nderivn (ringS : semiringClosed R) :
  {in polyOver ringS, forall p n, p^`N(n) \in polyOver ringS}.
Proof.
move=> p /polyOverP Sp /= n; apply/polyOverP=> i.
by rewrite coef_nderivn rpredMn.
Qed.

Lemma nderivn0 p : p^`N(0) = p.
Proof. by rewrite -[p^`N(0)](nderivn_def 0). Qed.

Lemma nderivn1 p : p^`N(1) = p^`().
Proof. by rewrite -[p^`N(1)](nderivn_def 1). Qed.

Lemma nderivnC c n : (c%:P)^`N(n) = if n == 0 then c%:P else 0.
Proof.
apply/polyP=> i; rewrite coef_nderivn.
by case: n => [|n]; rewrite ?bin0 // coef0 coefC mul0rn.
Qed.

Lemma nderivnXn m n : 'X^m^`N(n) = 'X^(m - n) *+ 'C(m, n).
Proof.
apply/polyP=> i; rewrite coef_nderivn coefMn !coefXn.
have [lt_m_n | le_n_m] := ltnP m n.
  by rewrite eqn_leq leqNgt ltn_addr // mul0rn bin_small.
by rewrite -{1 3}(subnKC le_n_m) eqn_add2l; case: eqP => [->|]; rewrite ?mul0rn.
Qed.

Fact nderivn_is_linear n : linear (nderivn n).
Proof.
move=> k p q; apply/polyP=> i.
by rewrite !(coef_nderivn, coefD, coefZ) mulrnDl mulrnAr.
Qed.
HB.instance Definition _ n :=
  GRing.isLinear.Build R {poly R} {poly R} _ (nderivn n)
    (nderivn_is_linear n).

Lemma nderivnD n : {morph nderivn n : p q / p + q}.
Proof. exact: linearD. Qed.

Lemma nderivnB n : {morph nderivn n : p q / p - q}.
Proof. exact: linearB. Qed.

Lemma nderivnMn n m p : (p *+ m)^`N(n) = p^`N(n) *+ m.
Proof. exact: linearMn. Qed.

Lemma nderivnMNn n m p : (p *- m)^`N(n) = p^`N(n) *- m.
Proof. exact: linearMNn. Qed.

Lemma nderivnN n : {morph nderivn n : p / - p}.
Proof. exact: linearN. Qed.

Lemma nderivnZ n : scalable (nderivn n).
Proof. exact: linearZZ. Qed.

Lemma nderivnMXaddC n p c :
  (p * 'X + c%:P)^`N(n.+1) = p^`N(n) + p^`N(n.+1) * 'X.
Proof.
apply/polyP=> i; rewrite coef_nderivn !coefD !coefMX coefC.
rewrite !addSn /= !coef_nderivn addr0 binS mulrnDr addrC; congr (_ + _).
by rewrite addSnnS; case: i; rewrite // addn0 bin_small.
Qed.

Lemma nderivn_poly0 p n : size p <= n -> p^`N(n) = 0.
Proof.
move=> le_p_n; apply/polyP=> i; rewrite coef_nderivn.
rewrite nth_default; first by rewrite mul0rn coef0.
exact/(leq_trans le_p_n)/leq_addr.
Qed.

Lemma nderiv_taylor p x h :
  GRing.comm x h -> p.[x + h] = \sum_(i < size p) p^`N(i).[x] * h ^+ i.
Proof.
move/commrX=> cxh; elim/poly_ind: p => [|p c IHp].
  by rewrite size_poly0 big_ord0 horner0.
rewrite hornerMXaddC size_MXaddC.
have [-> | nz_p] := eqVneq p 0.
  rewrite horner0 !simp; have [-> | _] := c =P 0; first by rewrite big_ord0.
  by rewrite size_poly0 big_ord_recl big_ord0 nderivn0 hornerC !simp.
rewrite big_ord_recl nderivn0 !simp hornerMXaddC addrAC; congr (_ + _).
rewrite mulrDr {}IHp !big_distrl polySpred //= big_ord_recl /= mulr1 -addrA.
rewrite nderivn0 /bump /(addn 1) /=; congr (_ + _).
rewrite !big_ord_recr /= nderivnMXaddC -mulrA -exprSr -polySpred // !addrA.
congr (_ + _); last by rewrite (nderivn_poly0 (leqnn _)) !simp.
rewrite addrC -big_split /=; apply: eq_bigr => i _.
by rewrite nderivnMXaddC !hornerE_comm /= mulrDl -!mulrA -exprSr cxh.
Qed.

Lemma nderiv_taylor_wide n p x h :
    GRing.comm x h -> size p <= n ->
  p.[x + h] = \sum_(i < n) p^`N(i).[x] * h ^+ i.
Proof.
move/nderiv_taylor=> -> le_p_n.
rewrite (big_ord_widen n (fun i => p^`N(i).[x] * h ^+ i)) // big_mkcond.
apply: eq_bigr => i _; case: leqP => // /nderivn_poly0->.
by rewrite horner0 simp.
Qed.

Lemma eq_poly n E1 E2 : (forall i, i < n -> E1 i = E2 i) ->
  poly n E1 = poly n E2 :> {poly R}.
Proof. by move=> E; rewrite !poly_def; apply: eq_bigr => i _; rewrite E. Qed.

End PolynomialTheory.

Prenex Implicits polyC polyCK Poly polyseqK lead_coef root horner polyOver.
Arguments monic {R}.
Notation "\poly_ ( i < n ) E" := (poly n (fun i => E)) : ring_scope.
Notation "c %:P" := (polyC c) : ring_scope.
Notation "'X" := (polyX _) : ring_scope.
Notation "''X^' n" := ('X ^+ n) : ring_scope.
Notation "p .[ x ]" := (horner p x) : ring_scope.
Notation "n .-unity_root" := (root_of_unity n) : ring_scope.
Notation "n .-primitive_root" := (primitive_root_of_unity n) : ring_scope.
Notation "a ^` ()" := (deriv a) : ring_scope.
Notation "a ^` ( n )" := (derivn n a) : ring_scope.
Notation "a ^`N ( n )" := (nderivn n a) : ring_scope.

Arguments monic_pred _ _ /.
Arguments monicP {R p}.
Arguments rootP {R p x}.
Arguments rootPf {R p x}.
Arguments rootPt {R p x}.
Arguments unity_rootP {R n z}.
Arguments polyOver_pred _ _ _ /.
Arguments polyOverP {R S p}.
Arguments polyC_inj {R} [x1 x2] eq_x12P.
Arguments eq_poly {R n} [E1] E2 eq_E12.

Section IdomainPrimRoot.
Variables (R : idomainType) (n : nat) (z : R).
Hypothesis prim_z : n.-primitive_root z.
Import prime.
Let n_gt0 := prim_order_gt0 prim_z.

Lemma prim_root_charF p : (p %| n)%N -> p \in [char R] = false.
Proof.
move=> pn; apply: contraTF isT => char_p; have p_prime := charf_prime char_p.
have /dvdnP[[|k] n_eq_kp] := pn; first by rewrite n_eq_kp in (n_gt0).
have /eqP := prim_expr_order prim_z; rewrite n_eq_kp exprM.
rewrite -Frobenius_autE -(Frobenius_aut1 char_p) -subr_eq0 -rmorphB/=.
rewrite Frobenius_autE expf_eq0// prime_gt0//= subr_eq0 => /eqP.
move=> /eqP; rewrite -(prim_order_dvd prim_z) n_eq_kp.
rewrite -[X in _ %| X]muln1 dvdn_pmul2l ?dvdn1// => /eqP peq1.
by rewrite peq1 in p_prime.
Qed.

Lemma char_prim_root : [char R]^'.-nat n.
Proof. by apply/pnatP=> // p pp pn; rewrite inE/= prim_root_charF. Qed.

Lemma prim_root_pi_eq0 m : \pi(n).-nat m -> m%:R != 0 :> R.
Proof.
by rewrite natf_neq0; apply: sub_in_pnat => p _; apply: pnatPpi char_prim_root.
Qed.

Lemma prim_root_dvd_eq0 m : (m %| n)%N -> m%:R != 0 :> R.
Proof.
case: m => [|m mn]; first by rewrite dvd0n gtn_eqF.
by rewrite prim_root_pi_eq0 ?(sub_in_pnat (in1W (pi_of_dvd mn _))) ?pnat_pi.
Qed.

Lemma prim_root_natf_neq0 : n%:R != 0 :> R.
Proof. by rewrite prim_root_dvd_eq0. Qed.

End IdomainPrimRoot.

(* Container morphism. *)
Section MapPoly.

Section Definitions.

Variables (aR rR : ringType) (f : aR -> rR).

Definition map_poly (p : {poly aR}) := \poly_(i < size p) f p`_i.

(* Alternative definition; the one above is more convenient because it lets *)
(* us use the lemmas on \poly, e.g., size (map_poly p) <= size p is an      *)
(* instance of size_poly.                                                   *)
Lemma map_polyE p : map_poly p = Poly (map f p).
Proof.
rewrite /map_poly unlock; congr Poly.
apply: (@eq_from_nth _ 0); rewrite size_mkseq ?size_map // => i lt_i_p.
by rewrite [RHS](nth_map 0) ?nth_mkseq.
Qed.

Definition commr_rmorph u := forall x, GRing.comm u (f x).

Definition horner_morph u of commr_rmorph u := fun p => (map_poly p).[u].

End Definitions.

Variables aR rR : ringType.

Section Combinatorial.

Variables (iR : ringType) (f : aR -> rR).
Local Notation "p ^f" := (map_poly f p) : ring_scope.

Lemma map_poly0 : 0^f = 0.
Proof. by rewrite map_polyE polyseq0. Qed.

Lemma eq_map_poly (g : aR -> rR) : f =1 g -> map_poly f =1 map_poly g.
Proof. by move=> eq_fg p; rewrite !map_polyE (eq_map eq_fg). Qed.

Lemma map_poly_id g (p : {poly iR}) :
  {in (p : seq iR), g =1 id} -> map_poly g p = p.
Proof. by move=> g_id; rewrite map_polyE map_id_in ?polyseqK. Qed.

Lemma coef_map_id0 p i : f 0 = 0 -> (p^f)`_i = f p`_i.
Proof.
by move=> f0; rewrite coef_poly; case: ltnP => // le_p_i; rewrite nth_default.
Qed.

Lemma map_Poly_id0 s : f 0 = 0 -> (Poly s)^f = Poly (map f s).
Proof.
move=> f0; apply/polyP=> j; rewrite coef_map_id0 ?coef_Poly //.
have [/(nth_map 0 0)->// | le_s_j] := ltnP j (size s).
by rewrite !nth_default ?size_map.
Qed.

Lemma map_poly_comp_id0 (g : iR -> aR) p :
  f 0 = 0 -> map_poly (f \o g) p = (map_poly g p)^f.
Proof. by move=> f0; rewrite map_polyE map_comp -map_Poly_id0 -?map_polyE. Qed.

Lemma size_map_poly_id0 p : f (lead_coef p) != 0 -> size p^f = size p.
Proof. by move=> nz_fp; apply: size_poly_eq. Qed.

Lemma map_poly_eq0_id0 p : f (lead_coef p) != 0 -> (p^f == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 => /size_map_poly_id0->. Qed.

Lemma lead_coef_map_id0 p :
  f 0 = 0 -> f (lead_coef p) != 0 -> lead_coef p^f = f (lead_coef p).
Proof.
by move=> f0 nz_fp; rewrite lead_coefE coef_map_id0 ?size_map_poly_id0.
Qed.

Hypotheses (inj_f : injective f) (f_0 : f 0 = 0).

Lemma size_map_inj_poly p : size p^f = size p.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite map_poly0 !size_poly0.
by rewrite size_map_poly_id0 // -f_0 (inj_eq inj_f) lead_coef_eq0.
Qed.

Lemma map_inj_poly : injective (map_poly f).
Proof.
move=> p q /polyP eq_pq; apply/polyP=> i; apply: inj_f.
by rewrite -!coef_map_id0 ?eq_pq.
Qed.

Lemma lead_coef_map_inj p : lead_coef p^f = f (lead_coef p).
Proof. by rewrite !lead_coefE size_map_inj_poly coef_map_id0. Qed.

End Combinatorial.

Lemma map_polyK (f : aR -> rR) g :
  cancel g f -> f 0 = 0 -> cancel (map_poly g) (map_poly f).
Proof.
by move=> gK f_0 p; rewrite /= -map_poly_comp_id0 ?map_poly_id // => x _ //=.
Qed.

Lemma eq_in_map_poly_id0 (f g : aR -> rR) (S : addrClosed aR) :
    f 0 = 0 -> g 0 = 0 -> {in S, f =1 g} ->
  {in polyOver S, map_poly f =1 map_poly g}.
Proof.
move=> f0 g0 eq_fg p pP; apply/polyP => i.
by rewrite !coef_map_id0// eq_fg// (polyOverP _).
Qed.

Lemma eq_in_map_poly (f g : {additive aR -> rR}) (S : addrClosed aR) :
  {in S, f =1 g} -> {in polyOver S, map_poly f =1 map_poly g}.
Proof. by move=> /eq_in_map_poly_id0; apply; rewrite //?raddf0. Qed.

Section Additive.

Variables (iR : ringType) (f : {additive aR -> rR}).

Local Notation "p ^f" := (map_poly (GRing.Additive.sort f) p) : ring_scope.

Lemma coef_map p i : p^f`_i = f p`_i.
Proof. exact: coef_map_id0 (raddf0 f). Qed.

Lemma map_Poly s : (Poly s)^f = Poly (map f s).
Proof. exact: map_Poly_id0 (raddf0 f). Qed.

Lemma map_poly_comp (g : iR -> aR) p :
  map_poly (f \o g) p = map_poly f (map_poly g p).
Proof. exact: map_poly_comp_id0 (raddf0 f). Qed.

Fact map_poly_is_additive : additive (map_poly f).
Proof. by move=> p q; apply/polyP=> i; rewrite !(coef_map, coefB) raddfB. Qed.
HB.instance Definition _ :=
  GRing.isAdditive.Build {poly aR} {poly rR} (map_poly f) map_poly_is_additive.

Lemma map_polyC a : (a%:P)^f = (f a)%:P.
Proof. by apply/polyP=> i; rewrite !(coef_map, coefC) -!mulrb raddfMn. Qed.

Lemma lead_coef_map_eq p :
  f (lead_coef p) != 0 -> lead_coef p^f = f (lead_coef p).
Proof. exact: lead_coef_map_id0 (raddf0 f). Qed.

End Additive.

Variable f : {rmorphism aR -> rR}.
Implicit Types p : {poly aR}.

Local Notation "p ^f" := (map_poly (GRing.RMorphism.sort f) p) : ring_scope.

Fact map_poly_is_multiplicative : multiplicative (map_poly f).
Proof.
split=> [p q|]; apply/polyP=> i; last first.
  by rewrite !(coef_map, coef1) /= rmorph_nat.
rewrite coef_map /= !coefM /= !rmorph_sum; apply: eq_bigr => j _.
by rewrite !coef_map rmorphM.
Qed.

HB.instance Definition _ :=
  GRing.isMultiplicative.Build {poly aR} {poly rR} (map_poly f)
    map_poly_is_multiplicative.

Lemma map_polyZ c p : (c *: p)^f = f c *: p^f.
Proof. by apply/polyP=> i; rewrite !(coef_map, coefZ) /= rmorphM. Qed.
HB.instance Definition _ :=
  GRing.isScalable.Build aR {poly aR} {poly rR} (f \; *:%R) (map_poly f)
    map_polyZ.

Lemma map_polyX : ('X)^f = 'X.
Proof. by apply/polyP=> i; rewrite coef_map !coefX /= rmorph_nat. Qed.

Lemma map_polyXn n : ('X^n)^f = 'X^n.
Proof. by rewrite rmorphXn /= map_polyX. Qed.

Lemma map_polyXaddC x :  ('X + x%:P)^f = 'X + (f x)%:P.
Proof. by rewrite raddfD/= map_polyX map_polyC. Qed.

Lemma map_polyXsubC x : ('X - x%:P)^f = 'X - (f x)%:P.
Proof. by rewrite raddfB/= map_polyX map_polyC. Qed.

Lemma map_prod_XsubC I (rI : seq I) P F :
  (\prod_(i <- rI | P i) ('X - (F i)%:P))^f =
    \prod_(i <- rI | P i) ('X - (f (F i))%:P).
Proof.
by rewrite rmorph_prod//; apply/eq_bigr => x /=; rewrite map_polyXsubC.
Qed.

Lemma prod_map_poly (ar : seq aR) P :
  \prod_(x <- map f ar | P x) ('X - x%:P) =
    (\prod_(x <- ar | P (f x)) ('X - x%:P))^f.
Proof. by rewrite big_map map_prod_XsubC. Qed.

Lemma monic_map p : p \is monic -> p^f \is monic.
Proof.
move/monicP=> mon_p; rewrite monicE.
by rewrite lead_coef_map_eq mon_p /= rmorph1 ?oner_neq0.
Qed.

Lemma horner_map p x : p^f.[f x] = f p.[x].
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(rmorph0, horner0).
rewrite hornerMXaddC !rmorphD !rmorphM /=.
by rewrite map_polyX map_polyC hornerMXaddC IHp.
Qed.

Lemma map_comm_poly p x : comm_poly p x -> comm_poly p^f (f x).
Proof. by rewrite /comm_poly horner_map -!rmorphM // => ->. Qed.

Lemma map_comm_coef p x : comm_coef p x -> comm_coef p^f (f x).
Proof. by move=> cpx i; rewrite coef_map -!rmorphM ?cpx. Qed.

Lemma rmorph_root p x : root p x -> root p^f (f x).
Proof. by move/eqP=> px0; rewrite rootE horner_map px0 rmorph0. Qed.

Lemma rmorph_unity_root n z : n.-unity_root z -> n.-unity_root (f z).
Proof.
move/rmorph_root; rewrite rootE rmorphB hornerD hornerN.
by rewrite /= map_polyXn rmorph1 hornerC hornerXn subr_eq0 unity_rootE.
Qed.

Section HornerMorph.

Variable u : rR.
Hypothesis cfu : commr_rmorph f u.

Lemma horner_morphC a : horner_morph cfu a%:P = f a.
Proof. by rewrite /horner_morph map_polyC hornerC. Qed.

Lemma horner_morphX : horner_morph cfu 'X = u.
Proof. by rewrite /horner_morph map_polyX hornerX. Qed.

Fact horner_is_linear : linear_for (f \; *%R) (horner_morph cfu).
Proof. by move=> c p q; rewrite /horner_morph linearP /= hornerD hornerZ. Qed.

Fact horner_is_multiplicative : multiplicative (horner_morph cfu).
Proof.
split=> [p q|]; last by rewrite /horner_morph rmorph1 hornerC.
rewrite /horner_morph rmorphM /= hornerM_comm //.
by apply: comm_coef_poly => i; rewrite coef_map cfu.
Qed.

HB.instance Definition _ :=
  GRing.isLinear.Build aR {poly aR} rR _ (horner_morph cfu)
    horner_is_linear.

HB.instance Definition _ :=
  GRing.isMultiplicative.Build {poly aR} rR (horner_morph cfu)
    horner_is_multiplicative.

End HornerMorph.

Lemma deriv_map p : p^f^`() = (p^`())^f.
Proof. by apply/polyP => i; rewrite !(coef_map, coef_deriv) //= rmorphMn. Qed.

Lemma derivn_map p n : p^f^`(n) = (p^`(n))^f.
Proof. by apply/polyP => i; rewrite !(coef_map, coef_derivn) //= rmorphMn. Qed.

Lemma nderivn_map p n : p^f^`N(n) = (p^`N(n))^f.
Proof. by apply/polyP => i; rewrite !(coef_map, coef_nderivn) //= rmorphMn. Qed.

End MapPoly.

Lemma mapf_root (F : fieldType) (R : ringType) (f : {rmorphism F -> R})
  (p : {poly F}) (x : F) : root (map_poly f p) (f x) = root p x.
Proof. by rewrite !rootE horner_map fmorph_eq0. Qed.

(* Morphisms from the polynomial ring, and the initiality of polynomials  *)
(* with respect to these.                                                 *)
Section MorphPoly.

Variable (aR rR : ringType) (pf : {rmorphism {poly aR} -> rR}).

Lemma poly_morphX_comm : commr_rmorph (pf \o polyC) (pf 'X).
Proof. by move=> a; rewrite /GRing.comm /= -!rmorphM // commr_polyX. Qed.

Lemma poly_initial : pf =1 horner_morph poly_morphX_comm.
Proof.
apply: poly_ind => [|p a IHp]; first by rewrite !rmorph0.
by rewrite !rmorphD !rmorphM /= -{}IHp horner_morphC ?horner_morphX.
Qed.

End MorphPoly.

Notation "p ^:P" := (map_poly polyC p) : ring_scope.

Section PolyCompose.

Variable R : ringType.
Implicit Types p q : {poly R}.

Definition comp_poly q p := p^:P.[q].

Local Notation "p \Po q" := (comp_poly q p) : ring_scope.

Lemma size_map_polyC p : size p^:P = size p.
Proof. exact/(size_map_inj_poly polyC_inj). Qed.

Lemma map_polyC_eq0 p : (p^:P == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 size_map_polyC. Qed.

Lemma root_polyC p x : root p^:P x%:P = root p x.
Proof. by rewrite rootE horner_map polyC_eq0. Qed.

Lemma comp_polyE p q : p \Po q = \sum_(i < size p) p`_i *: q^+i.
Proof.
by rewrite [p \Po q]horner_poly; apply: eq_bigr => i _; rewrite mul_polyC.
Qed.

Lemma coef_comp_poly p q n :
  (p \Po q)`_n = \sum_(i < size p) p`_i * (q ^+ i)`_n.
Proof. by rewrite comp_polyE coef_sum; apply: eq_bigr => i; rewrite coefZ. Qed.

Lemma polyOver_comp (ringS : semiringClosed R) :
  {in polyOver ringS &, forall p q, p \Po q \in polyOver ringS}.
Proof.
move=> p q /polyOverP Sp Sq; rewrite comp_polyE rpred_sum // => i _.
by rewrite polyOverZ ?rpredX.
Qed.

Lemma comp_polyCr p c : p \Po c%:P = p.[c]%:P.
Proof. exact: horner_map. Qed.

Lemma comp_poly0r p : p \Po 0 = (p`_0)%:P.
Proof. by rewrite comp_polyCr horner_coef0. Qed.

Lemma comp_polyC c p : c%:P \Po p = c%:P.
Proof. by rewrite /(_ \Po p) map_polyC hornerC. Qed.

Fact comp_poly_is_linear p : linear (comp_poly p).
Proof.
move=> a q r.
by rewrite /comp_poly rmorphD /= map_polyZ !hornerE_comm mul_polyC.
Qed.
HB.instance Definition _ p :=
  GRing.isLinear.Build R {poly R} {poly R} _ (comp_poly p)
    (comp_poly_is_linear p).

Lemma comp_poly0 p : 0 \Po p = 0.
Proof. exact: raddf0. Qed.

Lemma comp_polyD p q r : (p + q) \Po r = (p \Po r) + (q \Po r).
Proof. exact: raddfD. Qed.

Lemma comp_polyB p q r : (p - q) \Po r = (p \Po r) - (q \Po r).
Proof. exact: raddfB. Qed.

Lemma comp_polyZ c p q : (c *: p) \Po q = c *: (p \Po q).
Proof. exact: linearZZ. Qed.

Lemma comp_polyXr p : p \Po 'X = p.
Proof. by rewrite -{2}/(idfun p) poly_initial. Qed.

Lemma comp_polyX p : 'X \Po p = p.
Proof. by rewrite /(_ \Po p) map_polyX hornerX. Qed.

Lemma comp_poly_MXaddC c p q : (p * 'X + c%:P) \Po q = (p \Po q) * q + c%:P.
Proof.
by rewrite /(_ \Po q) rmorphD rmorphM /= map_polyX map_polyC hornerMXaddC.
Qed.

Lemma comp_polyXaddC_K p z : (p \Po ('X + z%:P)) \Po ('X - z%:P) = p.
Proof.
have addzK: ('X + z%:P) \Po ('X - z%:P) = 'X.
  by rewrite raddfD /= comp_polyC comp_polyX subrK.
elim/poly_ind: p => [|p c IHp]; first by rewrite !comp_poly0.
rewrite comp_poly_MXaddC linearD /= comp_polyC {1}/comp_poly rmorphM /=.
by rewrite hornerM_comm /comm_poly -!/(_ \Po _) ?IHp ?addzK ?commr_polyX.
Qed.

Lemma size_comp_poly_leq p q :
  size (p \Po q) <= ((size p).-1 * (size q).-1).+1.
Proof.
rewrite comp_polyE (leq_trans (size_sum _ _ _)) //; apply/bigmax_leqP => i _.
rewrite (leq_trans (size_scale_leq _ _)) // (leq_trans (size_exp_leq _ _)) //.
by rewrite ltnS mulnC leq_mul // -{2}(subnKC (valP i)) leq_addr.
Qed.

Lemma comp_Xn_poly p n : 'X^n \Po p = p ^+ n.
Proof. by rewrite /(_ \Po p) map_polyXn hornerXn. Qed.

Lemma coef_comp_poly_Xn p n i : 0 < n ->
  (p \Po 'X^n)`_i = if n %| i then p`_(i %/ n) else 0.
Proof.
move=> n_gt0; rewrite comp_polyE; under eq_bigr do rewrite -exprM mulnC.
rewrite coef_sumMXn/=; case: dvdnP => [[j ->]|nD]; last first.
   by rewrite big1// => j /eqP ?; case: nD; exists j.
under eq_bigl do rewrite eqn_mul2r gtn_eqF//.
by rewrite big_ord1_eq if_nth ?leqVgt ?mulnK.
Qed.

Lemma comp_poly_Xn p n : 0 < n ->
  p \Po 'X^n = \poly_(i < size p * n) if n %| i then p`_(i %/ n) else 0.
Proof.
move=> n_gt0; apply/polyP => i; rewrite coef_comp_poly_Xn // coef_poly.
case: dvdnP => [[k ->]|]; last by rewrite if_same.
by rewrite mulnK // ltn_mul2r n_gt0 if_nth ?leqVgt.
Qed.

End PolyCompose.

Notation "p \Po q" := (comp_poly q p) : ring_scope.

Lemma map_comp_poly (aR rR : ringType) (f : {rmorphism aR -> rR}) p q :
  map_poly f (p \Po q) = map_poly f p \Po map_poly f q.
Proof.
elim/poly_ind: p => [|p a IHp]; first by rewrite !raddf0.
rewrite comp_poly_MXaddC !rmorphD !rmorphM /= !map_polyC map_polyX.
by rewrite comp_poly_MXaddC -IHp.
Qed.

Section Surgery.

Variable R : ringType.

Implicit Type p q : {poly R}.

(* Even part of a polynomial                                                  *)

Definition even_poly p : {poly R} := \poly_(i < uphalf (size p)) p`_i.*2.

Lemma size_even_poly p : size (even_poly p) <= uphalf (size p).
Proof. exact: size_poly. Qed.

Lemma coef_even_poly p i : (even_poly p)`_i = p`_i.*2.
Proof. by rewrite coef_poly gtn_uphalf_double if_nth ?leqVgt. Qed.

Lemma even_polyE s p : size p <= s.*2 -> even_poly p = \poly_(i < s) p`_i.*2.
Proof.
move=> pLs2; apply/polyP => i; rewrite coef_even_poly !coef_poly if_nth //.
by case: ltnP => //= ?; rewrite (leq_trans pLs2) ?leq_double.
Qed.

Lemma size_even_poly_eq p : odd (size p) ->
  size (even_poly p) = uphalf (size p).
Proof.
move=> p_even; rewrite size_poly_eq// double_pred odd_uphalfK//=.
by rewrite lead_coef_eq0 -size_poly_eq0; case: size p_even.
Qed.

Lemma even_polyD p q : even_poly (p + q) = even_poly p + even_poly q.
Proof. by apply/polyP => i; rewrite !(coef_even_poly, coefD). Qed.

Lemma even_polyZ k p : even_poly (k *: p) = k *: even_poly p.
Proof. by apply/polyP => i; rewrite !(coefZ, coef_even_poly). Qed.

Fact even_poly_is_linear : linear even_poly.
Proof. by move=> k p q; rewrite even_polyD even_polyZ. Qed.

HB.instance Definition _ := GRing.isLinear.Build R {poly R} {poly R} _ even_poly
  even_poly_is_linear.

Lemma even_polyC (c : R) : even_poly c%:P = c%:P.
Proof. by apply/polyP => i; rewrite coef_even_poly !coefC; case: i. Qed.

(* Odd part of a polynomial                                                   *)

Definition odd_poly p : {poly R} := \poly_(i < (size p)./2) p`_i.*2.+1.

Lemma size_odd_poly p : size (odd_poly p) <= (size p)./2.
Proof. exact: size_poly. Qed.

Lemma coef_odd_poly p i : (odd_poly p)`_i = p`_i.*2.+1.
Proof. by rewrite coef_poly gtn_half_double if_nth ?leqVgt. Qed.

Lemma odd_polyE s p :
  size p <= s.*2.+1 -> odd_poly p = \poly_(i < s) p`_i.*2.+1.
Proof.
move=> pLs2; apply/polyP => i; rewrite coef_odd_poly !coef_poly if_nth //.
by case: ltnP => //= ?; rewrite (leq_trans pLs2) ?ltnS ?leq_double.
Qed.

Lemma odd_polyC (c : R) : odd_poly c%:P = 0.
Proof. by apply/polyP => i; rewrite coef_odd_poly !coefC; case: i. Qed.

Lemma odd_polyD p q : odd_poly (p + q) = odd_poly p + odd_poly q.
Proof. by apply/polyP => i; rewrite !(coef_odd_poly, coefD). Qed.

Lemma odd_polyZ k p : odd_poly (k *: p) = k *: odd_poly p.
Proof. by apply/polyP => i; rewrite !(coefZ, coef_odd_poly). Qed.

Fact odd_poly_is_linear : linear odd_poly.
Proof. by move=> k p q; rewrite odd_polyD odd_polyZ. Qed.

HB.instance Definition _ := GRing.isLinear.Build R {poly R} {poly R} _ odd_poly
  odd_poly_is_linear.

Lemma size_odd_poly_eq p : ~~ odd (size p) -> size (odd_poly p) = (size p)./2.
Proof.
have [->|p_neq0] := eqVneq p 0; first by rewrite odd_polyC size_poly0.
move=> p_odd; rewrite size_poly_eq// -subn1 doubleB subn2 even_halfK//.
rewrite prednK ?lead_coef_eq0// ltn_predRL.
by move: p_neq0 p_odd; rewrite -size_poly_eq0; case: (size p) => [|[]].
Qed.

Lemma odd_polyMX p : odd_poly (p * 'X) = even_poly p.
Proof.
have [->|pN0] := eqVneq p 0; first by rewrite mul0r even_polyC odd_polyC.
by apply/polyP => i; rewrite !coef_poly size_mulX // coefMX.
Qed.

Lemma even_polyMX p : even_poly (p * 'X) = odd_poly p * 'X.
Proof.
have [->|pN0] := eqVneq p 0; first by rewrite mul0r even_polyC odd_polyC mul0r.
by apply/polyP => -[|i]; rewrite !(coefMX, coef_poly, if_same, size_mulX).
Qed.

Lemma sum_even_poly p :
  \sum_(i < size p | ~~ odd i) p`_i *: 'X^i = even_poly p \Po 'X^2.
Proof.
apply/polyP => i; rewrite coef_comp_poly_Xn// coef_sumMXn coef_even_poly.
rewrite (big_ord1_cond_eq _ _ (negb \o _))/= -dvdn2 andbC -muln2.
by case: dvdnP => //= -[k ->]; rewrite mulnK// if_nth ?leqVgt.
Qed.

Lemma sum_odd_poly p :
  \sum_(i < size p | odd i) p`_i *: 'X^i = (odd_poly p \Po 'X^2) * 'X.
Proof.
apply/polyP => i; rewrite coefMX coef_comp_poly_Xn// coef_sumMXn coef_odd_poly/=.
case: i => [|i]//=; first by rewrite big_andbC big1// => -[[|j]//].
rewrite big_ord1_cond_eq/= -dvdn2 andbC -muln2.
by case: dvdnP => //= -[k ->]; rewrite mulnK// if_nth ?leqVgt.
Qed.

(* Decomposition in odd and even part                                         *)
Lemma poly_even_odd p : even_poly p \Po 'X^2 + (odd_poly p \Po 'X^2) * 'X = p.
Proof.
rewrite -sum_even_poly -sum_odd_poly addrC -(bigID _ xpredT).
by rewrite -[RHS]coefK poly_def.
Qed.

(* take and drop for polynomials                                              *)

Definition take_poly m p := \poly_(i < m) p`_i.

Lemma size_take_poly m p : size (take_poly m p) <= m.
Proof. exact: size_poly. Qed.

Lemma coef_take_poly m p i : (take_poly m p)`_i = if i < m then p`_i else 0.
Proof. exact: coef_poly. Qed.

Lemma take_poly_id m p : size p <= m -> take_poly m p = p.
Proof.
move=> /leq_trans gep; apply/polyP => i; rewrite coef_poly if_nth//=.
by case: ltnP => // /gep->.
Qed.

Lemma take_polyD m p q : take_poly m (p + q) = take_poly m p + take_poly m q.
Proof.
by apply/polyP => i; rewrite !(coefD, coef_poly); case: leqP; rewrite ?add0r.
Qed.

Lemma take_polyZ k m p : take_poly m (k *: p) = k *: take_poly m p.
Proof.
apply/polyP => i; rewrite !(coefZ, coef_take_poly); case: leqP => //.
by rewrite mulr0.
Qed.

Fact take_poly_is_linear m : linear (take_poly m).
Proof. by move=> k p q; rewrite take_polyD take_polyZ. Qed.

HB.instance Definition _ m :=
  GRing.isLinear.Build R {poly R} {poly R} _ (take_poly m)
    (take_poly_is_linear m).

Lemma take_poly_sum m I r P (p : I -> {poly R}) :
  take_poly m (\sum_(i <- r | P i) p i) = \sum_(i <- r| P i) take_poly m (p i).
Proof. exact: linear_sum. Qed.

Lemma take_poly0l p : take_poly 0 p = 0.
Proof. exact/size_poly_leq0P/size_take_poly. Qed.

Lemma take_poly0r m : take_poly m 0 = 0.
Proof. exact: linear0. Qed.

Lemma take_polyMXn m n p :
  take_poly m (p * 'X^n) = take_poly (m - n) p * 'X^n.
Proof.
have [->|/eqP p_neq0] := p =P 0; first by rewrite !(mul0r, take_poly0r).
apply/polyP => i; rewrite !(coef_take_poly, coefMXn).
by have [iLn|nLi] := leqP n i; rewrite ?if_same// ltn_sub2rE.
Qed.

Lemma take_polyMXn_0 n p : take_poly n (p * 'X^n) = 0.
Proof. by rewrite take_polyMXn subnn take_poly0l mul0r. Qed.

Lemma take_polyDMXn n p q : size p <= n -> take_poly n (p + q * 'X^n) = p.
Proof. by move=> ?; rewrite take_polyD take_poly_id// take_polyMXn_0 addr0. Qed.

Definition drop_poly m p := \poly_(i < size p - m) p`_(i + m).

Lemma coef_drop_poly m p i : (drop_poly m p)`_i = p`_(i + m).
Proof. by rewrite coef_poly ltn_subRL addnC if_nth ?leqVgt. Qed.

Lemma drop_poly_eq0 m p : size p <= m -> drop_poly m p = 0.
Proof.
move=> sLm; apply/polyP => i; rewrite coef_poly coef0 ltn_subRL addnC.
by rewrite if_nth ?leqVgt// nth_default// (leq_trans _ (leq_addl _ _)).
Qed.

Lemma size_drop_poly n p : size (drop_poly n p) = (size p - n)%N.
Proof.
have [pLn|nLp] := leqP (size p) n.
  by rewrite (eqP pLn) drop_poly_eq0 ?size_poly0.
have p_neq0 : p != 0 by rewrite -size_poly_gt0 (leq_trans _ nLp).
by rewrite size_poly_eq// predn_sub subnK ?lead_coef_eq0// -ltnS -polySpred.
Qed.

Lemma sum_drop_poly n p :
  \sum_(n <= i < size p) p`_i *: 'X^i = drop_poly n p * 'X^n.
Proof.
rewrite (big_addn 0) big_mkord /drop_poly poly_def mulr_suml.
by apply: eq_bigr => i _; rewrite exprD scalerAl.
Qed.

Lemma drop_polyD m p q : drop_poly m (p + q) = drop_poly m p + drop_poly m q.
Proof. by apply/polyP => i; rewrite coefD !coef_drop_poly coefD. Qed.

Lemma drop_polyZ k m p : drop_poly m (k *: p) = k *: drop_poly m p.
Proof. by apply/polyP => i; rewrite coefZ !coef_drop_poly coefZ. Qed.

Fact drop_poly_is_linear m : linear (drop_poly m).
Proof. by move=> k p q; rewrite drop_polyD drop_polyZ. Qed.

HB.instance Definition _ m :=
  GRing.isLinear.Build R {poly R} {poly R} _ (drop_poly m)
    (drop_poly_is_linear m).

Lemma drop_poly_sum m I r P (p : I -> {poly R}) :
  drop_poly m (\sum_(i <- r | P i) p i) = \sum_(i <- r | P i) drop_poly m (p i).
Proof. exact: linear_sum. Qed.

Lemma drop_poly0l p : drop_poly 0 p = p.
Proof. by apply/polyP => i; rewrite coef_poly subn0 addn0 if_nth ?leqVgt. Qed.

Lemma drop_poly0r m : drop_poly m 0 = 0. Proof. exact: linear0. Qed.

Lemma drop_polyMXn m n p :
  drop_poly m (p * 'X^n) = drop_poly (m - n) p * 'X^(n - m).
Proof.
have [->|p_neq0] := eqVneq p 0; first by rewrite mul0r !drop_poly0r mul0r.
apply/polyP => i; rewrite !(coefMXn, coef_drop_poly) ltn_subRL [(m + i)%N]addnC.
have [i_small|i_big]// := ltnP; congr nth.
by have [mn|/ltnW mn] := leqP m n;
   rewrite (eqP mn) (addn0, subn0) (subnBA, addnBA).
Qed.

Lemma drop_polyMXn_id n p : drop_poly n (p * 'X^ n) = p.
Proof. by rewrite drop_polyMXn subnn drop_poly0l expr0 mulr1. Qed.

Lemma drop_polyDMXn n p q : size p <= n -> drop_poly n (p + q * 'X^n) = q.
Proof. by move=> ?; rewrite drop_polyD drop_poly_eq0// drop_polyMXn_id add0r. Qed.

Lemma poly_take_drop n p : take_poly n p + drop_poly n p * 'X^n = p.
Proof.
apply/polyP => i; rewrite coefD coefMXn coef_take_poly coef_drop_poly.
by case: ltnP => ni; rewrite ?addr0 ?add0r//= subnK.
Qed.

Lemma eqp_take_drop n p q :
  take_poly n p = take_poly n q -> drop_poly n p = drop_poly n q -> p = q.
Proof.
by move=> tpq dpq; rewrite -[p](poly_take_drop n) -[q](poly_take_drop n) tpq dpq.
Qed.

End Surgery.

Definition coefE :=
  (coef0, coef1, coefC, coefX, coefXn, coef_sumMXn,
   coefZ, coefMC, coefCM, coefXnM, coefMXn, coefXM, coefMX, coefMNn, coefMn,
   coefN, coefB, coefD, coef_even_poly, coef_odd_poly,
   coef_take_poly, coef_drop_poly, coef_cons, coef_Poly, coef_poly,
   coef_deriv, coef_nderivn, coef_derivn, coef_map, coef_sum,
   coef_comp_poly_Xn, coef_comp_poly).

Section PolynomialComRing.

Variable R : comRingType.
Implicit Types p q : {poly R}.

Fact poly_mul_comm p q : p * q = q * p.
Proof.
apply/polyP=> i; rewrite coefM coefMr.
by apply: eq_bigr => j _; rewrite mulrC.
Qed.

HB.instance Definition _ := GRing.Ring_hasCommutativeMul.Build (polynomial R)
  poly_mul_comm.
HB.instance Definition _ := GRing.Lalgebra_isComAlgebra.Build R (polynomial R).

Lemma coef_prod_XsubC (ps : seq R) (n : nat) :
  (n <= size ps)%N ->
  (\prod_(p <- ps) ('X - p%:P))`_n =
  (-1) ^+ (size ps - n)%N *
    \sum_(I in {set 'I_(size ps)} | #|I| == (size ps - n)%N)
        \prod_(i in I) ps`_i.
Proof.
move=> nle.
under eq_bigr => i _ do rewrite addrC -raddfN/=.
rewrite -{1}(in_tupleE ps) -(map_tnth_enum (_ ps)) big_map.
rewrite enumT bigA_distr /= coef_sum.
transitivity (\sum_(I in {set 'I_(size ps)}) if #|I| == (size ps - n)%N then
                  \prod_(i < size ps | i \in I) - ps`_i else 0).
  apply eq_bigr => I _.
  rewrite big_if/= big_const iter_mulr_1 -rmorph_prod/= coefCM coefXn.
  under eq_bigr => i _ do rewrite (tnth_nth 0)/=.
  rewrite -[#|I| == _](eqn_add2r n) subnK//.
  rewrite -[X in (_ + _)%N == X]card_ord -(cardC I) eqn_add2l.
  by case: ifP; rewrite ?mulr1 ?mulr0.
by rewrite -big_mkcond mulr_sumr/=; apply: eq_bigr => I /eqP <-; rewrite prodrN.
Qed.

Lemma coefPn_prod_XsubC (ps : seq R) : size ps != 0 ->
  (\prod_(p <- ps) ('X - p%:P))`_((size ps).-1) =
  - \sum_(p <- ps) p.
Proof.
rewrite coef_prod_XsubC ?leq_pred// => ps0.
have -> : (size ps - (size ps).-1 = 1)%N.
  by move: ps0; case: (size ps) => // n _; exact: subSnn.
rewrite expr1 mulN1r; congr GRing.opp.
set f : 'I_(size ps) -> {set 'I_(size ps)} := fun a => [set a].
transitivity (\sum_(I in imset f (mem setT)) \prod_(i in I) ps`_i).
  apply: congr_big => // I /=.
  by apply/cards1P/imsetP => [[a ->] | [a _ ->]]; exists a.
rewrite big_imset/=; last first.
  by move=> i j _ _ ij; apply/set1P; rewrite -/(f j) -ij set11.
rewrite -[in RHS](in_tupleE ps) -(map_tnth_enum (_ ps)) big_map enumT.
apply: congr_big => // i; first exact: in_setT.
by rewrite big_set1 (tnth_nth 0).
Qed.

Lemma coef0_prod_XsubC (ps : seq R) :
  (\prod_(p <- ps) ('X - p%:P))`_0 =
  (-1) ^+ (size ps) * \prod_(p <- ps) p.
Proof.
rewrite coef_prod_XsubC// subn0; congr GRing.mul.
transitivity (\sum_(I in [set setT : {set 'I_(size ps)}]) \prod_(i in I) ps`_i).
  apply: congr_big =>// i/=.
  apply/idP/set1P => [/eqP cardE | ->]; last by rewrite cardsT card_ord.
  by apply/eqP; rewrite eqEcard subsetT cardsT card_ord cardE leqnn.
rewrite big_set1 -[in RHS](in_tupleE ps) -(map_tnth_enum (_ ps)) big_map enumT.
apply: congr_big => // i; first exact: in_setT.
by rewrite (tnth_nth 0).
Qed.

Lemma hornerM p q x : (p * q).[x] = p.[x] * q.[x].
Proof. by rewrite hornerM_comm //; apply: mulrC. Qed.

Lemma horner_exp p x n : (p ^+ n).[x] = p.[x] ^+ n.
Proof. by rewrite horner_exp_comm //; apply: mulrC. Qed.

Lemma horner_prod I r (P : pred I) (F : I -> {poly R}) x :
  (\prod_(i <- r | P i) F i).[x] = \prod_(i <- r | P i) (F i).[x].
Proof. by elim/big_rec2: _ => [|i _ p _ <-]; rewrite (hornerM, hornerC). Qed.

Definition hornerE :=
  (hornerD, hornerN, hornerX, hornerC, horner_exp,
   simp, hornerCM, hornerZ, hornerM, horner_cons).

Definition horner_eval (x : R) := horner^~ x.
Lemma horner_evalE x p : horner_eval x p = p.[x]. Proof. by []. Qed.

Fact horner_eval_is_linear x : linear_for *%R (horner_eval x).
Proof.
have cxid: commr_rmorph idfun x by apply: mulrC.
have evalE : horner_eval x =1 horner_morph cxid.
  by move=> p; congr _.[x]; rewrite map_poly_id.
by move=> c p q; rewrite !evalE linearP.
Qed.

Fact horner_eval_is_multiplicative x : multiplicative (horner_eval x).
Proof.
have cxid: commr_rmorph idfun x by apply: mulrC.
have evalE : horner_eval x =1 horner_morph cxid.
  by move=> p; congr _.[x]; rewrite map_poly_id.
by split=> [p q|]; rewrite !evalE ?rmorph1// rmorphM.
Qed.

HB.instance Definition _ x :=
  GRing.isLinear.Build R {poly R} R _ (horner_eval x)
    (horner_eval_is_linear x).

HB.instance Definition _ x :=
  GRing.isMultiplicative.Build {poly R} R (horner_eval x)
    (horner_eval_is_multiplicative x).

Section HornerAlg.

Variable A : algType R. (* For univariate polys, commutativity is not needed *)

Section Defs.

Variable a : A.

Lemma in_alg_comm : commr_rmorph (in_alg A) a.
Proof. move=> r /=; by rewrite /GRing.comm comm_alg. Qed.

Definition horner_alg := horner_morph in_alg_comm.

Lemma horner_algC c : horner_alg c%:P = c%:A.
Proof. exact: horner_morphC. Qed.

Lemma horner_algX : horner_alg 'X = a.
Proof. exact:  horner_morphX. Qed.

HB.instance Definition _ := GRing.LRMorphism.on horner_alg.

End Defs.

Variable (pf : {lrmorphism {poly R} -> A}).

Lemma poly_alg_initial : pf =1 horner_alg (pf 'X).
Proof.
apply: poly_ind => [|p a IHp]; first by rewrite !rmorph0.
rewrite !rmorphD !rmorphM /= -{}IHp horner_algC ?horner_algX.
by rewrite -alg_polyC rmorph_alg.
Qed.

End HornerAlg.

Fact comp_poly_multiplicative q : multiplicative (comp_poly q).
Proof.
split=> [p1 p2|]; last by rewrite comp_polyC.
by rewrite /comp_poly rmorphM hornerM_comm //; apply: mulrC.
Qed.
HB.instance Definition _ q := GRing.isMultiplicative.Build _ _ (comp_poly q)
  (comp_poly_multiplicative q).

Lemma comp_polyM p q r : (p * q) \Po r = (p \Po r) * (q \Po r).
Proof. exact: rmorphM. Qed.

Lemma comp_polyA p q r : p \Po (q \Po r) = (p \Po q) \Po r.
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !comp_polyC.
by rewrite !comp_polyD !comp_polyM !comp_polyX IHp !comp_polyC.
Qed.

Lemma horner_comp p q x : (p \Po q).[x] = p.[q.[x]].
Proof. by apply: polyC_inj; rewrite -!comp_polyCr comp_polyA. Qed.

Lemma root_comp p q x : root (p \Po q) x = root p (q.[x]).
Proof. by rewrite !rootE horner_comp. Qed.

Lemma deriv_comp p q : (p \Po q) ^`() = (p ^`() \Po q) * q^`().
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(deriv0, comp_poly0) mul0r.
rewrite comp_poly_MXaddC derivD derivC derivM IHp derivMXaddC comp_polyD.
by rewrite comp_polyM comp_polyX addr0 addrC mulrAC -mulrDl.
Qed.

Lemma deriv_exp p n : (p ^+ n)^`() = p^`() * p ^+ n.-1 *+ n.
Proof.
elim: n => [|n IHn]; first by rewrite expr0 mulr0n derivC.
by rewrite exprS derivM {}IHn (mulrC p) mulrnAl -mulrA -exprSr mulrS; case n.
Qed.

Definition derivCE := (derivE, deriv_exp).

End PolynomialComRing.

Section PolynomialIdomain.

(* Integral domain structure on poly *)
Variable R : idomainType.

Implicit Types (a b x y : R) (p q r m : {poly R}).

Lemma size_mul p q : p != 0 -> q != 0 -> size (p * q) = (size p + size q).-1.
Proof.
by move=> nz_p nz_q; rewrite -size_proper_mul ?mulf_neq0 ?lead_coef_eq0.
Qed.

Fact poly_idomainAxiom p q : p * q = 0 -> (p == 0) || (q == 0).
Proof.
move=> pq0; apply/norP=> [[p_nz q_nz]]; move/eqP: (size_mul p_nz q_nz).
by rewrite eq_sym pq0 size_poly0 (polySpred p_nz) (polySpred q_nz) addnS.
Qed.

Definition poly_unit : pred {poly R} :=
  fun p => (size p == 1) && (p`_0 \in GRing.unit).

Definition poly_inv p := if p \in poly_unit then (p`_0)^-1%:P else p.

Fact poly_mulVp : {in poly_unit, left_inverse 1 poly_inv *%R}.
Proof.
move=> p Up; rewrite /poly_inv Up.
by case/andP: Up => /size_poly1P[c _ ->]; rewrite coefC -polyCM => /mulVr->.
Qed.

Fact poly_intro_unit p q : q * p = 1 -> p \in poly_unit.
Proof.
move=> pq1; apply/andP; split; last first.
  apply/unitrP; exists q`_0.
  by rewrite 2!mulrC -!/(coefp 0 _) -rmorphM pq1 rmorph1.
have: size (q * p) == 1 by rewrite pq1 size_poly1.
have [-> | nz_p] := eqVneq p 0; first by rewrite mulr0 size_poly0.
have [-> | nz_q] := eqVneq q 0; first by rewrite mul0r size_poly0.
rewrite size_mul // (polySpred nz_p) (polySpred nz_q) addnS addSn !eqSS.
by rewrite addn_eq0 => /andP[].
Qed.

Fact poly_inv_out : {in [predC poly_unit], poly_inv =1 id}.
Proof. by rewrite /poly_inv => p /negbTE/= ->. Qed.

HB.instance Definition _ := GRing.ComRing_hasMulInverse.Build (polynomial R)
  poly_mulVp poly_intro_unit poly_inv_out.

HB.instance Definition _ := GRing.ComUnitRing_isIntegral.Build (polynomial R)
  poly_idomainAxiom.

Lemma poly_unitE p :
  (p \in GRing.unit) = (size p == 1) && (p`_0 \in GRing.unit).
Proof. by []. Qed.

Lemma poly_invE p : p ^-1 = if p \in GRing.unit then (p`_0)^-1%:P else p.
Proof. by []. Qed.

Lemma polyCV c : c%:P^-1 = (c^-1)%:P.
Proof.
have [/rmorphV-> // | nUc] := boolP (c \in GRing.unit).
by rewrite !invr_out // poly_unitE coefC (negbTE nUc) andbF.
Qed.

Lemma rootM p q x : root (p * q) x = root p x || root q x.
Proof. by rewrite !rootE hornerM mulf_eq0. Qed.

Lemma rootZ x a p : a != 0 -> root (a *: p) x = root p x.
Proof. by move=> nz_a; rewrite -mul_polyC rootM rootC (negPf nz_a). Qed.

Lemma root_exp p n a: comm_poly p a -> (0 < n)%N -> root (p ^+ n) a = root p a.
Proof. by move=> ? n0; rewrite !rootE horner_exp_comm// expf_eq0 n0. Qed.

Lemma size_scale a p : a != 0 -> size (a *: p) = size p.
Proof. by move/lregP/lreg_size->. Qed.

Lemma size_Cmul a p : a != 0 -> size (a%:P * p) = size p.
Proof. by rewrite mul_polyC => /size_scale->. Qed.

Lemma lead_coefM p q : lead_coef (p * q) = lead_coef p * lead_coef q.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite !(mul0r, lead_coef0).
have [-> | nz_q] := eqVneq q 0; first by rewrite !(mulr0, lead_coef0).
by rewrite lead_coef_proper_mul // mulf_neq0 ?lead_coef_eq0.
Qed.

Lemma lead_coef_prod I rI (P : {pred I}) (p : I -> {poly R}) :
  lead_coef (\prod_(i <- rI | P i) p i) = \prod_(i <- rI | P i) lead_coef (p i).
Proof. by apply/big_morph/lead_coef1; apply: lead_coefM. Qed.

Lemma lead_coefZ a p : lead_coef (a *: p) = a * lead_coef p.
Proof. by rewrite -mul_polyC lead_coefM lead_coefC. Qed.

Lemma scale_poly_eq0 a p : (a *: p == 0) = (a == 0) || (p == 0).
Proof. by rewrite -mul_polyC mulf_eq0 polyC_eq0. Qed.

Lemma size_prod (I : finType) (P : pred I) (F : I -> {poly R}) :
    (forall i, P i -> F i != 0) ->
  size (\prod_(i | P i) F i) = ((\sum_(i | P i) size (F i)).+1 - #|P|)%N.
Proof.
move=> nzF; transitivity (\sum_(i | P i) (size (F i)).-1).+1; last first.
  apply: canRL (addKn _) _; rewrite addnS -sum1_card -big_split /=.
  by congr _.+1; apply: eq_bigr => i /nzF/polySpred.
elim/big_rec2: _ => [|i d p /nzF nzFi IHp]; first by rewrite size_poly1.
by rewrite size_mul // -?size_poly_eq0 IHp // addnS polySpred.
Qed.

Lemma size_prod_seq (I : eqType)  (s : seq I) (F : I -> {poly R}) :
    (forall i, i \in s -> F i != 0) ->
  size (\prod_(i <- s) F i) = ((\sum_(i <- s) size (F i)).+1 - size s)%N.
Proof.
move=> nzF; rewrite big_tnth size_prod; last by move=> i; rewrite nzF ?mem_tnth.
by rewrite cardT /= size_enum_ord [in RHS]big_tnth.
Qed.

Lemma size_mul_eq1 p q : (size (p * q) == 1) = ((size p == 1) && (size q == 1)).
Proof.
have [->|pNZ] := eqVneq p 0; first by rewrite mul0r size_poly0.
have [->|qNZ] := eqVneq q 0; first by rewrite mulr0 size_poly0 andbF.
rewrite size_mul //.
by move: pNZ qNZ; rewrite -!size_poly_gt0; (do 2 case: size) => //= n [|[|]].
Qed.

Lemma size_prod_seq_eq1 (I : eqType) (s : seq I) (P : pred I) (F : I -> {poly R}) :
  reflect (forall i, P i && (i \in s) -> size (F i) = 1)
          (size (\prod_(i <- s | P i) F i) == 1%N).
Proof.
rewrite (big_morph _ (id1:=true) size_mul_eq1) ?size_polyC ?oner_neq0//.
rewrite big_all_cond; apply/(iffP allP).
  by move=> h i /andP[Pi ins]; apply/eqP/(implyP (h i ins) Pi).
by move=> h i ins; apply/implyP => Pi; rewrite h ?Pi.
Qed.

Lemma size_prod_eq1 (I : finType) (P : pred I) (F : I -> {poly R}) :
  reflect (forall i, P i -> size (F i) = 1)
          (size (\prod_(i | P i) F i) == 1).
Proof.
apply: (iffP (size_prod_seq_eq1 _ _ _)) => Hi i.
  by move=> Pi; apply: Hi; rewrite Pi /= mem_index_enum.
by rewrite mem_index_enum andbT; apply: Hi.
Qed.

Lemma size_exp p n : (size (p ^+ n)).-1 = ((size p).-1 * n)%N.
Proof.
elim: n => [|n IHn]; first by rewrite size_poly1 muln0.
have [-> | nz_p] := eqVneq p 0; first by rewrite exprS mul0r size_poly0.
rewrite exprS size_mul ?expf_neq0 // mulnS -{}IHn.
by rewrite polySpred // [size (p ^+ n)]polySpred ?expf_neq0 ?addnS.
Qed.

Lemma lead_coef_exp p n : lead_coef (p ^+ n) = lead_coef p ^+ n.
Proof.
elim: n => [|n IHn]; first by rewrite !expr0 lead_coef1.
by rewrite !exprS lead_coefM IHn.
Qed.

Lemma root_prod_XsubC rs x :
  root (\prod_(a <- rs) ('X - a%:P)) x = (x \in rs).
Proof.
elim: rs => [|a rs IHrs]; first by rewrite rootE big_nil hornerC oner_eq0.
by rewrite big_cons rootM IHrs root_XsubC.
Qed.

Lemma root_exp_XsubC n a x : root (('X - a%:P) ^+ n.+1) x = (x == a).
Proof. by rewrite rootE horner_exp expf_eq0 [_ == 0]root_XsubC. Qed.

Lemma size_comp_poly p q :
  (size (p \Po q)).-1 = ((size p).-1 * (size q).-1)%N.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite comp_poly0 size_poly0.
have [/size1_polyC-> | nc_q] := leqP (size q) 1.
  by rewrite comp_polyCr !size_polyC -!sub1b -!subnS muln0.
have nz_q: q != 0 by rewrite -size_poly_eq0 -(subnKC nc_q).
rewrite mulnC comp_polyE (polySpred nz_p) /= big_ord_recr /= addrC.
rewrite size_addl size_scale ?lead_coef_eq0 ?size_exp //=.
rewrite [ltnRHS]polySpred ?expf_neq0 // ltnS size_exp.
rewrite (leq_trans (size_sum _ _ _)) //; apply/bigmax_leqP => i _.
rewrite (leq_trans (size_scale_leq _ _)) // polySpred ?expf_neq0 //.
by rewrite size_exp -(subnKC nc_q) ltn_pmul2l.
Qed.

Lemma lead_coef_comp p q : size q > 1 ->
  lead_coef (p \Po q) = (lead_coef p) * lead_coef q ^+ (size p).-1.
Proof.
move=> q_gt1; rewrite !lead_coefE coef_comp_poly size_comp_poly.
have [->|nz_p] := eqVneq p 0; first by rewrite size_poly0 big_ord0 coef0 mul0r.
rewrite polySpred //= big_ord_recr /= big1 ?add0r => [|i _].
  by rewrite -!lead_coefE -lead_coef_exp !lead_coefE size_exp mulnC.
rewrite [X in _ * X]nth_default ?mulr0 ?(leq_trans (size_exp_leq _ _)) //.
by rewrite mulnC ltn_mul2r -subn1 subn_gt0 q_gt1 /=.
Qed.

Lemma comp_poly_eq0 p q : size q > 1 -> (p \Po q == 0) = (p == 0).
Proof.
move=> sq_gt1; rewrite -!lead_coef_eq0 lead_coef_comp //.
rewrite mulf_eq0 expf_eq0 !lead_coef_eq0 -[q == 0]size_poly_leq0.
by rewrite [_ <= 0]leqNgt (leq_ltn_trans _ sq_gt1) ?andbF ?orbF.
Qed.

Lemma size_comp_poly2 p q : size q = 2 -> size (p \Po q) = size p.
Proof.
move=> sq2; have [->|pN0] := eqVneq p 0; first by rewrite comp_polyC.
by rewrite polySpred ?size_comp_poly ?comp_poly_eq0 ?sq2 // muln1 polySpred.
Qed.

Lemma comp_poly2_eq0 p q : size q = 2 -> (p \Po q == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 => /size_comp_poly2->. Qed.

Theorem max_poly_roots p rs :
  p != 0 -> all (root p) rs -> uniq rs -> size rs < size p.
Proof.
elim: rs p => [p pn0 _ _ | r rs ihrs p pn0] /=; first by rewrite size_poly_gt0.
case/andP => rpr arrs /andP [rnrs urs]; case/factor_theorem: rpr => q epq.
have [q0 | ?] := eqVneq q 0; first by move: pn0; rewrite epq q0 mul0r eqxx.
have -> : size p = (size q).+1.
   by rewrite epq size_Mmonic ?monicXsubC // size_XsubC addnC.
suff /eq_in_all h : {in rs, root q =1 root p} by apply: ihrs => //; rewrite h.
move=> x xrs; rewrite epq rootM root_XsubC orbC; case: (eqVneq x r) => // exr.
by move: rnrs; rewrite -exr xrs.
Qed.

Lemma roots_geq_poly_eq0 p (rs : seq R) : all (root p) rs -> uniq rs ->
  (size rs >= size p)%N -> p = 0.
Proof. by move=> ??; apply: contraTeq => ?; rewrite leqNgt max_poly_roots. Qed.

End PolynomialIdomain.

(* FIXME: these are seamingly artificial ways to close the inheritance graph *)
(*    We make parameters more and more precise to trigger completion by HB   *)
HB.instance Definition _ (R : countRingType) :=
  [Countable of polynomial R by <:].
HB.instance Definition _ (R : countComRingType) :=
  [Countable of polynomial R by <:].
HB.instance Definition _ (R : countUnitRingType) :=
  [Countable of polynomial R by <:].
HB.instance Definition _ (R : countComUnitRingType) :=
  [Countable of polynomial R by <:].
HB.instance Definition _ (R : countIdomainType) :=
  [Countable of polynomial R by <:].

Section MapFieldPoly.

Variables (F : fieldType) (R : ringType) (f : {rmorphism F -> R}).

Local Notation "p ^f" := (map_poly f p) : ring_scope.

Lemma size_map_poly p : size p^f = size p.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite rmorph0 !size_poly0.
by rewrite size_poly_eq // fmorph_eq0 // lead_coef_eq0.
Qed.

Lemma lead_coef_map p : lead_coef p^f = f (lead_coef p).
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite !(rmorph0, lead_coef0).
by rewrite lead_coef_map_eq // fmorph_eq0 // lead_coef_eq0.
Qed.

Lemma map_poly_eq0 p : (p^f == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 size_map_poly. Qed.

Lemma map_poly_inj : injective (map_poly f).
Proof.
move=> p q eqfpq; apply/eqP; rewrite -subr_eq0 -map_poly_eq0.
by rewrite rmorphB /= eqfpq subrr.
Qed.

Lemma map_monic p : (p^f \is monic) = (p \is monic).
Proof. by rewrite [in LHS]monicE lead_coef_map fmorph_eq1. Qed.

Lemma map_poly_com p x : comm_poly p^f (f x).
Proof. exact: map_comm_poly (mulrC x _). Qed.

Lemma fmorph_root p x : root p^f (f x) = root p x.
Proof. by rewrite rootE horner_map // fmorph_eq0. Qed.

Lemma fmorph_unity_root n z : n.-unity_root (f z) = n.-unity_root z.
Proof. by rewrite !unity_rootE -(inj_eq (fmorph_inj f)) rmorphXn ?rmorph1. Qed.

Lemma fmorph_primitive_root n z :
  n.-primitive_root (f z) = n.-primitive_root z.
Proof.
by congr (_ && _); apply: eq_forallb => i; rewrite fmorph_unity_root.
Qed.

End MapFieldPoly.

Arguments map_poly_inj {F R} f [p1 p2] : rename.

Section MaxRoots.

Variable R : unitRingType.
Implicit Types (x y : R) (rs : seq R) (p : {poly R}).

Definition diff_roots (x y : R) := (x * y == y * x) && (y - x \in GRing.unit).

Fixpoint uniq_roots rs :=
  if rs is x :: rs' then all (diff_roots x) rs' && uniq_roots rs' else true.

Lemma uniq_roots_prod_XsubC p rs :
    all (root p) rs -> uniq_roots rs ->
  exists q, p = q * \prod_(z <- rs) ('X - z%:P).
Proof.
elim: rs => [|z rs IHrs] /=; first by rewrite big_nil; exists p; rewrite mulr1.
case/andP=> rpz rprs /andP[drs urs]; case: IHrs => {urs rprs}// q def_p.
have [|q' def_q] := factor_theorem q z _; last first.
  by exists q'; rewrite big_cons mulrA -def_q.
rewrite {p}def_p in rpz.
elim/last_ind: rs drs rpz => [|rs t IHrs] /=; first by rewrite big_nil mulr1.
rewrite all_rcons => /andP[/andP[/eqP czt Uzt] /IHrs{}IHrs].
rewrite -cats1 big_cat big_seq1 /= mulrA rootE hornerM_comm; last first.
  by rewrite /comm_poly hornerXsubC mulrBl mulrBr czt.
rewrite hornerXsubC -opprB mulrN oppr_eq0 -(mul0r (t - z)).
by rewrite (inj_eq (mulIr Uzt)) => /IHrs.
Qed.

Theorem max_ring_poly_roots p rs :
  p != 0 -> all (root p) rs -> uniq_roots rs -> size rs < size p.
Proof.
move=> nz_p _ /(@uniq_roots_prod_XsubC p)[// | q def_p]; rewrite def_p in nz_p *.
have nz_q: q != 0 by apply: contraNneq nz_p => ->; rewrite mul0r.
rewrite size_Mmonic ?monic_prod_XsubC // (polySpred nz_q) addSn /=.
by rewrite size_prod_XsubC leq_addl.
Qed.

Lemma all_roots_prod_XsubC p rs :
    size p = (size rs).+1 -> all (root p) rs -> uniq_roots rs ->
  p = lead_coef p *: \prod_(z <- rs) ('X - z%:P).
Proof.
move=> size_p /uniq_roots_prod_XsubC def_p Urs.
case/def_p: Urs => q -> {p def_p} in size_p *.
have [q0 | nz_q] := eqVneq q 0; first by rewrite q0 mul0r size_poly0 in size_p.
have{q nz_q size_p} /size_poly1P[c _ ->]: size q == 1.
  rewrite -(eqn_add2r (size rs)) add1n -size_p.
  by rewrite size_Mmonic ?monic_prod_XsubC // size_prod_XsubC addnS.
by rewrite lead_coef_Mmonic ?monic_prod_XsubC // lead_coefC mul_polyC.
Qed.

End MaxRoots.

Section FieldRoots.

Variable F : fieldType.
Implicit Types (p : {poly F}) (rs : seq F).

Lemma poly2_root p : size p = 2 -> {r | root p r}.
Proof.
case: p => [[|p0 [|p1 []]] //= nz_p1]; exists (- p0 / p1).
by rewrite /root addr_eq0 /= mul0r add0r mulrC divfK ?opprK.
Qed.

Lemma uniq_rootsE rs : uniq_roots rs = uniq rs.
Proof.
elim: rs => //= r rs ->; congr (_ && _); rewrite -has_pred1 -all_predC.
by apply: eq_all => t; rewrite /diff_roots mulrC eqxx unitfE subr_eq0.
Qed.

Lemma root_ZXsubC (a b r : F) : a != 0 ->
  root (a *: 'X - b%:P) r = (r == b / a).
Proof.
move=> a0; rewrite rootE !hornerE.
by rewrite -[r in RHS]divr1 eqr_div ?oner_neq0// mulr1 mulrC subr_eq0.
Qed.

Section UnityRoots.

Variable n : nat.

Lemma max_unity_roots rs :
  n > 0 -> all n.-unity_root rs -> uniq rs -> size rs <= n.
Proof.
move=> n_gt0 rs_n_1 Urs; have szPn := size_XnsubC (1 : F) n_gt0.
by rewrite -ltnS -szPn max_poly_roots -?size_poly_eq0 ?szPn.
Qed.

Lemma mem_unity_roots rs :
    n > 0 -> all n.-unity_root rs -> uniq rs -> size rs = n ->
  n.-unity_root =i rs.
Proof.
move=> n_gt0 rs_n_1 Urs sz_rs_n x; rewrite -topredE /=.
apply/idP/idP=> xn1; last exact: (allP rs_n_1).
apply: contraFT (ltnn n) => not_rs_x.
by rewrite -{1}sz_rs_n (@max_unity_roots (x :: rs)) //= ?xn1 ?not_rs_x.
Qed.

(* Showing the existence of a primitive root requires the theory in cyclic. *)

Variable z : F.
Hypothesis prim_z : n.-primitive_root z.

Let zn := [seq z ^+ i | i <- index_iota 0 n].

Lemma factor_Xn_sub_1 : \prod_(0 <= i < n) ('X - (z ^+ i)%:P) = 'X^n - 1.
Proof.
transitivity (\prod_(w <- zn) ('X - w%:P)); first by rewrite big_map.
have n_gt0: n > 0 := prim_order_gt0 prim_z.
rewrite (@all_roots_prod_XsubC _ ('X^n - 1) zn); first 1 last.
- by rewrite size_XnsubC // size_map size_iota subn0.
- apply/allP=> _ /mapP[i _ ->] /=; rewrite rootE !hornerE.
  by rewrite exprAC (prim_expr_order prim_z) expr1n subrr.
- rewrite uniq_rootsE map_inj_in_uniq ?iota_uniq // => i j.
  rewrite !mem_index_iota => ltin ltjn /eqP.
  by rewrite (eq_prim_root_expr prim_z) !modn_small // => /eqP.
by rewrite (monicP (monicXnsubC 1 n_gt0)) scale1r.
Qed.

Lemma prim_rootP x : x ^+ n = 1 -> {i : 'I_n | x = z ^+ i}.
Proof.
move=> xn1; pose logx := [pred i : 'I_n | x == z ^+ i].
case: (pickP logx) => [i /eqP-> | no_i]; first by exists i.
case: notF; suffices{no_i}: x \in zn.
  case/mapP=> i; rewrite mem_index_iota => lt_i_n def_x.
  by rewrite -(no_i (Ordinal lt_i_n)) /= -def_x.
rewrite -root_prod_XsubC big_map factor_Xn_sub_1.
by rewrite [root _ x]unity_rootE xn1.
Qed.

End UnityRoots.

End FieldRoots.

Section MapPolyRoots.

Variables (F : fieldType) (R : unitRingType) (f : {rmorphism F -> R}).

Lemma map_diff_roots x y : diff_roots (f x) (f y) = (x != y).
Proof.
rewrite /diff_roots -rmorphB // fmorph_unit // subr_eq0 //.
by rewrite rmorph_comm // eqxx eq_sym.
Qed.

Lemma map_uniq_roots s : uniq_roots (map f s) = uniq s.
Proof.
elim: s => //= x s ->; congr (_ && _); elim: s => //= y s ->.
by rewrite map_diff_roots -negb_or.
Qed.

End MapPolyRoots.

Section AutPolyRoot.
(* The action of automorphisms on roots of unity. *)

Variable F : fieldType.
Implicit Types u v : {rmorphism F -> F}.

Lemma aut_prim_rootP u z n :
  n.-primitive_root z -> {k | coprime k n & u z = z ^+ k}.
Proof.
move=> prim_z; have:= prim_z; rewrite -(fmorph_primitive_root u) => prim_uz.
have [[k _] /= def_uz] := prim_rootP prim_z (prim_expr_order prim_uz).
by exists k; rewrite // -(prim_root_exp_coprime _ prim_z) -def_uz.
Qed.

Lemma aut_unity_rootP u z n : n > 0 -> z ^+ n = 1 -> {k | u z = z ^+ k}.
Proof.
by move=> _ /prim_order_exists[// | m /(aut_prim_rootP u)[k]]; exists k.
Qed.

Lemma aut_unity_rootC u v z n : n > 0 -> z ^+ n = 1 -> u (v z) = v (u z).
Proof.
move=> n_gt0 /(aut_unity_rootP _ n_gt0) def_z.
have [[i def_uz] [j def_vz]] := (def_z u, def_z v).
by rewrite def_vz def_uz !rmorphXn /= def_vz def_uz exprAC.
Qed.

End AutPolyRoot.

Module UnityRootTheory.

Notation "n .-unity_root" := (root_of_unity n) : unity_root_scope.
Notation "n .-primitive_root" := (primitive_root_of_unity n) : unity_root_scope.
Open Scope unity_root_scope.

Definition unity_rootE := unity_rootE.
Definition unity_rootP := @unity_rootP.
Arguments unity_rootP {R n z}.

Definition prim_order_exists := prim_order_exists.
Notation prim_order_gt0 :=  prim_order_gt0.
Notation prim_expr_order := prim_expr_order.
Definition prim_expr_mod := prim_expr_mod.
Definition prim_order_dvd := prim_order_dvd.
Definition eq_prim_root_expr := eq_prim_root_expr.

Definition rmorph_unity_root := rmorph_unity_root.
Definition fmorph_unity_root := fmorph_unity_root.
Definition fmorph_primitive_root := fmorph_primitive_root.
Definition max_unity_roots := max_unity_roots.
Definition mem_unity_roots := mem_unity_roots.
Definition prim_rootP := prim_rootP.

End UnityRootTheory.

Module Export Pdeg2.

Module Export Field.

Section Pdeg2Field.
Variable F : fieldType.
Hypothesis nz2 : 2 != 0 :> F.

Variable p : {poly F}.
Hypothesis degp : size p = 3.

Let a := p`_2.
Let b := p`_1.
Let c := p`_0.

Let pneq0 : p != 0. Proof. by rewrite -size_poly_gt0 degp. Qed.
Let aneq0 : a != 0.
Proof. by move: pneq0; rewrite -lead_coef_eq0 lead_coefE degp. Qed.
Let a2neq0 : 2 * a != 0. Proof. by rewrite mulf_neq0. Qed.
Let sqa2neq0 : (2 * a) ^+ 2 != 0. Proof. exact: expf_neq0. Qed.

Let aa4 : 4 * a * a = (2 * a)^+2.
Proof. by rewrite expr2 mulrACA mulrA -natrM. Qed.

Let splitr (x : F) : x = x / 2 + x / 2.
Proof.
by apply: (mulIf nz2); rewrite -mulrDl mulfVK// mulr_natr mulr2n.
Qed.

Let pE : p = a *: 'X^2 + b *: 'X + c%:P.
Proof.
apply/polyP => + /[!coefE] => -[|[|[|i]]] /=; rewrite !Monoid.simpm//.
by rewrite nth_default// degp.
Qed.

Let delta := b ^+ 2 - 4 * a * c.

Lemma deg2_poly_canonical :
  p = a *: (('X + (b / (2 * a))%:P)^+2 - (delta / (4 * a ^+ 2))%:P).
Proof.
rewrite pE sqrrD -!addrA scalerDr; congr +%R; rewrite addrA scalerDr; congr +%R.
- rewrite -mulrDr -polyCD -!mul_polyC mulrA mulrAC -polyCM.
  by rewrite [a * _]mulrC mulrDl invfM -!mulrA mulVf// mulr1 -splitr.
- rewrite [a ^+ 2]expr2 mulrA aa4 -polyC_exp -polyCB expr_div_n -mulrBl subKr.
  by rewrite scale_polyC mulrCA mulrACA aa4 mulrCA mulfV// mulr1.
Qed.

Variable r : F.
Hypothesis r_sqrt_delta : r ^+ 2 = delta.

Let r1 := (- b - r) / (2 * a).
Let r2 := (- b + r) / (2 * a).

Lemma deg2_poly_factor : p = a *: ('X - r1%:P) * ('X - r2%:P).
Proof.
rewrite [p]deg2_poly_canonical//= -/a -/b -/c -/delta /r1 /r2.
rewrite ![(- b + _) * _]mulrDl 2!polyCD 2!opprD 2!addrA !mulNr !polyCN !opprK.
rewrite -scalerAl [in RHS]mulrC -subr_sqr -polyC_exp -[4]/(2 * 2)%:R natrM.
by rewrite -expr2 -exprMn [in RHS]exprMn exprVn r_sqrt_delta.
Qed.

Lemma deg2_poly_root1 : root p r1.
Proof.
apply/factor_theorem.
by exists (a *: ('X - r2%:P)); rewrite deg2_poly_factor -!scalerAl mulrC.
Qed.

Lemma deg2_poly_root2 : root p r2.
Proof.
apply/factor_theorem.
by exists (a *: ('X - r1%:P)); rewrite deg2_poly_factor -!scalerAl.
Qed.

End Pdeg2Field.
End Field.

Module FieldMonic.

Section Pdeg2FieldMonic.
Variable F : fieldType.
Hypothesis nz2 : 2 != 0 :> F.

Variable p : {poly F}.
Hypothesis degp : size p = 3.
Hypothesis monicp : p \is monic.

Let a := p`_2.
Let b := p`_1.
Let c := p`_0.

Let a1 : a = 1. Proof. by move: (monicP monicp); rewrite lead_coefE degp. Qed.

Let delta := b ^+ 2 - 4 * c.

Lemma deg2_poly_canonical : p = (('X + (b / 2)%:P)^+2 - (delta / 4)%:P).
Proof. by rewrite [p]deg2_poly_canonical// -/a a1 scale1r expr1n !mulr1. Qed.

Variable r : F.
Hypothesis r_sqrt_delta : r ^+ 2 = delta.

Let r1 := (- b - r) / 2.
Let r2 := (- b + r) / 2.

Lemma deg2_poly_factor : p = ('X - r1%:P) * ('X - r2%:P).
Proof.
by rewrite [p](@deg2_poly_factor _ _ _ _ r)// -/a a1 !mulr1 ?scale1r.
Qed.

Lemma deg2_poly_root1 : root p r1.
Proof.
rewrite /r1 -[2]mulr1 -[X in 2 * X]a1.
by apply: deg2_poly_root1; rewrite // -/a a1 mulr1.
Qed.

Lemma deg2_poly_root2 : root p r2.
Proof.
rewrite /r2 -[2]mulr1 -[X in 2 * X]a1.
by apply: deg2_poly_root2; rewrite // -/a a1 mulr1.
Qed.

End Pdeg2FieldMonic.
End FieldMonic.
End Pdeg2.

Section DecField.

Variable F : decFieldType.

Lemma dec_factor_theorem (p : {poly F}) :
  {s : seq F & {q : {poly F} | p = q * \prod_(x <- s) ('X - x%:P)
                             /\ (q != 0 -> forall x, ~~ root q x)}}.
Proof.
pose polyT (p : seq F) := (foldr (fun c f => f * 'X_0 + c%:T) (0%R)%:T p)%T.
have eval_polyT (q : {poly F}) x : GRing.eval [:: x] (polyT q) = q.[x].
  by rewrite /horner; elim: (val q) => //= ? ? ->.
have [n] := ubnP (size p); elim: n => // n IHn in p *.
have /decPcases /= := @satP F [::] ('exists 'X_0, polyT p == 0%T).
case: ifP => [_ /sig_eqW[x]|_ noroot]; last first.
  exists [::], p; rewrite big_nil mulr1; split => // p_neq0 x.
  by apply/negP=> /rootP rpx; apply: noroot; exists x; rewrite eval_polyT.
rewrite eval_polyT => /rootP/factor_theorem/sig_eqW[p1 ->].
have [->|nz_p1] := eqVneq p1 0; first by exists [::], 0; rewrite !mul0r eqxx.
rewrite size_Mmonic ?monicXsubC // size_XsubC addn2 => /IHn[s [q [-> irr_q]]].
by exists (rcons s x), q; rewrite -cats1 big_cat big_seq1 mulrA.
Qed.

End DecField.

Module PreClosedField.
Section UseAxiom.

Variable F : fieldType.
Hypothesis closedF : GRing.closed_field_axiom F.
Implicit Type p : {poly F}.

Lemma closed_rootP p : reflect (exists x, root p x) (size p != 1).
Proof.
have [-> | nz_p] := eqVneq p 0.
  by rewrite size_poly0; left; exists 0; rewrite root0.
rewrite neq_ltn [in _ < 1]polySpred //=.
apply: (iffP idP) => [p_gt1 | [a]]; last exact: root_size_gt1.
pose n := (size p).-1; have n_gt0: n > 0 by rewrite -ltnS -polySpred.
have [a Dan] := closedF (fun i => - p`_i / lead_coef p) n_gt0.
exists a; apply/rootP; rewrite horner_coef polySpred // big_ord_recr /= -/n.
rewrite {}Dan mulr_sumr -big_split big1 //= => i _.
by rewrite -!mulrA mulrCA mulNr mulVKf ?subrr ?lead_coef_eq0.
Qed.

Lemma closed_nonrootP p : reflect (exists x, ~~ root p x) (p != 0).
Proof.
apply: (iffP idP) => [nz_p | [x]]; last first.
  by apply: contraNneq => ->; apply: root0.
have [[x /rootP p1x0]|] := altP (closed_rootP (p - 1)).
  by exists x; rewrite -[p](subrK 1) /root hornerD p1x0 add0r hornerC oner_eq0.
rewrite negbK => /size_poly1P[c _ /(canRL (subrK 1)) Dp].
by exists 0; rewrite Dp -raddfD polyC_eq0 rootC in nz_p *.
Qed.

End UseAxiom.
End PreClosedField.

Section ClosedField.

Variable F : closedFieldType.
Implicit Type p : {poly F}.

Let closedF := @solve_monicpoly F.

Lemma closed_rootP p : reflect (exists x, root p x) (size p != 1).
Proof. exact: PreClosedField.closed_rootP. Qed.

Lemma closed_nonrootP p : reflect (exists x, ~~ root p x) (p != 0).
Proof. exact: PreClosedField.closed_nonrootP. Qed.

Lemma closed_field_poly_normal p :
  {r : seq F | p = lead_coef p *: \prod_(z <- r) ('X - z%:P)}.
Proof.
apply: sig_eqW; have [r [q [->]]] /= := dec_factor_theorem p.
have [->|] := eqVneq; first by exists [::]; rewrite mul0r lead_coef0 scale0r.
have [[x rqx ? /(_ isT x) /negP /(_ rqx)] //|] := altP (closed_rootP q).
rewrite negbK => /size_poly1P [c c_neq0-> _ _]; exists r.
rewrite mul_polyC lead_coefZ (monicP _) ?mulr1 //.
by rewrite monic_prod => // i; rewrite monicXsubC.
Qed.

End ClosedField.