1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype bigop ssralg poly.
(******************************************************************************)
(* This file provides a library for the basic theory of Euclidean and pseudo- *)
(* Euclidean division for polynomials over ring structures. *)
(* The library defines two versions of the pseudo-euclidean division: one for *)
(* coefficients in a (not necessarily commutative) ring structure and one for *)
(* coefficients equipped with a structure of integral domain. From the latter *)
(* we derive the definition of the usual Euclidean division for coefficients *)
(* in a field. Only the definition of the pseudo-division for coefficients in *)
(* an integral domain is exported by default and benefits from notations. *)
(* Also, the only theory exported by default is the one of division for *)
(* polynomials with coefficients in a field. *)
(* Other definitions and facts are qualified using name spaces indicating the *)
(* hypotheses made on the structure of coefficients and the properties of the *)
(* polynomial one divides with. *)
(* *)
(* Pdiv.Field (exported by the present library): *)
(* edivp p q == pseudo-division of p by q with p q : {poly R} where *)
(* R is an idomainType. *)
(* Computes (k, quo, rem) : nat * {poly r} * {poly R}, *)
(* such that size rem < size q and: *)
(* + if lead_coef q is not a unit, then: *)
(* (lead_coef q ^+ k) *: p = q * quo + rem *)
(* + else if lead_coef q is a unit, then: *)
(* p = q * quo + rem and k = 0 *)
(* p %/ q == quotient (second component) computed by (edivp p q). *)
(* p %% q == remainder (third component) computed by (edivp p q). *)
(* scalp p q == exponent (first component) computed by (edivp p q). *)
(* p %| q == tests the nullity of the remainder of the *)
(* pseudo-division of p by q. *)
(* rgcdp p q == Pseudo-greater common divisor obtained by performing *)
(* the Euclidean algorithm on p and q using redivp as *)
(* Euclidean division. *)
(* p %= q == p and q are associate polynomials, i.e., p %| q and *)
(* q %| p, or equivalently, p = c *: q for some nonzero *)
(* constant c. *)
(* gcdp p q == Pseudo-greater common divisor obtained by performing *)
(* the Euclidean algorithm on p and q using edivp as *)
(* Euclidean division. *)
(* egcdp p q == The pair of Bezout coefficients: if e := egcdp p q, *)
(* then size e.1 <= size q, size e.2 <= size p, and *)
(* gcdp p q %= e.1 * p + e.2 * q *)
(* coprimep p q == p and q are coprime, i.e., (gcdp p q) is a nonzero *)
(* constant. *)
(* gdcop q p == greatest divisor of p which is coprime to q. *)
(* irreducible_poly p <-> p has only trivial (constant) divisors. *)
(* mup x q == multplicity of x as a root of q *)
(* *)
(* Pdiv.Idomain: theory available for edivp and the related operation under *)
(* the sole assumption that the ring of coefficients is canonically an *)
(* integral domain (R : idomainType). *)
(* *)
(* Pdiv.IdomainMonic: theory available for edivp and the related operations *)
(* under the assumption that the ring of coefficients is canonically *)
(* and integral domain (R : idomainType) an the divisor is monic. *)
(* *)
(* Pdiv.IdomainUnit: theory available for edivp and the related operations *)
(* under the assumption that the ring of coefficients is canonically an *)
(* integral domain (R : idomainType) and the leading coefficient of the *)
(* divisor is a unit. *)
(* *)
(* Pdiv.ClosedField: theory available for edivp and the related operation *)
(* under the sole assumption that the ring of coefficients is canonically *)
(* an algebraically closed field (R : closedField). *)
(* *)
(* Pdiv.Ring : *)
(* redivp p q == pseudo-division of p by q with p q : {poly R} where R is *)
(* a ringType. *)
(* Computes (k, quo, rem) : nat * {poly r} * {poly R}, *)
(* such that if rem = 0 then quo * q = p * (lead_coef q ^+ k) *)
(* *)
(* rdivp p q == quotient (second component) computed by (redivp p q). *)
(* rmodp p q == remainder (third component) computed by (redivp p q). *)
(* rscalp p q == exponent (first component) computed by (redivp p q). *)
(* rdvdp p q == tests the nullity of the remainder of the pseudo-division *)
(* of p by q. *)
(* rgcdp p q == analogue of gcdp for coefficients in a ringType. *)
(* rgdcop p q == analogue of gdcop for coefficients in a ringType. *)
(*rcoprimep p q == analogue of coprimep p q for coefficients in a ringType. *)
(* *)
(* Pdiv.RingComRreg : theory of the operations defined in Pdiv.Ring, when the *)
(* ring of coefficients is canonically commutative (R : comRingType) and *)
(* the leading coefficient of the divisor is both right regular and *)
(* commutes as a constant polynomial with the divisor itself *)
(* *)
(* Pdiv.RingMonic : theory of the operations defined in Pdiv.Ring, under the *)
(* assumption that the divisor is monic. *)
(* *)
(* Pdiv.UnitRing: theory of the operations defined in Pdiv.Ring, when the *)
(* ring R of coefficients is canonically with units (R : unitRingType). *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory.
Local Open Scope ring_scope.
Reserved Notation "p %= q" (at level 70, no associativity).
Local Notation simp := Monoid.simpm.
Module Pdiv.
Module CommonRing.
Section RingPseudoDivision.
Variable R : ringType.
Implicit Types d p q r : {poly R}.
(* Pseudo division, defined on an arbitrary ring *)
Definition redivp_rec (q : {poly R}) :=
let sq := size q in
let cq := lead_coef q in
fix loop (k : nat) (qq r : {poly R})(n : nat) {struct n} :=
if size r < sq then (k, qq, r) else
let m := (lead_coef r) *: 'X^(size r - sq) in
let qq1 := qq * cq%:P + m in
let r1 := r * cq%:P - m * q in
if n is n1.+1 then loop k.+1 qq1 r1 n1 else (k.+1, qq1, r1).
Definition redivp_expanded_def p q :=
if q == 0 then (0, 0, p) else redivp_rec q 0 0 p (size p).
Fact redivp_key : unit. Proof. by []. Qed.
Definition redivp : {poly R} -> {poly R} -> nat * {poly R} * {poly R} :=
locked_with redivp_key redivp_expanded_def.
Canonical redivp_unlockable := [unlockable fun redivp].
Definition rdivp p q := ((redivp p q).1).2.
Definition rmodp p q := (redivp p q).2.
Definition rscalp p q := ((redivp p q).1).1.
Definition rdvdp p q := rmodp q p == 0.
(*Definition rmultp := [rel m d | rdvdp d m].*)
Lemma redivp_def p q : redivp p q = (rscalp p q, rdivp p q, rmodp p q).
Proof. by rewrite /rscalp /rdivp /rmodp; case: (redivp p q) => [[]] /=. Qed.
Lemma rdiv0p p : rdivp 0 p = 0.
Proof.
rewrite /rdivp unlock; case: ifP => // Hp; rewrite /redivp_rec !size_poly0.
by rewrite polySpred ?Hp.
Qed.
Lemma rdivp0 p : rdivp p 0 = 0. Proof. by rewrite /rdivp unlock eqxx. Qed.
Lemma rdivp_small p q : size p < size q -> rdivp p q = 0.
Proof.
rewrite /rdivp unlock; have [-> | _ ltpq] := eqP; first by rewrite size_poly0.
by case: (size p) => [|s]; rewrite /= ltpq.
Qed.
Lemma leq_rdivp p q : size (rdivp p q) <= size p.
Proof.
have [/rdivp_small->|] := ltnP (size p) (size q); first by rewrite size_poly0.
rewrite /rdivp /rmodp /rscalp unlock.
have [->|q0] //= := eqVneq q 0.
have: size (0 : {poly R}) <= size p by rewrite size_poly0.
move: {2 3 4 6}(size p) (leqnn (size p)) => A.
elim: (size p) 0%N (0 : {poly R}) {1 3 4}p (leqnn (size p)) => [|n ihn] k q1 r.
by move/size_poly_leq0P->; rewrite /= size_poly0 size_poly_gt0 q0.
move=> /= hrn hr hq1 hq; case: ltnP => //= hqr.
have sq: 0 < size q by rewrite size_poly_gt0.
have sr: 0 < size r by apply: leq_trans sq hqr.
apply: ihn => //.
- apply/leq_sizeP => j hnj.
rewrite coefB -scalerAl coefZ coefXnM ltn_subRL ltnNge.
have hj : (size r).-1 <= j by apply: leq_trans hnj; rewrite -ltnS prednK.
rewrite [leqLHS]polySpred -?size_poly_gt0 // coefMC.
rewrite (leq_ltn_trans hj) /=; last by rewrite -add1n leq_add2r.
move: hj; rewrite leq_eqVlt prednK // => /predU1P [<- | hj].
by rewrite -subn1 subnAC subKn // !subn1 !lead_coefE subrr.
have/leq_sizeP-> //: size q <= j - (size r - size q).
by rewrite subnBA // leq_psubRL // leq_add2r.
by move/leq_sizeP: (hj) => -> //; rewrite mul0r mulr0 subr0.
- apply: leq_trans (size_add _ _) _; rewrite geq_max; apply/andP; split.
apply: leq_trans (size_mul_leq _ _) _.
by rewrite size_polyC lead_coef_eq0 q0 /= addn1.
rewrite size_opp; apply: leq_trans (size_mul_leq _ _) _.
apply: leq_trans hr; rewrite -subn1 leq_subLR -[in (1 + _)%N](subnK hqr).
by rewrite addnA leq_add2r add1n -(@size_polyXn R) size_scale_leq.
apply: leq_trans (size_add _ _) _; rewrite geq_max; apply/andP; split.
apply: leq_trans (size_mul_leq _ _) _.
by rewrite size_polyC lead_coef_eq0 q0 /= addnS addn0.
apply: leq_trans (size_scale_leq _ _) _.
by rewrite size_polyXn -subSn // leq_subLR -add1n leq_add.
Qed.
Lemma rmod0p p : rmodp 0 p = 0.
Proof.
rewrite /rmodp unlock; case: ifP => // Hp; rewrite /redivp_rec !size_poly0.
by rewrite polySpred ?Hp.
Qed.
Lemma rmodp0 p : rmodp p 0 = p. Proof. by rewrite /rmodp unlock eqxx. Qed.
Lemma rscalp_small p q : size p < size q -> rscalp p q = 0.
Proof.
rewrite /rscalp unlock; case: eqP => _ // spq.
by case sp: (size p) => [| s] /=; rewrite spq.
Qed.
Lemma ltn_rmodp p q : (size (rmodp p q) < size q) = (q != 0).
Proof.
rewrite /rdivp /rmodp /rscalp unlock; have [->|q0] := eqVneq q 0.
by rewrite /= size_poly0 ltn0.
elim: (size p) 0%N 0 {1 3}p (leqnn (size p)) => [|n ihn] k q1 r.
move/size_poly_leq0P->.
by rewrite /= size_poly0 size_poly_gt0 q0 size_poly0 size_poly_gt0.
move=> hr /=; case: (ltnP (size r)) => // hsrq; apply/ihn/leq_sizeP => j hnj.
rewrite coefB -scalerAl !coefZ coefXnM coefMC ltn_subRL ltnNge.
have sq: 0 < size q by rewrite size_poly_gt0.
have sr: 0 < size r by apply: leq_trans hsrq.
have hj: (size r).-1 <= j by apply: leq_trans hnj; rewrite -ltnS prednK.
move: (leq_add sq hj); rewrite add1n prednK // => -> /=.
move: hj; rewrite leq_eqVlt prednK // => /predU1P [<- | hj].
by rewrite -predn_sub subKn // !lead_coefE subrr.
have/leq_sizeP -> //: size q <= j - (size r - size q).
by rewrite subnBA // leq_subRL ?leq_add2r // (leq_trans hj) // leq_addr.
by move/leq_sizeP: hj => -> //; rewrite mul0r mulr0 subr0.
Qed.
Lemma ltn_rmodpN0 p q : q != 0 -> size (rmodp p q) < size q.
Proof. by rewrite ltn_rmodp. Qed.
Lemma rmodp1 p : rmodp p 1 = 0.
Proof.
apply/eqP; have := ltn_rmodp p 1.
by rewrite !oner_neq0 -size_poly_eq0 size_poly1 ltnS leqn0.
Qed.
Lemma rmodp_small p q : size p < size q -> rmodp p q = p.
Proof.
rewrite /rmodp unlock; have [->|_] := eqP; first by rewrite size_poly0.
by case sp: (size p) => [| s] Hs /=; rewrite sp Hs /=.
Qed.
Lemma leq_rmodp m d : size (rmodp m d) <= size m.
Proof.
have [/rmodp_small -> //|h] := ltnP (size m) (size d).
have [->|d0] := eqVneq d 0; first by rewrite rmodp0.
by apply: leq_trans h; apply: ltnW; rewrite ltn_rmodp.
Qed.
Lemma rmodpC p c : c != 0 -> rmodp p c%:P = 0.
Proof.
move=> Hc; apply/eqP; rewrite -size_poly_leq0 -ltnS.
have -> : 1%N = nat_of_bool (c != 0) by rewrite Hc.
by rewrite -size_polyC ltn_rmodp polyC_eq0.
Qed.
Lemma rdvdp0 d : rdvdp d 0. Proof. by rewrite /rdvdp rmod0p. Qed.
Lemma rdvd0p n : rdvdp 0 n = (n == 0). Proof. by rewrite /rdvdp rmodp0. Qed.
Lemma rdvd0pP n : reflect (n = 0) (rdvdp 0 n).
Proof. by apply: (iffP idP); rewrite rdvd0p; move/eqP. Qed.
Lemma rdvdpN0 p q : rdvdp p q -> q != 0 -> p != 0.
Proof. by move=> pq hq; apply: contraTneq pq => ->; rewrite rdvd0p. Qed.
Lemma rdvdp1 d : rdvdp d 1 = (size d == 1).
Proof.
rewrite /rdvdp; have [->|] := eqVneq d 0.
by rewrite rmodp0 size_poly0 (negPf (oner_neq0 _)).
rewrite -size_poly_leq0 -ltnS; case: ltngtP => // [|/eqP] hd _.
by rewrite rmodp_small ?size_poly1 // oner_eq0.
have [c cn0 ->] := size_poly1P _ hd.
rewrite /rmodp unlock -size_poly_eq0 size_poly1 /= size_poly1 size_polyC cn0 /=.
by rewrite polyC_eq0 (negPf cn0) !lead_coefC !scale1r subrr !size_poly0.
Qed.
Lemma rdvd1p m : rdvdp 1 m. Proof. by rewrite /rdvdp rmodp1. Qed.
Lemma Nrdvdp_small (n d : {poly R}) :
n != 0 -> size n < size d -> rdvdp d n = false.
Proof. by move=> nn0 hs; rewrite /rdvdp (rmodp_small hs); apply: negPf. Qed.
Lemma rmodp_eq0P p q : reflect (rmodp p q = 0) (rdvdp q p).
Proof. exact: (iffP eqP). Qed.
Lemma rmodp_eq0 p q : rdvdp q p -> rmodp p q = 0. Proof. exact: rmodp_eq0P. Qed.
Lemma rdvdp_leq p q : rdvdp p q -> q != 0 -> size p <= size q.
Proof. by move=> dvd_pq; rewrite leqNgt; apply: contra => /rmodp_small <-. Qed.
Definition rgcdp p q :=
let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
if p1 == 0 then q1 else
let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
let rr := rmodp pp qq in
if rr == 0 then qq else
if n is n1.+1 then loop n1 qq rr else rr in
loop (size p1) p1 q1.
Lemma rgcd0p : left_id 0 rgcdp.
Proof.
move=> p; rewrite /rgcdp size_poly0 size_poly_gt0 if_neg.
case: ifP => /= [_ | nzp]; first by rewrite eqxx.
by rewrite polySpred !(rmodp0, nzp) //; case: _.-1 => [|m]; rewrite rmod0p eqxx.
Qed.
Lemma rgcdp0 : right_id 0 rgcdp.
Proof.
move=> p; have:= rgcd0p p; rewrite /rgcdp size_poly0 size_poly_gt0.
by case: eqVneq => p0; rewrite ?(eqxx, p0) //= eqxx.
Qed.
Lemma rgcdpE p q :
rgcdp p q = if size p < size q
then rgcdp (rmodp q p) p else rgcdp (rmodp p q) q.
Proof.
pose rgcdp_rec := fix rgcdp_rec (n : nat) (pp qq : {poly R}) {struct n} :=
let rr := rmodp pp qq in
if rr == 0 then qq else
if n is n1.+1 then rgcdp_rec n1 qq rr else rr.
have Irec: forall m n p q, size q <= m -> size q <= n
-> size q < size p -> rgcdp_rec m p q = rgcdp_rec n p q.
+ elim=> [|m Hrec] [|n] //= p1 q1.
- move/size_poly_leq0P=> -> _; rewrite size_poly0 size_poly_gt0 rmodp0.
by move/negPf->; case: n => [|n] /=; rewrite rmod0p eqxx.
- move=> _ /size_poly_leq0P ->; rewrite size_poly0 size_poly_gt0 rmodp0.
by move/negPf->; case: m {Hrec} => [|m] /=; rewrite rmod0p eqxx.
case: eqVneq => Epq Sm Sn Sq //; have [->|nzq] := eqVneq q1 0.
by case: n m {Sm Sn Hrec} => [|m] [|n] //=; rewrite rmod0p eqxx.
apply: Hrec; last by rewrite ltn_rmodp.
by rewrite -ltnS (leq_trans _ Sm) // ltn_rmodp.
by rewrite -ltnS (leq_trans _ Sn) // ltn_rmodp.
have [->|nzp] := eqVneq p 0.
by rewrite rmod0p rmodp0 rgcd0p rgcdp0 if_same.
have [->|nzq] := eqVneq q 0.
by rewrite rmod0p rmodp0 rgcd0p rgcdp0 if_same.
rewrite /rgcdp -/rgcdp_rec !ltn_rmodp (negPf nzp) (negPf nzq) /=.
have [ltpq|leqp] := ltnP; rewrite !(negPf nzp, negPf nzq) //= polySpred //=.
have [->|nzqp] := eqVneq.
by case: (size p) => [|[|s]]; rewrite /= rmodp0 (negPf nzp) // rmod0p eqxx.
apply: Irec => //; last by rewrite ltn_rmodp.
by rewrite -ltnS -polySpred // (leq_trans _ ltpq) ?leqW // ltn_rmodp.
by rewrite ltnW // ltn_rmodp.
have [->|nzpq] := eqVneq.
by case: (size q) => [|[|s]]; rewrite /= rmodp0 (negPf nzq) // rmod0p eqxx.
apply: Irec => //; last by rewrite ltn_rmodp.
by rewrite -ltnS -polySpred // (leq_trans _ leqp) // ltn_rmodp.
by rewrite ltnW // ltn_rmodp.
Qed.
Variant comm_redivp_spec m d : nat * {poly R} * {poly R} -> Type :=
ComEdivnSpec k (q r : {poly R}) of
(GRing.comm d (lead_coef d)%:P -> m * (lead_coef d ^+ k)%:P = q * d + r) &
(d != 0 -> size r < size d) : comm_redivp_spec m d (k, q, r).
Lemma comm_redivpP m d : comm_redivp_spec m d (redivp m d).
Proof.
rewrite unlock; have [->|Hd] := eqVneq d 0.
by constructor; rewrite !(simp, eqxx).
have: GRing.comm d (lead_coef d)%:P -> m * (lead_coef d ^+ 0)%:P = 0 * d + m.
by rewrite !simp.
elim: (size m) 0%N 0 {1 4 6}m (leqnn (size m)) => [|n IHn] k q r Hr /=.
move/size_poly_leq0P: Hr ->.
suff hsd: size (0: {poly R}) < size d by rewrite hsd => /= ?; constructor.
by rewrite size_poly0 size_poly_gt0.
case: ltnP => Hlt Heq; first by constructor.
apply/IHn=> [|Cda]; last first.
rewrite mulrDl addrAC -addrA subrK exprSr polyCM mulrA Heq //.
by rewrite mulrDl -mulrA Cda mulrA.
apply/leq_sizeP => j Hj; rewrite coefB coefMC -scalerAl coefZ coefXnM.
rewrite ltn_subRL ltnNge (leq_trans Hr) /=; last first.
by apply: leq_ltn_trans Hj _; rewrite -add1n leq_add2r size_poly_gt0.
move: Hj; rewrite leq_eqVlt; case/predU1P => [<-{j} | Hj]; last first.
rewrite !nth_default ?simp ?oppr0 ?(leq_trans Hr) //.
by rewrite -{1}(subKn Hlt) leq_sub2r // (leq_trans Hr).
move: Hr; rewrite leq_eqVlt ltnS; case/predU1P=> Hqq; last first.
by rewrite !nth_default ?simp ?oppr0 // -{1}(subKn Hlt) leq_sub2r.
rewrite /lead_coef Hqq polySpred // subSS subKn ?addrN //.
by rewrite -subn1 leq_subLR add1n -Hqq.
Qed.
Lemma rmodpp p : GRing.comm p (lead_coef p)%:P -> rmodp p p = 0.
Proof.
move=> hC; rewrite /rmodp unlock; have [-> //|] := eqVneq.
rewrite -size_poly_eq0 /redivp_rec; case sp: (size p)=> [|n] // _.
rewrite sp ltnn subnn expr0 hC alg_polyC !simp subrr.
by case: n sp => [|n] sp; rewrite size_polyC /= eqxx.
Qed.
Definition rcoprimep (p q : {poly R}) := size (rgcdp p q) == 1.
Fixpoint rgdcop_rec q p n :=
if n is m.+1 then
if rcoprimep p q then p
else rgdcop_rec q (rdivp p (rgcdp p q)) m
else (q == 0)%:R.
Definition rgdcop q p := rgdcop_rec q p (size p).
Lemma rgdcop0 q : rgdcop q 0 = (q == 0)%:R.
Proof. by rewrite /rgdcop size_poly0. Qed.
End RingPseudoDivision.
End CommonRing.
Module RingComRreg.
Import CommonRing.
Section ComRegDivisor.
Variable R : ringType.
Variable d : {poly R}.
Hypothesis Cdl : GRing.comm d (lead_coef d)%:P.
Hypothesis Rreg : GRing.rreg (lead_coef d).
Implicit Types p q r : {poly R}.
Lemma redivp_eq q r :
size r < size d ->
let k := (redivp (q * d + r) d).1.1 in
let c := (lead_coef d ^+ k)%:P in
redivp (q * d + r) d = (k, q * c, r * c).
Proof.
move=> lt_rd; case: comm_redivpP=> k q1 r1 /(_ Cdl) Heq.
have dn0: d != 0 by case: (size d) lt_rd (size_poly_eq0 d) => // n _ <-.
move=> /(_ dn0) Hs.
have eC : q * d * (lead_coef d ^+ k)%:P = q * (lead_coef d ^+ k)%:P * d.
by rewrite -mulrA polyC_exp (commrX k Cdl) mulrA.
suff e1 : q1 = q * (lead_coef d ^+ k)%:P.
congr (_, _, _) => //=; move/eqP: Heq.
by rewrite [_ + r1]addrC -subr_eq e1 mulrDl addrAC eC subrr add0r; move/eqP.
have : (q1 - q * (lead_coef d ^+ k)%:P) * d = r * (lead_coef d ^+ k)%:P - r1.
apply: (@addIr _ r1); rewrite subrK.
apply: (@addrI _ ((q * (lead_coef d ^+ k)%:P) * d)).
by rewrite mulrDl mulNr !addrA [_ + (q1 * d)]addrC addrK -eC -mulrDl.
move/eqP; rewrite -[_ == _ - _]subr_eq0 rreg_div0 //.
by case/andP; rewrite subr_eq0; move/eqP.
rewrite size_opp; apply: (leq_ltn_trans (size_add _ _)); rewrite size_opp.
rewrite gtn_max Hs (leq_ltn_trans (size_mul_leq _ _)) //.
rewrite size_polyC; case: (_ == _); last by rewrite addnS addn0.
by rewrite addn0; apply: leq_ltn_trans lt_rd; case: size.
Qed.
(* this is a bad name *)
Lemma rdivp_eq p :
p * (lead_coef d ^+ (rscalp p d))%:P = (rdivp p d) * d + (rmodp p d).
Proof.
by rewrite /rdivp /rmodp /rscalp; case: comm_redivpP=> k q1 r1 Hc _; apply: Hc.
Qed.
(* section variables impose an inconvenient order on parameters *)
Lemma eq_rdvdp k q1 p:
p * ((lead_coef d)^+ k)%:P = q1 * d -> rdvdp d p.
Proof.
move=> he.
have Hnq0 := rreg_lead0 Rreg; set lq := lead_coef d.
pose v := rscalp p d; pose m := maxn v k.
rewrite /rdvdp -(rreg_polyMC_eq0 _ (@rregX _ _ (m - v) Rreg)).
suff:
((rdivp p d) * (lq ^+ (m - v))%:P - q1 * (lq ^+ (m - k))%:P) * d +
(rmodp p d) * (lq ^+ (m - v))%:P == 0.
rewrite rreg_div0 //; first by case/andP.
by rewrite rreg_size ?ltn_rmodp //; exact: rregX.
rewrite mulrDl addrAC mulNr -!mulrA polyC_exp -(commrX (m-v) Cdl).
rewrite -polyC_exp mulrA -mulrDl -rdivp_eq // [(_ ^+ (m - k))%:P]polyC_exp.
rewrite -(commrX (m-k) Cdl) -polyC_exp mulrA -he -!mulrA -!polyCM -/v.
by rewrite -!exprD addnC subnK ?leq_maxl // addnC subnK ?subrr ?leq_maxr.
Qed.
Variant rdvdp_spec p q : {poly R} -> bool -> Type :=
| Rdvdp k q1 & p * ((lead_coef q)^+ k)%:P = q1 * q : rdvdp_spec p q 0 true
| RdvdpN & rmodp p q != 0 : rdvdp_spec p q (rmodp p q) false.
(* Is that version useable ? *)
Lemma rdvdp_eqP p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
Proof.
case hdvd: (rdvdp d p); last by apply: RdvdpN; move/rmodp_eq0P/eqP: hdvd.
move/rmodp_eq0P: (hdvd)->; apply: (@Rdvdp _ _ (rscalp p d) (rdivp p d)).
by rewrite rdivp_eq //; move/rmodp_eq0P: (hdvd)->; rewrite addr0.
Qed.
Lemma rdvdp_mull p : rdvdp d (p * d).
Proof. by apply: (@eq_rdvdp 0 p); rewrite expr0 mulr1. Qed.
Lemma rmodp_mull p : rmodp (p * d) d = 0. Proof. exact/eqP/rdvdp_mull. Qed.
Lemma rmodpp : rmodp d d = 0.
Proof. by rewrite -[d in rmodp d _]mul1r rmodp_mull. Qed.
Lemma rdivpp : rdivp d d = (lead_coef d ^+ rscalp d d)%:P.
Proof.
have dn0 : d != 0 by rewrite -lead_coef_eq0 rreg_neq0.
move: (rdivp_eq d); rewrite rmodpp addr0.
suff ->: GRing.comm d (lead_coef d ^+ rscalp d d)%:P by move/(rreg_lead Rreg)->.
by rewrite polyC_exp; apply: commrX.
Qed.
Lemma rdvdpp : rdvdp d d. Proof. exact/eqP/rmodpp. Qed.
Lemma rdivpK p : rdvdp d p ->
rdivp p d * d = p * (lead_coef d ^+ rscalp p d)%:P.
Proof. by rewrite rdivp_eq /rdvdp; move/eqP->; rewrite addr0. Qed.
End ComRegDivisor.
End RingComRreg.
Module RingMonic.
Import CommonRing.
Import RingComRreg.
Section RingMonic.
Variable R : ringType.
Implicit Types p q r : {poly R}.
Section MonicDivisor.
Variable d : {poly R}.
Hypothesis mond : d \is monic.
Lemma redivp_eq q r : size r < size d ->
let k := (redivp (q * d + r) d).1.1 in
redivp (q * d + r) d = (k, q, r).
Proof.
case: (monic_comreg mond)=> Hc Hr /(redivp_eq Hc Hr q).
by rewrite (eqP mond) => -> /=; rewrite expr1n !mulr1.
Qed.
Lemma rdivp_eq p : p = rdivp p d * d + rmodp p d.
Proof.
rewrite -rdivp_eq (eqP mond); last exact: commr1.
by rewrite expr1n mulr1.
Qed.
Lemma rdivpp : rdivp d d = 1.
Proof.
by case: (monic_comreg mond) => hc hr; rewrite rdivpp // (eqP mond) expr1n.
Qed.
Lemma rdivp_addl_mul_small q r : size r < size d -> rdivp (q * d + r) d = q.
Proof.
by move=> Hd; case: (monic_comreg mond)=> Hc Hr; rewrite /rdivp redivp_eq.
Qed.
Lemma rdivp_addl_mul q r : rdivp (q * d + r) d = q + rdivp r d.
Proof.
case: (monic_comreg mond)=> Hc Hr; rewrite [r in _ * _ + r]rdivp_eq addrA.
by rewrite -mulrDl rdivp_addl_mul_small // ltn_rmodp monic_neq0.
Qed.
Lemma rdivpDl q r : rdvdp d q -> rdivp (q + r) d = rdivp q d + rdivp r d.
Proof.
case: (monic_comreg mond)=> Hc Hr; rewrite [r in q + r]rdivp_eq addrA.
rewrite [q in q + _ + _]rdivp_eq; move/rmodp_eq0P->.
by rewrite addr0 -mulrDl rdivp_addl_mul_small // ltn_rmodp monic_neq0.
Qed.
Lemma rdivpDr q r : rdvdp d r -> rdivp (q + r) d = rdivp q d + rdivp r d.
Proof. by rewrite addrC; move/rdivpDl->; rewrite addrC. Qed.
Lemma rdivp_mull p : rdivp (p * d) d = p.
Proof. by rewrite -[p * d]addr0 rdivp_addl_mul rdiv0p addr0. Qed.
Lemma rmodp_mull p : rmodp (p * d) d = 0.
Proof.
by apply: rmodp_mull; rewrite (eqP mond); [apply: commr1 | apply: rreg1].
Qed.
Lemma rmodpp : rmodp d d = 0.
Proof.
by apply: rmodpp; rewrite (eqP mond); [apply: commr1 | apply: rreg1].
Qed.
Lemma rmodp_addl_mul_small q r : size r < size d -> rmodp (q * d + r) d = r.
Proof.
by move=> Hd; case: (monic_comreg mond)=> Hc Hr; rewrite /rmodp redivp_eq.
Qed.
Lemma rmodp_id (p : {poly R}) : rmodp (rmodp p d) d = rmodp p d.
Proof.
by rewrite rmodp_small // ltn_rmodpN0 // monic_neq0.
Qed.
Lemma rmodpD p q : rmodp (p + q) d = rmodp p d + rmodp q d.
Proof.
rewrite [p in LHS]rdivp_eq [q in LHS]rdivp_eq addrACA -mulrDl.
rewrite rmodp_addl_mul_small //; apply: (leq_ltn_trans (size_add _ _)).
by rewrite gtn_max !ltn_rmodp // monic_neq0.
Qed.
Lemma rmodpN p : rmodp (- p) d = - (rmodp p d).
Proof.
rewrite {1}(rdivp_eq p) opprD // -mulNr rmodp_addl_mul_small //.
by rewrite size_opp ltn_rmodp // monic_neq0.
Qed.
Lemma rmodpB p q : rmodp (p - q) d = rmodp p d - rmodp q d.
Proof. by rewrite rmodpD rmodpN. Qed.
Lemma rmodpZ a p : rmodp (a *: p) d = a *: (rmodp p d).
Proof.
case: (altP (a =P 0%R)) => [-> | cn0]; first by rewrite !scale0r rmod0p.
have -> : ((a *: p) = (a *: (rdivp p d)) * d + a *: (rmodp p d))%R.
by rewrite -scalerAl -scalerDr -rdivp_eq.
rewrite rmodp_addl_mul_small //.
rewrite -mul_polyC; apply: leq_ltn_trans (size_mul_leq _ _) _.
rewrite size_polyC cn0 addSn add0n /= ltn_rmodp.
by apply: monic_neq0.
Qed.
Lemma rmodp_sum (I : Type) (r : seq I) (P : pred I) (F : I -> {poly R}) :
rmodp (\sum_(i <- r | P i) F i) d = (\sum_(i <- r | P i) (rmodp (F i) d)).
Proof.
by elim/big_rec2: _ => [|i p q _ <-]; rewrite ?(rmod0p, rmodpD).
Qed.
Lemma rmodp_mulmr p q : rmodp (p * (rmodp q d)) d = rmodp (p * q) d.
Proof.
by rewrite [q in RHS]rdivp_eq mulrDr rmodpD mulrA rmodp_mull add0r.
Qed.
Lemma rdvdpp : rdvdp d d.
Proof.
by apply: rdvdpp; rewrite (eqP mond); [apply: commr1 | apply: rreg1].
Qed.
(* section variables impose an inconvenient order on parameters *)
Lemma eq_rdvdp q1 p : p = q1 * d -> rdvdp d p.
Proof.
(* this probably means I need to specify impl args for comm_rref_rdvdp *)
move=> h; apply: (@eq_rdvdp _ _ _ _ 1 q1); rewrite (eqP mond).
- exact: commr1.
- exact: rreg1.
by rewrite expr1n mulr1.
Qed.
Lemma rdvdp_mull p : rdvdp d (p * d).
Proof.
by apply: rdvdp_mull; rewrite (eqP mond) //; [apply: commr1 | apply: rreg1].
Qed.
Lemma rdvdpP p : reflect (exists qq, p = qq * d) (rdvdp d p).
Proof.
case: (monic_comreg mond)=> Hc Hr; apply: (iffP idP) => [|[qq] /eq_rdvdp //].
by case: rdvdp_eqP=> // k qq; rewrite (eqP mond) expr1n mulr1 => ->; exists qq.
Qed.
Lemma rdivpK p : rdvdp d p -> (rdivp p d) * d = p.
Proof. by move=> dvddp; rewrite [RHS]rdivp_eq rmodp_eq0 ?addr0. Qed.
End MonicDivisor.
Lemma drop_poly_rdivp n p : drop_poly n p = rdivp p 'X^n.
Proof.
rewrite -[p in RHS](poly_take_drop n) addrC rdivp_addl_mul ?monicXn//.
by rewrite rdivp_small ?addr0// size_polyXn ltnS size_take_poly.
Qed.
Lemma take_poly_rmodp n p : take_poly n p = rmodp p 'X^n.
Proof.
have mX := monicXn R n; rewrite -[p in RHS](poly_take_drop n) rmodpD//.
by rewrite rmodp_small ?rmodp_mull ?addr0// size_polyXn ltnS size_take_poly.
Qed.
End RingMonic.
Section ComRingMonic.
Variable R : comRingType.
Implicit Types p q r : {poly R}.
Variable d : {poly R}.
Hypothesis mond : d \is monic.
Lemma rmodp_mulml p q : rmodp (rmodp p d * q) d = rmodp (p * q) d.
Proof. by rewrite [in LHS]mulrC [in RHS]mulrC rmodp_mulmr. Qed.
Lemma rmodpX p n : rmodp ((rmodp p d) ^+ n) d = rmodp (p ^+ n) d.
Proof.
elim: n => [|n IH]; first by rewrite !expr0.
rewrite !exprS -rmodp_mulmr // IH rmodp_mulmr //.
by rewrite mulrC rmodp_mulmr // mulrC.
Qed.
Lemma rmodp_compr p q : rmodp (p \Po (rmodp q d)) d = (rmodp (p \Po q) d).
Proof.
elim/poly_ind: p => [|p c IH]; first by rewrite !comp_polyC !rmod0p.
rewrite !comp_polyD !comp_polyM addrC rmodpD //.
rewrite mulrC -rmodp_mulmr // IH rmodp_mulmr //.
rewrite !comp_polyX !comp_polyC.
by rewrite mulrC rmodp_mulmr // -rmodpD // addrC.
Qed.
End ComRingMonic.
End RingMonic.
Module Ring.
Include CommonRing.
Import RingMonic.
Section ExtraMonicDivisor.
Variable R : ringType.
Implicit Types d p q r : {poly R}.
Lemma rdivp1 p : rdivp p 1 = p.
Proof. by rewrite -[p in LHS]mulr1 rdivp_mull // monic1. Qed.
Lemma rdvdp_XsubCl p x : rdvdp ('X - x%:P) p = root p x.
Proof.
have [HcX Hr] := monic_comreg (monicXsubC x).
apply/rmodp_eq0P/factor_theorem => [|[p1 ->]]; last exact/rmodp_mull/monicXsubC.
move=> e0; exists (rdivp p ('X - x%:P)).
by rewrite [LHS](rdivp_eq (monicXsubC x)) e0 addr0.
Qed.
Lemma polyXsubCP p x : reflect (p.[x] = 0) (rdvdp ('X - x%:P) p).
Proof. by apply: (iffP idP); rewrite rdvdp_XsubCl; move/rootP. Qed.
Lemma root_factor_theorem p x : root p x = (rdvdp ('X - x%:P) p).
Proof. by rewrite rdvdp_XsubCl. Qed.
End ExtraMonicDivisor.
End Ring.
Module ComRing.
Import Ring.
Import RingComRreg.
Section CommutativeRingPseudoDivision.
Variable R : comRingType.
Implicit Types d p q m n r : {poly R}.
Variant redivp_spec (m d : {poly R}) : nat * {poly R} * {poly R} -> Type :=
EdivnSpec k (q r: {poly R}) of
(lead_coef d ^+ k) *: m = q * d + r &
(d != 0 -> size r < size d) : redivp_spec m d (k, q, r).
Lemma redivpP m d : redivp_spec m d (redivp m d).
Proof.
rewrite redivp_def; constructor; last by move=> dn0; rewrite ltn_rmodp.
by rewrite -mul_polyC mulrC rdivp_eq //= /GRing.comm mulrC.
Qed.
Lemma rdivp_eq d p :
(lead_coef d ^+ rscalp p d) *: p = rdivp p d * d + rmodp p d.
Proof.
by rewrite /rdivp /rmodp /rscalp; case: redivpP=> k q1 r1 Hc _; apply: Hc.
Qed.
Lemma rdvdp_eqP d p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
Proof.
case hdvd: (rdvdp d p); last by move/rmodp_eq0P/eqP/RdvdpN: hdvd.
move/rmodp_eq0P: (hdvd)->; apply: (@Rdvdp _ _ _ (rscalp p d) (rdivp p d)).
by rewrite mulrC mul_polyC rdivp_eq; move/rmodp_eq0P: (hdvd)->; rewrite addr0.
Qed.
Lemma rdvdp_eq q p :
rdvdp q p = (lead_coef q ^+ rscalp p q *: p == rdivp p q * q).
Proof.
rewrite rdivp_eq; apply/rmodp_eq0P/eqP => [->|/eqP]; first by rewrite addr0.
by rewrite eq_sym addrC -subr_eq subrr; move/eqP<-.
Qed.
End CommutativeRingPseudoDivision.
End ComRing.
Module UnitRing.
Import Ring.
Section UnitRingPseudoDivision.
Variable R : unitRingType.
Implicit Type p q r d : {poly R}.
Lemma uniq_roots_rdvdp p rs :
all (root p) rs -> uniq_roots rs -> rdvdp (\prod_(z <- rs) ('X - z%:P)) p.
Proof.
move=> rrs /(uniq_roots_prod_XsubC rrs) [q ->].
exact/RingMonic.rdvdp_mull/monic_prod_XsubC.
Qed.
End UnitRingPseudoDivision.
End UnitRing.
Module IdomainDefs.
Import Ring.
Section IDomainPseudoDivisionDefs.
Variable R : idomainType.
Implicit Type p q r d : {poly R}.
Definition edivp_expanded_def p q :=
let: (k, d, r) as edvpq := redivp p q in
if lead_coef q \in GRing.unit then
(0, (lead_coef q)^-k *: d, (lead_coef q)^-k *: r)
else edvpq.
Fact edivp_key : unit. Proof. by []. Qed.
Definition edivp := locked_with edivp_key edivp_expanded_def.
Canonical edivp_unlockable := [unlockable fun edivp].
Definition divp p q := ((edivp p q).1).2.
Definition modp p q := (edivp p q).2.
Definition scalp p q := ((edivp p q).1).1.
Definition dvdp p q := modp q p == 0.
Definition eqp p q := (dvdp p q) && (dvdp q p).
End IDomainPseudoDivisionDefs.
Notation "m %/ d" := (divp m d) : ring_scope.
Notation "m %% d" := (modp m d) : ring_scope.
Notation "p %| q" := (dvdp p q) : ring_scope.
Notation "p %= q" := (eqp p q) : ring_scope.
End IdomainDefs.
Module WeakIdomain.
Import Ring ComRing UnitRing IdomainDefs.
Section WeakTheoryForIDomainPseudoDivision.
Variable R : idomainType.
Implicit Type p q r d : {poly R}.
Lemma edivp_def p q : edivp p q = (scalp p q, divp p q, modp p q).
Proof. by rewrite /scalp /divp /modp; case: (edivp p q) => [[]] /=. Qed.
Lemma edivp_redivp p q : lead_coef q \in GRing.unit = false ->
edivp p q = redivp p q.
Proof. by move=> hu; rewrite unlock hu; case: (redivp p q) => [[? ?] ?]. Qed.
Lemma divpE p q :
p %/ q = if lead_coef q \in GRing.unit
then lead_coef q ^- rscalp p q *: rdivp p q
else rdivp p q.
Proof. by case: ifP; rewrite /divp unlock redivp_def => ->. Qed.
Lemma modpE p q :
p %% q = if lead_coef q \in GRing.unit
then lead_coef q ^- rscalp p q *: (rmodp p q)
else rmodp p q.
Proof. by case: ifP; rewrite /modp unlock redivp_def => ->. Qed.
Lemma scalpE p q :
scalp p q = if lead_coef q \in GRing.unit then 0 else rscalp p q.
Proof. by case: ifP; rewrite /scalp unlock redivp_def => ->. Qed.
Lemma dvdpE p q : p %| q = rdvdp p q.
Proof.
rewrite /dvdp modpE /rdvdp; case ulcq: (lead_coef p \in GRing.unit)=> //.
rewrite -[in LHS]size_poly_eq0 size_scale ?size_poly_eq0 //.
by rewrite invr_eq0 expf_neq0 //; apply: contraTneq ulcq => ->; rewrite unitr0.
Qed.
Lemma lc_expn_scalp_neq0 p q : lead_coef q ^+ scalp p q != 0.
Proof.
have [->|nzq] := eqVneq q 0; last by rewrite expf_neq0 ?lead_coef_eq0.
by rewrite /scalp 2!unlock /= eqxx lead_coef0 unitr0 /= oner_neq0.
Qed.
Hint Resolve lc_expn_scalp_neq0 : core.
Variant edivp_spec (m d : {poly R}) :
nat * {poly R} * {poly R} -> bool -> Type :=
|Redivp_spec k (q r: {poly R}) of
(lead_coef d ^+ k) *: m = q * d + r & lead_coef d \notin GRing.unit &
(d != 0 -> size r < size d) : edivp_spec m d (k, q, r) false
|Fedivp_spec (q r: {poly R}) of m = q * d + r & (lead_coef d \in GRing.unit) &
(d != 0 -> size r < size d) : edivp_spec m d (0, q, r) true.
(* There are several ways to state this fact. The most appropriate statement*)
(* might be polished in light of usage. *)
Lemma edivpP m d : edivp_spec m d (edivp m d) (lead_coef d \in GRing.unit).
Proof.
have hC : GRing.comm d (lead_coef d)%:P by rewrite /GRing.comm mulrC.
case ud: (lead_coef d \in GRing.unit); last first.
rewrite edivp_redivp // redivp_def; constructor; rewrite ?ltn_rmodp // ?ud //.
by rewrite rdivp_eq.
have cdn0: lead_coef d != 0 by apply: contraTneq ud => ->; rewrite unitr0.
rewrite unlock ud redivp_def; constructor => //.
rewrite -scalerAl -scalerDr -mul_polyC.
have hn0 : (lead_coef d ^+ rscalp m d)%:P != 0.
by rewrite polyC_eq0; apply: expf_neq0.
apply: (mulfI hn0); rewrite !mulrA -exprVn !polyC_exp -exprMn -polyCM.
by rewrite divrr // expr1n mul1r -polyC_exp mul_polyC rdivp_eq.
move=> dn0; rewrite size_scale ?ltn_rmodp // -exprVn expf_eq0 negb_and.
by rewrite invr_eq0 cdn0 orbT.
Qed.
Lemma edivp_eq d q r : size r < size d -> lead_coef d \in GRing.unit ->
edivp (q * d + r) d = (0, q, r).
Proof.
have hC : GRing.comm d (lead_coef d)%:P by apply: mulrC.
move=> hsrd hu; rewrite unlock hu; case et: (redivp _ _) => [[s qq] rr].
have cdn0 : lead_coef d != 0 by case: eqP hu => //= ->; rewrite unitr0.
move: (et); rewrite RingComRreg.redivp_eq //; last exact/rregP.
rewrite et /= mulrC (mulrC r) !mul_polyC; case=> <- <-.
by rewrite !scalerA mulVr ?scale1r // unitrX.
Qed.
Lemma divp_eq p q : (lead_coef q ^+ scalp p q) *: p = (p %/ q) * q + (p %% q).
Proof.
rewrite divpE modpE scalpE.
case uq: (lead_coef q \in GRing.unit); last by rewrite rdivp_eq.
rewrite expr0 scale1r; have [->|qn0] := eqVneq q 0.
by rewrite lead_coef0 expr0n /rscalp unlock eqxx invr1 !scale1r rmodp0 !simp.
by rewrite -scalerAl -scalerDr -rdivp_eq scalerA mulVr (scale1r, unitrX).
Qed.
Lemma dvdp_eq q p : (q %| p) = (lead_coef q ^+ scalp p q *: p == (p %/ q) * q).
Proof.
rewrite dvdpE rdvdp_eq scalpE divpE; case: ifP => ulcq //.
rewrite expr0 scale1r -scalerAl; apply/eqP/eqP => [<- | {2}->].
by rewrite scalerA mulVr ?scale1r // unitrX.
by rewrite scalerA mulrV ?scale1r // unitrX.
Qed.
Lemma divpK d p : d %| p -> p %/ d * d = (lead_coef d ^+ scalp p d) *: p.
Proof. by rewrite dvdp_eq; move/eqP->. Qed.
Lemma divpKC d p : d %| p -> d * (p %/ d) = (lead_coef d ^+ scalp p d) *: p.
Proof. by move=> ?; rewrite mulrC divpK. Qed.
Lemma dvdpP q p :
reflect (exists2 cqq, cqq.1 != 0 & cqq.1 *: p = cqq.2 * q) (q %| p).
Proof.
rewrite dvdp_eq; apply: (iffP eqP) => [e | [[c qq] cn0 e]].
by exists (lead_coef q ^+ scalp p q, p %/ q) => //=.
apply/eqP; rewrite -dvdp_eq dvdpE.
have Ecc: c%:P != 0 by rewrite polyC_eq0.
have [->|nz_p] := eqVneq p 0; first by rewrite rdvdp0.
pose p1 : {poly R} := lead_coef q ^+ rscalp p q *: qq - c *: (rdivp p q).
have E1: c *: rmodp p q = p1 * q.
rewrite mulrDl mulNr -scalerAl -e scalerA mulrC -scalerA -scalerAl.
by rewrite -scalerBr rdivp_eq addrC addKr.
suff: p1 * q == 0 by rewrite -E1 -mul_polyC mulf_eq0 (negPf Ecc).
rewrite mulf_eq0; apply/norP; case=> p1_nz q_nz; have:= ltn_rmodp p q.
by rewrite q_nz -(size_scale _ cn0) E1 size_mul // polySpred // ltnNge leq_addl.
Qed.
Lemma mulpK p q : q != 0 -> p * q %/ q = lead_coef q ^+ scalp (p * q) q *: p.
Proof.
move=> qn0; apply: (rregP qn0); rewrite -scalerAl divp_eq.
suff -> : (p * q) %% q = 0 by rewrite addr0.
rewrite modpE RingComRreg.rmodp_mull ?scaler0 ?if_same //.
by red; rewrite mulrC.
by apply/rregP; rewrite lead_coef_eq0.
Qed.
Lemma mulKp p q : q != 0 -> q * p %/ q = lead_coef q ^+ scalp (p * q) q *: p.
Proof. by move=> nzq; rewrite mulrC; apply: mulpK. Qed.
Lemma divpp p : p != 0 -> p %/ p = (lead_coef p ^+ scalp p p)%:P.
Proof.
move=> np0; have := divp_eq p p.
suff -> : p %% p = 0 by rewrite addr0 -mul_polyC; move/(mulIf np0).
rewrite modpE Ring.rmodpp; last by red; rewrite mulrC.
by rewrite scaler0 if_same.
Qed.
End WeakTheoryForIDomainPseudoDivision.
#[global] Hint Resolve lc_expn_scalp_neq0 : core.
End WeakIdomain.
Module CommonIdomain.
Import Ring ComRing UnitRing IdomainDefs WeakIdomain.
Section IDomainPseudoDivision.
Variable R : idomainType.
Implicit Type p q r d m n : {poly R}.
Lemma scalp0 p : scalp p 0 = 0.
Proof. by rewrite /scalp unlock lead_coef0 unitr0 unlock eqxx. Qed.
Lemma divp_small p q : size p < size q -> p %/ q = 0.
Proof.
move=> spq; rewrite /divp unlock redivp_def /=.
by case: ifP; rewrite rdivp_small // scaler0.
Qed.
Lemma leq_divp p q : (size (p %/ q) <= size p).
Proof.
rewrite /divp unlock redivp_def /=; case: ifP => ulcq; rewrite ?leq_rdivp //=.
rewrite size_scale ?leq_rdivp // -exprVn expf_neq0 // invr_eq0.
by case: eqP ulcq => // ->; rewrite unitr0.
Qed.
Lemma div0p p : 0 %/ p = 0.
Proof.
by rewrite /divp unlock redivp_def /=; case: ifP; rewrite rdiv0p // scaler0.
Qed.
Lemma divp0 p : p %/ 0 = 0.
Proof.
by rewrite /divp unlock redivp_def /=; case: ifP; rewrite rdivp0 // scaler0.
Qed.
Lemma divp1 m : m %/ 1 = m.
Proof.
by rewrite divpE lead_coefC unitr1 Ring.rdivp1 expr1n invr1 scale1r.
Qed.
Lemma modp0 p : p %% 0 = p.
Proof.
rewrite /modp unlock redivp_def; case: ifP; rewrite rmodp0 //= lead_coef0.
by rewrite unitr0.
Qed.
Lemma mod0p p : 0 %% p = 0.
Proof.
by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmod0p // scaler0.
Qed.
Lemma modp1 p : p %% 1 = 0.
Proof.
by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmodp1 // scaler0.
Qed.
Hint Resolve divp0 divp1 mod0p modp0 modp1 : core.
Lemma modp_small p q : size p < size q -> p %% q = p.
Proof.
move=> spq; rewrite /modp unlock redivp_def; case: ifP; rewrite rmodp_small //.
by rewrite /= rscalp_small // expr0 /= invr1 scale1r.
Qed.
Lemma modpC p c : c != 0 -> p %% c%:P = 0.
Proof.
move=> cn0; rewrite /modp unlock redivp_def /=; case: ifP; rewrite ?rmodpC //.
by rewrite scaler0.
Qed.
Lemma modp_mull p q : (p * q) %% q = 0.
Proof.
have [-> | nq0] := eqVneq q 0; first by rewrite modp0 mulr0.
have rlcq : GRing.rreg (lead_coef q) by apply/rregP; rewrite lead_coef_eq0.
have hC : GRing.comm q (lead_coef q)%:P by red; rewrite mulrC.
by rewrite modpE; case: ifP => ulcq; rewrite RingComRreg.rmodp_mull // scaler0.
Qed.
Lemma modp_mulr d p : (d * p) %% d = 0. Proof. by rewrite mulrC modp_mull. Qed.
Lemma modpp d : d %% d = 0.
Proof. by rewrite -[d in d %% _]mul1r modp_mull. Qed.
Lemma ltn_modp p q : (size (p %% q) < size q) = (q != 0).
Proof.
rewrite /modp unlock redivp_def /=; case: ifP=> ulcq; rewrite ?ltn_rmodp //=.
rewrite size_scale ?ltn_rmodp // -exprVn expf_neq0 // invr_eq0.
by case: eqP ulcq => // ->; rewrite unitr0.
Qed.
Lemma ltn_divpl d q p : d != 0 ->
(size (q %/ d) < size p) = (size q < size (p * d)).
Proof.
move=> dn0.
have: (lead_coef d) ^+ (scalp q d) != 0 by apply: lc_expn_scalp_neq0.
move/(size_scale q)<-; rewrite divp_eq; have [->|quo0] := eqVneq (q %/ d) 0.
rewrite mul0r add0r size_poly0 size_poly_gt0.
have [->|pn0] := eqVneq p 0; first by rewrite mul0r size_poly0 ltn0.
by rewrite size_mul // (polySpred pn0) addSn ltn_addl // ltn_modp.
rewrite size_addl; last first.
by rewrite size_mul // (polySpred quo0) addSn /= ltn_addl // ltn_modp.
have [->|pn0] := eqVneq p 0; first by rewrite mul0r size_poly0 !ltn0.
by rewrite !size_mul ?quo0 // (polySpred dn0) !addnS ltn_add2r.
Qed.
Lemma leq_divpr d p q : d != 0 ->
(size p <= size (q %/ d)) = (size (p * d) <= size q).
Proof. by move=> dn0; rewrite leqNgt ltn_divpl // -leqNgt. Qed.
Lemma divpN0 d p : d != 0 -> (p %/ d != 0) = (size d <= size p).
Proof.
move=> dn0.
by rewrite -[d in RHS]mul1r -leq_divpr // size_polyC oner_eq0 size_poly_gt0.
Qed.
Lemma size_divp p q : q != 0 -> size (p %/ q) = (size p - (size q).-1)%N.
Proof.
move=> nq0; case: (leqP (size q) (size p)) => sqp; last first.
move: (sqp); rewrite -{1}(ltn_predK sqp) ltnS -subn_eq0 divp_small //.
by move/eqP->; rewrite size_poly0.
have np0 : p != 0.
by rewrite -size_poly_gt0; apply: leq_trans sqp; rewrite size_poly_gt0.
have /= := congr1 (size \o @polyseq R) (divp_eq p q).
rewrite size_scale; last by rewrite expf_eq0 lead_coef_eq0 (negPf nq0) andbF.
have [->|qq0] := eqVneq (p %/ q) 0.
by rewrite mul0r add0r=> es; move: nq0; rewrite -(ltn_modp p) -es ltnNge sqp.
rewrite size_addl.
by move->; apply/eqP; rewrite size_mul // (polySpred nq0) addnS /= addnK.
rewrite size_mul ?qq0 //.
move: nq0; rewrite -(ltn_modp p); move/leq_trans; apply.
by rewrite (polySpred qq0) addSn /= leq_addl.
Qed.
Lemma ltn_modpN0 p q : q != 0 -> size (p %% q) < size q.
Proof. by rewrite ltn_modp. Qed.
Lemma modp_id p q : (p %% q) %% q = p %% q.
Proof.
by have [->|qn0] := eqVneq q 0; rewrite ?modp0 // modp_small ?ltn_modp.
Qed.
Lemma leq_modp m d : size (m %% d) <= size m.
Proof.
rewrite /modp unlock redivp_def /=; case: ifP; rewrite ?leq_rmodp //.
move=> ud; rewrite size_scale ?leq_rmodp // invr_eq0 expf_neq0 //.
by apply: contraTneq ud => ->; rewrite unitr0.
Qed.
Lemma dvdp0 d : d %| 0. Proof. by rewrite /dvdp mod0p. Qed.
Hint Resolve dvdp0 : core.
Lemma dvd0p p : (0 %| p) = (p == 0). Proof. by rewrite /dvdp modp0. Qed.
Lemma dvd0pP p : reflect (p = 0) (0 %| p).
Proof. by apply: (iffP idP); rewrite dvd0p; move/eqP. Qed.
Lemma dvdpN0 p q : p %| q -> q != 0 -> p != 0.
Proof. by move=> pq hq; apply: contraTneq pq => ->; rewrite dvd0p. Qed.
Lemma dvdp1 d : (d %| 1) = (size d == 1).
Proof.
rewrite /dvdp modpE; case ud: (lead_coef d \in GRing.unit); last exact: rdvdp1.
rewrite -size_poly_eq0 size_scale; first by rewrite size_poly_eq0 -rdvdp1.
by rewrite invr_eq0 expf_neq0 //; apply: contraTneq ud => ->; rewrite unitr0.
Qed.
Lemma dvd1p m : 1 %| m. Proof. by rewrite /dvdp modp1. Qed.
Lemma gtNdvdp p q : p != 0 -> size p < size q -> (q %| p) = false.
Proof.
by move=> nn0 hs; rewrite /dvdp; rewrite (modp_small hs); apply: negPf.
Qed.
Lemma modp_eq0P p q : reflect (p %% q = 0) (q %| p).
Proof. exact: (iffP eqP). Qed.
Lemma modp_eq0 p q : (q %| p) -> p %% q = 0. Proof. exact: modp_eq0P. Qed.
Lemma leq_divpl d p q :
d %| p -> (size (p %/ d) <= size q) = (size p <= size (q * d)).
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | nd0 hd].
by rewrite divp0 size_poly0 !leq0n.
rewrite leq_eqVlt ltn_divpl // (leq_eqVlt (size p)).
case lhs: (size p < size (q * d)); rewrite ?orbT ?orbF //.
have: (lead_coef d) ^+ (scalp p d) != 0 by rewrite expf_neq0 // lead_coef_eq0.
move/(size_scale p)<-; rewrite divp_eq; move/modp_eq0P: hd->; rewrite addr0.
have [-> | quon0] := eqVneq (p %/ d) 0.
rewrite mul0r size_poly0 2!(eq_sym 0) !size_poly_eq0.
by rewrite mulf_eq0 (negPf nd0) orbF.
have [-> | nq0] := eqVneq q 0.
by rewrite mul0r size_poly0 !size_poly_eq0 mulf_eq0 (negPf nd0) orbF.
by rewrite !size_mul // (polySpred nd0) !addnS /= eqn_add2r.
Qed.
Lemma dvdp_leq p q : q != 0 -> p %| q -> size p <= size q.
Proof.
move=> nq0 /modp_eq0P.
by case: leqP => // /modp_small -> /eqP; rewrite (negPf nq0).
Qed.
Lemma eq_dvdp c quo q p : c != 0 -> c *: p = quo * q -> q %| p.
Proof.
move=> cn0; case: (eqVneq p 0) => [->|nz_quo def_quo] //.
pose p1 : {poly R} := lead_coef q ^+ scalp p q *: quo - c *: (p %/ q).
have E1: c *: (p %% q) = p1 * q.
rewrite mulrDl mulNr -scalerAl -def_quo scalerA mulrC -scalerA.
by rewrite -scalerAl -scalerBr divp_eq addrAC subrr add0r.
rewrite /dvdp; apply/idPn=> m_nz.
have: p1 * q != 0 by rewrite -E1 -mul_polyC mulf_neq0 // polyC_eq0.
rewrite mulf_eq0; case/norP=> p1_nz q_nz.
have := ltn_modp p q; rewrite q_nz -(size_scale (p %% q) cn0) E1.
by rewrite size_mul // polySpred // ltnNge leq_addl.
Qed.
Lemma dvdpp d : d %| d. Proof. by rewrite /dvdp modpp. Qed.
Hint Resolve dvdpp : core.
Lemma divp_dvd p q : p %| q -> (q %/ p) %| q.
Proof.
have [-> | np0] := eqVneq p 0; first by rewrite divp0.
rewrite dvdp_eq => /eqP h.
apply: (@eq_dvdp ((lead_coef p)^+ (scalp q p)) p); last by rewrite mulrC.
by rewrite expf_neq0 // lead_coef_eq0.
Qed.
Lemma dvdp_mull m d n : d %| n -> d %| m * n.
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite mulr0 dvdpp.
rewrite dvdp_eq => /eqP e.
apply: (@eq_dvdp (lead_coef d ^+ scalp n d) (m * (n %/ d))).
by rewrite expf_neq0 // lead_coef_eq0.
by rewrite scalerAr e mulrA.
Qed.
Lemma dvdp_mulr n d m : d %| m -> d %| m * n.
Proof. by move=> hdm; rewrite mulrC dvdp_mull. Qed.
Hint Resolve dvdp_mull dvdp_mulr : core.
Lemma dvdp_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2.
Proof.
case: (eqVneq d1 0) => [-> /dvd0pP -> | d1n0]; first by rewrite !mul0r dvdpp.
case: (eqVneq d2 0) => [-> _ /dvd0pP -> | d2n0]; first by rewrite !mulr0.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Hq1.
rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> Hq2.
apply: (@eq_dvdp (c1 * c2) (q1 * q2)).
by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0.
rewrite -scalerA scalerAr scalerAl Hq1 Hq2 -!mulrA.
by rewrite [d1 * (q2 * _)]mulrCA.
Qed.
Lemma dvdp_addr m d n : d %| m -> (d %| m + n) = (d %| n).
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite add0r.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Eq1.
apply/idP/idP; rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _.
have sn0 : c1 * c2 != 0.
by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF.
move/eqP=> Eq2; apply: (@eq_dvdp _ (c1 *: q2 - c2 *: q1) _ _ sn0).
rewrite mulrDl -scaleNr -!scalerAl -Eq1 -Eq2 !scalerA.
by rewrite mulNr mulrC scaleNr -scalerBr addrC addKr.
have sn0 : c1 * c2 != 0.
by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF.
move/eqP=> Eq2; apply: (@eq_dvdp _ (c1 *: q2 + c2 *: q1) _ _ sn0).
by rewrite mulrDl -!scalerAl -Eq1 -Eq2 !scalerA mulrC addrC scalerDr.
Qed.
Lemma dvdp_addl n d m : d %| n -> (d %| m + n) = (d %| m).
Proof. by rewrite addrC; apply: dvdp_addr. Qed.
Lemma dvdp_add d m n : d %| m -> d %| n -> d %| m + n.
Proof. by move/dvdp_addr->. Qed.
Lemma dvdp_add_eq d m n : d %| m + n -> (d %| m) = (d %| n).
Proof. by move=> ?; apply/idP/idP; [move/dvdp_addr <-| move/dvdp_addl <-]. Qed.
Lemma dvdp_subr d m n : d %| m -> (d %| m - n) = (d %| n).
Proof. by move=> ?; apply: dvdp_add_eq; rewrite -addrA addNr simp. Qed.
Lemma dvdp_subl d m n : d %| n -> (d %| m - n) = (d %| m).
Proof. by move/dvdp_addl<-; rewrite subrK. Qed.
Lemma dvdp_sub d m n : d %| m -> d %| n -> d %| m - n.
Proof. by move=> *; rewrite dvdp_subl. Qed.
Lemma dvdp_mod d n m : d %| n -> (d %| m) = (d %| m %% n).
Proof.
have [-> | nn0] := eqVneq n 0; first by rewrite modp0.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite modp0.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Eq1.
apply/idP/idP; rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _.
have sn0 : c1 * c2 != 0.
by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF.
pose quo := (c1 * lead_coef n ^+ scalp m n) *: q2 - c2 *: (m %/ n) * q1.
move/eqP=> Eq2; apply: (@eq_dvdp _ quo _ _ sn0).
rewrite mulrDl mulNr -!scalerAl -!mulrA -Eq1 -Eq2 -scalerAr !scalerA.
rewrite mulrC [_ * c2]mulrC mulrA -[((_ * _) * _) *: _]scalerA -scalerBr.
by rewrite divp_eq addrC addKr.
have sn0 : c1 * c2 * lead_coef n ^+ scalp m n != 0.
rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 ?(negPf dn0) ?andbF //.
by rewrite (negPf nn0) andbF.
move/eqP=> Eq2; apply: (@eq_dvdp _ (c2 *: (m %/ n) * q1 + c1 *: q2) _ _ sn0).
rewrite -scalerA divp_eq scalerDr -!scalerA Eq2 scalerAl scalerAr Eq1.
by rewrite scalerAl mulrDl mulrA.
Qed.
Lemma dvdp_trans : transitive (@dvdp R).
Proof.
move=> n d m.
case: (eqVneq d 0) => [-> /dvd0pP -> // | dn0].
case: (eqVneq n 0) => [-> _ /dvd0pP -> // | nn0].
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Hq1.
rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> Hq2.
have sn0 : c1 * c2 != 0 by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0.
by apply: (@eq_dvdp _ (q2 * q1) _ _ sn0); rewrite -scalerA Hq2 scalerAr Hq1 mulrA.
Qed.
Lemma dvdp_mulIl p q : p %| p * q. Proof. exact/dvdp_mulr/dvdpp. Qed.
Lemma dvdp_mulIr p q : q %| p * q. Proof. exact/dvdp_mull/dvdpp. Qed.
Lemma dvdp_mul2r r p q : r != 0 -> (p * r %| q * r) = (p %| q).
Proof.
move=> nzr.
have [-> | pn0] := eqVneq p 0.
by rewrite mul0r !dvd0p mulf_eq0 (negPf nzr) orbF.
have [-> | qn0] := eqVneq q 0; first by rewrite mul0r !dvdp0.
apply/idP/idP; last by move=> ?; rewrite dvdp_mul ?dvdpp.
rewrite dvdp_eq; set c := _ ^+ _; set x := _ %/ _; move/eqP=> Hx.
apply: (@eq_dvdp c x); first by rewrite expf_neq0 // lead_coef_eq0 mulf_neq0.
by apply: (mulIf nzr); rewrite -mulrA -scalerAl.
Qed.
Lemma dvdp_mul2l r p q: r != 0 -> (r * p %| r * q) = (p %| q).
Proof. by rewrite ![r * _]mulrC; apply: dvdp_mul2r. Qed.
Lemma ltn_divpr d p q :
d %| q -> (size p < size (q %/ d)) = (size (p * d) < size q).
Proof. by move=> dv_d_q; rewrite !ltnNge leq_divpl. Qed.
Lemma dvdp_exp d k p : 0 < k -> d %| p -> d %| (p ^+ k).
Proof. by case: k => // k _ d_dv_m; rewrite exprS dvdp_mulr. Qed.
Lemma dvdp_exp2l d k l : k <= l -> d ^+ k %| d ^+ l.
Proof. by move/subnK <-; rewrite exprD dvdp_mull // ?lead_coef_exp ?unitrX. Qed.
Lemma dvdp_Pexp2l d k l : 1 < size d -> (d ^+ k %| d ^+ l) = (k <= l).
Proof.
move=> sd; case: leqP => [|gt_n_m]; first exact: dvdp_exp2l.
have dn0 : d != 0 by rewrite -size_poly_gt0; apply: ltn_trans sd.
rewrite gtNdvdp ?expf_neq0 // polySpred ?expf_neq0 // size_exp /=.
rewrite [size (d ^+ k)]polySpred ?expf_neq0 // size_exp ltnS ltn_mul2l.
by move: sd; rewrite -subn_gt0 subn1; move->.
Qed.
Lemma dvdp_exp2r p q k : p %| q -> p ^+ k %| q ^+ k.
Proof.
case: (eqVneq p 0) => [-> /dvd0pP -> // | pn0].
rewrite dvdp_eq; set c := _ ^+ _; set t := _ %/ _; move/eqP=> e.
apply: (@eq_dvdp (c ^+ k) (t ^+ k)); first by rewrite !expf_neq0 ?lead_coef_eq0.
by rewrite -exprMn -exprZn; congr (_ ^+ k).
Qed.
Lemma dvdp_exp_sub p q k l: p != 0 ->
(p ^+ k %| q * p ^+ l) = (p ^+ (k - l) %| q).
Proof.
move=> pn0; case: (leqP k l)=> [|/ltnW] hkl.
move: (hkl); rewrite -subn_eq0; move/eqP->; rewrite expr0 dvd1p.
exact/dvdp_mull/dvdp_exp2l.
by rewrite -[in LHS](subnK hkl) exprD dvdp_mul2r // expf_eq0 (negPf pn0) andbF.
Qed.
Lemma dvdp_XsubCl p x : ('X - x%:P) %| p = root p x.
Proof. by rewrite dvdpE; apply: Ring.rdvdp_XsubCl. Qed.
Lemma root_dvdp p q x : p %| q -> root p x -> root q x.
Proof. by rewrite -!dvdp_XsubCl => /[swap]; exact: dvdp_trans. Qed.
Lemma polyXsubCP p x : reflect (p.[x] = 0) (('X - x%:P) %| p).
Proof. by rewrite dvdpE; apply: Ring.polyXsubCP. Qed.
Lemma eqp_div_XsubC p c :
(p == (p %/ ('X - c%:P)) * ('X - c%:P)) = ('X - c%:P %| p).
Proof. by rewrite dvdp_eq lead_coefXsubC expr1n scale1r. Qed.
Lemma root_factor_theorem p x : root p x = (('X - x%:P) %| p).
Proof. by rewrite dvdp_XsubCl. Qed.
Lemma uniq_roots_dvdp p rs : all (root p) rs -> uniq_roots rs ->
(\prod_(z <- rs) ('X - z%:P)) %| p.
Proof.
move=> rrs; case/(uniq_roots_prod_XsubC rrs)=> q ->.
by apply: dvdp_mull; rewrite // (eqP (monic_prod_XsubC _)) unitr1.
Qed.
Lemma root_bigmul x (ps : seq {poly R}) :
~~root (\big[*%R/1]_(p <- ps) p) x = all (fun p => ~~ root p x) ps.
Proof.
elim: ps => [|p ps ihp]; first by rewrite big_nil root1.
by rewrite big_cons /= rootM negb_or ihp.
Qed.
Lemma eqpP m n :
reflect (exists2 c12, (c12.1 != 0) && (c12.2 != 0) & c12.1 *: m = c12.2 *: n)
(m %= n).
Proof.
apply: (iffP idP) => [| [[c1 c2]/andP[nz_c1 nz_c2 eq_cmn]]]; last first.
rewrite /eqp (@eq_dvdp c2 c1%:P) -?eq_cmn ?mul_polyC // (@eq_dvdp c1 c2%:P) //.
by rewrite eq_cmn mul_polyC.
case: (eqVneq m 0) => [-> /andP [/dvd0pP -> _] | m_nz].
by exists (1, 1); rewrite ?scaler0 // oner_eq0.
case: (eqVneq n 0) => [-> /andP [_ /dvd0pP ->] | n_nz /andP []].
by exists (1, 1); rewrite ?scaler0 // oner_eq0.
rewrite !dvdp_eq; set c1 := _ ^+ _; set c2 := _ ^+ _.
set q1 := _ %/ _; set q2 := _ %/ _; move/eqP => Hq1 /eqP Hq2;
have Hc1 : c1 != 0 by rewrite expf_eq0 lead_coef_eq0 negb_and m_nz orbT.
have Hc2 : c2 != 0 by rewrite expf_eq0 lead_coef_eq0 negb_and n_nz orbT.
have def_q12: q1 * q2 = (c1 * c2)%:P.
apply: (mulIf m_nz); rewrite mulrAC mulrC -Hq1 -scalerAr -Hq2 scalerA.
by rewrite -mul_polyC.
have: q1 * q2 != 0 by rewrite def_q12 -size_poly_eq0 size_polyC mulf_neq0.
rewrite mulf_eq0; case/norP=> nz_q1 nz_q2.
have: size q2 <= 1.
have:= size_mul nz_q1 nz_q2; rewrite def_q12 size_polyC mulf_neq0 //=.
by rewrite polySpred // => ->; rewrite leq_addl.
rewrite leq_eqVlt ltnS size_poly_leq0 (negPf nz_q2) orbF.
case/size_poly1P=> c cn0 cqe; exists (c2, c); first by rewrite Hc2.
by rewrite Hq2 -mul_polyC -cqe.
Qed.
Lemma eqp_eq p q: p %= q -> (lead_coef q) *: p = (lead_coef p) *: q.
Proof.
move=> /eqpP [[c1 c2] /= /andP [nz_c1 nz_c2]] eq.
have/(congr1 lead_coef) := eq; rewrite !lead_coefZ.
move=> eqC; apply/(@mulfI _ c2%:P); rewrite ?polyC_eq0 //.
by rewrite !mul_polyC scalerA -eqC mulrC -scalerA eq !scalerA mulrC.
Qed.
Lemma eqpxx : reflexive (@eqp R). Proof. by move=> p; rewrite /eqp dvdpp. Qed.
Hint Resolve eqpxx : core.
Lemma eqpW p q : p = q -> p %= q. Proof. by move->; rewrite eqpxx. Qed.
Lemma eqp_sym : symmetric (@eqp R).
Proof. by move=> p q; rewrite /eqp andbC. Qed.
Lemma eqp_trans : transitive (@eqp R).
Proof.
move=> p q r; case/andP=> Dp pD; case/andP=> Dq qD.
by rewrite /eqp (dvdp_trans Dp) // (dvdp_trans qD).
Qed.
Lemma eqp_ltrans : left_transitive (@eqp R).
Proof. exact: sym_left_transitive eqp_sym eqp_trans. Qed.
Lemma eqp_rtrans : right_transitive (@eqp R).
Proof. exact: sym_right_transitive eqp_sym eqp_trans. Qed.
Lemma eqp0 p : (p %= 0) = (p == 0).
Proof. by apply/idP/eqP => [/andP [_ /dvd0pP] | -> //]. Qed.
Lemma eqp01 : 0 %= (1 : {poly R}) = false.
Proof. by rewrite eqp_sym eqp0 oner_eq0. Qed.
Lemma eqp_scale p c : c != 0 -> c *: p %= p.
Proof.
move=> c0; apply/eqpP; exists (1, c); first by rewrite c0 oner_eq0.
by rewrite scale1r.
Qed.
Lemma eqp_size p q : p %= q -> size p = size q.
Proof.
have [->|Eq] := eqVneq q 0; first by rewrite eqp0; move/eqP->.
rewrite eqp_sym; have [->|Ep] := eqVneq p 0; first by rewrite eqp0; move/eqP->.
by case/andP => Dp Dq; apply: anti_leq; rewrite !dvdp_leq.
Qed.
Lemma size_poly_eq1 p : (size p == 1) = (p %= 1).
Proof.
apply/size_poly1P/idP=> [[c cn0 ep] |].
by apply/eqpP; exists (1, c); rewrite ?oner_eq0 // alg_polyC scale1r.
by move/eqp_size; rewrite size_poly1; move/eqP/size_poly1P.
Qed.
Lemma polyXsubC_eqp1 (x : R) : ('X - x%:P %= 1) = false.
Proof. by rewrite -size_poly_eq1 size_XsubC. Qed.
Lemma dvdp_eqp1 p q : p %| q -> q %= 1 -> p %= 1.
Proof.
move=> dpq hq.
have sizeq : size q == 1 by rewrite size_poly_eq1.
have n0q : q != 0 by case: eqP hq => // ->; rewrite eqp01.
rewrite -size_poly_eq1 eqn_leq -{1}(eqP sizeq) dvdp_leq //= size_poly_gt0.
by apply/eqP => p0; move: dpq n0q; rewrite p0 dvd0p => ->.
Qed.
Lemma eqp_dvdr q p d: p %= q -> d %| p = (d %| q).
Proof.
suff Hmn m n: m %= n -> (d %| m) -> (d %| n).
by move=> mn; apply/idP/idP; apply: Hmn=> //; rewrite eqp_sym.
by rewrite /eqp; case/andP=> pq qp dp; apply: (dvdp_trans dp).
Qed.
Lemma eqp_dvdl d2 d1 p : d1 %= d2 -> d1 %| p = (d2 %| p).
suff Hmn m n: m %= n -> (m %| p) -> (n %| p).
by move=> ?; apply/idP/idP; apply: Hmn; rewrite // eqp_sym.
by rewrite /eqp; case/andP=> dd' d'd dp; apply: (dvdp_trans d'd).
Qed.
Lemma dvdpZr c m n : c != 0 -> m %| c *: n = (m %| n).
Proof. by move=> cn0; exact/eqp_dvdr/eqp_scale. Qed.
Lemma dvdpZl c m n : c != 0 -> (c *: m %| n) = (m %| n).
Proof. by move=> cn0; exact/eqp_dvdl/eqp_scale. Qed.
Lemma dvdpNl d p : (- d) %| p = (d %| p).
Proof.
by rewrite -scaleN1r; apply/eqp_dvdl/eqp_scale; rewrite oppr_eq0 oner_neq0.
Qed.
Lemma dvdpNr d p : d %| (- p) = (d %| p).
Proof. by apply: eqp_dvdr; rewrite -scaleN1r eqp_scale ?oppr_eq0 ?oner_eq0. Qed.
Lemma eqp_mul2r r p q : r != 0 -> (p * r %= q * r) = (p %= q).
Proof. by move=> nz_r; rewrite /eqp !dvdp_mul2r. Qed.
Lemma eqp_mul2l r p q: r != 0 -> (r * p %= r * q) = (p %= q).
Proof. by move=> nz_r; rewrite /eqp !dvdp_mul2l. Qed.
Lemma eqp_mull r p q: q %= r -> p * q %= p * r.
Proof.
case/eqpP=> [[c d]] /andP [c0 d0 e]; apply/eqpP; exists (c, d); rewrite ?c0 //.
by rewrite scalerAr e -scalerAr.
Qed.
Lemma eqp_mulr q p r : p %= q -> p * r %= q * r.
Proof. by move=> epq; rewrite ![_ * r]mulrC eqp_mull. Qed.
Lemma eqp_exp p q k : p %= q -> p ^+ k %= q ^+ k.
Proof.
move=> pq; elim: k=> [|k ihk]; first by rewrite !expr0 eqpxx.
by rewrite !exprS (@eqp_trans (q * p ^+ k)) // (eqp_mulr, eqp_mull).
Qed.
Lemma polyC_eqp1 (c : R) : (c%:P %= 1) = (c != 0).
Proof.
apply/eqpP/idP => [[[x y]] |nc0] /=.
case: (eqVneq c) => [->|] //= /andP [_] /negPf <- /eqP.
by rewrite alg_polyC scaler0 eq_sym polyC_eq0.
exists (1, c); first by rewrite nc0 /= oner_neq0.
by rewrite alg_polyC scale1r.
Qed.
Lemma dvdUp d p: d %= 1 -> d %| p.
Proof. by move/eqp_dvdl->; rewrite dvd1p. Qed.
Lemma dvdp_size_eqp p q : p %| q -> size p == size q = (p %= q).
Proof.
move=> pq; apply/idP/idP; last by move/eqp_size->.
have [->|Hq] := eqVneq q 0; first by rewrite size_poly0 size_poly_eq0 eqp0.
have [->|Hp] := eqVneq p 0.
by rewrite size_poly0 eq_sym size_poly_eq0 eqp_sym eqp0.
move: pq; rewrite dvdp_eq; set c := _ ^+ _; set x := _ %/ _; move/eqP=> eqpq.
have /= := congr1 (size \o @polyseq R) eqpq.
have cn0 : c != 0 by rewrite expf_neq0 // lead_coef_eq0.
rewrite (@eqp_size _ q); last exact: eqp_scale.
rewrite size_mul ?p0 // => [-> HH|]; last first.
apply/eqP=> HH; move: eqpq; rewrite HH mul0r.
by move/eqP; rewrite scale_poly_eq0 (negPf Hq) (negPf cn0).
suff: size x == 1%N.
case/size_poly1P=> y H1y H2y.
by apply/eqpP; exists (y, c); rewrite ?H1y // eqpq H2y mul_polyC.
case: (size p) HH (size_poly_eq0 p)=> [|n]; first by case: eqP Hp.
by rewrite addnS -add1n eqn_add2r; move/eqP->.
Qed.
Lemma eqp_root p q : p %= q -> root p =1 root q.
Proof.
move/eqpP=> [[c d]] /andP [c0 d0 e] x; move/negPf:c0=>c0; move/negPf:d0=>d0.
by rewrite rootE -[_==_]orFb -c0 -mulf_eq0 -hornerZ e hornerZ mulf_eq0 d0.
Qed.
Lemma eqp_rmod_mod p q : rmodp p q %= modp p q.
Proof.
rewrite modpE eqp_sym; case: ifP => ulcq //.
apply: eqp_scale; rewrite invr_eq0 //.
by apply: expf_neq0; apply: contraTneq ulcq => ->; rewrite unitr0.
Qed.
Lemma eqp_rdiv_div p q : rdivp p q %= divp p q.
Proof.
rewrite divpE eqp_sym; case: ifP=> ulcq //; apply: eqp_scale; rewrite invr_eq0 //.
by apply: expf_neq0; apply: contraTneq ulcq => ->; rewrite unitr0.
Qed.
Lemma dvd_eqp_divl d p q (dvd_dp : d %| q) (eq_pq : p %= q) :
p %/ d %= q %/ d.
Proof.
case: (eqVneq q 0) eq_pq=> [->|q_neq0]; first by rewrite eqp0=> /eqP->.
have d_neq0: d != 0 by apply: contraTneq dvd_dp=> ->; rewrite dvd0p.
move=> eq_pq; rewrite -(@eqp_mul2r d) // !divpK // ?(eqp_dvdr _ eq_pq) //.
rewrite (eqp_ltrans (eqp_scale _ _)) ?lc_expn_scalp_neq0 //.
by rewrite (eqp_rtrans (eqp_scale _ _)) ?lc_expn_scalp_neq0.
Qed.
Definition gcdp p q :=
let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
if p1 == 0 then q1 else
let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
let rr := modp pp qq in
if rr == 0 then qq else
if n is n1.+1 then loop n1 qq rr else rr in
loop (size p1) p1 q1.
Arguments gcdp : simpl never.
Lemma gcd0p : left_id 0 gcdp.
Proof.
move=> p; rewrite /gcdp size_poly0 size_poly_gt0 if_neg.
case: ifP => /= [_ | nzp]; first by rewrite eqxx.
by rewrite polySpred !(modp0, nzp) //; case: _.-1 => [|m]; rewrite mod0p eqxx.
Qed.
Lemma gcdp0 : right_id 0 gcdp.
Proof.
move=> p; have:= gcd0p p; rewrite /gcdp size_poly0 size_poly_gt0.
by case: eqVneq => //= ->; rewrite eqxx.
Qed.
Lemma gcdpE p q :
gcdp p q = if size p < size q
then gcdp (modp q p) p else gcdp (modp p q) q.
Proof.
pose gcdpE_rec := fix gcdpE_rec (n : nat) (pp qq : {poly R}) {struct n} :=
let rr := modp pp qq in
if rr == 0 then qq else
if n is n1.+1 then gcdpE_rec n1 qq rr else rr.
have Irec: forall k l p q, size q <= k -> size q <= l
-> size q < size p -> gcdpE_rec k p q = gcdpE_rec l p q.
+ elim=> [|m Hrec] [|n] //= p1 q1.
- move/size_poly_leq0P=> -> _; rewrite size_poly0 size_poly_gt0 modp0.
by move/negPf ->; case: n => [|n] /=; rewrite mod0p eqxx.
- move=> _ /size_poly_leq0P ->; rewrite size_poly0 size_poly_gt0 modp0.
by move/negPf ->; case: m {Hrec} => [|m] /=; rewrite mod0p eqxx.
case: eqP => Epq Sm Sn Sq //; have [->|nzq] := eqVneq q1 0.
by case: n m {Sm Sn Hrec} => [|m] [|n] //=; rewrite mod0p eqxx.
apply: Hrec; last by rewrite ltn_modp.
by rewrite -ltnS (leq_trans _ Sm) // ltn_modp.
by rewrite -ltnS (leq_trans _ Sn) // ltn_modp.
have [->|nzp] := eqVneq p 0; first by rewrite mod0p modp0 gcd0p gcdp0 if_same.
have [->|nzq] := eqVneq q 0; first by rewrite mod0p modp0 gcd0p gcdp0 if_same.
rewrite /gcdp !ltn_modp !(negPf nzp, negPf nzq) /=.
have [ltpq|leqp] := ltnP; rewrite !(negPf nzp, negPf nzq) /= polySpred //.
have [->|nzqp] := eqVneq.
by case: (size p) => [|[|s]]; rewrite /= modp0 (negPf nzp) // mod0p eqxx.
apply: Irec => //; last by rewrite ltn_modp.
by rewrite -ltnS -polySpred // (leq_trans _ ltpq) ?leqW // ltn_modp.
by rewrite ltnW // ltn_modp.
case: eqVneq => [->|nzpq].
by case: (size q) => [|[|s]]; rewrite /= modp0 (negPf nzq) // mod0p eqxx.
apply: Irec => //; rewrite ?ltn_modp //.
by rewrite -ltnS -polySpred // (leq_trans _ leqp) // ltn_modp.
by rewrite ltnW // ltn_modp.
Qed.
Lemma size_gcd1p p : size (gcdp 1 p) = 1.
Proof.
rewrite gcdpE size_polyC oner_eq0 /= modp1; have [|/size1_polyC ->] := ltnP.
by rewrite gcd0p size_polyC oner_eq0.
have [->|p00] := eqVneq p`_0 0; first by rewrite modp0 gcdp0 size_poly1.
by rewrite modpC // gcd0p size_polyC p00.
Qed.
Lemma size_gcdp1 p : size (gcdp p 1) = 1.
Proof.
rewrite gcdpE size_polyC oner_eq0 /= modp1 ltnS; case: leqP.
by move/size_poly_leq0P->; rewrite gcdp0 modp0 size_polyC oner_eq0.
by rewrite gcd0p size_polyC oner_eq0.
Qed.
Lemma gcdpp : idempotent_op gcdp.
Proof. by move=> p; rewrite gcdpE ltnn modpp gcd0p. Qed.
Lemma dvdp_gcdlr p q : (gcdp p q %| p) && (gcdp p q %| q).
Proof.
have [r] := ubnP (minn (size q) (size p)); elim: r => // r IHr in p q *.
have [-> | nz_p] := eqVneq p 0; first by rewrite gcd0p dvdpp andbT.
have [-> | nz_q] := eqVneq q 0; first by rewrite gcdp0 dvdpp /=.
rewrite ltnS gcdpE; case: leqP => [le_pq | lt_pq] le_qr.
suffices /IHr/andP[E1 E2]: minn (size q) (size (p %% q)) < r.
by rewrite E2 andbT (dvdp_mod _ E2).
by rewrite gtn_min orbC (leq_trans _ le_qr) ?ltn_modp.
suffices /IHr/andP[E1 E2]: minn (size p) (size (q %% p)) < r.
by rewrite E2 (dvdp_mod _ E2).
by rewrite gtn_min orbC (leq_trans _ le_qr) ?ltn_modp.
Qed.
Lemma dvdp_gcdl p q : gcdp p q %| p. Proof. by case/andP: (dvdp_gcdlr p q). Qed.
Lemma dvdp_gcdr p q :gcdp p q %| q. Proof. by case/andP: (dvdp_gcdlr p q). Qed.
Lemma leq_gcdpl p q : p != 0 -> size (gcdp p q) <= size p.
Proof. by move=> pn0; move: (dvdp_gcdl p q); apply: dvdp_leq. Qed.
Lemma leq_gcdpr p q : q != 0 -> size (gcdp p q) <= size q.
Proof. by move=> qn0; move: (dvdp_gcdr p q); apply: dvdp_leq. Qed.
Lemma dvdp_gcd p m n : p %| gcdp m n = (p %| m) && (p %| n).
Proof.
apply/idP/andP=> [dv_pmn | []].
by rewrite ?(dvdp_trans dv_pmn) ?dvdp_gcdl ?dvdp_gcdr.
have [r] := ubnP (minn (size n) (size m)); elim: r => // r IHr in m n *.
have [-> | nz_m] := eqVneq m 0; first by rewrite gcd0p.
have [-> | nz_n] := eqVneq n 0; first by rewrite gcdp0.
rewrite gcdpE ltnS; case: leqP => [le_nm | lt_mn] le_r dv_m dv_n.
apply: IHr => //; last by rewrite -(dvdp_mod _ dv_n).
by rewrite gtn_min orbC (leq_trans _ le_r) ?ltn_modp.
apply: IHr => //; last by rewrite -(dvdp_mod _ dv_m).
by rewrite gtn_min orbC (leq_trans _ le_r) ?ltn_modp.
Qed.
Lemma gcdpC p q : gcdp p q %= gcdp q p.
Proof. by rewrite /eqp !dvdp_gcd !dvdp_gcdl !dvdp_gcdr. Qed.
Lemma gcd1p p : gcdp 1 p %= 1.
Proof.
rewrite -size_poly_eq1 gcdpE size_poly1; case: ltnP.
by rewrite modp1 gcd0p size_poly1 eqxx.
move/size1_polyC=> e; rewrite e.
have [->|p00] := eqVneq p`_0 0; first by rewrite modp0 gcdp0 size_poly1.
by rewrite modpC // gcd0p size_polyC p00.
Qed.
Lemma gcdp1 p : gcdp p 1 %= 1.
Proof. by rewrite (eqp_ltrans (gcdpC _ _)) gcd1p. Qed.
Lemma gcdp_addl_mul p q r: gcdp r (p * r + q) %= gcdp r q.
Proof.
suff h m n d : gcdp d n %| gcdp d (m * d + n).
apply/andP; split => //.
by rewrite {2}(_: q = (-p) * r + (p * r + q)) ?H // mulNr addKr.
by rewrite dvdp_gcd dvdp_gcdl /= dvdp_addr ?dvdp_gcdr ?dvdp_mull ?dvdp_gcdl.
Qed.
Lemma gcdp_addl m n : gcdp m (m + n) %= gcdp m n.
Proof. by rewrite -[m in m + _]mul1r gcdp_addl_mul. Qed.
Lemma gcdp_addr m n : gcdp m (n + m) %= gcdp m n.
Proof. by rewrite addrC gcdp_addl. Qed.
Lemma gcdp_mull m n : gcdp n (m * n) %= n.
Proof.
have [-> | nn0] := eqVneq n 0; first by rewrite gcd0p mulr0 eqpxx.
have [-> | mn0] := eqVneq m 0; first by rewrite mul0r gcdp0 eqpxx.
rewrite gcdpE modp_mull gcd0p size_mul //; case: leqP; last by rewrite eqpxx.
rewrite (polySpred mn0) addSn /= -[leqRHS]add0n leq_add2r -ltnS.
rewrite -polySpred //= leq_eqVlt ltnS size_poly_leq0 (negPf mn0) orbF.
case/size_poly1P=> c cn0 -> {mn0 m}; rewrite mul_polyC.
suff -> : n %% (c *: n) = 0 by rewrite gcd0p; apply: eqp_scale.
by apply/modp_eq0P; rewrite dvdpZl.
Qed.
Lemma gcdp_mulr m n : gcdp n (n * m) %= n.
Proof. by rewrite mulrC gcdp_mull. Qed.
Lemma gcdp_scalel c m n : c != 0 -> gcdp (c *: m) n %= gcdp m n.
Proof.
move=> cn0; rewrite /eqp dvdp_gcd [gcdp m n %| _]dvdp_gcd !dvdp_gcdr !andbT.
apply/andP; split; last first.
by apply: dvdp_trans (dvdp_gcdl _ _) _; rewrite dvdpZr.
by apply: dvdp_trans (dvdp_gcdl _ _) _; rewrite dvdpZl.
Qed.
Lemma gcdp_scaler c m n : c != 0 -> gcdp m (c *: n) %= gcdp m n.
Proof.
move=> cn0; apply: eqp_trans (gcdpC _ _) _.
by apply: eqp_trans (gcdp_scalel _ _ _) _ => //; apply: gcdpC.
Qed.
Lemma dvdp_gcd_idl m n : m %| n -> gcdp m n %= m.
Proof.
have [-> | mn0] := eqVneq m 0.
by rewrite dvd0p => /eqP ->; rewrite gcdp0 eqpxx.
rewrite dvdp_eq; move/eqP/(f_equal (gcdp m)) => h.
apply: eqp_trans (gcdp_mull (n %/ m) _).
by rewrite -h eqp_sym gcdp_scaler // expf_neq0 // lead_coef_eq0.
Qed.
Lemma dvdp_gcd_idr m n : n %| m -> gcdp m n %= n.
Proof. by move/dvdp_gcd_idl; exact/eqp_trans/gcdpC. Qed.
Lemma gcdp_exp p k l : gcdp (p ^+ k) (p ^+ l) %= p ^+ minn k l.
Proof.
case: leqP => [|/ltnW] /subnK <-; rewrite exprD; first exact: gcdp_mull.
exact/(eqp_trans (gcdpC _ _))/gcdp_mull.
Qed.
Lemma gcdp_eq0 p q : gcdp p q == 0 = (p == 0) && (q == 0).
Proof.
apply/idP/idP; last by case/andP => /eqP -> /eqP ->; rewrite gcdp0.
have h m n: gcdp m n == 0 -> (m == 0).
by rewrite -(dvd0p m); move/eqP<-; rewrite dvdp_gcdl.
by move=> ?; rewrite (h _ q) // (h _ p) // -eqp0 (eqp_ltrans (gcdpC _ _)) eqp0.
Qed.
Lemma eqp_gcdr p q r : q %= r -> gcdp p q %= gcdp p r.
Proof.
move=> eqr; rewrite /eqp !(dvdp_gcd, dvdp_gcdl, andbT) /=.
by rewrite -(eqp_dvdr _ eqr) dvdp_gcdr (eqp_dvdr _ eqr) dvdp_gcdr.
Qed.
Lemma eqp_gcdl r p q : p %= q -> gcdp p r %= gcdp q r.
Proof.
move=> eqr; rewrite /eqp !(dvdp_gcd, dvdp_gcdr, andbT) /=.
by rewrite -(eqp_dvdr _ eqr) dvdp_gcdl (eqp_dvdr _ eqr) dvdp_gcdl.
Qed.
Lemma eqp_gcd p1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> gcdp p1 q1 %= gcdp p2 q2.
Proof. move=> e1 e2; exact: eqp_trans (eqp_gcdr _ e2) (eqp_gcdl _ e1). Qed.
Lemma eqp_rgcd_gcd p q : rgcdp p q %= gcdp p q.
Proof.
move: {2}(minn (size p) (size q)) (leqnn (minn (size p) (size q))) => n.
elim: n p q => [p q|n ihn p q hs].
rewrite leqn0; case: ltnP => _; rewrite size_poly_eq0; move/eqP->.
by rewrite gcd0p rgcd0p eqpxx.
by rewrite gcdp0 rgcdp0 eqpxx.
have [-> | pn0] := eqVneq p 0; first by rewrite gcd0p rgcd0p eqpxx.
have [-> | qn0] := eqVneq q 0; first by rewrite gcdp0 rgcdp0 eqpxx.
rewrite gcdpE rgcdpE; case: ltnP hs => sp hs.
have e := eqp_rmod_mod q p; apply/eqp_trans/ihn: (eqp_gcdl p e).
by rewrite (eqp_size e) geq_min -ltnS (leq_trans _ hs) ?ltn_modp.
have e := eqp_rmod_mod p q; apply/eqp_trans/ihn: (eqp_gcdl q e).
by rewrite (eqp_size e) geq_min -ltnS (leq_trans _ hs) ?ltn_modp.
Qed.
Lemma gcdp_modl m n : gcdp (m %% n) n %= gcdp m n.
Proof.
have [/modp_small -> // | lenm] := ltnP (size m) (size n).
by rewrite (gcdpE m n) ltnNge lenm.
Qed.
Lemma gcdp_modr m n : gcdp m (n %% m) %= gcdp m n.
Proof.
apply: eqp_trans (gcdpC _ _); apply: eqp_trans (gcdp_modl _ _); exact: gcdpC.
Qed.
Lemma gcdp_def d m n :
d %| m -> d %| n -> (forall d', d' %| m -> d' %| n -> d' %| d) ->
gcdp m n %= d.
Proof.
move=> dm dn h; rewrite /eqp dvdp_gcd dm dn !andbT.
by apply: h; [apply: dvdp_gcdl | apply: dvdp_gcdr].
Qed.
Definition coprimep p q := size (gcdp p q) == 1%N.
Lemma coprimep_size_gcd p q : coprimep p q -> size (gcdp p q) = 1.
Proof. by rewrite /coprimep=> /eqP. Qed.
Lemma coprimep_def p q : coprimep p q = (size (gcdp p q) == 1).
Proof. done. Qed.
Lemma coprimepZl c m n : c != 0 -> coprimep (c *: m) n = coprimep m n.
Proof. by move=> ?; rewrite !coprimep_def (eqp_size (gcdp_scalel _ _ _)). Qed.
Lemma coprimepZr c m n: c != 0 -> coprimep m (c *: n) = coprimep m n.
Proof. by move=> ?; rewrite !coprimep_def (eqp_size (gcdp_scaler _ _ _)). Qed.
Lemma coprimepp p : coprimep p p = (size p == 1).
Proof. by rewrite coprimep_def gcdpp. Qed.
Lemma gcdp_eqp1 p q : gcdp p q %= 1 = coprimep p q.
Proof. by rewrite coprimep_def size_poly_eq1. Qed.
Lemma coprimep_sym p q : coprimep p q = coprimep q p.
Proof. by rewrite -!gcdp_eqp1; apply: eqp_ltrans; rewrite gcdpC. Qed.
Lemma coprime1p p : coprimep 1 p.
Proof. by rewrite /coprimep -[1%N](size_poly1 R); exact/eqP/eqp_size/gcd1p. Qed.
Lemma coprimep1 p : coprimep p 1.
Proof. by rewrite coprimep_sym; apply: coprime1p. Qed.
Lemma coprimep0 p : coprimep p 0 = (p %= 1).
Proof. by rewrite /coprimep gcdp0 size_poly_eq1. Qed.
Lemma coprime0p p : coprimep 0 p = (p %= 1).
Proof. by rewrite coprimep_sym coprimep0. Qed.
(* This is different from coprimeP in div. shall we keep this? *)
Lemma coprimepP p q :
reflect (forall d, d %| p -> d %| q -> d %= 1) (coprimep p q).
Proof.
rewrite /coprimep; apply: (iffP idP) => [/eqP hs d dvddp dvddq | h].
have/dvdp_eqp1: d %| gcdp p q by rewrite dvdp_gcd dvddp dvddq.
by rewrite -size_poly_eq1 hs; exact.
by rewrite size_poly_eq1; case/andP: (dvdp_gcdlr p q); apply: h.
Qed.
Lemma coprimepPn p q : p != 0 ->
reflect (exists d, (d %| gcdp p q) && ~~ (d %= 1)) (~~ coprimep p q).
Proof.
move=> p0; apply: (iffP idP).
by rewrite -gcdp_eqp1=> ng1; exists (gcdp p q); rewrite dvdpp /=.
case=> d /andP [dg]; apply: contra; rewrite -gcdp_eqp1=> g1.
by move: dg; rewrite (eqp_dvdr _ g1) dvdp1 size_poly_eq1.
Qed.
Lemma coprimep_dvdl q p r : r %| q -> coprimep p q -> coprimep p r.
Proof.
move=> rp /coprimepP cpq'; apply/coprimepP => d dp dr.
exact/cpq'/(dvdp_trans dr).
Qed.
Lemma coprimep_dvdr p q r : r %| p -> coprimep p q -> coprimep r q.
Proof.
by move=> rp; rewrite ![coprimep _ q]coprimep_sym; apply/coprimep_dvdl.
Qed.
Lemma coprimep_modl p q : coprimep (p %% q) q = coprimep p q.
Proof.
rewrite !coprimep_def [in RHS]gcdpE.
by case: ltnP => // hpq; rewrite modp_small // gcdpE hpq.
Qed.
Lemma coprimep_modr q p : coprimep q (p %% q) = coprimep q p.
Proof. by rewrite ![coprimep q _]coprimep_sym coprimep_modl. Qed.
Lemma rcoprimep_coprimep q p : rcoprimep q p = coprimep q p.
Proof. by rewrite /coprimep /rcoprimep (eqp_size (eqp_rgcd_gcd _ _)). Qed.
Lemma eqp_coprimepr p q r : q %= r -> coprimep p q = coprimep p r.
Proof. by rewrite -!gcdp_eqp1; move/(eqp_gcdr p)/eqp_ltrans. Qed.
Lemma eqp_coprimepl p q r : q %= r -> coprimep q p = coprimep r p.
Proof. by rewrite !(coprimep_sym _ p); apply: eqp_coprimepr. Qed.
(* This should be implemented with an extended remainder sequence *)
Fixpoint egcdp_rec p q k {struct k} : {poly R} * {poly R} :=
if k is k'.+1 then
if q == 0 then (1, 0) else
let: (u, v) := egcdp_rec q (p %% q) k' in
(lead_coef q ^+ scalp p q *: v, (u - v * (p %/ q)))
else (1, 0).
Definition egcdp p q :=
if size q <= size p then egcdp_rec p q (size q)
else let e := egcdp_rec q p (size p) in (e.2, e.1).
(* No provable egcd0p *)
Lemma egcdp0 p : egcdp p 0 = (1, 0). Proof. by rewrite /egcdp size_poly0. Qed.
Lemma egcdp_recP : forall k p q, q != 0 -> size q <= k -> size q <= size p ->
let e := (egcdp_rec p q k) in
[/\ size e.1 <= size q, size e.2 <= size p & gcdp p q %= e.1 * p + e.2 * q].
Proof.
elim=> [|k ihk] p q /= qn0; first by rewrite size_poly_leq0 (negPf qn0).
move=> sqSn qsp; rewrite (negPf qn0).
have sp : size p > 0 by apply: leq_trans qsp; rewrite size_poly_gt0.
have [r0 | rn0] /= := eqVneq (p %%q) 0.
rewrite r0 /egcdp_rec; case: k ihk sqSn => [|n] ihn sqSn /=.
rewrite !scaler0 !mul0r subr0 add0r mul1r size_poly0 size_poly1.
by rewrite dvdp_gcd_idr /dvdp ?r0.
rewrite !eqxx mul0r scaler0 /= mul0r add0r subr0 mul1r size_poly0 size_poly1.
by rewrite dvdp_gcd_idr /dvdp ?r0 //.
have h1 : size (p %% q) <= k.
by rewrite -ltnS; apply: leq_trans sqSn; rewrite ltn_modp.
have h2 : size (p %% q) <= size q by rewrite ltnW // ltn_modp.
have := ihk q (p %% q) rn0 h1 h2.
case: (egcdp_rec _ _)=> u v /= => [[ihn'1 ihn'2 ihn'3]].
rewrite gcdpE ltnNge qsp //= (eqp_ltrans (gcdpC _ _)); split; last first.
- apply: (eqp_trans ihn'3).
rewrite mulrBl addrCA -scalerAl scalerAr -mulrA -mulrBr.
by rewrite divp_eq addrAC subrr add0r eqpxx.
- apply: (leq_trans (size_add _ _)).
have [-> | vn0] := eqVneq v 0.
rewrite mul0r size_opp size_poly0 maxn0; apply: leq_trans ihn'1 _.
exact: leq_modp.
have [-> | qqn0] := eqVneq (p %/ q) 0.
rewrite mulr0 size_opp size_poly0 maxn0; apply: leq_trans ihn'1 _.
exact: leq_modp.
rewrite geq_max (leq_trans ihn'1) ?leq_modp //= size_opp size_mul //.
move: (ihn'2); rewrite (polySpred vn0) (polySpred qn0).
rewrite -(ltn_add2r (size (p %/ q))) !addSn /= ltnS; move/leq_trans; apply.
rewrite size_divp // addnBA ?addKn //.
by apply: leq_trans qsp; apply: leq_pred.
- by rewrite size_scale // lc_expn_scalp_neq0.
Qed.
Lemma egcdpP p q : p != 0 -> q != 0 -> forall (e := egcdp p q),
[/\ size e.1 <= size q, size e.2 <= size p & gcdp p q %= e.1 * p + e.2 * q].
Proof.
rewrite /egcdp => pn0 qn0; case: (leqP (size q) (size p)) => /= [|/ltnW] hp.
exact: egcdp_recP.
case: (egcdp_recP pn0 (leqnn (size p)) hp) => h1 h2 h3; split => //.
by rewrite (eqp_ltrans (gcdpC _ _)) addrC.
Qed.
Lemma egcdpE p q (e := egcdp p q) : gcdp p q %= e.1 * p + e.2 * q.
Proof.
rewrite {}/e; have [-> /= | qn0] := eqVneq q 0.
by rewrite gcdp0 egcdp0 mul1r mulr0 addr0.
have [-> | pn0] := eqVneq p 0; last by case: (egcdpP pn0 qn0).
by rewrite gcd0p /egcdp size_poly0 size_poly_leq0 (negPf qn0) /= !simp.
Qed.
Lemma Bezoutp p q : exists u, u.1 * p + u.2 * q %= (gcdp p q).
Proof.
have [-> | pn0] := eqVneq p 0.
by rewrite gcd0p; exists (0, 1); rewrite mul0r mul1r add0r.
have [-> | qn0] := eqVneq q 0.
by rewrite gcdp0; exists (1, 0); rewrite mul0r mul1r addr0.
pose e := egcdp p q; exists e; rewrite eqp_sym.
by case: (egcdpP pn0 qn0).
Qed.
Lemma Bezout_coprimepP p q :
reflect (exists u, u.1 * p + u.2 * q %= 1) (coprimep p q).
Proof.
rewrite -gcdp_eqp1; apply: (iffP idP)=> [g1|].
by case: (Bezoutp p q) => [[u v] Puv]; exists (u, v); apply: eqp_trans g1.
case=> [[u v]]; rewrite eqp_sym=> Puv; rewrite /eqp (eqp_dvdr _ Puv).
by rewrite dvdp_addr dvdp_mull ?dvdp_gcdl ?dvdp_gcdr //= dvd1p.
Qed.
Lemma coprimep_root p q x : coprimep p q -> root p x -> q.[x] != 0.
Proof.
case/Bezout_coprimepP=> [[u v] euv] px0.
move/eqpP: euv => [[c1 c2]] /andP /= [c1n0 c2n0 e].
suffices: c1 * (v.[x] * q.[x]) != 0.
by rewrite !mulf_eq0 !negb_or c1n0 /=; case/andP.
have := f_equal (horner^~ x) e; rewrite /= !hornerZ hornerD.
by rewrite !hornerM (eqP px0) mulr0 add0r hornerC mulr1; move->.
Qed.
Lemma Gauss_dvdpl p q d: coprimep d q -> (d %| p * q) = (d %| p).
Proof.
move/Bezout_coprimepP=>[[u v] Puv]; apply/idP/idP; last exact: dvdp_mulr.
move/(eqp_mull p): Puv; rewrite mulr1 mulrDr eqp_sym=> peq dpq.
rewrite (eqp_dvdr _ peq) dvdp_addr; first by rewrite mulrA mulrAC dvdp_mulr.
by rewrite mulrA dvdp_mull ?dvdpp.
Qed.
Lemma Gauss_dvdpr p q d: coprimep d q -> (d %| q * p) = (d %| p).
Proof. by rewrite mulrC; apply: Gauss_dvdpl. Qed.
(* This could be simplified with the introduction of lcmp *)
Lemma Gauss_dvdp m n p : coprimep m n -> (m * n %| p) = (m %| p) && (n %| p).
Proof.
have [-> | mn0] := eqVneq m 0.
by rewrite coprime0p => /eqp_dvdl->; rewrite !mul0r dvd0p dvd1p andbT.
have [-> | nn0] := eqVneq n 0.
by rewrite coprimep0 => /eqp_dvdl->; rewrite !mulr0 dvd1p.
move=> hc; apply/idP/idP => [mnmp | /andP [dmp dnp]].
move/Gauss_dvdpl: hc => <-; move: (dvdp_mull m mnmp); rewrite dvdp_mul2l //.
move->; move: (dvdp_mulr n mnmp); rewrite dvdp_mul2r // andbT.
exact: dvdp_mulr.
move: (dnp); rewrite dvdp_eq.
set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> e2.
have/esym := Gauss_dvdpl q2 hc; rewrite -e2.
have -> : m %| c2 *: p by rewrite -mul_polyC dvdp_mull.
rewrite dvdp_eq; set c3 := _ ^+ _; set q3 := _ %/ _; move/eqP=> e3.
apply: (@eq_dvdp (c3 * c2) q3).
by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0.
by rewrite mulrA -e3 -scalerAl -e2 scalerA.
Qed.
Lemma Gauss_gcdpr p m n : coprimep p m -> gcdp p (m * n) %= gcdp p n.
Proof.
move=> co_pm; apply/eqP; rewrite /eqp !dvdp_gcd !dvdp_gcdl /= andbC.
rewrite dvdp_mull ?dvdp_gcdr // -(@Gauss_dvdpl _ m).
by rewrite mulrC dvdp_gcdr.
apply/coprimepP=> d; rewrite dvdp_gcd; case/andP=> hdp _ hdm.
by move/coprimepP: co_pm; apply.
Qed.
Lemma Gauss_gcdpl p m n : coprimep p n -> gcdp p (m * n) %= gcdp p m.
Proof. by move=> co_pn; rewrite mulrC Gauss_gcdpr. Qed.
Lemma coprimepMr p q r : coprimep p (q * r) = (coprimep p q && coprimep p r).
Proof.
apply/coprimepP/andP=> [hp | [/coprimepP-hq hr]].
by split; apply/coprimepP=> d dp dq; rewrite hp //;
[apply/dvdp_mulr | apply/dvdp_mull].
move=> d dp dqr; move/(_ _ dp) in hq.
rewrite Gauss_dvdpl in dqr; first exact: hq.
by move/coprimep_dvdr: hr; apply.
Qed.
Lemma coprimepMl p q r: coprimep (q * r) p = (coprimep q p && coprimep r p).
Proof. by rewrite ![coprimep _ p]coprimep_sym coprimepMr. Qed.
Lemma modp_coprime k u n : k != 0 -> (k * u) %% n %= 1 -> coprimep k n.
Proof.
move=> kn0 hmod; apply/Bezout_coprimepP.
exists (((lead_coef n)^+(scalp (k * u) n) *: u), (- (k * u %/ n))).
rewrite -scalerAl mulrC (divp_eq (u * k) n) mulNr -addrAC subrr add0r.
by rewrite mulrC.
Qed.
Lemma coprimep_pexpl k m n : 0 < k -> coprimep (m ^+ k) n = coprimep m n.
Proof.
case: k => // k _; elim: k => [|k IHk]; first by rewrite expr1.
by rewrite exprS coprimepMl -IHk andbb.
Qed.
Lemma coprimep_pexpr k m n : 0 < k -> coprimep m (n ^+ k) = coprimep m n.
Proof. by move=> k_gt0; rewrite !(coprimep_sym m) coprimep_pexpl. Qed.
Lemma coprimep_expl k m n : coprimep m n -> coprimep (m ^+ k) n.
Proof. by case: k => [|k] co_pm; rewrite ?coprime1p // coprimep_pexpl. Qed.
Lemma coprimep_expr k m n : coprimep m n -> coprimep m (n ^+ k).
Proof. by rewrite !(coprimep_sym m); apply: coprimep_expl. Qed.
Lemma gcdp_mul2l p q r : gcdp (p * q) (p * r) %= (p * gcdp q r).
Proof.
have [->|hp] := eqVneq p 0; first by rewrite !mul0r gcdp0 eqpxx.
rewrite /eqp !dvdp_gcd !dvdp_mul2l // dvdp_gcdr dvdp_gcdl !andbT.
move: (Bezoutp q r) => [[u v]] huv.
rewrite eqp_sym in huv; rewrite (eqp_dvdr _ (eqp_mull _ huv)).
rewrite mulrDr ![p * (_ * _)]mulrCA.
by apply: dvdp_add; rewrite dvdp_mull// (dvdp_gcdr, dvdp_gcdl).
Qed.
Lemma gcdp_mul2r q r p : gcdp (q * p) (r * p) %= gcdp q r * p.
Proof. by rewrite ![_ * p]mulrC gcdp_mul2l. Qed.
Lemma mulp_gcdr p q r : r * (gcdp p q) %= gcdp (r * p) (r * q).
Proof. by rewrite eqp_sym gcdp_mul2l. Qed.
Lemma mulp_gcdl p q r : (gcdp p q) * r %= gcdp (p * r) (q * r).
Proof. by rewrite eqp_sym gcdp_mul2r. Qed.
Lemma coprimep_div_gcd p q : (p != 0) || (q != 0) ->
coprimep (p %/ (gcdp p q)) (q %/ gcdp p q).
Proof.
rewrite -negb_and -gcdp_eq0 -gcdp_eqp1 => gpq0.
rewrite -(@eqp_mul2r (gcdp p q)) // mul1r (eqp_ltrans (mulp_gcdl _ _ _)).
have: gcdp p q %| p by rewrite dvdp_gcdl.
have: gcdp p q %| q by rewrite dvdp_gcdr.
rewrite !dvdp_eq => /eqP <- /eqP <-.
have lcn0 k : (lead_coef (gcdp p q)) ^+ k != 0.
by rewrite expf_neq0 ?lead_coef_eq0.
by apply: eqp_gcd; rewrite ?eqp_scale.
Qed.
Lemma divp_eq0 p q : (p %/ q == 0) = [|| p == 0, q ==0 | size p < size q].
Proof.
apply/eqP/idP=> [d0|]; last first.
case/or3P; [by move/eqP->; rewrite div0p| by move/eqP->; rewrite divp0|].
by move/divp_small.
case: eqVneq => // _; case: eqVneq => // qn0.
move: (divp_eq p q); rewrite d0 mul0r add0r.
move/(f_equal (fun x : {poly R} => size x)).
by rewrite size_scale ?lc_expn_scalp_neq0 // => ->; rewrite ltn_modp qn0 !orbT.
Qed.
Lemma dvdp_div_eq0 p q : q %| p -> (p %/ q == 0) = (p == 0).
Proof.
move=> dvdp_qp; have [->|p_neq0] := eqVneq p 0; first by rewrite div0p eqxx.
rewrite divp_eq0 ltnNge dvdp_leq // (negPf p_neq0) orbF /=.
by apply: contraTF dvdp_qp=> /eqP ->; rewrite dvd0p.
Qed.
Lemma Bezout_coprimepPn p q : p != 0 -> q != 0 ->
reflect (exists2 uv : {poly R} * {poly R},
(0 < size uv.1 < size q) && (0 < size uv.2 < size p) &
uv.1 * p = uv.2 * q)
(~~ (coprimep p q)).
Proof.
move=> pn0 qn0; apply: (iffP idP); last first.
case=> [[u v] /= /andP [/andP [ps1 s1] /andP [ps2 s2]] e].
have: ~~(size (q * p) <= size (u * p)).
rewrite -ltnNge !size_mul // -?size_poly_gt0 // (polySpred pn0) !addnS.
by rewrite ltn_add2r.
apply: contra => ?; apply: dvdp_leq; rewrite ?mulf_neq0 // -?size_poly_gt0 //.
by rewrite mulrC Gauss_dvdp // dvdp_mull // e dvdp_mull.
rewrite coprimep_def neq_ltn ltnS size_poly_leq0 gcdp_eq0.
rewrite (negPf pn0) (negPf qn0) /=.
case sg: (size (gcdp p q)) => [|n] //; case: n sg=> [|n] // sg _.
move: (dvdp_gcdl p q); rewrite dvdp_eq; set c1 := _ ^+ _; move/eqP=> hu1.
move: (dvdp_gcdr p q); rewrite dvdp_eq; set c2 := _ ^+ _; move/eqP=> hv1.
exists (c1 *: (q %/ gcdp p q), c2 *: (p %/ gcdp p q)); last first.
by rewrite -!scalerAl !scalerAr hu1 hv1 mulrCA.
rewrite !size_scale ?lc_expn_scalp_neq0 //= !size_poly_gt0 !divp_eq0.
rewrite gcdp_eq0 !(negPf pn0) !(negPf qn0) /= -!leqNgt leq_gcdpl //.
rewrite leq_gcdpr //= !ltn_divpl -?size_poly_eq0 ?sg //.
rewrite !size_mul // -?size_poly_eq0 ?sg // ![(_ + n.+2)%N]addnS /=.
by rewrite -!(addn1 (size _)) !leq_add2l.
Qed.
Lemma dvdp_pexp2r m n k : k > 0 -> (m ^+ k %| n ^+ k) = (m %| n).
Proof.
move=> k_gt0; apply/idP/idP; last exact: dvdp_exp2r.
have [-> // | nn0] := eqVneq n 0; have [-> | mn0] := eqVneq m 0.
move/prednK: k_gt0=> {1}<-; rewrite exprS mul0r //= !dvd0p expf_eq0.
by case/andP=> _ ->.
set d := gcdp m n; have := dvdp_gcdr m n; rewrite -/d dvdp_eq.
set c1 := _ ^+ _; set n' := _ %/ _; move/eqP=> def_n.
have := dvdp_gcdl m n; rewrite -/d dvdp_eq.
set c2 := _ ^+ _; set m' := _ %/ _; move/eqP=> def_m.
have dn0 : d != 0 by rewrite gcdp_eq0 negb_and nn0 orbT.
have c1n0 : c1 != 0 by rewrite !expf_neq0 // lead_coef_eq0.
have c2n0 : c2 != 0 by rewrite !expf_neq0 // lead_coef_eq0.
have c2k_n0 : c2 ^+ k != 0 by rewrite !expf_neq0 // lead_coef_eq0.
rewrite -(@dvdpZr (c1 ^+ k)) ?expf_neq0 ?lead_coef_eq0 //.
rewrite -(@dvdpZl (c2 ^+ k)) // -!exprZn def_m def_n !exprMn.
rewrite dvdp_mul2r ?expf_neq0 //.
have: coprimep (m' ^+ k) (n' ^+ k).
by rewrite coprimep_pexpl // coprimep_pexpr // coprimep_div_gcd ?mn0.
move/coprimepP=> hc hd.
have /size_poly1P [c cn0 em'] : size m' == 1.
case: (eqVneq m' 0) def_m => [-> /eqP | m'_n0 def_m].
by rewrite mul0r scale_poly_eq0 (negPf mn0) (negPf c2n0).
have := hc _ (dvdpp _) hd; rewrite -size_poly_eq1.
rewrite polySpred; last by rewrite expf_eq0 negb_and m'_n0 orbT.
by rewrite size_exp eqSS muln_eq0 orbC eqn0Ngt k_gt0 /= -eqSS -polySpred.
rewrite -(@dvdpZl c2) // def_m em' mul_polyC dvdpZl //.
by rewrite -(@dvdpZr c1) // def_n dvdp_mull.
Qed.
Lemma root_gcd p q x : root (gcdp p q) x = root p x && root q x.
Proof.
rewrite /= !root_factor_theorem; apply/idP/andP=> [dg| [dp dq]].
by split; apply: dvdp_trans dg _; rewrite ?(dvdp_gcdl, dvdp_gcdr).
have:= Bezoutp p q => [[[u v]]]; rewrite eqp_sym=> e.
by rewrite (eqp_dvdr _ e) dvdp_addl dvdp_mull.
Qed.
Lemma root_biggcd x (ps : seq {poly R}) :
root (\big[gcdp/0]_(p <- ps) p) x = all (fun p => root p x) ps.
Proof.
elim: ps => [|p ps ihp]; first by rewrite big_nil root0.
by rewrite big_cons /= root_gcd ihp.
Qed.
(* "gdcop Q P" is the Greatest Divisor of P which is coprime to Q *)
(* if P null, we pose that gdcop returns 1 if Q null, 0 otherwise*)
Fixpoint gdcop_rec q p k :=
if k is m.+1 then
if coprimep p q then p
else gdcop_rec q (divp p (gcdp p q)) m
else (q == 0)%:R.
Definition gdcop q p := gdcop_rec q p (size p).
Variant gdcop_spec q p : {poly R} -> Type :=
GdcopSpec r of (dvdp r p) & ((coprimep r q) || (p == 0))
& (forall d, dvdp d p -> coprimep d q -> dvdp d r)
: gdcop_spec q p r.
Lemma gdcop0 q : gdcop q 0 = (q == 0)%:R.
Proof. by rewrite /gdcop size_poly0. Qed.
Lemma gdcop_recP q p k : size p <= k -> gdcop_spec q p (gdcop_rec q p k).
Proof.
elim: k p => [p | k ihk p] /=.
move/size_poly_leq0P->.
have [->|q0] := eqVneq; split; rewrite ?coprime1p // ?eqxx ?orbT //.
by move=> d _; rewrite coprimep0 dvdp1 size_poly_eq1.
move=> hs; case cop : (coprimep _ _); first by split; rewrite ?dvdpp ?cop.
have [-> | p0] := eqVneq p 0.
by rewrite div0p; apply: ihk; rewrite size_poly0 leq0n.
have [-> | q0] := eqVneq q 0.
rewrite gcdp0 divpp ?p0 //= => {hs ihk}; case: k=> /=.
rewrite eqxx; split; rewrite ?dvd1p ?coprimep0 ?eqpxx //=.
by move=> d _; rewrite coprimep0 dvdp1 size_poly_eq1.
move=> n; rewrite coprimep0 polyC_eqp1 //; rewrite lc_expn_scalp_neq0.
split; first by rewrite (@eqp_dvdl 1) ?dvd1p // polyC_eqp1 lc_expn_scalp_neq0.
by rewrite coprimep0 polyC_eqp1 // ?lc_expn_scalp_neq0.
by move=> d _; rewrite coprimep0; move/eqp_dvdl->; rewrite dvd1p.
move: (dvdp_gcdl p q); rewrite dvdp_eq; move/eqP=> e.
have sgp : size (gcdp p q) <= size p.
by apply: dvdp_leq; rewrite ?gcdp_eq0 ?p0 ?q0 // dvdp_gcdl.
have : p %/ gcdp p q != 0; last move/negPf=>p'n0.
apply: dvdpN0 (dvdp_mulIl (p %/ gcdp p q) (gcdp p q)) _.
by rewrite -e scale_poly_eq0 negb_or lc_expn_scalp_neq0.
have gn0 : gcdp p q != 0.
apply: dvdpN0 (dvdp_mulIr (p %/ gcdp p q) (gcdp p q)) _.
by rewrite -e scale_poly_eq0 negb_or lc_expn_scalp_neq0.
have sp' : size (p %/ (gcdp p q)) <= k.
rewrite size_divp ?sgp // leq_subLR (leq_trans hs) // -add1n leq_add2r -subn1.
by rewrite ltn_subRL add1n ltn_neqAle eq_sym [_ == _]cop size_poly_gt0 gn0.
case (ihk _ sp')=> r' dr'p'; first rewrite p'n0 orbF=> cr'q maxr'.
constructor=> //=; rewrite ?(negPf p0) ?orbF //.
exact/(dvdp_trans dr'p')/divp_dvd/dvdp_gcdl.
move=> d dp cdq; apply: maxr'; last by rewrite cdq.
case dpq: (d %| gcdp p q).
move: (dpq); rewrite dvdp_gcd dp /= => dq; apply: dvdUp.
apply: contraLR cdq => nd1; apply/coprimepPn; last first.
by exists d; rewrite dvdp_gcd dvdpp dq nd1.
by apply: contraNneq p0 => d0; move: dp; rewrite d0 dvd0p.
apply: contraLR dp => ndp'.
rewrite (@eqp_dvdr ((lead_coef (gcdp p q) ^+ scalp p (gcdp p q))*:p)).
by rewrite e; rewrite Gauss_dvdpl //; apply: (coprimep_dvdl (dvdp_gcdr _ _)).
by rewrite eqp_sym eqp_scale // lc_expn_scalp_neq0.
Qed.
Lemma gdcopP q p : gdcop_spec q p (gdcop q p).
Proof. by rewrite /gdcop; apply: gdcop_recP. Qed.
Lemma coprimep_gdco p q : (q != 0)%B -> coprimep (gdcop p q) p.
Proof. by move=> q_neq0; case: gdcopP=> d; rewrite (negPf q_neq0) orbF. Qed.
Lemma size2_dvdp_gdco p q d : p != 0 -> size d = 2 ->
(d %| (gdcop q p)) = (d %| p) && ~~(d %| q).
Proof.
have [-> | dn0] := eqVneq d 0; first by rewrite size_poly0.
move=> p0 sd; apply/idP/idP.
case: gdcopP=> r rp crq maxr dr; move/negPf: (p0)=> p0f.
rewrite (dvdp_trans dr) //=.
apply: contraL crq => dq; rewrite p0f orbF; apply/coprimepPn.
by apply: contraNneq p0 => r0; move: rp; rewrite r0 dvd0p.
by exists d; rewrite dvdp_gcd dr dq -size_poly_eq1 sd.
case/andP=> dp dq; case: gdcopP=> r rp crq maxr; apply: maxr=> //.
apply/coprimepP=> x xd xq.
move: (dvdp_leq dn0 xd); rewrite leq_eqVlt sd; case/orP; last first.
rewrite ltnS leq_eqVlt ltnS size_poly_leq0 orbC.
case/predU1P => [x0|]; last by rewrite -size_poly_eq1.
by move: xd; rewrite x0 dvd0p (negPf dn0).
by rewrite -sd dvdp_size_eqp //; move/(eqp_dvdl q); rewrite xq (negPf dq).
Qed.
Lemma dvdp_gdco p q : (gdcop p q) %| q. Proof. by case: gdcopP. Qed.
Lemma root_gdco p q x : p != 0 -> root (gdcop q p) x = root p x && ~~(root q x).
Proof.
move=> p0 /=; rewrite !root_factor_theorem.
apply: size2_dvdp_gdco; rewrite ?p0 //.
by rewrite size_addl size_polyX // size_opp size_polyC ltnS; case: (x != 0).
Qed.
Lemma dvdp_comp_poly r p q : (p %| q) -> (p \Po r) %| (q \Po r).
Proof.
have [-> | pn0] := eqVneq p 0.
by rewrite comp_poly0 !dvd0p; move/eqP->; rewrite comp_poly0.
rewrite dvdp_eq; set c := _ ^+ _; set s := _ %/ _; move/eqP=> Hq.
apply: (@eq_dvdp c (s \Po r)); first by rewrite expf_neq0 // lead_coef_eq0.
by rewrite -comp_polyZ Hq comp_polyM.
Qed.
Lemma gcdp_comp_poly r p q : gcdp p q \Po r %= gcdp (p \Po r) (q \Po r).
Proof.
apply/andP; split.
by rewrite dvdp_gcd !dvdp_comp_poly ?dvdp_gcdl ?dvdp_gcdr.
case: (Bezoutp p q) => [[u v]] /andP [].
move/(dvdp_comp_poly r) => Huv _.
rewrite (dvdp_trans _ Huv) // comp_polyD !comp_polyM.
by rewrite dvdp_add // dvdp_mull // (dvdp_gcdl,dvdp_gcdr).
Qed.
Lemma coprimep_comp_poly r p q : coprimep p q -> coprimep (p \Po r) (q \Po r).
Proof.
rewrite -!gcdp_eqp1 -!size_poly_eq1 -!dvdp1; move/(dvdp_comp_poly r).
rewrite comp_polyC => Hgcd.
by apply: dvdp_trans Hgcd; case/andP: (gcdp_comp_poly r p q).
Qed.
Lemma coprimep_addl_mul p q r : coprimep r (p * r + q) = coprimep r q.
Proof. by rewrite !coprimep_def (eqp_size (gcdp_addl_mul _ _ _)). Qed.
Definition irreducible_poly p :=
(size p > 1) * (forall q, size q != 1 -> q %| p -> q %= p) : Prop.
Lemma irredp_neq0 p : irreducible_poly p -> p != 0.
Proof. by rewrite -size_poly_gt0 => [[/ltnW]]. Qed.
Definition apply_irredp p (irr_p : irreducible_poly p) := irr_p.2.
Coercion apply_irredp : irreducible_poly >-> Funclass.
Lemma modp_XsubC p c : p %% ('X - c%:P) = p.[c]%:P.
Proof.
have/factor_theorem [q /(canRL (subrK _)) Dp]: root (p - p.[c]%:P) c.
by rewrite /root !hornerE subrr.
rewrite modpE /= lead_coefXsubC unitr1 expr1n invr1 scale1r [in LHS]Dp.
rewrite RingMonic.rmodp_addl_mul_small // ?monicXsubC // size_XsubC size_polyC.
by case: (p.[c] == 0).
Qed.
Lemma coprimep_XsubC p c : coprimep p ('X - c%:P) = ~~ root p c.
Proof.
rewrite -coprimep_modl modp_XsubC /root -alg_polyC.
have [-> | /coprimepZl->] := eqVneq; last exact: coprime1p.
by rewrite scale0r /coprimep gcd0p size_XsubC.
Qed.
Lemma coprimep_XsubC2 (a b : R) : b - a != 0 ->
coprimep ('X - a%:P) ('X - b%:P).
Proof. by move=> bBa_neq0; rewrite coprimep_XsubC rootE hornerXsubC. Qed.
Lemma coprimepX p : coprimep p 'X = ~~ root p 0.
Proof. by rewrite -['X]subr0 coprimep_XsubC. Qed.
Lemma eqp_monic : {in monic &, forall p q, (p %= q) = (p == q)}.
Proof.
move=> p q monic_p monic_q; apply/idP/eqP=> [|-> //].
case/eqpP=> [[a b] /= /andP[a_neq0 _] eq_pq].
apply: (@mulfI _ a%:P); first by rewrite polyC_eq0.
rewrite !mul_polyC eq_pq; congr (_ *: q); apply: (mulIf (oner_neq0 _)).
by rewrite -[in LHS](monicP monic_q) -(monicP monic_p) -!lead_coefZ eq_pq.
Qed.
Lemma dvdp_mul_XsubC p q c :
(p %| ('X - c%:P) * q) = ((if root p c then p %/ ('X - c%:P) else p) %| q).
Proof.
case: ifPn => [| not_pc0]; last by rewrite Gauss_dvdpr ?coprimep_XsubC.
rewrite root_factor_theorem -eqp_div_XsubC mulrC => /eqP{1}->.
by rewrite dvdp_mul2l ?polyXsubC_eq0.
Qed.
Lemma dvdp_prod_XsubC (I : Type) (r : seq I) (F : I -> R) p :
p %| \prod_(i <- r) ('X - (F i)%:P) ->
{m | p %= \prod_(i <- mask m r) ('X - (F i)%:P)}.
Proof.
elim: r => [|i r IHr] in p *.
by rewrite big_nil dvdp1; exists nil; rewrite // big_nil -size_poly_eq1.
rewrite big_cons dvdp_mul_XsubC root_factor_theorem -eqp_div_XsubC.
case: eqP => [{2}-> | _] /IHr[m Dp]; last by exists (false :: m).
by exists (true :: m); rewrite /= mulrC big_cons eqp_mul2l ?polyXsubC_eq0.
Qed.
Lemma irredp_XsubC (x : R) : irreducible_poly ('X - x%:P).
Proof.
split=> [|d size_d d_dv_Xx]; first by rewrite size_XsubC.
have: ~ d %= 1 by apply/negP; rewrite -size_poly_eq1.
have [|m /=] := @dvdp_prod_XsubC _ [:: x] id d; first by rewrite big_seq1.
by case: m => [|[] [|_ _] /=]; rewrite (big_nil, big_seq1).
Qed.
Lemma irredp_XaddC (x : R) : irreducible_poly ('X + x%:P).
Proof. by rewrite -[x]opprK rmorphN; apply: irredp_XsubC. Qed.
Lemma irredp_XsubCP d p :
irreducible_poly p -> d %| p -> {d %= 1} + {d %= p}.
Proof.
move=> irred_p dvd_dp; have [] := boolP (_ %= 1); first by left.
by rewrite -size_poly_eq1=> /irred_p /(_ dvd_dp); right.
Qed.
Lemma dvdp_exp_XsubCP (p : {poly R}) (c : R) (n : nat) :
reflect (exists2 k, (k <= n)%N & p %= ('X - c%:P) ^+ k)
(p %| ('X - c%:P) ^+ n).
Proof.
apply: (iffP idP) => [|[k lkn /eqp_dvdl->]]; last by rewrite dvdp_exp2l.
move=> /Pdiv.WeakIdomain.dvdpP[[/= a q] a_neq0].
have [m [r]] := multiplicity_XsubC p c; have [->|pN0]/= := eqVneq p 0.
rewrite mulr0 => _ _ /eqP; rewrite scale_poly_eq0 (negPf a_neq0)/=.
by rewrite expf_eq0/= andbC polyXsubC_eq0.
move=> rNc ->; rewrite mulrA => eq_qrm; exists m.
have: ('X - c%:P) ^+ m %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm dvdp_mull.
by rewrite (eqp_dvdr _ (eqp_scale _ _))// dvdp_Pexp2l// size_XsubC.
suff /eqP : size r = 1%N.
by rewrite size_poly_eq1 => /eqp_mulr/eqp_trans->//; rewrite mul1r eqpxx.
have : r %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm mulrAC dvdp_mull.
rewrite (eqp_dvdr _ (eqp_scale _ _))//.
move: rNc; rewrite -coprimep_XsubC => /(coprimep_expr n) /coprimepP.
by move=> /(_ _ (dvdpp _)); rewrite -size_poly_eq1 => /(_ _)/eqP.
Qed.
End IDomainPseudoDivision.
Arguments gcdp : simpl never.
#[global] Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 : core.
#[global] Hint Resolve dvdp_mull dvdp_mulr dvdpp dvdp0 : core.
Arguments dvdp_exp_XsubCP {R p c n}.
End CommonIdomain.
Module Idomain.
Include IdomainDefs.
Export IdomainDefs.
Include WeakIdomain.
Include CommonIdomain.
End Idomain.
Module IdomainMonic.
Import Ring ComRing UnitRing IdomainDefs Idomain.
Section IdomainMonic.
Variable R : idomainType.
Implicit Type p d r : {poly R}.
Section MonicDivisor.
Variable q : {poly R}.
Hypothesis monq : q \is monic.
Lemma divpE p : p %/ q = rdivp p q.
Proof. by rewrite divpE (eqP monq) unitr1 expr1n invr1 scale1r. Qed.
Lemma modpE p : p %% q = rmodp p q.
Proof. by rewrite modpE (eqP monq) unitr1 expr1n invr1 scale1r. Qed.
Lemma scalpE p : scalp p q = 0.
Proof. by rewrite scalpE (eqP monq) unitr1. Qed.
Lemma divp_eq p : p = (p %/ q) * q + (p %% q).
Proof. by rewrite -divp_eq (eqP monq) expr1n scale1r. Qed.
Lemma divpp p : q %/ q = 1.
Proof. by rewrite divpp ?monic_neq0 // (eqP monq) expr1n. Qed.
Lemma dvdp_eq p : (q %| p) = (p == (p %/ q) * q).
Proof. by rewrite dvdp_eq (eqP monq) expr1n scale1r. Qed.
Lemma dvdpP p : reflect (exists qq, p = qq * q) (q %| p).
Proof.
apply: (iffP idP); first by rewrite dvdp_eq; move/eqP=> e; exists (p %/ q).
by case=> qq ->; rewrite dvdp_mull // dvdpp.
Qed.
Lemma mulpK p : p * q %/ q = p.
Proof. by rewrite mulpK ?monic_neq0 // (eqP monq) expr1n scale1r. Qed.
Lemma mulKp p : q * p %/ q = p. Proof. by rewrite mulrC mulpK. Qed.
End MonicDivisor.
Lemma drop_poly_divp n p : drop_poly n p = p %/ 'X^n.
Proof. by rewrite RingMonic.drop_poly_rdivp divpE // monicXn. Qed.
Lemma take_poly_modp n p : take_poly n p = p %% 'X^n.
Proof. by rewrite RingMonic.take_poly_rmodp modpE // monicXn. Qed.
End IdomainMonic.
End IdomainMonic.
Module IdomainUnit.
Import Ring ComRing UnitRing IdomainDefs Idomain.
Section UnitDivisor.
Variable R : idomainType.
Variable d : {poly R}.
Hypothesis ulcd : lead_coef d \in GRing.unit.
Implicit Type p q r : {poly R}.
Lemma divp_eq p : p = (p %/ d) * d + (p %% d).
Proof. by have := divp_eq p d; rewrite scalpE ulcd expr0 scale1r. Qed.
Lemma edivpP p q r : p = q * d + r -> size r < size d ->
q = (p %/ d) /\ r = p %% d.
Proof.
move=> ep srd; have := divp_eq p; rewrite [LHS]ep.
move/eqP; rewrite -subr_eq -addrA addrC eq_sym -subr_eq -mulrBl; move/eqP.
have lcdn0 : lead_coef d != 0 by apply: contraTneq ulcd => ->; rewrite unitr0.
have [-> /esym /eqP|abs] := eqVneq (p %/ d) q.
by rewrite subrr mul0r subr_eq0 => /eqP<-.
have hleq : size d <= size ((p %/ d - q) * d).
rewrite size_proper_mul; last first.
by rewrite mulf_eq0 (negPf lcdn0) orbF lead_coef_eq0 subr_eq0.
by move: abs; rewrite -subr_eq0; move/polySpred->; rewrite addSn /= leq_addl.
have hlt : size (r - p %% d) < size d.
apply: leq_ltn_trans (size_add _ _) _.
by rewrite gtn_max srd size_opp ltn_modp -lead_coef_eq0.
by move=> e; have:= leq_trans hlt hleq; rewrite e ltnn.
Qed.
Lemma divpP p q r : p = q * d + r -> size r < size d -> q = (p %/ d).
Proof. by move/edivpP=> h; case/h. Qed.
Lemma modpP p q r : p = q * d + r -> size r < size d -> r = (p %% d).
Proof. by move/edivpP=> h; case/h. Qed.
Lemma ulc_eqpP p q : lead_coef q \is a GRing.unit ->
reflect (exists2 c : R, c != 0 & p = c *: q) (p %= q).
Proof.
have [->|] := eqVneq (lead_coef q) 0; first by rewrite unitr0.
rewrite lead_coef_eq0 => nz_q ulcq; apply: (iffP idP).
have [->|nz_p] := eqVneq p 0; first by rewrite eqp_sym eqp0 (negPf nz_q).
move/eqp_eq=> eq; exists (lead_coef p / lead_coef q).
by rewrite mulf_neq0 // ?invr_eq0 lead_coef_eq0.
by apply/(scaler_injl ulcq); rewrite scalerA mulrCA divrr // mulr1.
by case=> c nz_c ->; apply/eqpP; exists (1, c); rewrite ?scale1r ?oner_eq0.
Qed.
Lemma dvdp_eq p : (d %| p) = (p == p %/ d * d).
Proof.
apply/eqP/eqP=> [modp0 | ->]; last exact: modp_mull.
by rewrite [p in LHS]divp_eq modp0 addr0.
Qed.
Lemma ucl_eqp_eq p q : lead_coef q \is a GRing.unit ->
p %= q -> p = (lead_coef p / lead_coef q) *: q.
Proof.
move=> ulcq /eqp_eq; move/(congr1 ( *:%R (lead_coef q)^-1 )).
by rewrite !scalerA mulrC divrr // scale1r mulrC.
Qed.
Lemma modpZl c p : (c *: p) %% d = c *: (p %% d).
Proof.
have [-> | cn0] := eqVneq c 0; first by rewrite !scale0r mod0p.
have e : (c *: p) = (c *: (p %/ d)) * d + c *: (p %% d).
by rewrite -scalerAl -scalerDr -divp_eq.
suff s: size (c *: (p %% d)) < size d by case: (edivpP e s) => _ ->.
rewrite -mul_polyC; apply: leq_ltn_trans (size_mul_leq _ _) _.
rewrite size_polyC cn0 addSn add0n /= ltn_modp -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.
Lemma divpZl c p : (c *: p) %/ d = c *: (p %/ d).
Proof.
have [-> | cn0] := eqVneq c 0; first by rewrite !scale0r div0p.
have e : (c *: p) = (c *: (p %/ d)) * d + c *: (p %% d).
by rewrite -scalerAl -scalerDr -divp_eq.
suff s: size (c *: (p %% d)) < size d by case: (edivpP e s) => ->.
rewrite -mul_polyC; apply: leq_ltn_trans (size_mul_leq _ _) _.
rewrite size_polyC cn0 addSn add0n /= ltn_modp -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.
Lemma eqp_modpl p q : p %= q -> (p %% d) %= (q %% d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 //= -!modpZl e.
Qed.
Lemma eqp_divl p q : p %= q -> (p %/ d) %= (q %/ d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!divpZl e.
Qed.
Lemma modpN p : (- p) %% d = - (p %% d).
Proof. by rewrite -mulN1r -[RHS]mulN1r -polyCN !mul_polyC modpZl. Qed.
Lemma divpN p : (- p) %/ d = - (p %/ d).
Proof. by rewrite -mulN1r -[RHS]mulN1r -polyCN !mul_polyC divpZl. Qed.
Lemma modpD p q : (p + q) %% d = p %% d + q %% d.
Proof.
have/edivpP [] // : (p + q) = (p %/ d + q %/ d) * d + (p %% d + q %% d).
by rewrite mulrDl addrACA -!divp_eq.
apply: leq_ltn_trans (size_add _ _) _.
rewrite gtn_max !ltn_modp andbb -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.
Lemma divpD p q : (p + q) %/ d = p %/ d + q %/ d.
Proof.
have/edivpP [] // : (p + q) = (p %/ d + q %/ d) * d + (p %% d + q %% d).
by rewrite mulrDl addrACA -!divp_eq.
apply: leq_ltn_trans (size_add _ _) _.
rewrite gtn_max !ltn_modp andbb -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.
Lemma mulpK q : (q * d) %/ d = q.
Proof.
case/esym/edivpP: (addr0 (q * d)); rewrite // size_poly0 size_poly_gt0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.
Lemma mulKp q : (d * q) %/ d = q. Proof. by rewrite mulrC; apply: mulpK. Qed.
Lemma divp_addl_mul_small q r : size r < size d -> (q * d + r) %/ d = q.
Proof. by move=> srd; rewrite divpD (divp_small srd) addr0 mulpK. Qed.
Lemma modp_addl_mul_small q r : size r < size d -> (q * d + r) %% d = r.
Proof. by move=> srd; rewrite modpD modp_mull add0r modp_small. Qed.
Lemma divp_addl_mul q r : (q * d + r) %/ d = q + r %/ d.
Proof. by rewrite divpD mulpK. Qed.
Lemma divpp : d %/ d = 1. Proof. by rewrite -[d in d %/ _]mul1r mulpK. Qed.
Lemma leq_trunc_divp m : size (m %/ d * d) <= size m.
Proof.
case: (eqVneq d 0) ulcd => [->|dn0 _]; first by rewrite lead_coef0 unitr0.
have [->|q0] := eqVneq (m %/ d) 0; first by rewrite mul0r size_poly0 leq0n.
rewrite {2}(divp_eq m) size_addl // size_mul // (polySpred q0) addSn /=.
by rewrite ltn_addl // ltn_modp.
Qed.
Lemma dvdpP p : reflect (exists q, p = q * d) (d %| p).
Proof.
apply: (iffP idP) => [| [k ->]]; last by apply/eqP; rewrite modp_mull.
by rewrite dvdp_eq; move/eqP->; exists (p %/ d).
Qed.
Lemma divpK p : d %| p -> p %/ d * d = p.
Proof. by rewrite dvdp_eq; move/eqP. Qed.
Lemma divpKC p : d %| p -> d * (p %/ d) = p.
Proof. by move=> ?; rewrite mulrC divpK. Qed.
Lemma dvdp_eq_div p q : d %| p -> (q == p %/ d) = (q * d == p).
Proof.
move/divpK=> {2}<-; apply/eqP/eqP; first by move->.
apply/mulIf; rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->.
by rewrite unitr0.
Qed.
Lemma dvdp_eq_mul p q : d %| p -> (p == q * d) = (p %/ d == q).
Proof. by move=> dv_d_p; rewrite eq_sym -dvdp_eq_div // eq_sym. Qed.
Lemma divp_mulA p q : d %| q -> p * (q %/ d) = p * q %/ d.
Proof.
move=> hdm; apply/eqP; rewrite eq_sym -dvdp_eq_mul.
by rewrite -mulrA divpK.
by move/divpK: hdm<-; rewrite mulrA dvdp_mull // dvdpp.
Qed.
Lemma divp_mulAC m n : d %| m -> m %/ d * n = m * n %/ d.
Proof. by move=> hdm; rewrite mulrC (mulrC m); apply: divp_mulA. Qed.
Lemma divp_mulCA p q : d %| p -> d %| q -> p * (q %/ d) = q * (p %/ d).
Proof. by move=> hdp hdq; rewrite mulrC divp_mulAC // divp_mulA. Qed.
Lemma modp_mul p q : (p * (q %% d)) %% d = (p * q) %% d.
Proof. by rewrite [q in RHS]divp_eq mulrDr modpD mulrA modp_mull add0r. Qed.
End UnitDivisor.
Section MoreUnitDivisor.
Variable R : idomainType.
Variable d : {poly R}.
Hypothesis ulcd : lead_coef d \in GRing.unit.
Implicit Types p q : {poly R}.
Lemma expp_sub m n : n <= m -> (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
Proof. by move/subnK=> {2}<-; rewrite exprD mulpK // lead_coef_exp unitrX. Qed.
Lemma divp_pmul2l p q : lead_coef q \in GRing.unit -> d * p %/ (d * q) = p %/ q.
Proof.
move=> uq; rewrite {1}(divp_eq uq p) mulrDr mulrCA divp_addl_mul //; last first.
by rewrite lead_coefM unitrM_comm ?ulcd //; red; rewrite mulrC.
have dn0 : d != 0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0.
have qn0 : q != 0.
by rewrite -lead_coef_eq0; apply: contraTneq uq => ->; rewrite unitr0.
have dqn0 : d * q != 0 by rewrite mulf_eq0 negb_or dn0.
suff : size (d * (p %% q)) < size (d * q).
by rewrite ltnNge -divpN0 // negbK => /eqP ->; rewrite addr0.
have [-> | rn0] := eqVneq (p %% q) 0.
by rewrite mulr0 size_poly0 size_poly_gt0.
by rewrite !size_mul // (polySpred dn0) !addSn /= ltn_add2l ltn_modp.
Qed.
Lemma divp_pmul2r p q : lead_coef p \in GRing.unit -> q * d %/ (p * d) = q %/ p.
Proof. by move=> uq; rewrite -!(mulrC d) divp_pmul2l. Qed.
Lemma divp_divl r p q :
lead_coef r \in GRing.unit -> lead_coef p \in GRing.unit ->
q %/ p %/ r = q %/ (p * r).
Proof.
move=> ulcr ulcp.
have e : q = (q %/ p %/ r) * (p * r) + ((q %/ p) %% r * p + q %% p).
by rewrite addrA (mulrC p) mulrA -mulrDl; rewrite -divp_eq //; apply: divp_eq.
have pn0 : p != 0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcp => ->; rewrite unitr0.
have rn0 : r != 0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcr => ->; rewrite unitr0.
have s : size ((q %/ p) %% r * p + q %% p) < size (p * r).
have [-> | qn0] := eqVneq ((q %/ p) %% r) 0.
rewrite mul0r add0r size_mul // (polySpred rn0) addnS /=.
by apply: leq_trans (leq_addr _ _); rewrite ltn_modp.
rewrite size_addl mulrC.
by rewrite !size_mul // (polySpred pn0) !addSn /= ltn_add2l ltn_modp.
rewrite size_mul // (polySpred qn0) addnS /=.
by apply: leq_trans (leq_addr _ _); rewrite ltn_modp.
case: (edivpP _ e s) => //; rewrite lead_coefM unitrM_comm ?ulcp //.
by red; rewrite mulrC.
Qed.
Lemma divpAC p q : lead_coef p \in GRing.unit -> q %/ d %/ p = q %/ p %/ d.
Proof. by move=> ulcp; rewrite !divp_divl // mulrC. Qed.
Lemma modpZr c p : c \in GRing.unit -> p %% (c *: d) = (p %% d).
Proof.
case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !modp0.
have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
by rewrite scalerCA scalerA mulVr // scale1r -(divp_eq ulcd).
suff s : size (p %% d) < size (c *: d).
by rewrite (modpP _ e s) // -mul_polyC lead_coefM lead_coefC unitrM cn0.
by rewrite size_scale ?ltn_modp //; apply: contraTneq cn0 => ->; rewrite unitr0.
Qed.
Lemma divpZr c p : c \in GRing.unit -> p %/ (c *: d) = c^-1 *: (p %/ d).
Proof.
case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !divp0 scaler0.
have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
by rewrite scalerCA scalerA mulVr // scale1r -(divp_eq ulcd).
suff s : size (p %% d) < size (c *: d).
by rewrite (divpP _ e s) // -mul_polyC lead_coefM lead_coefC unitrM cn0.
by rewrite size_scale ?ltn_modp //; apply: contraTneq cn0 => ->; rewrite unitr0.
Qed.
End MoreUnitDivisor.
End IdomainUnit.
Module Field.
Import Ring ComRing UnitRing.
Include IdomainDefs.
Export IdomainDefs.
Include CommonIdomain.
Section FieldDivision.
Variable F : fieldType.
Implicit Type p q r d : {poly F}.
Lemma divp_eq p q : p = (p %/ q) * q + (p %% q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite modp0 mulr0 add0r.
by apply: IdomainUnit.divp_eq; rewrite unitfE lead_coef_eq0.
Qed.
Lemma divp_modpP p q d r : p = q * d + r -> size r < size d ->
q = (p %/ d) /\ r = p %% d.
Proof.
move=> he hs; apply: IdomainUnit.edivpP => //; rewrite unitfE lead_coef_eq0.
by rewrite -size_poly_gt0; apply: leq_trans hs.
Qed.
Lemma divpP p q d r : p = q * d + r -> size r < size d ->
q = (p %/ d).
Proof. by move/divp_modpP=> h; case/h. Qed.
Lemma modpP p q d r : p = q * d + r -> size r < size d -> r = (p %% d).
Proof. by move/divp_modpP=> h; case/h. Qed.
Lemma eqpfP p q : p %= q -> p = (lead_coef p / lead_coef q) *: q.
Proof.
have [->|nz_q] := eqVneq q 0; first by rewrite eqp0 scaler0 => /eqP ->.
by apply/IdomainUnit.ucl_eqp_eq; rewrite unitfE lead_coef_eq0.
Qed.
Lemma dvdp_eq q p : (q %| p) = (p == p %/ q * q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite dvd0p mulr0 eq_sym.
by apply: IdomainUnit.dvdp_eq; rewrite unitfE lead_coef_eq0.
Qed.
Lemma eqpf_eq p q : reflect (exists2 c, c != 0 & p = c *: q) (p %= q).
Proof.
apply: (iffP idP); last first.
case=> c nz_c ->; apply/eqpP.
by exists (1, c); rewrite ?scale1r ?oner_eq0.
have [->|nz_q] := eqVneq q 0.
by rewrite eqp0=> /eqP ->; exists 1; rewrite ?scale1r ?oner_eq0.
case/IdomainUnit.ulc_eqpP; first by rewrite unitfE lead_coef_eq0.
by move=> c nz_c ->; exists c.
Qed.
Lemma modpZl c p q : (c *: p) %% q = c *: (p %% q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite !modp0.
by apply: IdomainUnit.modpZl; rewrite unitfE lead_coef_eq0.
Qed.
Lemma mulpK p q : q != 0 -> p * q %/ q = p.
Proof. by move=> qn0; rewrite IdomainUnit.mulpK // unitfE lead_coef_eq0. Qed.
Lemma mulKp p q : q != 0 -> q * p %/ q = p.
Proof. by rewrite mulrC; apply: mulpK. Qed.
Lemma divpZl c p q : (c *: p) %/ q = c *: (p %/ q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite !divp0 scaler0.
by apply: IdomainUnit.divpZl; rewrite unitfE lead_coef_eq0.
Qed.
Lemma modpZr c p d : c != 0 -> p %% (c *: d) = (p %% d).
Proof.
case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !modp0.
have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
by rewrite scalerCA scalerA mulVf // scale1r -divp_eq.
suff s : size (p %% d) < size (c *: d) by rewrite (modpP e s).
by rewrite size_scale ?ltn_modp.
Qed.
Lemma divpZr c p d : c != 0 -> p %/ (c *: d) = c^-1 *: (p %/ d).
Proof.
case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !divp0 scaler0.
have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
by rewrite scalerCA scalerA mulVf // scale1r -divp_eq.
suff s : size (p %% d) < size (c *: d) by rewrite (divpP e s).
by rewrite size_scale ?ltn_modp.
Qed.
Lemma eqp_modpl d p q : p %= q -> (p %% d) %= (q %% d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!modpZl e.
Qed.
Lemma eqp_divl d p q : p %= q -> (p %/ d) %= (q %/ d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!divpZl e.
Qed.
Lemma eqp_modpr d p q : p %= q -> (d %% p) %= (d %% q).
Proof.
case/eqpP=> [[c1 c2]] /andP [c1n0 c2n0 e].
have -> : p = (c1^-1 * c2) *: q by rewrite -scalerA -e scalerA mulVf // scale1r.
by rewrite modpZr ?eqpxx // mulf_eq0 negb_or invr_eq0 c1n0.
Qed.
Lemma eqp_mod p1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> p1 %% q1 %= p2 %% q2.
Proof. move=> e1 e2; exact: eqp_trans (eqp_modpl _ e1) (eqp_modpr _ e2). Qed.
Lemma eqp_divr (d m n : {poly F}) : m %= n -> (d %/ m) %= (d %/ n).
Proof.
case/eqpP=> [[c1 c2]] /andP [c1n0 c2n0 e].
have -> : m = (c1^-1 * c2) *: n by rewrite -scalerA -e scalerA mulVf // scale1r.
by rewrite divpZr ?eqp_scale // ?invr_eq0 mulf_eq0 negb_or invr_eq0 c1n0.
Qed.
Lemma eqp_div p1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> p1 %/ q1 %= p2 %/ q2.
Proof. move=> e1 e2; exact: eqp_trans (eqp_divl _ e1) (eqp_divr _ e2). Qed.
Lemma eqp_gdcor p q r : q %= r -> gdcop p q %= gdcop p r.
Proof.
move=> eqr; rewrite /gdcop (eqp_size eqr).
move: (size r)=> n; elim: n p q r eqr => [|n ihn] p q r; first by rewrite eqpxx.
move=> eqr /=; rewrite (eqp_coprimepl p eqr); case: ifP => _ //.
exact/ihn/eqp_div/eqp_gcdl.
Qed.
Lemma eqp_gdcol p q r : q %= r -> gdcop q p %= gdcop r p.
Proof.
move=> eqr; rewrite /gdcop; move: (size p)=> n.
elim: n p q r eqr {1 3}p (eqpxx p) => [|n ihn] p q r eqr s esp /=.
case: (eqVneq q 0) eqr => [-> | nq0 eqr] /=.
by rewrite eqp_sym eqp0 => ->; rewrite eqpxx.
by case: (eqVneq r 0) eqr nq0 => [->|]; rewrite ?eqpxx // eqp0 => ->.
rewrite (eqp_coprimepr _ eqr) (eqp_coprimepl _ esp); case: ifP=> _ //.
exact/ihn/eqp_div/eqp_gcd.
Qed.
Lemma eqp_rgdco_gdco q p : rgdcop q p %= gdcop q p.
Proof.
rewrite /rgdcop /gdcop; move: (size p)=> n.
elim: n p q {1 3}p {1 3}q (eqpxx p) (eqpxx q) => [|n ihn] p q s t /= sp tq.
case: (eqVneq t 0) tq => [-> | nt0 etq].
by rewrite eqp_sym eqp0 => ->; rewrite eqpxx.
by case: (eqVneq q 0) etq nt0 => [->|]; rewrite ?eqpxx // eqp0 => ->.
rewrite rcoprimep_coprimep (eqp_coprimepl t sp) (eqp_coprimepr p tq).
case: ifP=> // _; apply: ihn => //; apply: eqp_trans (eqp_rdiv_div _ _) _.
by apply: eqp_div => //; apply: eqp_trans (eqp_rgcd_gcd _ _) _; apply: eqp_gcd.
Qed.
Lemma modpD d p q : (p + q) %% d = p %% d + q %% d.
Proof.
have [-> | dn0] := eqVneq d 0; first by rewrite !modp0.
by apply: IdomainUnit.modpD; rewrite unitfE lead_coef_eq0.
Qed.
Lemma modpN p q : (- p) %% q = - (p %% q).
Proof. by apply/eqP; rewrite -addr_eq0 -modpD addNr mod0p. Qed.
Lemma modNp p q : (- p) %% q = - (p %% q). Proof. exact: modpN. Qed.
Lemma divpD d p q : (p + q) %/ d = p %/ d + q %/ d.
Proof.
have [-> | dn0] := eqVneq d 0; first by rewrite !divp0 addr0.
by apply: IdomainUnit.divpD; rewrite unitfE lead_coef_eq0.
Qed.
Lemma divpN p q : (- p) %/ q = - (p %/ q).
Proof. by apply/eqP; rewrite -addr_eq0 -divpD addNr div0p. Qed.
Lemma divp_addl_mul_small d q r : size r < size d -> (q * d + r) %/ d = q.
Proof.
move=> srd; rewrite divpD (divp_small srd) addr0 mulpK // -size_poly_gt0.
exact: leq_trans srd.
Qed.
Lemma modp_addl_mul_small d q r : size r < size d -> (q * d + r) %% d = r.
Proof. by move=> srd; rewrite modpD modp_mull add0r modp_small. Qed.
Lemma divp_addl_mul d q r : d != 0 -> (q * d + r) %/ d = q + r %/ d.
Proof. by move=> dn0; rewrite divpD mulpK. Qed.
Lemma divpp d : d != 0 -> d %/ d = 1.
Proof.
by move=> dn0; apply: IdomainUnit.divpp; rewrite unitfE lead_coef_eq0.
Qed.
Lemma leq_trunc_divp d m : size (m %/ d * d) <= size m.
Proof.
have [-> | dn0] := eqVneq d 0; first by rewrite mulr0 size_poly0.
by apply: IdomainUnit.leq_trunc_divp; rewrite unitfE lead_coef_eq0.
Qed.
Lemma divpK d p : d %| p -> p %/ d * d = p.
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite mulr0.
by apply: IdomainUnit.divpK; rewrite unitfE lead_coef_eq0.
Qed.
Lemma divpKC d p : d %| p -> d * (p %/ d) = p.
Proof. by move=> ?; rewrite mulrC divpK. Qed.
Lemma dvdp_eq_div d p q : d != 0 -> d %| p -> (q == p %/ d) = (q * d == p).
Proof.
by move=> dn0; apply: IdomainUnit.dvdp_eq_div; rewrite unitfE lead_coef_eq0.
Qed.
Lemma dvdp_eq_mul d p q : d != 0 -> d %| p -> (p == q * d) = (p %/ d == q).
Proof. by move=> dn0 dv_d_p; rewrite eq_sym -dvdp_eq_div // eq_sym. Qed.
Lemma divp_mulA d p q : d %| q -> p * (q %/ d) = p * q %/ d.
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite !divp0 mulr0.
by apply: IdomainUnit.divp_mulA; rewrite unitfE lead_coef_eq0.
Qed.
Lemma divp_mulAC d m n : d %| m -> m %/ d * n = m * n %/ d.
Proof. by move=> hdm; rewrite mulrC (mulrC m); apply: divp_mulA. Qed.
Lemma divp_mulCA d p q : d %| p -> d %| q -> p * (q %/ d) = q * (p %/ d).
Proof. by move=> hdp hdq; rewrite mulrC divp_mulAC // divp_mulA. Qed.
Lemma expp_sub d m n : d != 0 -> m >= n -> (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
Proof. by move=> dn0 /subnK=> {2}<-; rewrite exprD mulpK // expf_neq0. Qed.
Lemma divp_pmul2l d q p : d != 0 -> q != 0 -> d * p %/ (d * q) = p %/ q.
Proof.
by move=> dn0 qn0; apply: IdomainUnit.divp_pmul2l; rewrite unitfE lead_coef_eq0.
Qed.
Lemma divp_pmul2r d p q : d != 0 -> p != 0 -> q * d %/ (p * d) = q %/ p.
Proof. by move=> dn0 qn0; rewrite -!(mulrC d) divp_pmul2l. Qed.
Lemma divp_divl r p q : q %/ p %/ r = q %/ (p * r).
Proof.
have [-> | rn0] := eqVneq r 0; first by rewrite mulr0 !divp0.
have [-> | pn0] := eqVneq p 0; first by rewrite mul0r !divp0 div0p.
by apply: IdomainUnit.divp_divl; rewrite unitfE lead_coef_eq0.
Qed.
Lemma divpAC d p q : q %/ d %/ p = q %/ p %/ d.
Proof. by rewrite !divp_divl // mulrC. Qed.
Lemma edivp_def p q : edivp p q = (0, p %/ q, p %% q).
Proof.
rewrite Idomain.edivp_def; congr (_, _, _); rewrite /scalp 2!unlock /=.
have [-> | qn0] := eqVneq; first by rewrite lead_coef0 unitr0.
by rewrite unitfE lead_coef_eq0 qn0 /=; case: (redivp_rec _ _ _ _) => [[]].
Qed.
Lemma divpE p q : p %/ q = (lead_coef q)^-(rscalp p q) *: (rdivp p q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite rdivp0 divp0 scaler0.
by rewrite Idomain.divpE unitfE lead_coef_eq0 qn0.
Qed.
Lemma modpE p q : p %% q = (lead_coef q)^-(rscalp p q) *: (rmodp p q).
Proof.
have [-> | qn0] := eqVneq q 0.
by rewrite rmodp0 modp0 /rscalp unlock eqxx lead_coef0 expr0 invr1 scale1r.
by rewrite Idomain.modpE unitfE lead_coef_eq0 qn0.
Qed.
Lemma scalpE p q : scalp p q = 0.
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite scalp0.
by rewrite Idomain.scalpE unitfE lead_coef_eq0 qn0.
Qed.
(* Just to have it without importing the weak theory *)
Lemma dvdpE p q : p %| q = rdvdp p q. Proof. exact: Idomain.dvdpE. Qed.
Variant edivp_spec m d : nat * {poly F} * {poly F} -> Type :=
EdivpSpec n q r of
m = q * d + r & (d != 0) ==> (size r < size d) : edivp_spec m d (n, q, r).
Lemma edivpP m d : edivp_spec m d (edivp m d).
Proof.
rewrite edivp_def; constructor; first exact: divp_eq.
by apply/implyP=> dn0; rewrite ltn_modp.
Qed.
Lemma edivp_eq d q r : size r < size d -> edivp (q * d + r) d = (0, q, r).
Proof.
move=> srd; apply: Idomain.edivp_eq; rewrite // unitfE lead_coef_eq0.
by rewrite -size_poly_gt0; apply: leq_trans srd.
Qed.
Lemma modp_mul p q m : (p * (q %% m)) %% m = (p * q) %% m.
Proof. by rewrite [in RHS](divp_eq q m) mulrDr modpD mulrA modp_mull add0r. Qed.
Lemma horner_mod p q x : root q x -> (p %% q).[x] = p.[x].
Proof.
by rewrite [in RHS](divp_eq p q) !hornerE => /eqP->; rewrite mulr0 add0r.
Qed.
Lemma dvdpP p q : reflect (exists qq, p = qq * q) (q %| p).
Proof.
have [-> | qn0] := eqVneq q 0; last first.
by apply: IdomainUnit.dvdpP; rewrite unitfE lead_coef_eq0.
by rewrite dvd0p; apply: (iffP eqP) => [->| [? ->]]; [exists 1|]; rewrite mulr0.
Qed.
Lemma Bezout_eq1_coprimepP p q :
reflect (exists u, u.1 * p + u.2 * q = 1) (coprimep p q).
Proof.
apply: (iffP idP)=> [hpq|]; last first.
by case=> [[u v]] /= e; apply/Bezout_coprimepP; exists (u, v); rewrite e eqpxx.
case/Bezout_coprimepP: hpq => [[u v]] /=.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0] e.
exists (c2^-1 *: (c1 *: u), c2^-1 *: (c1 *: v)); rewrite /= -!scalerAl.
by rewrite -!scalerDr e scalerA mulVf // scale1r.
Qed.
Lemma dvdp_gdcor p q : q != 0 -> p %| (gdcop q p) * (q ^+ size p).
Proof.
rewrite /gdcop => nz_q; have [n hsp] := ubnPleq (size p).
elim: n => [|n IHn] /= in p hsp *; first by rewrite (negPf nz_q) mul0r dvdp0.
have [_ | ncop_pq] := ifPn; first by rewrite dvdp_mulr.
have g_gt1: 1 < size (gcdp p q).
rewrite ltn_neqAle eq_sym ncop_pq size_poly_gt0 gcdp_eq0.
by rewrite negb_and nz_q orbT.
have [-> | nz_p] := eqVneq p 0.
by rewrite div0p exprSr mulrA dvdp_mulr // IHn // size_poly0.
have le_d_p: size (p %/ gcdp p q) < size p.
rewrite size_divp -?size_poly_eq0 -(subnKC g_gt1) // add2n /=.
by rewrite polySpred // ltnS subSS leq_subr.
rewrite -[p in p %| _](divpK (dvdp_gcdl p q)) exprSr mulrA.
by rewrite dvdp_mul ?IHn ?dvdp_gcdr // -ltnS (leq_trans le_d_p).
Qed.
Lemma reducible_cubic_root p q :
size p <= 4 -> 1 < size q < size p -> q %| p -> {r | root p r}.
Proof.
move=> p_le4 /andP[]; rewrite leq_eqVlt eq_sym.
have [/poly2_root[x qx0] _ _ | _ /= q_gt2 p_gt_q] := size q =P 2.
by exists x; rewrite -!dvdp_XsubCl in qx0 *; apply: (dvdp_trans qx0).
case/dvdpP/sig_eqW=> r def_p; rewrite def_p.
suffices /poly2_root[x rx0]: size r = 2 by exists x; rewrite rootM rx0.
have /norP[nz_r nz_q]: ~~ [|| r == 0 | q == 0].
by rewrite -mulf_eq0 -def_p -size_poly_gt0 (leq_ltn_trans _ p_gt_q).
rewrite def_p size_mul // -subn1 leq_subLR ltn_subRL in p_gt_q p_le4.
by apply/eqP; rewrite -(eqn_add2r (size q)) eqn_leq (leq_trans p_le4).
Qed.
Lemma cubic_irreducible p :
1 < size p <= 4 -> (forall x, ~~ root p x) -> irreducible_poly p.
Proof.
move=> /andP[p_gt1 p_le4] root'p; split=> // q sz_q_neq1 q_dv_p.
have nz_p: p != 0 by rewrite -size_poly_gt0 ltnW.
have nz_q: q != 0 by apply: contraTneq q_dv_p => ->; rewrite dvd0p.
have q_gt1: size q > 1 by rewrite ltn_neqAle eq_sym sz_q_neq1 size_poly_gt0.
rewrite -dvdp_size_eqp // eqn_leq dvdp_leq //= leqNgt; apply/negP=> p_gt_q.
by have [|x /idPn//] := reducible_cubic_root p_le4 _ q_dv_p; rewrite q_gt1.
Qed.
Section Multiplicity.
Definition mup x q :=
[arg max_(n > ord0 : 'I_(size q).+1 | ('X - x%:P) ^+ n %| q) n] : nat.
Lemma mup_geq x q n : q != 0 -> (n <= mup x q)%N = (('X - x%:P) ^+ n %| q).
Proof.
move=> q_neq0; rewrite /mup; symmetry.
case: arg_maxnP; rewrite ?expr0 ?dvd1p//= => i i_dvd gti.
case: ltnP => [|/dvdp_exp2l/dvdp_trans]; last exact.
apply: contraTF => dvdq; rewrite -leqNgt.
suff n_small : (n < (size q).+1)%N by exact: (gti (Ordinal n_small)).
by rewrite ltnS ltnW// -(size_exp_XsubC _ x) dvdp_leq.
Qed.
Lemma mup_leq x q n : q != 0 -> (mup x q <= n)%N = ~~ (('X - x%:P) ^+ n.+1 %| q).
Proof. by move=> qN0; rewrite leqNgt mup_geq. Qed.
Lemma mup_ltn x q n : q != 0 -> (mup x q < n)%N = ~~ (('X - x%:P) ^+ n %| q).
Proof. by move=> qN0; rewrite ltnNge mup_geq. Qed.
Lemma XsubC_dvd x q : q != 0 -> ('X - x%:P %| q) = (0 < mup x q)%N.
Proof. by move=> /mup_geq-/(_ _ 1%N)/esym; apply. Qed.
Lemma mup_XsubCX n x y :
mup x (('X - y%:P) ^+ n) = (if (y == x) then n else 0)%N.
Proof.
have Xxn0 : ('X - y%:P) ^+ n != 0 by rewrite ?expf_neq0 ?polyXsubC_eq0.
apply/eqP; rewrite eqn_leq mup_leq ?mup_geq//.
have [->|Nxy] := eqVneq x y.
by rewrite /= dvdpp ?dvdp_Pexp2l ?size_XsubC ?ltnn.
by rewrite dvd1p dvdp_XsubCl /root horner_exp !hornerE expf_neq0// subr_eq0.
Qed.
Lemma mupNroot x q : ~~ root q x -> mup x q = 0%N.
Proof.
move=> qNx; have qN0 : q != 0 by apply: contraNneq qNx => ->; rewrite root0.
by move: qNx; rewrite -dvdp_XsubCl XsubC_dvd// lt0n negbK => /eqP.
Qed.
Lemma mupMr x q1 q2 : ~~ root q1 x -> mup x (q1 * q2) = mup x q2.
Proof.
move=> q1Nx; have q1N0 : q1 != 0 by apply: contraNneq q1Nx => ->; rewrite root0.
have [->|q2N0] := eqVneq q2 0; first by rewrite mulr0.
apply/esym/eqP; rewrite eqn_leq mup_geq ?mulf_neq0// dvdp_mull -?mup_geq//=.
rewrite mup_leq ?mulf_neq0// Gauss_dvdpr -?mup_ltn//.
by rewrite coprimep_expl// coprimep_sym coprimep_XsubC.
Qed.
Lemma mupMl x q1 q2 : ~~ root q2 x -> mup x (q1 * q2) = mup x q1.
Proof. by rewrite mulrC; apply/mupMr. Qed.
Lemma mupM x q1 q2 : q1 != 0 -> q2 != 0 ->
mup x (q1 * q2) = (mup x q1 + mup x q2)%N.
Proof.
move=> q1N0 q2N0; apply/eqP; rewrite eqn_leq mup_leq ?mulf_neq0//.
rewrite mup_geq ?mulf_neq0// exprD ?dvdp_mul; do ?by rewrite -mup_geq.
have [m1 [r1]] := multiplicity_XsubC q1 x; rewrite q1N0 /= => r1Nx ->.
have [m2 [r2]] := multiplicity_XsubC q2 x; rewrite q2N0 /= => r2Nx ->.
rewrite !mupMr// ?mup_XsubCX eqxx/= mulrACA exprS exprD.
rewrite dvdp_mul2r ?mulf_neq0 ?expf_neq0 ?polyXsubC_eq0//.
by rewrite dvdp_XsubCl rootM negb_or r1Nx r2Nx.
Qed.
Lemma mu_prod_XsubC x (s : seq F) :
mup x (\prod_(y <- s) ('X - y%:P)) = count_mem x s.
Proof.
elim: s => [|y s IHs]; rewrite (big_cons, big_nil)/=.
by rewrite mupNroot// root1.
rewrite mupM ?polyXsubC_eq0// ?monic_neq0 ?monic_prod_XsubC//.
by rewrite IHs (@mup_XsubCX 1).
Qed.
Lemma prod_XsubC_eq (s t : seq F) :
\prod_(x <- s) ('X - x%:P) = \prod_(x <- t) ('X - x%:P) -> perm_eq s t.
Proof.
move=> eq_prod; apply/allP => x _ /=; apply/eqP.
by have /(congr1 (mup x)) := eq_prod; rewrite !mu_prod_XsubC.
Qed.
End Multiplicity.
Section FieldRingMap.
Variable rR : ringType.
Variable f : {rmorphism F -> rR}.
Local Notation "p ^f" := (map_poly f p) : ring_scope.
Implicit Type a b : {poly F}.
Lemma redivp_map a b :
redivp a^f b^f = (rscalp a b, (rdivp a b)^f, (rmodp a b)^f).
Proof.
rewrite /rdivp /rscalp /rmodp !unlock map_poly_eq0 size_map_poly.
have [// | q_nz] := ifPn; rewrite -(rmorph0 (map_poly f)) //.
have [m _] := ubnPeq (size a); elim: m 0%N 0 a => [|m IHm] qq r a /=.
rewrite -!mul_polyC !size_map_poly !lead_coef_map // -(map_polyXn f).
by rewrite -!(map_polyC f) -!rmorphM -rmorphB -rmorphD; case: (_ < _).
rewrite -!mul_polyC !size_map_poly !lead_coef_map // -(map_polyXn f).
by rewrite -!(map_polyC f) -!rmorphM -rmorphB -rmorphD /= IHm; case: (_ < _).
Qed.
End FieldRingMap.
Section FieldMap.
Variable rR : idomainType.
Variable f : {rmorphism F -> rR}.
Local Notation "p ^f" := (map_poly f p) : ring_scope.
Implicit Type a b : {poly F}.
Lemma edivp_map a b :
edivp a^f b^f = (0, (a %/ b)^f, (a %% b)^f).
Proof.
have [-> | bn0] := eqVneq b 0.
rewrite (rmorph0 (map_poly f)) WeakIdomain.edivp_def !modp0 !divp0.
by rewrite (rmorph0 (map_poly f)) scalp0.
rewrite unlock redivp_map lead_coef_map rmorph_unit; last first.
by rewrite unitfE lead_coef_eq0.
rewrite modpE divpE !map_polyZ [in RHS]rmorphV ?rmorphXn // unitfE.
by rewrite expf_neq0 // lead_coef_eq0.
Qed.
Lemma scalp_map p q : scalp p^f q^f = scalp p q.
Proof. by rewrite /scalp edivp_map edivp_def. Qed.
Lemma map_divp p q : (p %/ q)^f = p^f %/ q^f.
Proof. by rewrite /divp edivp_map edivp_def. Qed.
Lemma map_modp p q : (p %% q)^f = p^f %% q^f.
Proof. by rewrite /modp edivp_map edivp_def. Qed.
Lemma egcdp_map p q :
egcdp (map_poly f p) (map_poly f q)
= (map_poly f (egcdp p q).1, map_poly f (egcdp p q).2).
Proof.
wlog le_qp: p q / size q <= size p.
move=> IH; have [/IH// | lt_qp] := leqP (size q) (size p).
have /IH := ltnW lt_qp; rewrite /egcdp !size_map_poly ltnW // leqNgt lt_qp /=.
by case: (egcdp_rec _ _ _) => u v [-> ->].
rewrite /egcdp !size_map_poly {}le_qp; move: (size q) => n.
elim: n => /= [|n IHn] in p q *; first by rewrite rmorph1 rmorph0.
rewrite map_poly_eq0; have [_ | nz_q] := ifPn; first by rewrite rmorph1 rmorph0.
rewrite -map_modp (IHn q (p %% q)); case: (egcdp_rec _ _ n) => u v /=.
rewrite map_polyZ lead_coef_map -rmorphXn scalp_map rmorphB rmorphM.
by rewrite -map_divp.
Qed.
Lemma dvdp_map p q : (p^f %| q^f) = (p %| q).
Proof. by rewrite /dvdp -map_modp map_poly_eq0. Qed.
Lemma eqp_map p q : (p^f %= q^f) = (p %= q).
Proof. by rewrite /eqp !dvdp_map. Qed.
Lemma gcdp_map p q : (gcdp p q)^f = gcdp p^f q^f.
Proof.
wlog lt_p_q: p q / size p < size q.
move=> IHpq; case: (ltnP (size p) (size q)) => [|le_q_p]; first exact: IHpq.
rewrite gcdpE (gcdpE p^f) !size_map_poly ltnNge le_q_p /= -map_modp.
have [-> | q_nz] := eqVneq q 0; first by rewrite rmorph0 !gcdp0.
by rewrite IHpq ?ltn_modp.
have [m le_q_m] := ubnP (size q); elim: m => // m IHm in p q lt_p_q le_q_m *.
rewrite gcdpE (gcdpE p^f) !size_map_poly lt_p_q -map_modp.
have [-> | q_nz] := eqVneq p 0; first by rewrite rmorph0 !gcdp0.
by rewrite IHm ?(leq_trans lt_p_q) ?ltn_modp.
Qed.
Lemma coprimep_map p q : coprimep p^f q^f = coprimep p q.
Proof. by rewrite -!gcdp_eqp1 -eqp_map rmorph1 gcdp_map. Qed.
Lemma gdcop_rec_map p q n : (gdcop_rec p q n)^f = gdcop_rec p^f q^f n.
Proof.
elim: n p q => [|n IH] => /= p q.
by rewrite map_poly_eq0; case: eqP; rewrite ?rmorph1 ?rmorph0.
rewrite /coprimep -gcdp_map size_map_poly.
by case: eqP => Hq0 //; rewrite -map_divp -IH.
Qed.
Lemma gdcop_map p q : (gdcop p q)^f = gdcop p^f q^f.
Proof. by rewrite /gdcop gdcop_rec_map !size_map_poly. Qed.
End FieldMap.
End FieldDivision.
End Field.
Module ClosedField.
Import Field.
Section closed.
Variable F : closedFieldType.
Lemma root_coprimep (p q : {poly F}):
(forall x, root p x -> q.[x] != 0) -> coprimep p q.
Proof.
move=> Ncmn; rewrite -gcdp_eqp1 -size_poly_eq1; apply/closed_rootP.
by case=> r; rewrite root_gcd !rootE=> /andP [/Ncmn/negPf->].
Qed.
Lemma coprimepP (p q : {poly F}):
reflect (forall x, root p x -> q.[x] != 0) (coprimep p q).
Proof. by apply: (iffP idP)=> [/coprimep_root|/root_coprimep]. Qed.
End closed.
End ClosedField.
End Pdiv.
Export Pdiv.Field.
|