File: polydiv.v

package info (click to toggle)
ssreflect 2.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,536 kB
  • sloc: ml: 506; sh: 190; lisp: 39; makefile: 39
file content (3370 lines) | stat: -rw-r--r-- 128,723 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype bigop ssralg poly.

(******************************************************************************)
(* This file provides a library for the basic theory of Euclidean and pseudo- *)
(* Euclidean division for polynomials over ring structures.                   *)
(* The library defines two versions of the pseudo-euclidean division: one for *)
(* coefficients in a (not necessarily commutative) ring structure and one for *)
(* coefficients equipped with a structure of integral domain. From the latter *)
(* we derive the definition of the usual Euclidean division for coefficients  *)
(* in a field. Only the definition of the pseudo-division for coefficients in *)
(* an integral domain is exported by default and benefits from notations.     *)
(* Also, the only theory exported by default is the one of division for       *)
(* polynomials with coefficients in a field.                                  *)
(* Other definitions and facts are qualified using name spaces indicating the *)
(* hypotheses made on the structure of coefficients and the properties of the *)
(* polynomial one divides with.                                               *)
(*                                                                            *)
(* Pdiv.Field (exported by the present library):                              *)
(*          edivp p q == pseudo-division of p by q with p q : {poly R} where  *)
(*                       R is an idomainType.                                 *)
(*                       Computes (k, quo, rem) : nat * {poly r} * {poly R},  *)
(*                       such that size rem < size q and:                     *)
(*                       + if lead_coef q is not a unit, then:                *)
(*                         (lead_coef q ^+ k) *: p = q * quo + rem            *)
(*                       + else if lead_coef q is a unit, then:               *)
(*                         p = q * quo + rem and k = 0                        *)
(*             p %/ q == quotient (second component) computed by (edivp p q). *)
(*             p %% q == remainder (third component) computed by (edivp p q). *)
(*          scalp p q == exponent (first component) computed by (edivp p q).  *)
(*             p %| q == tests the nullity of the remainder of the            *)
(*                       pseudo-division of p by q.                           *)
(*         rgcdp p q  == Pseudo-greater common divisor obtained by performing *)
(*                       the Euclidean algorithm on p and q using redivp as   *)
(*                       Euclidean division.                                  *)
(*             p %= q == p and q are associate polynomials, i.e., p %| q and  *)
(*                       q %| p, or equivalently, p = c *: q for some nonzero *)
(*                       constant c.                                          *)
(*           gcdp p q == Pseudo-greater common divisor obtained by performing *)
(*                       the Euclidean algorithm on p and q using  edivp as   *)
(*                       Euclidean division.                                  *)
(*          egcdp p q == The pair of Bezout coefficients: if e := egcdp p q,  *)
(*                       then size e.1 <= size q, size e.2 <= size p, and     *)
(*                       gcdp p q %= e.1 * p + e.2 * q                        *)
(*       coprimep p q == p and q are coprime, i.e., (gcdp p q) is a nonzero   *)
(*                       constant.                                            *)
(*          gdcop q p == greatest divisor of p which is coprime to q.         *)
(* irreducible_poly p <-> p has only trivial (constant) divisors.             *)
(*            mup x q == multplicity of x as a root of q                      *)
(*                                                                            *)
(* Pdiv.Idomain: theory available for edivp and the related operation under   *)
(*    the sole assumption that the ring of coefficients is canonically an     *)
(*    integral domain (R : idomainType).                                      *)
(*                                                                            *)
(* Pdiv.IdomainMonic:  theory available for edivp and the related operations  *)
(*    under the assumption that the ring of coefficients is canonically       *)
(*    and integral domain (R : idomainType) an the divisor is monic.          *)
(*                                                                            *)
(* Pdiv.IdomainUnit: theory available for edivp and the related operations    *)
(*    under the assumption that the ring of coefficients is canonically an    *)
(*    integral domain (R : idomainType) and the leading coefficient of the    *)
(*    divisor is a unit.                                                      *)
(*                                                                            *)
(* Pdiv.ClosedField: theory available for edivp and the related operation     *)
(*    under the sole assumption that the ring of coefficients is canonically  *)
(*    an algebraically closed field (R : closedField).                        *)
(*                                                                            *)
(*  Pdiv.Ring :                                                               *)
(*   redivp p q == pseudo-division of p by q with p q : {poly R} where R is   *)
(*                 a ringType.                                                *)
(*                 Computes (k, quo, rem) : nat * {poly r} * {poly R},        *)
(*                 such that if rem = 0 then quo * q = p * (lead_coef q ^+ k) *)
(*                                                                            *)
(*   rdivp p q  == quotient (second component) computed by (redivp p q).      *)
(*   rmodp p q  == remainder (third component) computed by (redivp p q).      *)
(*   rscalp p q == exponent (first component) computed by (redivp p q).       *)
(*   rdvdp p q  == tests the nullity of the remainder of the pseudo-division  *)
(*                 of p by q.                                                 *)
(*   rgcdp p q  == analogue of gcdp for coefficients in a ringType.           *)
(*   rgdcop p q == analogue of gdcop for coefficients in a ringType.          *)
(*rcoprimep p q == analogue of coprimep p q for coefficients in a ringType.   *)
(*                                                                            *)
(* Pdiv.RingComRreg : theory of the operations defined in Pdiv.Ring, when the *)
(*   ring of coefficients is canonically commutative (R : comRingType) and    *)
(*   the leading coefficient of the divisor is both right regular and         *)
(*   commutes as a constant polynomial with the divisor itself                *)
(*                                                                            *)
(* Pdiv.RingMonic : theory of the operations defined in Pdiv.Ring, under the  *)
(*   assumption that the divisor is monic.                                    *)
(*                                                                            *)
(* Pdiv.UnitRing: theory of the operations defined in Pdiv.Ring, when the     *)
(*   ring R of coefficients is canonically with units (R : unitRingType).     *)
(*                                                                            *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GRing.Theory.
Local Open Scope ring_scope.

Reserved Notation "p %= q" (at level 70, no associativity).

Local Notation simp := Monoid.simpm.

Module Pdiv.

Module CommonRing.

Section RingPseudoDivision.

Variable R : ringType.
Implicit Types d p q r : {poly R}.

(* Pseudo division, defined on an arbitrary ring *)
Definition redivp_rec (q : {poly R}) :=
  let sq := size q in
  let cq := lead_coef q in
   fix loop (k : nat) (qq r : {poly R})(n : nat) {struct n} :=
    if size r < sq then (k, qq, r) else
    let m := (lead_coef r) *: 'X^(size r - sq) in
    let qq1 := qq * cq%:P + m in
    let r1 := r * cq%:P - m * q in
       if n is n1.+1 then loop k.+1 qq1 r1 n1 else (k.+1, qq1, r1).

Definition redivp_expanded_def p q :=
   if q == 0 then (0, 0, p) else redivp_rec q 0 0 p (size p).
Fact redivp_key : unit. Proof. by []. Qed.
Definition redivp : {poly R} -> {poly R} -> nat * {poly R} * {poly R} :=
  locked_with redivp_key redivp_expanded_def.
Canonical redivp_unlockable := [unlockable fun redivp].

Definition rdivp p q := ((redivp p q).1).2.
Definition rmodp p q := (redivp p q).2.
Definition rscalp p q := ((redivp p q).1).1.
Definition rdvdp p q := rmodp q p == 0.
(*Definition rmultp := [rel m d | rdvdp d m].*)
Lemma redivp_def p q : redivp p q = (rscalp p q, rdivp p q, rmodp p q).
Proof. by rewrite /rscalp /rdivp /rmodp; case: (redivp p q) => [[]] /=. Qed.

Lemma rdiv0p p : rdivp 0 p = 0.
Proof.
rewrite /rdivp unlock; case: ifP => // Hp; rewrite /redivp_rec !size_poly0.
by rewrite polySpred ?Hp.
Qed.

Lemma rdivp0 p : rdivp p 0 = 0. Proof. by rewrite /rdivp unlock eqxx. Qed.

Lemma rdivp_small p q : size p < size q -> rdivp p q = 0.
Proof.
rewrite /rdivp unlock; have [-> | _ ltpq] := eqP; first by rewrite size_poly0.
by case: (size p) => [|s]; rewrite /= ltpq.
Qed.

Lemma leq_rdivp p q : size (rdivp p q) <= size p.
Proof.
have [/rdivp_small->|] := ltnP (size p) (size q); first by rewrite size_poly0.
rewrite /rdivp /rmodp /rscalp unlock.
have [->|q0] //= := eqVneq q 0.
have: size (0 : {poly R}) <= size p by rewrite size_poly0.
move: {2 3 4 6}(size p) (leqnn (size p)) => A.
elim: (size p) 0%N (0 : {poly R}) {1 3 4}p (leqnn (size p)) => [|n ihn] k q1 r.
  by move/size_poly_leq0P->; rewrite /= size_poly0 size_poly_gt0 q0.
move=> /= hrn hr hq1 hq; case: ltnP => //= hqr.
have sq: 0 < size q by rewrite size_poly_gt0.
have sr: 0 < size r by apply: leq_trans sq hqr.
apply: ihn => //.
- apply/leq_sizeP => j hnj.
  rewrite coefB -scalerAl coefZ coefXnM ltn_subRL ltnNge.
  have hj : (size r).-1 <= j by apply: leq_trans hnj; rewrite -ltnS prednK.
  rewrite [leqLHS]polySpred -?size_poly_gt0 // coefMC.
  rewrite (leq_ltn_trans hj) /=; last by rewrite -add1n leq_add2r.
  move: hj; rewrite leq_eqVlt prednK // => /predU1P [<- | hj].
    by rewrite -subn1 subnAC subKn // !subn1 !lead_coefE subrr.
  have/leq_sizeP-> //: size q <= j - (size r - size q).
    by rewrite subnBA // leq_psubRL // leq_add2r.
  by move/leq_sizeP: (hj) => -> //; rewrite mul0r mulr0 subr0.
- apply: leq_trans (size_add _ _) _; rewrite geq_max; apply/andP; split.
    apply: leq_trans (size_mul_leq _ _) _.
    by rewrite size_polyC lead_coef_eq0 q0 /= addn1.
  rewrite size_opp; apply: leq_trans (size_mul_leq _ _) _.
  apply: leq_trans hr; rewrite -subn1 leq_subLR -[in (1 + _)%N](subnK hqr).
  by rewrite addnA leq_add2r add1n -(@size_polyXn R) size_scale_leq.
apply: leq_trans (size_add _ _) _; rewrite geq_max; apply/andP; split.
  apply: leq_trans (size_mul_leq _ _) _.
  by rewrite size_polyC lead_coef_eq0 q0 /= addnS addn0.
apply: leq_trans (size_scale_leq _ _) _.
by rewrite size_polyXn -subSn // leq_subLR -add1n leq_add.
Qed.

Lemma rmod0p p : rmodp 0 p = 0.
Proof.
rewrite /rmodp unlock; case: ifP => // Hp; rewrite /redivp_rec !size_poly0.
by rewrite polySpred ?Hp.
Qed.

Lemma rmodp0 p : rmodp p 0 = p. Proof. by rewrite /rmodp unlock eqxx. Qed.

Lemma rscalp_small p q : size p < size q -> rscalp p q = 0.
Proof.
rewrite /rscalp unlock; case: eqP => _ // spq.
by case sp: (size p) => [| s] /=; rewrite spq.
Qed.

Lemma ltn_rmodp p q : (size (rmodp p q) < size q) = (q != 0).
Proof.
rewrite /rdivp /rmodp /rscalp unlock; have [->|q0] := eqVneq q 0.
  by rewrite /= size_poly0 ltn0.
elim: (size p) 0%N 0 {1 3}p (leqnn (size p)) => [|n ihn] k q1 r.
  move/size_poly_leq0P->.
  by rewrite /= size_poly0 size_poly_gt0 q0 size_poly0 size_poly_gt0.
move=> hr /=; case: (ltnP (size r)) => // hsrq; apply/ihn/leq_sizeP => j hnj.
rewrite coefB -scalerAl !coefZ coefXnM coefMC ltn_subRL ltnNge.
have sq: 0 < size q by rewrite size_poly_gt0.
have sr: 0 < size r by apply: leq_trans hsrq.
have hj: (size r).-1 <= j by apply: leq_trans hnj; rewrite -ltnS prednK.
move: (leq_add sq hj); rewrite add1n prednK // => -> /=.
move: hj; rewrite leq_eqVlt prednK // => /predU1P [<- | hj].
  by rewrite -predn_sub subKn // !lead_coefE subrr.
have/leq_sizeP -> //: size q <= j - (size r - size q).
  by rewrite subnBA // leq_subRL ?leq_add2r // (leq_trans hj) // leq_addr.
by move/leq_sizeP: hj => -> //; rewrite mul0r mulr0 subr0.
Qed.

Lemma ltn_rmodpN0 p q : q != 0 -> size (rmodp p q) < size q.
Proof. by rewrite ltn_rmodp. Qed.

Lemma rmodp1 p : rmodp p 1 = 0.
Proof.
apply/eqP; have := ltn_rmodp p 1.
by rewrite !oner_neq0 -size_poly_eq0 size_poly1 ltnS leqn0.
Qed.

Lemma rmodp_small p q : size p < size q -> rmodp p q = p.
Proof.
rewrite /rmodp unlock; have [->|_] := eqP; first by rewrite size_poly0.
by case sp: (size p) => [| s] Hs /=; rewrite sp Hs /=.
Qed.

Lemma leq_rmodp m d : size (rmodp m d) <= size m.
Proof.
have [/rmodp_small -> //|h] := ltnP (size m) (size d).
have [->|d0] := eqVneq d 0; first by rewrite rmodp0.
by apply: leq_trans h; apply: ltnW; rewrite ltn_rmodp.
Qed.

Lemma rmodpC p c : c != 0 -> rmodp p c%:P = 0.
Proof.
move=> Hc; apply/eqP; rewrite -size_poly_leq0 -ltnS.
have -> : 1%N = nat_of_bool (c != 0) by rewrite Hc.
by rewrite -size_polyC ltn_rmodp polyC_eq0.
Qed.

Lemma rdvdp0 d : rdvdp d 0. Proof. by rewrite /rdvdp rmod0p. Qed.

Lemma rdvd0p n : rdvdp 0 n = (n == 0). Proof. by rewrite /rdvdp rmodp0. Qed.

Lemma rdvd0pP n : reflect (n = 0) (rdvdp 0 n).
Proof. by apply: (iffP idP); rewrite rdvd0p; move/eqP. Qed.

Lemma rdvdpN0 p q : rdvdp p q -> q != 0 -> p != 0.
Proof. by move=> pq hq; apply: contraTneq pq => ->; rewrite rdvd0p. Qed.

Lemma rdvdp1 d : rdvdp d 1 = (size d == 1).
Proof.
rewrite /rdvdp; have [->|] := eqVneq d 0.
  by rewrite rmodp0 size_poly0 (negPf (oner_neq0 _)).
rewrite -size_poly_leq0 -ltnS; case: ltngtP => // [|/eqP] hd _.
  by rewrite rmodp_small ?size_poly1 // oner_eq0.
have [c cn0 ->] := size_poly1P _ hd.
rewrite /rmodp unlock -size_poly_eq0 size_poly1 /= size_poly1 size_polyC cn0 /=.
by rewrite polyC_eq0 (negPf cn0) !lead_coefC !scale1r subrr !size_poly0.
Qed.

Lemma rdvd1p m : rdvdp 1 m. Proof. by rewrite /rdvdp rmodp1. Qed.

Lemma Nrdvdp_small (n d : {poly R}) :
  n != 0 -> size n < size d -> rdvdp d n = false.
Proof. by move=> nn0 hs; rewrite /rdvdp (rmodp_small hs); apply: negPf. Qed.

Lemma rmodp_eq0P p q : reflect (rmodp p q = 0) (rdvdp q p).
Proof. exact: (iffP eqP). Qed.

Lemma rmodp_eq0 p q : rdvdp q p -> rmodp p q = 0. Proof. exact: rmodp_eq0P. Qed.

Lemma rdvdp_leq p q : rdvdp p q -> q != 0 -> size p <= size q.
Proof. by move=> dvd_pq; rewrite leqNgt; apply: contra => /rmodp_small <-. Qed.

Definition rgcdp p q :=
  let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
  if p1 == 0 then q1 else
  let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
      let rr := rmodp pp qq in
      if rr == 0 then qq else
      if n is n1.+1 then loop n1 qq rr else rr in
  loop (size p1) p1 q1.

Lemma rgcd0p : left_id 0 rgcdp.
Proof.
move=> p; rewrite /rgcdp size_poly0 size_poly_gt0 if_neg.
case: ifP => /= [_ | nzp]; first by rewrite eqxx.
by rewrite polySpred !(rmodp0, nzp) //; case: _.-1 => [|m]; rewrite rmod0p eqxx.
Qed.

Lemma rgcdp0 : right_id 0 rgcdp.
Proof.
move=> p; have:= rgcd0p p; rewrite /rgcdp size_poly0 size_poly_gt0.
by case: eqVneq => p0; rewrite ?(eqxx, p0) //= eqxx.
Qed.

Lemma rgcdpE p q :
  rgcdp p q = if size p < size q
    then rgcdp (rmodp q p) p else rgcdp (rmodp p q) q.
Proof.
pose rgcdp_rec := fix rgcdp_rec (n : nat) (pp qq : {poly R}) {struct n} :=
   let rr := rmodp pp qq in
   if rr == 0 then qq else
   if n is n1.+1 then rgcdp_rec n1 qq rr else rr.
have Irec: forall m n p q, size q <= m -> size q <= n
      -> size q < size p -> rgcdp_rec m p q = rgcdp_rec n p q.
  + elim=> [|m Hrec] [|n] //= p1 q1.
    - move/size_poly_leq0P=> -> _; rewrite size_poly0 size_poly_gt0 rmodp0.
      by move/negPf->; case: n => [|n] /=; rewrite rmod0p eqxx.
    - move=> _ /size_poly_leq0P ->; rewrite size_poly0 size_poly_gt0 rmodp0.
      by move/negPf->; case: m {Hrec} => [|m] /=; rewrite rmod0p eqxx.
  case: eqVneq => Epq Sm Sn Sq //; have [->|nzq] := eqVneq q1 0.
    by case: n m {Sm Sn Hrec} => [|m] [|n] //=; rewrite rmod0p eqxx.
  apply: Hrec; last by rewrite ltn_rmodp.
    by rewrite -ltnS (leq_trans _ Sm) // ltn_rmodp.
  by rewrite -ltnS (leq_trans _ Sn) // ltn_rmodp.
have [->|nzp] := eqVneq p 0.
  by rewrite rmod0p rmodp0 rgcd0p rgcdp0 if_same.
have [->|nzq] := eqVneq q 0.
  by rewrite rmod0p rmodp0 rgcd0p rgcdp0 if_same.
rewrite /rgcdp -/rgcdp_rec !ltn_rmodp (negPf nzp) (negPf nzq) /=.
have [ltpq|leqp] := ltnP; rewrite !(negPf nzp, negPf nzq) //= polySpred //=.
  have [->|nzqp] := eqVneq.
    by case: (size p) => [|[|s]]; rewrite /= rmodp0 (negPf nzp) // rmod0p eqxx.
  apply: Irec => //; last by rewrite ltn_rmodp.
    by rewrite -ltnS -polySpred // (leq_trans _ ltpq) ?leqW // ltn_rmodp.
  by rewrite ltnW // ltn_rmodp.
have [->|nzpq] := eqVneq.
  by case: (size q) => [|[|s]]; rewrite /= rmodp0 (negPf nzq) // rmod0p eqxx.
apply: Irec => //; last by rewrite ltn_rmodp.
  by rewrite -ltnS -polySpred // (leq_trans _ leqp) // ltn_rmodp.
by rewrite ltnW // ltn_rmodp.
Qed.

Variant comm_redivp_spec m d : nat * {poly R} * {poly R} -> Type :=
  ComEdivnSpec k (q r : {poly R}) of
   (GRing.comm d (lead_coef d)%:P -> m * (lead_coef d ^+ k)%:P = q * d + r) &
   (d != 0 -> size r < size d) : comm_redivp_spec m d (k, q, r).

Lemma comm_redivpP m d : comm_redivp_spec m d (redivp m d).
Proof.
rewrite unlock; have [->|Hd] := eqVneq d 0.
  by constructor; rewrite !(simp, eqxx).
have: GRing.comm d (lead_coef d)%:P -> m * (lead_coef d ^+ 0)%:P = 0 * d + m.
  by rewrite !simp.
elim: (size m) 0%N 0 {1 4 6}m (leqnn (size m)) => [|n IHn] k q r Hr /=.
  move/size_poly_leq0P: Hr ->.
  suff hsd: size (0: {poly R}) < size d by rewrite hsd => /= ?; constructor.
  by rewrite size_poly0 size_poly_gt0.
case: ltnP => Hlt Heq; first by constructor.
apply/IHn=> [|Cda]; last first.
  rewrite mulrDl addrAC -addrA subrK exprSr polyCM mulrA Heq //.
  by rewrite mulrDl -mulrA Cda mulrA.
apply/leq_sizeP => j Hj; rewrite coefB coefMC -scalerAl coefZ coefXnM.
rewrite ltn_subRL ltnNge (leq_trans Hr) /=; last first.
  by apply: leq_ltn_trans Hj _; rewrite -add1n leq_add2r size_poly_gt0.
move: Hj; rewrite leq_eqVlt; case/predU1P => [<-{j} | Hj]; last first.
  rewrite !nth_default ?simp ?oppr0 ?(leq_trans Hr) //.
  by rewrite -{1}(subKn Hlt) leq_sub2r // (leq_trans Hr).
move: Hr; rewrite leq_eqVlt ltnS; case/predU1P=> Hqq; last first.
  by rewrite !nth_default ?simp ?oppr0 // -{1}(subKn Hlt) leq_sub2r.
rewrite /lead_coef Hqq polySpred // subSS subKn ?addrN //.
by rewrite -subn1 leq_subLR add1n -Hqq.
Qed.

Lemma rmodpp p : GRing.comm p (lead_coef p)%:P -> rmodp p p = 0.
Proof.
move=> hC; rewrite /rmodp unlock; have [-> //|] := eqVneq.
rewrite -size_poly_eq0 /redivp_rec; case sp: (size p)=> [|n] // _.
rewrite sp ltnn subnn expr0 hC alg_polyC !simp subrr.
by case: n sp => [|n] sp; rewrite size_polyC /= eqxx.
Qed.

Definition rcoprimep (p q : {poly R}) := size (rgcdp p q) == 1.

Fixpoint rgdcop_rec q p n :=
  if n is m.+1 then
      if rcoprimep p q then p
        else rgdcop_rec q (rdivp p (rgcdp p q)) m
    else (q == 0)%:R.

Definition rgdcop q p := rgdcop_rec q p (size p).

Lemma rgdcop0 q : rgdcop q 0 = (q == 0)%:R.
Proof. by rewrite /rgdcop size_poly0. Qed.

End RingPseudoDivision.

End CommonRing.

Module RingComRreg.

Import CommonRing.

Section ComRegDivisor.

Variable R : ringType.
Variable d : {poly R}.
Hypothesis Cdl : GRing.comm d (lead_coef d)%:P.
Hypothesis Rreg : GRing.rreg (lead_coef d).

Implicit Types p q r : {poly R}.

Lemma redivp_eq q r :
    size r < size d ->
    let k := (redivp (q * d + r) d).1.1 in
    let c := (lead_coef d ^+ k)%:P in
  redivp (q * d + r) d = (k, q * c, r * c).
Proof.
move=> lt_rd; case: comm_redivpP=> k q1 r1 /(_ Cdl) Heq.
have dn0: d != 0 by case: (size d) lt_rd (size_poly_eq0 d) => // n _ <-.
move=> /(_ dn0) Hs.
have eC : q * d * (lead_coef d ^+ k)%:P = q * (lead_coef d ^+ k)%:P * d.
  by rewrite -mulrA polyC_exp (commrX k Cdl) mulrA.
suff e1 : q1 = q * (lead_coef d ^+ k)%:P.
  congr (_, _, _) => //=; move/eqP: Heq.
  by rewrite [_ + r1]addrC -subr_eq e1 mulrDl addrAC eC subrr add0r; move/eqP.
have : (q1 - q * (lead_coef d ^+ k)%:P) * d = r * (lead_coef d ^+ k)%:P - r1.
  apply: (@addIr _ r1); rewrite subrK.
  apply: (@addrI _ ((q * (lead_coef d ^+ k)%:P) * d)).
  by rewrite mulrDl mulNr !addrA [_ + (q1 * d)]addrC addrK -eC -mulrDl.
move/eqP; rewrite -[_ == _ - _]subr_eq0 rreg_div0 //.
  by case/andP; rewrite subr_eq0; move/eqP.
rewrite size_opp; apply: (leq_ltn_trans (size_add _ _)); rewrite size_opp.
rewrite gtn_max Hs (leq_ltn_trans (size_mul_leq _ _)) //.
rewrite size_polyC; case: (_ == _); last by rewrite addnS addn0.
by rewrite addn0; apply: leq_ltn_trans lt_rd; case: size.
Qed.

(* this is a bad name *)
Lemma rdivp_eq p :
  p * (lead_coef d ^+ (rscalp p d))%:P = (rdivp p d) * d + (rmodp p d).
Proof.
by rewrite /rdivp /rmodp /rscalp; case: comm_redivpP=> k q1 r1 Hc _; apply: Hc.
Qed.

(* section variables impose an inconvenient order on parameters *)
Lemma eq_rdvdp k q1 p:
  p * ((lead_coef d)^+ k)%:P = q1 * d -> rdvdp d p.
Proof.
move=> he.
have Hnq0 := rreg_lead0 Rreg; set lq := lead_coef d.
pose v := rscalp p d; pose m := maxn v k.
rewrite /rdvdp -(rreg_polyMC_eq0 _ (@rregX _ _ (m - v) Rreg)).
suff:
 ((rdivp p d) * (lq ^+ (m - v))%:P - q1 * (lq ^+ (m - k))%:P) * d +
  (rmodp p d) * (lq ^+ (m - v))%:P == 0.
  rewrite rreg_div0 //; first by case/andP.
  by rewrite rreg_size ?ltn_rmodp //; exact: rregX.
rewrite mulrDl addrAC mulNr -!mulrA polyC_exp -(commrX (m-v) Cdl).
rewrite -polyC_exp mulrA -mulrDl -rdivp_eq // [(_ ^+ (m - k))%:P]polyC_exp.
rewrite -(commrX (m-k) Cdl) -polyC_exp mulrA -he -!mulrA -!polyCM -/v.
by rewrite -!exprD addnC subnK ?leq_maxl // addnC subnK ?subrr ?leq_maxr.
Qed.

Variant rdvdp_spec p q : {poly R} -> bool -> Type :=
  | Rdvdp k q1 & p * ((lead_coef q)^+ k)%:P = q1 * q : rdvdp_spec p q 0 true
  | RdvdpN & rmodp p q != 0 : rdvdp_spec p q (rmodp p q) false.

(* Is that version useable ? *)

Lemma rdvdp_eqP p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
Proof.
case hdvd: (rdvdp d p); last by apply: RdvdpN; move/rmodp_eq0P/eqP: hdvd.
move/rmodp_eq0P: (hdvd)->; apply: (@Rdvdp _ _ (rscalp p d) (rdivp p d)).
by rewrite rdivp_eq //; move/rmodp_eq0P: (hdvd)->; rewrite addr0.
Qed.

Lemma rdvdp_mull p : rdvdp d (p * d).
Proof. by apply: (@eq_rdvdp 0 p); rewrite expr0 mulr1. Qed.

Lemma rmodp_mull p : rmodp (p * d) d = 0. Proof. exact/eqP/rdvdp_mull. Qed.

Lemma rmodpp : rmodp d d = 0.
Proof. by rewrite -[d in rmodp d _]mul1r rmodp_mull. Qed.

Lemma rdivpp : rdivp d d = (lead_coef d ^+ rscalp d d)%:P.
Proof.
have dn0 : d != 0 by rewrite -lead_coef_eq0 rreg_neq0.
move: (rdivp_eq d); rewrite rmodpp addr0.
suff ->: GRing.comm d (lead_coef d ^+ rscalp d d)%:P by move/(rreg_lead Rreg)->.
by rewrite polyC_exp; apply: commrX.
Qed.

Lemma rdvdpp : rdvdp d d. Proof. exact/eqP/rmodpp. Qed.

Lemma rdivpK p : rdvdp d p ->
  rdivp p d * d = p * (lead_coef d ^+ rscalp p d)%:P.
Proof. by rewrite rdivp_eq /rdvdp; move/eqP->; rewrite addr0. Qed.

End ComRegDivisor.

End RingComRreg.

Module RingMonic.

Import CommonRing.

Import RingComRreg.

Section RingMonic.

Variable R : ringType.
Implicit Types p q r : {poly R}.

Section MonicDivisor.

Variable d : {poly R}.
Hypothesis mond : d \is monic.

Lemma redivp_eq q r : size r < size d ->
  let k := (redivp (q * d + r) d).1.1 in
  redivp (q * d + r) d = (k, q, r).
Proof.
case: (monic_comreg mond)=> Hc Hr /(redivp_eq Hc Hr q).
by rewrite (eqP mond) => -> /=; rewrite expr1n !mulr1.
Qed.

Lemma rdivp_eq p : p = rdivp p d * d + rmodp p d.
Proof.
rewrite -rdivp_eq (eqP mond); last exact: commr1.
by rewrite expr1n mulr1.
Qed.

Lemma rdivpp : rdivp d d = 1.
Proof.
by case: (monic_comreg mond) => hc hr; rewrite rdivpp // (eqP mond) expr1n.
Qed.

Lemma rdivp_addl_mul_small q r : size r < size d -> rdivp (q * d + r) d = q.
Proof.
by move=> Hd; case: (monic_comreg mond)=> Hc Hr; rewrite /rdivp redivp_eq.
Qed.

Lemma rdivp_addl_mul q r : rdivp (q * d + r) d = q + rdivp r d.
Proof.
case: (monic_comreg mond)=> Hc Hr; rewrite [r in _ * _ + r]rdivp_eq addrA.
by rewrite -mulrDl rdivp_addl_mul_small // ltn_rmodp monic_neq0.
Qed.

Lemma rdivpDl q r : rdvdp d q -> rdivp (q + r) d = rdivp q d + rdivp r d.
Proof.
case: (monic_comreg mond)=> Hc Hr; rewrite [r in q + r]rdivp_eq addrA.
rewrite [q in q + _ + _]rdivp_eq; move/rmodp_eq0P->.
by rewrite addr0 -mulrDl rdivp_addl_mul_small // ltn_rmodp monic_neq0.
Qed.

Lemma rdivpDr q r : rdvdp d r -> rdivp (q + r) d = rdivp q d + rdivp r d.
Proof. by rewrite addrC; move/rdivpDl->; rewrite addrC. Qed.

Lemma rdivp_mull p : rdivp (p * d) d = p.
Proof. by rewrite -[p * d]addr0 rdivp_addl_mul rdiv0p addr0. Qed.

Lemma rmodp_mull p : rmodp (p * d) d = 0.
Proof.
by apply: rmodp_mull; rewrite (eqP mond); [apply: commr1 | apply: rreg1].
Qed.

Lemma rmodpp : rmodp d d = 0.
Proof.
by apply: rmodpp; rewrite (eqP mond); [apply: commr1 | apply: rreg1].
Qed.

Lemma rmodp_addl_mul_small q r : size r < size d -> rmodp (q * d + r) d = r.
Proof.
by move=> Hd; case: (monic_comreg mond)=> Hc Hr; rewrite /rmodp redivp_eq.
Qed.

Lemma rmodp_id (p : {poly R}) : rmodp (rmodp p d) d = rmodp p d.
Proof.
by rewrite rmodp_small // ltn_rmodpN0 // monic_neq0.
Qed.

Lemma rmodpD p q : rmodp (p + q) d = rmodp p d + rmodp q d.
Proof.
rewrite [p in LHS]rdivp_eq [q in LHS]rdivp_eq addrACA -mulrDl.
rewrite rmodp_addl_mul_small //; apply: (leq_ltn_trans (size_add _ _)).
by rewrite gtn_max !ltn_rmodp // monic_neq0.
Qed.

Lemma rmodpN p : rmodp (- p) d = - (rmodp p d).
Proof.
rewrite {1}(rdivp_eq p) opprD // -mulNr rmodp_addl_mul_small //.
by rewrite size_opp ltn_rmodp // monic_neq0.
Qed.

Lemma rmodpB p q : rmodp (p - q) d = rmodp p d - rmodp q d.
Proof. by rewrite rmodpD rmodpN. Qed.

Lemma rmodpZ a p : rmodp (a *: p) d = a *: (rmodp p d).
Proof.
case: (altP (a =P 0%R)) => [-> | cn0]; first by rewrite !scale0r rmod0p.
have -> : ((a *: p) = (a *: (rdivp p d)) * d + a *: (rmodp p d))%R.
  by rewrite -scalerAl -scalerDr -rdivp_eq.
rewrite  rmodp_addl_mul_small //.
rewrite -mul_polyC; apply: leq_ltn_trans (size_mul_leq _ _) _.
  rewrite size_polyC cn0 addSn add0n /= ltn_rmodp.
by apply: monic_neq0.
Qed.

Lemma rmodp_sum (I : Type) (r : seq I) (P : pred I) (F : I -> {poly R}) :
   rmodp (\sum_(i <- r | P i) F i) d = (\sum_(i <- r | P i) (rmodp (F i) d)).
Proof.
by elim/big_rec2: _ => [|i p q _ <-]; rewrite ?(rmod0p, rmodpD).
Qed.

Lemma rmodp_mulmr p q : rmodp (p * (rmodp q d)) d = rmodp (p * q) d.
Proof.
by rewrite [q in RHS]rdivp_eq mulrDr rmodpD mulrA rmodp_mull add0r.
Qed.

Lemma rdvdpp : rdvdp d d.
Proof.
by apply: rdvdpp; rewrite (eqP mond); [apply: commr1 | apply: rreg1].
Qed.

(* section variables impose an inconvenient order on parameters *)
Lemma eq_rdvdp q1 p : p = q1 * d -> rdvdp d p.
Proof.
(*  this probably means I need to specify impl args for comm_rref_rdvdp *)
move=> h; apply: (@eq_rdvdp _ _ _ _ 1 q1); rewrite (eqP mond).
- exact: commr1.
- exact: rreg1.
by rewrite expr1n mulr1.
Qed.

Lemma rdvdp_mull p : rdvdp d (p * d).
Proof.
by apply: rdvdp_mull; rewrite (eqP mond) //; [apply: commr1 | apply: rreg1].
Qed.

Lemma rdvdpP p : reflect (exists qq, p = qq * d) (rdvdp d p).
Proof.
case: (monic_comreg mond)=> Hc Hr; apply: (iffP idP) => [|[qq] /eq_rdvdp //].
by case: rdvdp_eqP=> // k qq; rewrite (eqP mond) expr1n mulr1 => ->; exists qq.
Qed.

Lemma rdivpK p : rdvdp d p -> (rdivp p d) * d = p.
Proof. by move=> dvddp; rewrite [RHS]rdivp_eq rmodp_eq0 ?addr0. Qed.

End MonicDivisor.

Lemma drop_poly_rdivp n p : drop_poly n p = rdivp p 'X^n.
Proof.
rewrite -[p in RHS](poly_take_drop n) addrC rdivp_addl_mul ?monicXn//.
by rewrite rdivp_small ?addr0// size_polyXn ltnS size_take_poly.
Qed.

Lemma take_poly_rmodp n p : take_poly n p = rmodp p 'X^n.
Proof.
have mX := monicXn R n; rewrite -[p in RHS](poly_take_drop n) rmodpD//.
by rewrite rmodp_small ?rmodp_mull ?addr0// size_polyXn ltnS size_take_poly.
Qed.

End RingMonic.

Section ComRingMonic.

Variable R : comRingType.
Implicit Types p q r : {poly R}.
Variable d : {poly R}.
Hypothesis mond : d \is monic.

Lemma rmodp_mulml p q : rmodp (rmodp p d * q) d = rmodp (p * q) d.
Proof. by rewrite [in LHS]mulrC [in RHS]mulrC rmodp_mulmr. Qed.

Lemma rmodpX p n : rmodp ((rmodp p d) ^+ n) d = rmodp (p ^+ n) d.
Proof.
elim: n => [|n IH]; first by rewrite !expr0.
rewrite !exprS -rmodp_mulmr // IH rmodp_mulmr //.
by rewrite mulrC rmodp_mulmr // mulrC.
Qed.

Lemma rmodp_compr p q : rmodp (p \Po (rmodp q d)) d = (rmodp (p \Po q) d).
Proof.
elim/poly_ind: p => [|p c IH]; first by rewrite !comp_polyC !rmod0p.
rewrite !comp_polyD !comp_polyM addrC rmodpD //.
  rewrite mulrC -rmodp_mulmr // IH rmodp_mulmr //.
  rewrite !comp_polyX !comp_polyC.
by rewrite mulrC rmodp_mulmr // -rmodpD // addrC.
Qed.

End ComRingMonic.

End RingMonic.

Module Ring.

Include CommonRing.
Import RingMonic.

Section ExtraMonicDivisor.

Variable R : ringType.

Implicit Types d p q r : {poly R}.

Lemma rdivp1 p : rdivp p 1 = p.
Proof. by rewrite -[p in LHS]mulr1 rdivp_mull // monic1. Qed.

Lemma rdvdp_XsubCl p x : rdvdp ('X - x%:P) p = root p x.
Proof.
have [HcX Hr] := monic_comreg (monicXsubC x).
apply/rmodp_eq0P/factor_theorem => [|[p1 ->]]; last exact/rmodp_mull/monicXsubC.
move=> e0; exists (rdivp p ('X - x%:P)).
by rewrite [LHS](rdivp_eq (monicXsubC x)) e0 addr0.
Qed.

Lemma polyXsubCP p x : reflect (p.[x] = 0) (rdvdp ('X - x%:P) p).
Proof. by apply: (iffP idP); rewrite rdvdp_XsubCl; move/rootP. Qed.

Lemma root_factor_theorem p x : root p x = (rdvdp ('X - x%:P) p).
Proof. by rewrite rdvdp_XsubCl. Qed.

End ExtraMonicDivisor.

End Ring.

Module ComRing.

Import Ring.

Import RingComRreg.

Section CommutativeRingPseudoDivision.

Variable R : comRingType.

Implicit Types d p q m n r : {poly R}.

Variant redivp_spec (m d : {poly R}) : nat * {poly R} * {poly R} -> Type :=
  EdivnSpec k (q r: {poly R}) of
    (lead_coef d ^+ k) *: m = q * d + r &
   (d != 0 -> size r < size d) : redivp_spec m d (k, q, r).

Lemma redivpP m d : redivp_spec m d (redivp m d).
Proof.
rewrite redivp_def; constructor; last by move=> dn0; rewrite ltn_rmodp.
by rewrite -mul_polyC mulrC rdivp_eq //= /GRing.comm mulrC.
Qed.

Lemma rdivp_eq d p :
  (lead_coef d ^+ rscalp p d) *: p = rdivp p d * d + rmodp p d.
Proof.
by rewrite /rdivp /rmodp /rscalp; case: redivpP=> k q1 r1 Hc _; apply: Hc.
Qed.

Lemma rdvdp_eqP d p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
Proof.
case hdvd: (rdvdp d p); last by move/rmodp_eq0P/eqP/RdvdpN: hdvd.
move/rmodp_eq0P: (hdvd)->; apply: (@Rdvdp _ _ _ (rscalp p d) (rdivp p d)).
by rewrite mulrC mul_polyC rdivp_eq; move/rmodp_eq0P: (hdvd)->; rewrite addr0.
Qed.

Lemma rdvdp_eq q p :
  rdvdp q p = (lead_coef q ^+ rscalp p q *: p == rdivp p q * q).
Proof.
rewrite rdivp_eq; apply/rmodp_eq0P/eqP => [->|/eqP]; first by rewrite addr0.
by rewrite eq_sym addrC -subr_eq subrr; move/eqP<-.
Qed.

End CommutativeRingPseudoDivision.

End ComRing.

Module UnitRing.

Import Ring.

Section UnitRingPseudoDivision.

Variable R : unitRingType.
Implicit Type p q r d : {poly R}.

Lemma uniq_roots_rdvdp p rs :
  all (root p) rs -> uniq_roots rs -> rdvdp (\prod_(z <- rs) ('X - z%:P)) p.
Proof.
move=> rrs /(uniq_roots_prod_XsubC rrs) [q ->].
exact/RingMonic.rdvdp_mull/monic_prod_XsubC.
Qed.

End UnitRingPseudoDivision.

End UnitRing.

Module IdomainDefs.

Import Ring.

Section IDomainPseudoDivisionDefs.

Variable R : idomainType.
Implicit Type p q r d : {poly R}.

Definition edivp_expanded_def p q :=
  let: (k, d, r) as edvpq := redivp p q in
  if lead_coef q \in GRing.unit then
    (0, (lead_coef q)^-k *: d, (lead_coef q)^-k *: r)
  else edvpq.
Fact edivp_key : unit. Proof. by []. Qed.
Definition edivp := locked_with edivp_key edivp_expanded_def.
Canonical edivp_unlockable := [unlockable fun edivp].

Definition divp p q := ((edivp p q).1).2.
Definition modp p q := (edivp p q).2.
Definition scalp p q := ((edivp p q).1).1.
Definition dvdp p q := modp q p == 0.
Definition eqp p q := (dvdp p q) && (dvdp q p).

End IDomainPseudoDivisionDefs.

Notation "m %/ d" := (divp m d) : ring_scope.
Notation "m %% d" := (modp m d) : ring_scope.
Notation "p %| q" := (dvdp p q) : ring_scope.
Notation "p %= q" := (eqp p q) : ring_scope.
End IdomainDefs.

Module WeakIdomain.

Import Ring ComRing UnitRing IdomainDefs.

Section WeakTheoryForIDomainPseudoDivision.

Variable R : idomainType.
Implicit Type p q r d : {poly R}.

Lemma edivp_def p q : edivp p q = (scalp p q, divp p q, modp p q).
Proof. by rewrite /scalp /divp /modp; case: (edivp p q) => [[]] /=. Qed.

Lemma edivp_redivp p q : lead_coef q \in GRing.unit = false ->
  edivp p q = redivp p q.
Proof. by move=> hu; rewrite unlock hu; case: (redivp p q) => [[? ?] ?]. Qed.

Lemma divpE p q :
  p %/ q = if lead_coef q \in GRing.unit
    then lead_coef q ^- rscalp p q *: rdivp p q
    else rdivp p q.
Proof. by case: ifP; rewrite /divp unlock redivp_def => ->. Qed.

Lemma modpE p q :
  p %% q = if lead_coef q \in GRing.unit
    then lead_coef q ^- rscalp p q *: (rmodp p q)
    else rmodp p q.
Proof. by case: ifP; rewrite /modp unlock redivp_def => ->. Qed.

Lemma scalpE p q :
  scalp p q = if lead_coef q \in GRing.unit then 0 else rscalp p q.
Proof. by case: ifP; rewrite /scalp unlock redivp_def => ->. Qed.

Lemma dvdpE p q : p %| q = rdvdp p q.
Proof.
rewrite /dvdp modpE /rdvdp; case ulcq: (lead_coef p \in GRing.unit)=> //.
rewrite -[in LHS]size_poly_eq0 size_scale ?size_poly_eq0 //.
by rewrite invr_eq0 expf_neq0 //; apply: contraTneq ulcq => ->; rewrite unitr0.
Qed.

Lemma lc_expn_scalp_neq0 p q : lead_coef q ^+ scalp p q != 0.
Proof.
have [->|nzq] := eqVneq q 0; last by rewrite expf_neq0 ?lead_coef_eq0.
by rewrite /scalp 2!unlock /= eqxx lead_coef0 unitr0 /= oner_neq0.
Qed.

Hint Resolve lc_expn_scalp_neq0 : core.

Variant edivp_spec (m d : {poly R}) :
                                     nat * {poly R} * {poly R} -> bool -> Type :=
|Redivp_spec k (q r: {poly R}) of
  (lead_coef d ^+ k) *: m = q * d + r & lead_coef d \notin GRing.unit &
  (d != 0 -> size r < size d) : edivp_spec m d (k, q, r) false
|Fedivp_spec (q r: {poly R}) of m = q * d + r & (lead_coef d \in GRing.unit) &
  (d != 0 -> size r < size d) : edivp_spec m d (0, q, r) true.

(* There are several ways to state this fact. The most appropriate statement*)
(* might be polished in light of usage. *)
Lemma edivpP m d : edivp_spec m d (edivp m d) (lead_coef d \in GRing.unit).
Proof.
have hC : GRing.comm d (lead_coef d)%:P by rewrite /GRing.comm mulrC.
case ud: (lead_coef d \in GRing.unit); last first.
  rewrite edivp_redivp // redivp_def; constructor; rewrite ?ltn_rmodp // ?ud //.
  by rewrite rdivp_eq.
have cdn0: lead_coef d != 0 by apply: contraTneq ud => ->; rewrite unitr0.
rewrite unlock ud redivp_def; constructor => //.
  rewrite -scalerAl -scalerDr -mul_polyC.
  have hn0 : (lead_coef d ^+ rscalp m d)%:P != 0.
    by rewrite polyC_eq0; apply: expf_neq0.
  apply: (mulfI hn0); rewrite !mulrA -exprVn !polyC_exp -exprMn -polyCM.
  by rewrite divrr // expr1n mul1r -polyC_exp mul_polyC rdivp_eq.
move=> dn0; rewrite size_scale ?ltn_rmodp // -exprVn expf_eq0 negb_and.
by rewrite invr_eq0 cdn0 orbT.
Qed.

Lemma edivp_eq d q r : size r < size d -> lead_coef d \in GRing.unit ->
  edivp (q * d + r) d = (0, q, r).
Proof.
have hC : GRing.comm d (lead_coef d)%:P by apply: mulrC.
move=> hsrd hu; rewrite unlock hu; case et: (redivp _ _) => [[s qq] rr].
have cdn0 : lead_coef d != 0 by case: eqP hu => //= ->; rewrite unitr0.
move: (et); rewrite RingComRreg.redivp_eq //; last exact/rregP.
rewrite et /= mulrC (mulrC r) !mul_polyC; case=> <- <-.
by rewrite !scalerA mulVr ?scale1r // unitrX.
Qed.

Lemma divp_eq p q : (lead_coef q ^+ scalp p q) *: p = (p %/ q) * q + (p %% q).
Proof.
rewrite divpE modpE scalpE.
case uq: (lead_coef q \in GRing.unit); last by rewrite rdivp_eq.
rewrite expr0 scale1r; have [->|qn0] := eqVneq q 0.
  by rewrite lead_coef0 expr0n /rscalp unlock eqxx invr1 !scale1r rmodp0 !simp.
by rewrite -scalerAl -scalerDr -rdivp_eq scalerA mulVr (scale1r, unitrX).
Qed.

Lemma dvdp_eq q p : (q %| p) = (lead_coef q ^+ scalp p q *: p == (p %/ q) * q).
Proof.
rewrite dvdpE rdvdp_eq scalpE divpE; case: ifP => ulcq //.
rewrite expr0 scale1r -scalerAl; apply/eqP/eqP => [<- | {2}->].
  by rewrite scalerA mulVr ?scale1r // unitrX.
by rewrite scalerA mulrV ?scale1r // unitrX.
Qed.

Lemma divpK d p : d %| p -> p %/ d * d = (lead_coef d ^+ scalp p d) *: p.
Proof. by rewrite dvdp_eq; move/eqP->. Qed.

Lemma divpKC d p : d %| p -> d * (p %/ d) = (lead_coef d ^+ scalp p d) *: p.
Proof. by move=> ?; rewrite mulrC divpK. Qed.

Lemma dvdpP q p :
  reflect (exists2 cqq, cqq.1 != 0 & cqq.1 *: p = cqq.2 * q) (q %| p).
Proof.
rewrite dvdp_eq; apply: (iffP eqP) => [e | [[c qq] cn0 e]].
  by exists (lead_coef q ^+ scalp p q, p %/ q) => //=.
apply/eqP; rewrite -dvdp_eq dvdpE.
have Ecc: c%:P != 0 by rewrite polyC_eq0.
have [->|nz_p] := eqVneq p 0; first by rewrite rdvdp0.
pose p1 : {poly R} := lead_coef q ^+ rscalp p q *: qq - c *: (rdivp p q).
have E1: c *: rmodp p q = p1 * q.
  rewrite mulrDl mulNr -scalerAl -e scalerA mulrC -scalerA -scalerAl.
  by rewrite -scalerBr rdivp_eq addrC addKr.
suff: p1 * q == 0 by rewrite -E1 -mul_polyC mulf_eq0 (negPf Ecc).
rewrite mulf_eq0; apply/norP; case=> p1_nz q_nz; have:= ltn_rmodp p q.
by rewrite q_nz -(size_scale _ cn0) E1 size_mul // polySpred // ltnNge leq_addl.
Qed.

Lemma mulpK p q : q != 0 -> p * q %/ q = lead_coef q ^+ scalp (p * q) q *: p.
Proof.
move=> qn0; apply: (rregP qn0); rewrite -scalerAl divp_eq.
suff -> : (p * q) %% q = 0 by rewrite addr0.
rewrite modpE RingComRreg.rmodp_mull ?scaler0 ?if_same //.
  by red; rewrite mulrC.
by apply/rregP; rewrite lead_coef_eq0.
Qed.

Lemma mulKp p q : q != 0 -> q * p %/ q = lead_coef q ^+ scalp (p * q) q *: p.
Proof. by move=> nzq; rewrite mulrC; apply: mulpK. Qed.

Lemma divpp p : p != 0 -> p %/ p = (lead_coef p ^+ scalp p p)%:P.
Proof.
move=> np0; have := divp_eq p p.
suff -> : p %% p = 0 by rewrite addr0 -mul_polyC; move/(mulIf np0).
rewrite modpE Ring.rmodpp; last by red; rewrite mulrC.
by rewrite scaler0 if_same.
Qed.

End WeakTheoryForIDomainPseudoDivision.

#[global] Hint Resolve lc_expn_scalp_neq0 : core.

End WeakIdomain.

Module CommonIdomain.

Import Ring ComRing UnitRing IdomainDefs WeakIdomain.

Section IDomainPseudoDivision.

Variable R : idomainType.
Implicit Type p q r d m n : {poly R}.

Lemma scalp0 p : scalp p 0 = 0.
Proof. by rewrite /scalp unlock lead_coef0 unitr0 unlock eqxx. Qed.

Lemma divp_small p q : size p < size q -> p %/ q = 0.
Proof.
move=> spq; rewrite /divp unlock redivp_def /=.
by case: ifP; rewrite rdivp_small // scaler0.
Qed.

Lemma leq_divp p q : (size (p %/ q) <= size p).
Proof.
rewrite /divp unlock redivp_def /=; case: ifP => ulcq; rewrite ?leq_rdivp //=.
rewrite size_scale ?leq_rdivp // -exprVn expf_neq0 // invr_eq0.
by case: eqP ulcq => // ->; rewrite unitr0.
Qed.

Lemma div0p p : 0 %/ p = 0.
Proof.
by rewrite /divp unlock redivp_def /=; case: ifP; rewrite rdiv0p // scaler0.
Qed.

Lemma divp0 p : p %/ 0 = 0.
Proof.
by rewrite /divp unlock redivp_def /=; case: ifP; rewrite rdivp0 // scaler0.
Qed.

Lemma divp1 m : m %/ 1 = m.
Proof.
by rewrite divpE lead_coefC unitr1 Ring.rdivp1 expr1n invr1 scale1r.
Qed.

Lemma modp0 p : p %% 0 = p.
Proof.
rewrite /modp unlock redivp_def; case: ifP; rewrite rmodp0 //= lead_coef0.
by rewrite unitr0.
Qed.

Lemma mod0p p : 0 %% p = 0.
Proof.
by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmod0p // scaler0.
Qed.

Lemma modp1 p : p %% 1 = 0.
Proof.
by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmodp1 // scaler0.
Qed.

Hint Resolve divp0 divp1 mod0p modp0 modp1 : core.

Lemma modp_small p q : size p < size q -> p %% q = p.
Proof.
move=> spq; rewrite /modp unlock redivp_def; case: ifP; rewrite rmodp_small //.
by rewrite /= rscalp_small // expr0 /= invr1 scale1r.
Qed.

Lemma modpC p c : c != 0 -> p %% c%:P = 0.
Proof.
move=> cn0; rewrite /modp unlock redivp_def /=; case: ifP; rewrite ?rmodpC //.
by rewrite scaler0.
Qed.

Lemma modp_mull p q : (p * q) %% q = 0.
Proof.
have [-> | nq0] := eqVneq q 0; first by rewrite modp0 mulr0.
have rlcq : GRing.rreg (lead_coef q) by apply/rregP; rewrite lead_coef_eq0.
have hC : GRing.comm q (lead_coef q)%:P by red; rewrite mulrC.
by rewrite modpE; case: ifP => ulcq; rewrite RingComRreg.rmodp_mull // scaler0.
Qed.

Lemma modp_mulr d p : (d * p) %% d = 0. Proof. by rewrite mulrC modp_mull. Qed.

Lemma modpp d : d %% d = 0.
Proof. by rewrite -[d in d %% _]mul1r modp_mull. Qed.

Lemma ltn_modp p q : (size (p %% q) < size q) = (q != 0).
Proof.
rewrite /modp unlock redivp_def /=; case: ifP=> ulcq; rewrite ?ltn_rmodp //=.
rewrite size_scale ?ltn_rmodp // -exprVn expf_neq0 // invr_eq0.
by case: eqP ulcq => // ->; rewrite unitr0.
Qed.

Lemma ltn_divpl d q p : d != 0 ->
   (size (q %/ d) < size p) = (size q < size (p * d)).
Proof.
move=> dn0.
have: (lead_coef d) ^+ (scalp q d) != 0 by apply: lc_expn_scalp_neq0.
move/(size_scale q)<-; rewrite divp_eq; have [->|quo0] := eqVneq (q %/ d) 0.
  rewrite mul0r add0r size_poly0 size_poly_gt0.
  have [->|pn0] := eqVneq p 0; first by rewrite mul0r size_poly0 ltn0.
  by rewrite size_mul // (polySpred pn0) addSn ltn_addl // ltn_modp.
rewrite size_addl; last first.
  by rewrite size_mul // (polySpred quo0) addSn /= ltn_addl // ltn_modp.
have [->|pn0] := eqVneq p 0; first by rewrite mul0r size_poly0 !ltn0.
by rewrite !size_mul ?quo0 // (polySpred dn0) !addnS ltn_add2r.
Qed.

Lemma leq_divpr d p q : d != 0 ->
   (size p <= size (q %/ d)) = (size (p * d) <= size q).
Proof. by move=> dn0; rewrite leqNgt ltn_divpl // -leqNgt. Qed.

Lemma divpN0 d p : d != 0 -> (p %/ d != 0) = (size d <= size p).
Proof.
move=> dn0.
by rewrite -[d in RHS]mul1r -leq_divpr // size_polyC oner_eq0 size_poly_gt0.
Qed.

Lemma size_divp p q : q != 0 -> size (p %/ q) = (size p - (size q).-1)%N.
Proof.
move=> nq0; case: (leqP (size q) (size p)) => sqp; last first.
  move: (sqp); rewrite -{1}(ltn_predK sqp) ltnS -subn_eq0 divp_small //.
  by move/eqP->; rewrite size_poly0.
have np0 : p != 0.
  by rewrite -size_poly_gt0; apply: leq_trans sqp; rewrite size_poly_gt0.
have /= := congr1 (size \o @polyseq R) (divp_eq p q).
rewrite size_scale; last by rewrite expf_eq0 lead_coef_eq0 (negPf nq0) andbF.
have [->|qq0] := eqVneq (p %/ q) 0.
  by rewrite mul0r add0r=> es; move: nq0; rewrite -(ltn_modp p) -es ltnNge sqp.
rewrite size_addl.
  by move->; apply/eqP; rewrite size_mul // (polySpred nq0) addnS /= addnK.
rewrite size_mul ?qq0 //.
move: nq0; rewrite -(ltn_modp p); move/leq_trans; apply.
by rewrite (polySpred qq0) addSn /= leq_addl.
Qed.

Lemma ltn_modpN0 p q : q != 0 -> size (p %% q) < size q.
Proof. by rewrite ltn_modp. Qed.

Lemma modp_id p q : (p %% q) %% q = p %% q.
Proof.
by have [->|qn0] := eqVneq q 0; rewrite ?modp0 // modp_small ?ltn_modp.
Qed.

Lemma leq_modp m d : size (m %% d) <= size m.
Proof.
rewrite /modp unlock redivp_def /=; case: ifP; rewrite ?leq_rmodp //.
move=> ud; rewrite size_scale ?leq_rmodp // invr_eq0 expf_neq0 //.
by apply: contraTneq ud => ->; rewrite unitr0.
Qed.

Lemma dvdp0 d : d %| 0. Proof. by rewrite /dvdp mod0p. Qed.

Hint Resolve dvdp0 : core.

Lemma dvd0p p : (0 %| p) = (p == 0). Proof. by rewrite /dvdp modp0. Qed.

Lemma dvd0pP p : reflect (p = 0) (0 %| p).
Proof. by apply: (iffP idP); rewrite dvd0p; move/eqP. Qed.

Lemma dvdpN0 p q : p %| q -> q != 0 -> p != 0.
Proof. by move=> pq hq; apply: contraTneq pq => ->; rewrite dvd0p. Qed.

Lemma dvdp1 d : (d %| 1) = (size d == 1).
Proof.
rewrite /dvdp modpE; case ud: (lead_coef d \in GRing.unit); last exact: rdvdp1.
rewrite -size_poly_eq0 size_scale; first by rewrite size_poly_eq0 -rdvdp1.
by rewrite invr_eq0 expf_neq0 //; apply: contraTneq ud => ->; rewrite unitr0.
Qed.

Lemma dvd1p m : 1 %| m. Proof. by rewrite /dvdp modp1. Qed.

Lemma gtNdvdp p q : p != 0 -> size p < size q -> (q %| p) = false.
Proof.
by move=> nn0 hs; rewrite /dvdp; rewrite (modp_small hs); apply: negPf.
Qed.

Lemma modp_eq0P p q : reflect (p %% q = 0) (q %| p).
Proof. exact: (iffP eqP). Qed.

Lemma modp_eq0 p q : (q %| p) -> p %% q = 0. Proof. exact: modp_eq0P. Qed.

Lemma leq_divpl d p q :
  d %| p -> (size (p %/ d) <= size q) = (size p <= size (q * d)).
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | nd0 hd].
  by rewrite divp0 size_poly0 !leq0n.
rewrite leq_eqVlt ltn_divpl // (leq_eqVlt (size p)).
case lhs: (size p < size (q * d)); rewrite ?orbT ?orbF //.
have: (lead_coef d) ^+ (scalp p d) != 0 by rewrite expf_neq0 // lead_coef_eq0.
move/(size_scale p)<-; rewrite divp_eq; move/modp_eq0P: hd->; rewrite addr0.
have [-> | quon0] := eqVneq (p %/ d) 0.
  rewrite mul0r size_poly0 2!(eq_sym 0) !size_poly_eq0.
  by rewrite mulf_eq0 (negPf nd0) orbF.
have [-> | nq0] := eqVneq q 0.
  by rewrite mul0r size_poly0 !size_poly_eq0 mulf_eq0 (negPf nd0) orbF.
by rewrite !size_mul // (polySpred nd0) !addnS /= eqn_add2r.
Qed.

Lemma dvdp_leq p q : q != 0 -> p %| q -> size p <= size q.
Proof.
move=> nq0 /modp_eq0P.
by case: leqP => // /modp_small -> /eqP; rewrite (negPf nq0).
Qed.

Lemma eq_dvdp c quo q p : c != 0 -> c *: p = quo * q -> q %| p.
Proof.
move=> cn0; case: (eqVneq p 0) => [->|nz_quo def_quo] //.
pose p1 : {poly R} := lead_coef q ^+ scalp p q *: quo - c *: (p %/ q).
have E1: c *: (p %% q) = p1 * q.
  rewrite mulrDl mulNr -scalerAl -def_quo scalerA mulrC -scalerA.
  by rewrite -scalerAl -scalerBr divp_eq addrAC subrr add0r.
rewrite /dvdp; apply/idPn=> m_nz.
have: p1 * q != 0 by rewrite -E1 -mul_polyC mulf_neq0 // polyC_eq0.
rewrite mulf_eq0; case/norP=> p1_nz q_nz.
have := ltn_modp p q; rewrite q_nz -(size_scale (p %% q) cn0) E1.
by rewrite size_mul // polySpred // ltnNge leq_addl.
Qed.

Lemma dvdpp d : d %| d. Proof. by rewrite /dvdp modpp. Qed.

Hint Resolve dvdpp : core.

Lemma divp_dvd p q : p %| q -> (q %/ p) %| q.
Proof.
have [-> | np0] := eqVneq p 0; first by rewrite divp0.
rewrite dvdp_eq => /eqP h.
apply: (@eq_dvdp ((lead_coef p)^+ (scalp q p)) p); last by rewrite mulrC.
by rewrite expf_neq0 // lead_coef_eq0.
Qed.

Lemma dvdp_mull m d n : d %| n -> d %| m * n.
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite mulr0 dvdpp.
rewrite dvdp_eq => /eqP e.
apply: (@eq_dvdp (lead_coef d ^+ scalp n d) (m * (n %/ d))).
  by rewrite expf_neq0 // lead_coef_eq0.
by rewrite scalerAr e mulrA.
Qed.

Lemma dvdp_mulr n d m : d %| m -> d %| m * n.
Proof. by move=> hdm; rewrite mulrC dvdp_mull. Qed.

Hint Resolve dvdp_mull dvdp_mulr : core.

Lemma dvdp_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2.
Proof.
case: (eqVneq d1 0) => [-> /dvd0pP -> | d1n0]; first by rewrite !mul0r dvdpp.
case: (eqVneq d2 0) => [-> _ /dvd0pP -> | d2n0]; first by rewrite !mulr0.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Hq1.
rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> Hq2.
apply: (@eq_dvdp (c1 * c2) (q1 * q2)).
  by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0.
rewrite -scalerA scalerAr scalerAl Hq1 Hq2 -!mulrA.
by rewrite [d1 * (q2 * _)]mulrCA.
Qed.

Lemma dvdp_addr m d n : d %| m -> (d %| m + n) = (d %| n).
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite add0r.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Eq1.
apply/idP/idP; rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _.
  have sn0 : c1 * c2 != 0.
    by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF.
  move/eqP=> Eq2; apply: (@eq_dvdp _ (c1 *: q2 - c2 *: q1) _ _ sn0).
  rewrite mulrDl -scaleNr -!scalerAl -Eq1 -Eq2 !scalerA.
  by rewrite mulNr mulrC scaleNr -scalerBr addrC addKr.
have sn0 : c1 * c2 != 0.
  by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF.
move/eqP=> Eq2; apply: (@eq_dvdp _ (c1 *: q2 + c2 *: q1) _ _ sn0).
by rewrite mulrDl -!scalerAl -Eq1 -Eq2 !scalerA mulrC addrC scalerDr.
Qed.

Lemma dvdp_addl n d m : d %| n -> (d %| m + n) = (d %| m).
Proof. by rewrite addrC; apply: dvdp_addr. Qed.

Lemma dvdp_add d m n : d %| m -> d %| n -> d %| m + n.
Proof. by move/dvdp_addr->. Qed.

Lemma dvdp_add_eq d m n : d %| m + n -> (d %| m) = (d %| n).
Proof. by move=> ?; apply/idP/idP; [move/dvdp_addr <-| move/dvdp_addl <-]. Qed.

Lemma dvdp_subr d m n : d %| m -> (d %| m - n) = (d %| n).
Proof. by move=> ?; apply: dvdp_add_eq; rewrite -addrA addNr simp. Qed.

Lemma dvdp_subl d m n : d %| n -> (d %| m - n) = (d %| m).
Proof. by move/dvdp_addl<-; rewrite subrK. Qed.

Lemma dvdp_sub d m n : d %| m -> d %| n -> d %| m - n.
Proof. by move=> *; rewrite dvdp_subl. Qed.

Lemma dvdp_mod d n m : d %| n -> (d %| m) = (d %| m %% n).
Proof.
have [-> | nn0] := eqVneq n 0; first by rewrite modp0.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite modp0.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Eq1.
apply/idP/idP; rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _.
  have sn0 : c1 * c2 != 0.
   by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF.
  pose quo := (c1 * lead_coef n ^+ scalp m n) *: q2 - c2 *: (m %/ n) * q1.
  move/eqP=> Eq2; apply: (@eq_dvdp _ quo _ _ sn0).
  rewrite mulrDl mulNr -!scalerAl -!mulrA -Eq1 -Eq2 -scalerAr !scalerA.
  rewrite mulrC [_ * c2]mulrC mulrA -[((_ * _) * _) *: _]scalerA -scalerBr.
  by rewrite divp_eq addrC addKr.
have sn0 : c1 * c2 * lead_coef n ^+ scalp m n != 0.
  rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 ?(negPf dn0) ?andbF //.
  by rewrite (negPf nn0) andbF.
move/eqP=> Eq2; apply: (@eq_dvdp _ (c2 *: (m %/ n) * q1 + c1 *: q2) _ _ sn0).
rewrite -scalerA divp_eq scalerDr -!scalerA Eq2 scalerAl scalerAr Eq1.
by rewrite scalerAl mulrDl mulrA.
Qed.

Lemma dvdp_trans : transitive (@dvdp R).
Proof.
move=> n d m.
case: (eqVneq d 0) => [-> /dvd0pP -> // | dn0].
case: (eqVneq n 0) => [-> _ /dvd0pP -> // | nn0].
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Hq1.
rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> Hq2.
have sn0 : c1 * c2 != 0 by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0.
by apply: (@eq_dvdp _ (q2 * q1) _ _ sn0); rewrite -scalerA Hq2 scalerAr Hq1 mulrA.
Qed.

Lemma dvdp_mulIl p q : p %| p * q. Proof. exact/dvdp_mulr/dvdpp. Qed.

Lemma dvdp_mulIr p q : q %| p * q. Proof. exact/dvdp_mull/dvdpp. Qed.

Lemma dvdp_mul2r r p q : r != 0 -> (p * r %| q * r) = (p %| q).
Proof.
move=> nzr.
have [-> | pn0] := eqVneq p 0.
  by rewrite mul0r !dvd0p mulf_eq0 (negPf nzr) orbF.
have [-> | qn0] := eqVneq q 0; first by rewrite mul0r !dvdp0.
apply/idP/idP; last by move=> ?; rewrite dvdp_mul ?dvdpp.
rewrite dvdp_eq; set c := _ ^+ _; set x := _ %/ _; move/eqP=> Hx.
apply: (@eq_dvdp c x); first by rewrite expf_neq0 // lead_coef_eq0 mulf_neq0.
by apply: (mulIf nzr); rewrite -mulrA -scalerAl.
Qed.

Lemma dvdp_mul2l r p q: r != 0 -> (r * p %| r * q) = (p %| q).
Proof. by rewrite ![r * _]mulrC; apply: dvdp_mul2r. Qed.

Lemma ltn_divpr d p q :
  d %| q -> (size p < size (q %/ d)) = (size (p * d) < size q).
Proof. by move=> dv_d_q; rewrite !ltnNge leq_divpl. Qed.

Lemma dvdp_exp d k p : 0 < k -> d %| p -> d %| (p ^+ k).
Proof. by case: k => // k _ d_dv_m; rewrite exprS dvdp_mulr. Qed.

Lemma dvdp_exp2l d k l : k <= l -> d ^+ k %| d ^+ l.
Proof. by move/subnK <-; rewrite exprD dvdp_mull // ?lead_coef_exp ?unitrX. Qed.

Lemma dvdp_Pexp2l d k l : 1 < size d -> (d ^+ k %| d ^+ l) = (k <= l).
Proof.
move=> sd; case: leqP => [|gt_n_m]; first exact: dvdp_exp2l.
have dn0 : d != 0 by rewrite -size_poly_gt0; apply: ltn_trans sd.
rewrite gtNdvdp ?expf_neq0 // polySpred ?expf_neq0 // size_exp /=.
rewrite [size (d ^+ k)]polySpred ?expf_neq0 // size_exp ltnS ltn_mul2l.
by move: sd; rewrite -subn_gt0 subn1; move->.
Qed.

Lemma dvdp_exp2r p q k : p %| q -> p ^+ k %| q ^+ k.
Proof.
case: (eqVneq p 0) => [-> /dvd0pP -> // | pn0].
rewrite dvdp_eq; set c := _ ^+ _; set t := _ %/ _; move/eqP=> e.
apply: (@eq_dvdp (c ^+ k) (t ^+ k)); first by rewrite !expf_neq0 ?lead_coef_eq0.
by rewrite -exprMn -exprZn; congr (_ ^+ k).
Qed.

Lemma dvdp_exp_sub p q k l: p != 0 ->
  (p ^+ k %| q * p ^+ l) = (p ^+ (k - l) %| q).
Proof.
move=> pn0; case: (leqP k l)=> [|/ltnW] hkl.
  move: (hkl); rewrite -subn_eq0; move/eqP->; rewrite expr0 dvd1p.
  exact/dvdp_mull/dvdp_exp2l.
by rewrite -[in LHS](subnK hkl) exprD dvdp_mul2r // expf_eq0 (negPf pn0) andbF.
Qed.

Lemma dvdp_XsubCl p x : ('X - x%:P) %| p = root p x.
Proof. by rewrite dvdpE; apply: Ring.rdvdp_XsubCl. Qed.

Lemma root_dvdp p q x : p %| q -> root p x -> root q x.
Proof. by rewrite -!dvdp_XsubCl => /[swap]; exact: dvdp_trans. Qed.

Lemma polyXsubCP p x : reflect (p.[x] = 0) (('X - x%:P) %| p).
Proof. by rewrite dvdpE; apply: Ring.polyXsubCP. Qed.

Lemma eqp_div_XsubC p c :
  (p == (p %/ ('X - c%:P)) * ('X - c%:P)) = ('X - c%:P %| p).
Proof. by rewrite dvdp_eq lead_coefXsubC expr1n scale1r. Qed.

Lemma root_factor_theorem p x : root p x = (('X - x%:P) %| p).
Proof. by rewrite dvdp_XsubCl. Qed.

Lemma uniq_roots_dvdp p rs : all (root p) rs -> uniq_roots rs ->
  (\prod_(z <- rs) ('X - z%:P)) %| p.
Proof.
move=> rrs; case/(uniq_roots_prod_XsubC rrs)=> q ->.
by apply: dvdp_mull; rewrite // (eqP (monic_prod_XsubC _)) unitr1.
Qed.

Lemma root_bigmul x (ps : seq {poly R}) :
  ~~root (\big[*%R/1]_(p <- ps) p) x = all (fun p => ~~ root p x) ps.
Proof.
elim: ps => [|p ps ihp]; first by rewrite big_nil root1.
by rewrite big_cons /= rootM negb_or ihp.
Qed.

Lemma eqpP m n :
  reflect (exists2 c12, (c12.1 != 0) && (c12.2 != 0) & c12.1 *: m = c12.2 *: n)
          (m %= n).
Proof.
apply: (iffP idP) => [| [[c1 c2]/andP[nz_c1 nz_c2 eq_cmn]]]; last first.
  rewrite /eqp (@eq_dvdp c2 c1%:P) -?eq_cmn ?mul_polyC // (@eq_dvdp c1 c2%:P) //.
  by rewrite eq_cmn mul_polyC.
case: (eqVneq m 0) => [-> /andP [/dvd0pP -> _] | m_nz].
  by exists (1, 1); rewrite ?scaler0 // oner_eq0.
case: (eqVneq n 0) => [-> /andP [_ /dvd0pP ->] | n_nz /andP []].
  by exists (1, 1); rewrite ?scaler0 // oner_eq0.
rewrite !dvdp_eq; set c1 := _ ^+ _; set c2 := _ ^+ _.
set q1 := _ %/ _; set q2 := _ %/ _; move/eqP => Hq1 /eqP Hq2;
have Hc1 : c1 != 0 by rewrite expf_eq0 lead_coef_eq0 negb_and m_nz orbT.
have Hc2 : c2 != 0 by rewrite expf_eq0 lead_coef_eq0 negb_and n_nz orbT.
have def_q12: q1 * q2 = (c1 * c2)%:P.
  apply: (mulIf m_nz); rewrite mulrAC mulrC -Hq1 -scalerAr -Hq2 scalerA.
  by rewrite -mul_polyC.
have: q1 * q2 != 0 by rewrite def_q12 -size_poly_eq0 size_polyC mulf_neq0.
rewrite mulf_eq0; case/norP=> nz_q1 nz_q2.
have: size q2 <= 1.
  have:= size_mul nz_q1 nz_q2; rewrite def_q12 size_polyC mulf_neq0 //=.
  by rewrite polySpred // => ->; rewrite leq_addl.
rewrite leq_eqVlt ltnS size_poly_leq0 (negPf nz_q2) orbF.
case/size_poly1P=> c cn0 cqe; exists (c2, c); first by rewrite Hc2.
by rewrite Hq2 -mul_polyC -cqe.
Qed.

Lemma eqp_eq p q: p %= q -> (lead_coef q) *: p = (lead_coef p) *: q.
Proof.
move=> /eqpP [[c1 c2] /= /andP [nz_c1 nz_c2]] eq.
have/(congr1 lead_coef) := eq; rewrite !lead_coefZ.
move=> eqC; apply/(@mulfI _ c2%:P); rewrite ?polyC_eq0 //.
by rewrite !mul_polyC scalerA -eqC mulrC -scalerA eq !scalerA mulrC.
Qed.

Lemma eqpxx : reflexive (@eqp R). Proof. by move=> p; rewrite /eqp dvdpp. Qed.

Hint Resolve eqpxx : core.

Lemma eqpW p q : p = q -> p %= q. Proof. by move->; rewrite eqpxx. Qed.

Lemma eqp_sym : symmetric (@eqp R).
Proof. by move=> p q; rewrite /eqp andbC. Qed.

Lemma eqp_trans : transitive (@eqp R).
Proof.
move=> p q r; case/andP=> Dp pD; case/andP=> Dq qD.
by rewrite /eqp (dvdp_trans Dp) // (dvdp_trans qD).
Qed.

Lemma eqp_ltrans : left_transitive (@eqp R).
Proof. exact: sym_left_transitive eqp_sym eqp_trans. Qed.

Lemma eqp_rtrans : right_transitive (@eqp R).
Proof. exact: sym_right_transitive eqp_sym eqp_trans. Qed.

Lemma eqp0 p : (p %= 0) = (p == 0).
Proof. by apply/idP/eqP => [/andP [_ /dvd0pP] | -> //]. Qed.

Lemma eqp01 : 0 %= (1 : {poly R}) = false.
Proof. by rewrite eqp_sym eqp0 oner_eq0. Qed.

Lemma eqp_scale p c : c != 0 -> c *: p %= p.
Proof.
move=> c0; apply/eqpP; exists (1, c); first by rewrite c0 oner_eq0.
by rewrite scale1r.
Qed.

Lemma eqp_size p q : p %= q -> size p = size q.
Proof.
have [->|Eq] := eqVneq q 0; first by rewrite eqp0; move/eqP->.
rewrite eqp_sym; have [->|Ep] := eqVneq p 0; first by rewrite eqp0; move/eqP->.
by case/andP => Dp Dq; apply: anti_leq; rewrite !dvdp_leq.
Qed.

Lemma size_poly_eq1 p : (size p == 1) = (p %= 1).
Proof.
apply/size_poly1P/idP=> [[c cn0 ep] |].
  by apply/eqpP; exists (1, c); rewrite ?oner_eq0 // alg_polyC scale1r.
by move/eqp_size; rewrite size_poly1; move/eqP/size_poly1P.
Qed.

Lemma polyXsubC_eqp1 (x : R) : ('X - x%:P %= 1) = false.
Proof. by rewrite -size_poly_eq1 size_XsubC. Qed.

Lemma dvdp_eqp1 p q : p %| q -> q %= 1 -> p %= 1.
Proof.
move=> dpq hq.
have sizeq : size q == 1 by rewrite size_poly_eq1.
have n0q : q != 0 by case: eqP hq => // ->; rewrite eqp01.
rewrite -size_poly_eq1 eqn_leq -{1}(eqP sizeq) dvdp_leq //= size_poly_gt0.
by apply/eqP => p0; move: dpq n0q; rewrite p0 dvd0p => ->.
Qed.

Lemma eqp_dvdr q p d: p %= q -> d %| p = (d %| q).
Proof.
suff Hmn m n: m %= n -> (d %| m) -> (d %| n).
  by move=> mn; apply/idP/idP; apply: Hmn=> //; rewrite eqp_sym.
by rewrite /eqp; case/andP=> pq qp dp; apply: (dvdp_trans dp).
Qed.

Lemma eqp_dvdl d2 d1 p : d1 %= d2 -> d1 %| p = (d2 %| p).
suff Hmn m n: m %= n -> (m %| p) -> (n %| p).
  by move=> ?; apply/idP/idP; apply: Hmn; rewrite // eqp_sym.
by rewrite /eqp; case/andP=> dd' d'd dp; apply: (dvdp_trans d'd).
Qed.

Lemma dvdpZr c m n : c != 0 -> m %| c *: n = (m %| n).
Proof. by move=> cn0; exact/eqp_dvdr/eqp_scale. Qed.

Lemma dvdpZl c m n : c != 0 -> (c *: m %| n) = (m %| n).
Proof. by move=> cn0; exact/eqp_dvdl/eqp_scale. Qed.

Lemma dvdpNl d p : (- d) %| p = (d %| p).
Proof.
by rewrite -scaleN1r; apply/eqp_dvdl/eqp_scale; rewrite oppr_eq0 oner_neq0.
Qed.

Lemma dvdpNr d p : d %| (- p) = (d %| p).
Proof. by apply: eqp_dvdr; rewrite -scaleN1r eqp_scale ?oppr_eq0 ?oner_eq0. Qed.

Lemma eqp_mul2r r p q : r != 0 -> (p * r %= q * r) = (p %= q).
Proof. by move=> nz_r; rewrite /eqp !dvdp_mul2r. Qed.

Lemma eqp_mul2l r p q: r != 0 -> (r * p %= r * q) = (p %= q).
Proof. by move=> nz_r; rewrite /eqp !dvdp_mul2l. Qed.

Lemma eqp_mull r p q: q %= r -> p * q %= p * r.
Proof.
case/eqpP=> [[c d]] /andP [c0 d0 e]; apply/eqpP; exists (c, d); rewrite ?c0 //.
by rewrite scalerAr e -scalerAr.
Qed.

Lemma eqp_mulr q p r : p %= q -> p * r %= q * r.
Proof. by move=> epq; rewrite ![_ * r]mulrC eqp_mull. Qed.

Lemma eqp_exp p q k : p %= q -> p ^+ k %= q ^+ k.
Proof.
move=> pq; elim: k=> [|k ihk]; first by rewrite !expr0 eqpxx.
by rewrite !exprS (@eqp_trans (q * p ^+ k)) // (eqp_mulr, eqp_mull).
Qed.

Lemma polyC_eqp1 (c : R) : (c%:P %= 1) = (c != 0).
Proof.
apply/eqpP/idP => [[[x y]] |nc0] /=.
  case: (eqVneq c) => [->|] //= /andP [_] /negPf <- /eqP.
  by rewrite alg_polyC scaler0 eq_sym polyC_eq0.
exists (1, c); first by rewrite nc0 /= oner_neq0.
by rewrite alg_polyC scale1r.
Qed.

Lemma dvdUp d p: d %= 1 -> d %| p.
Proof. by move/eqp_dvdl->; rewrite dvd1p. Qed.

Lemma dvdp_size_eqp p q : p %| q -> size p == size q = (p %= q).
Proof.
move=> pq; apply/idP/idP; last by move/eqp_size->.
have [->|Hq] := eqVneq q 0; first by rewrite size_poly0 size_poly_eq0 eqp0.
have [->|Hp] := eqVneq p 0.
  by rewrite size_poly0 eq_sym size_poly_eq0 eqp_sym eqp0.
move: pq; rewrite dvdp_eq; set c := _ ^+ _; set x := _ %/ _; move/eqP=> eqpq.
have /= := congr1 (size \o @polyseq R) eqpq.
have cn0 : c != 0 by rewrite expf_neq0 // lead_coef_eq0.
rewrite (@eqp_size _ q); last exact: eqp_scale.
rewrite size_mul ?p0 // => [-> HH|]; last first.
  apply/eqP=> HH; move: eqpq; rewrite HH mul0r.
  by move/eqP; rewrite scale_poly_eq0 (negPf Hq) (negPf cn0).
suff: size x == 1%N.
  case/size_poly1P=> y H1y H2y.
  by apply/eqpP; exists (y, c); rewrite ?H1y // eqpq H2y mul_polyC.
case: (size p) HH (size_poly_eq0 p)=> [|n]; first by case: eqP Hp.
by rewrite addnS -add1n eqn_add2r; move/eqP->.
Qed.

Lemma eqp_root p q : p %= q -> root p =1 root q.
Proof.
move/eqpP=> [[c d]] /andP [c0 d0 e] x; move/negPf:c0=>c0; move/negPf:d0=>d0.
by rewrite rootE -[_==_]orFb -c0 -mulf_eq0 -hornerZ e hornerZ mulf_eq0 d0.
Qed.

Lemma eqp_rmod_mod p q : rmodp p q %= modp p q.
Proof.
rewrite modpE eqp_sym; case: ifP => ulcq //.
apply: eqp_scale; rewrite invr_eq0 //.
by apply: expf_neq0; apply: contraTneq ulcq => ->; rewrite unitr0.
Qed.

Lemma eqp_rdiv_div p q : rdivp p q %= divp p q.
Proof.
rewrite divpE eqp_sym; case: ifP=> ulcq //; apply: eqp_scale; rewrite invr_eq0 //.
by apply: expf_neq0; apply: contraTneq ulcq => ->; rewrite unitr0.
Qed.

Lemma dvd_eqp_divl d p q (dvd_dp : d %| q) (eq_pq : p %= q) :
  p %/ d %= q %/ d.
Proof.
case: (eqVneq q 0) eq_pq=> [->|q_neq0]; first by rewrite eqp0=> /eqP->.
have d_neq0: d != 0 by apply: contraTneq dvd_dp=> ->; rewrite dvd0p.
move=> eq_pq; rewrite -(@eqp_mul2r d) // !divpK // ?(eqp_dvdr _ eq_pq) //.
rewrite (eqp_ltrans (eqp_scale _ _)) ?lc_expn_scalp_neq0 //.
by rewrite (eqp_rtrans (eqp_scale _ _)) ?lc_expn_scalp_neq0.
Qed.

Definition gcdp p q :=
  let: (p1, q1) := if size p < size q then (q, p) else (p, q) in
  if p1 == 0 then q1 else
  let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
      let rr := modp pp qq in
      if rr == 0 then qq else
      if n is n1.+1 then loop n1 qq rr else rr in
  loop (size p1) p1 q1.
Arguments gcdp : simpl never.

Lemma gcd0p : left_id 0 gcdp.
Proof.
move=> p; rewrite /gcdp size_poly0 size_poly_gt0 if_neg.
case: ifP => /= [_ | nzp]; first by rewrite eqxx.
by rewrite polySpred !(modp0, nzp) //; case: _.-1 => [|m]; rewrite mod0p eqxx.
Qed.

Lemma gcdp0 : right_id 0 gcdp.
Proof.
move=> p; have:= gcd0p p; rewrite /gcdp size_poly0 size_poly_gt0.
by case: eqVneq => //= ->; rewrite eqxx.
Qed.

Lemma gcdpE p q :
  gcdp p q = if size p < size q
    then gcdp (modp q p) p else gcdp (modp p q) q.
Proof.
pose gcdpE_rec := fix gcdpE_rec (n : nat) (pp qq : {poly R}) {struct n} :=
   let rr := modp pp qq in
   if rr == 0 then qq else
   if n is n1.+1 then gcdpE_rec n1 qq rr else rr.
have Irec: forall k l p q, size q <= k -> size q <= l
      -> size q < size p -> gcdpE_rec k p q = gcdpE_rec l p q.
+ elim=> [|m Hrec] [|n] //= p1 q1.
  - move/size_poly_leq0P=> -> _; rewrite size_poly0 size_poly_gt0 modp0.
    by move/negPf ->; case: n => [|n] /=; rewrite mod0p eqxx.
  - move=> _ /size_poly_leq0P ->; rewrite size_poly0 size_poly_gt0 modp0.
    by move/negPf ->; case: m {Hrec} => [|m] /=; rewrite mod0p eqxx.
  case: eqP => Epq Sm Sn Sq //; have [->|nzq] := eqVneq q1 0.
    by case: n m {Sm Sn Hrec} => [|m] [|n] //=; rewrite mod0p eqxx.
  apply: Hrec; last by rewrite ltn_modp.
    by rewrite -ltnS (leq_trans _ Sm) // ltn_modp.
  by rewrite -ltnS (leq_trans _ Sn) // ltn_modp.
have [->|nzp] := eqVneq p 0; first by rewrite mod0p modp0 gcd0p gcdp0 if_same.
have [->|nzq] := eqVneq q 0; first by rewrite mod0p modp0 gcd0p gcdp0 if_same.
rewrite /gcdp !ltn_modp !(negPf nzp, negPf nzq) /=.
have [ltpq|leqp] := ltnP; rewrite !(negPf nzp, negPf nzq) /= polySpred //.
  have [->|nzqp] := eqVneq.
    by case: (size p) => [|[|s]]; rewrite /= modp0 (negPf nzp) // mod0p eqxx.
  apply: Irec => //; last by rewrite ltn_modp.
    by rewrite -ltnS -polySpred // (leq_trans _ ltpq) ?leqW // ltn_modp.
  by rewrite ltnW // ltn_modp.
case: eqVneq => [->|nzpq].
  by case: (size q) => [|[|s]]; rewrite /= modp0 (negPf nzq) // mod0p eqxx.
apply: Irec => //; rewrite ?ltn_modp //.
  by rewrite -ltnS -polySpred // (leq_trans _ leqp) // ltn_modp.
by rewrite ltnW // ltn_modp.
Qed.

Lemma size_gcd1p p : size (gcdp 1 p) = 1.
Proof.
rewrite gcdpE size_polyC oner_eq0 /= modp1; have [|/size1_polyC ->] := ltnP.
  by rewrite gcd0p size_polyC oner_eq0.
have [->|p00] := eqVneq p`_0 0; first by rewrite modp0 gcdp0 size_poly1.
by rewrite modpC // gcd0p size_polyC p00.
Qed.

Lemma size_gcdp1 p : size (gcdp p 1) = 1.
Proof.
rewrite gcdpE size_polyC oner_eq0 /= modp1 ltnS; case: leqP.
  by move/size_poly_leq0P->; rewrite gcdp0 modp0 size_polyC oner_eq0.
by rewrite gcd0p size_polyC oner_eq0.
Qed.

Lemma gcdpp : idempotent_op gcdp.
Proof. by move=> p; rewrite gcdpE ltnn modpp gcd0p. Qed.

Lemma dvdp_gcdlr p q : (gcdp p q %| p) && (gcdp p q %| q).
Proof.
have [r] := ubnP (minn (size q) (size p)); elim: r => // r IHr in p q *.
have [-> | nz_p] := eqVneq p 0; first by rewrite gcd0p dvdpp andbT.
have [-> | nz_q] := eqVneq q 0; first by rewrite gcdp0 dvdpp /=.
rewrite ltnS gcdpE; case: leqP => [le_pq | lt_pq] le_qr.
  suffices /IHr/andP[E1 E2]: minn (size q) (size (p %% q)) < r.
    by rewrite E2 andbT (dvdp_mod _ E2).
  by rewrite gtn_min orbC (leq_trans _ le_qr) ?ltn_modp.
suffices /IHr/andP[E1 E2]: minn (size p) (size (q %% p)) < r.
  by rewrite E2 (dvdp_mod _ E2).
by rewrite gtn_min orbC (leq_trans _ le_qr) ?ltn_modp.
Qed.

Lemma dvdp_gcdl p q : gcdp p q %| p. Proof. by case/andP: (dvdp_gcdlr p q). Qed.

Lemma dvdp_gcdr p q :gcdp p q %| q. Proof. by case/andP: (dvdp_gcdlr p q). Qed.

Lemma leq_gcdpl p q : p != 0 -> size (gcdp p q) <= size p.
Proof. by move=> pn0; move: (dvdp_gcdl p q); apply: dvdp_leq. Qed.

Lemma leq_gcdpr p q : q != 0 -> size (gcdp p q) <= size q.
Proof. by move=> qn0; move: (dvdp_gcdr p q); apply: dvdp_leq. Qed.

Lemma dvdp_gcd p m n : p %| gcdp m n = (p %| m) && (p %| n).
Proof.
apply/idP/andP=> [dv_pmn | []].
  by rewrite ?(dvdp_trans dv_pmn) ?dvdp_gcdl ?dvdp_gcdr.
have [r] := ubnP (minn (size n) (size m)); elim: r => // r IHr in m n *.
have [-> | nz_m] := eqVneq m 0; first by rewrite gcd0p.
have [-> | nz_n] := eqVneq n 0; first by rewrite gcdp0.
rewrite gcdpE ltnS; case: leqP => [le_nm | lt_mn] le_r dv_m dv_n.
  apply: IHr => //; last by rewrite -(dvdp_mod _ dv_n).
  by rewrite gtn_min orbC (leq_trans _ le_r) ?ltn_modp.
apply: IHr => //; last by rewrite -(dvdp_mod _ dv_m).
by rewrite gtn_min orbC (leq_trans _ le_r) ?ltn_modp.
Qed.

Lemma gcdpC p q : gcdp p q %= gcdp q p.
Proof. by rewrite /eqp !dvdp_gcd !dvdp_gcdl !dvdp_gcdr. Qed.

Lemma gcd1p p : gcdp 1 p %= 1.
Proof.
rewrite -size_poly_eq1 gcdpE size_poly1; case: ltnP.
  by rewrite modp1 gcd0p size_poly1 eqxx.
move/size1_polyC=> e; rewrite e.
have [->|p00] := eqVneq p`_0 0; first by rewrite modp0 gcdp0 size_poly1.
by rewrite modpC // gcd0p size_polyC p00.
Qed.

Lemma gcdp1 p : gcdp p 1 %= 1.
Proof. by rewrite (eqp_ltrans (gcdpC _ _)) gcd1p. Qed.

Lemma gcdp_addl_mul p q r: gcdp r (p * r + q) %= gcdp r q.
Proof.
suff h m n d : gcdp d n %| gcdp d (m * d + n).
  apply/andP; split => //.
  by rewrite {2}(_: q = (-p) * r + (p * r + q)) ?H // mulNr addKr.
by rewrite dvdp_gcd dvdp_gcdl /= dvdp_addr ?dvdp_gcdr ?dvdp_mull ?dvdp_gcdl.
Qed.

Lemma gcdp_addl m n : gcdp m (m + n) %= gcdp m n.
Proof. by rewrite -[m in m + _]mul1r gcdp_addl_mul. Qed.

Lemma gcdp_addr m n : gcdp m (n + m) %= gcdp m n.
Proof. by rewrite addrC gcdp_addl. Qed.

Lemma gcdp_mull m n : gcdp n (m * n) %= n.
Proof.
have [-> | nn0] := eqVneq n 0; first by rewrite gcd0p mulr0 eqpxx.
have [-> | mn0] := eqVneq m 0; first by rewrite mul0r gcdp0 eqpxx.
rewrite gcdpE modp_mull gcd0p size_mul //; case: leqP; last by rewrite eqpxx.
rewrite (polySpred mn0) addSn /= -[leqRHS]add0n leq_add2r -ltnS.
rewrite -polySpred //= leq_eqVlt ltnS size_poly_leq0 (negPf mn0) orbF.
case/size_poly1P=> c cn0 -> {mn0 m}; rewrite mul_polyC.
suff -> : n %% (c *: n) = 0 by rewrite gcd0p; apply: eqp_scale.
by apply/modp_eq0P; rewrite dvdpZl.
Qed.

Lemma gcdp_mulr m n : gcdp n (n * m) %= n.
Proof. by rewrite mulrC gcdp_mull. Qed.

Lemma gcdp_scalel c m n : c != 0 -> gcdp (c *: m) n %= gcdp m n.
Proof.
move=> cn0; rewrite /eqp dvdp_gcd [gcdp m n %| _]dvdp_gcd !dvdp_gcdr !andbT.
apply/andP; split; last first.
  by apply: dvdp_trans (dvdp_gcdl _ _) _; rewrite dvdpZr.
by apply: dvdp_trans (dvdp_gcdl _ _) _; rewrite dvdpZl.
Qed.

Lemma gcdp_scaler c m n : c != 0 -> gcdp m (c *: n) %= gcdp m n.
Proof.
move=> cn0; apply: eqp_trans (gcdpC _ _) _.
by apply: eqp_trans (gcdp_scalel _ _ _) _ => //; apply: gcdpC.
Qed.

Lemma dvdp_gcd_idl m n : m %| n -> gcdp m n %= m.
Proof.
have [-> | mn0] := eqVneq m 0.
  by rewrite dvd0p => /eqP ->; rewrite gcdp0 eqpxx.
rewrite dvdp_eq; move/eqP/(f_equal (gcdp m)) => h.
apply: eqp_trans (gcdp_mull (n %/ m) _).
by rewrite -h eqp_sym gcdp_scaler // expf_neq0 // lead_coef_eq0.
Qed.

Lemma dvdp_gcd_idr m n : n %| m -> gcdp m n %= n.
Proof. by move/dvdp_gcd_idl; exact/eqp_trans/gcdpC. Qed.

Lemma gcdp_exp p k l : gcdp (p ^+ k) (p ^+ l) %= p ^+ minn k l.
Proof.
case: leqP => [|/ltnW] /subnK <-; rewrite exprD; first exact: gcdp_mull.
exact/(eqp_trans (gcdpC _ _))/gcdp_mull.
Qed.

Lemma gcdp_eq0 p q : gcdp p q == 0 = (p == 0) && (q == 0).
Proof.
apply/idP/idP; last by case/andP => /eqP -> /eqP ->; rewrite gcdp0.
have h m n: gcdp m n == 0 -> (m == 0).
  by rewrite -(dvd0p m); move/eqP<-; rewrite dvdp_gcdl.
by move=> ?; rewrite (h _ q) // (h _ p) // -eqp0 (eqp_ltrans (gcdpC _ _)) eqp0.
Qed.

Lemma eqp_gcdr p q r : q %= r -> gcdp p q %= gcdp p r.
Proof.
move=> eqr; rewrite /eqp !(dvdp_gcd, dvdp_gcdl, andbT) /=.
by rewrite -(eqp_dvdr _ eqr) dvdp_gcdr (eqp_dvdr _ eqr) dvdp_gcdr.
Qed.

Lemma eqp_gcdl r p q : p %= q -> gcdp p r %= gcdp q r.
Proof.
move=> eqr; rewrite /eqp !(dvdp_gcd, dvdp_gcdr, andbT) /=.
by rewrite -(eqp_dvdr _ eqr) dvdp_gcdl (eqp_dvdr _ eqr) dvdp_gcdl.
Qed.

Lemma eqp_gcd p1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> gcdp p1 q1 %= gcdp p2 q2.
Proof. move=> e1 e2; exact: eqp_trans (eqp_gcdr _ e2) (eqp_gcdl _ e1). Qed.

Lemma eqp_rgcd_gcd p q : rgcdp p q %= gcdp p q.
Proof.
move: {2}(minn (size p) (size q)) (leqnn (minn (size p) (size q))) => n.
elim: n p q => [p q|n ihn p q hs].
  rewrite leqn0; case: ltnP => _; rewrite size_poly_eq0; move/eqP->.
    by rewrite gcd0p rgcd0p eqpxx.
  by rewrite gcdp0 rgcdp0 eqpxx.
have [-> | pn0] := eqVneq p 0; first by rewrite gcd0p rgcd0p eqpxx.
have [-> | qn0] := eqVneq q 0; first by rewrite gcdp0 rgcdp0 eqpxx.
rewrite gcdpE rgcdpE; case: ltnP hs => sp hs.
  have e := eqp_rmod_mod q p; apply/eqp_trans/ihn: (eqp_gcdl p e).
  by rewrite (eqp_size e) geq_min -ltnS (leq_trans _ hs) ?ltn_modp.
have e := eqp_rmod_mod p q; apply/eqp_trans/ihn: (eqp_gcdl q e).
by rewrite (eqp_size e) geq_min -ltnS (leq_trans _ hs) ?ltn_modp.
Qed.

Lemma gcdp_modl m n : gcdp (m %% n) n %= gcdp m n.
Proof.
have [/modp_small -> // | lenm] := ltnP (size m) (size n).
by rewrite (gcdpE m n) ltnNge lenm.
Qed.

Lemma gcdp_modr m n : gcdp m (n %% m) %= gcdp m n.
Proof.
apply: eqp_trans (gcdpC _ _); apply: eqp_trans (gcdp_modl _ _); exact: gcdpC.
Qed.

Lemma gcdp_def d m n :
    d %| m -> d %| n -> (forall d', d' %| m -> d' %| n -> d' %| d) ->
  gcdp m n %= d.
Proof.
move=> dm dn h; rewrite /eqp dvdp_gcd dm dn !andbT.
by apply: h; [apply: dvdp_gcdl | apply: dvdp_gcdr].
Qed.

Definition coprimep p q := size (gcdp p q) == 1%N.

Lemma coprimep_size_gcd p q : coprimep p q -> size (gcdp p q) = 1.
Proof. by rewrite /coprimep=> /eqP. Qed.

Lemma coprimep_def p q : coprimep p q = (size (gcdp p q) == 1).
Proof. done. Qed.

Lemma coprimepZl c m n : c != 0 -> coprimep (c *: m) n = coprimep m n.
Proof. by move=> ?; rewrite !coprimep_def (eqp_size (gcdp_scalel _ _ _)). Qed.

Lemma coprimepZr c m n: c != 0 -> coprimep m (c *: n) = coprimep m n.
Proof. by move=> ?; rewrite !coprimep_def (eqp_size (gcdp_scaler _ _ _)). Qed.

Lemma coprimepp p : coprimep p p = (size p == 1).
Proof. by rewrite coprimep_def gcdpp. Qed.

Lemma gcdp_eqp1 p q : gcdp p q %= 1 = coprimep p q.
Proof. by rewrite coprimep_def size_poly_eq1. Qed.

Lemma coprimep_sym p q : coprimep p q = coprimep q p.
Proof. by rewrite -!gcdp_eqp1; apply: eqp_ltrans; rewrite gcdpC. Qed.

Lemma coprime1p p : coprimep 1 p.
Proof. by rewrite /coprimep -[1%N](size_poly1 R); exact/eqP/eqp_size/gcd1p. Qed.

Lemma coprimep1 p : coprimep p 1.
Proof. by rewrite coprimep_sym; apply: coprime1p. Qed.

Lemma coprimep0 p : coprimep p 0 = (p %= 1).
Proof. by rewrite /coprimep gcdp0 size_poly_eq1. Qed.

Lemma coprime0p p : coprimep 0 p = (p %= 1).
Proof. by rewrite coprimep_sym coprimep0. Qed.

(* This is different from coprimeP in div. shall we keep this? *)
Lemma coprimepP p q :
 reflect (forall d, d %| p -> d %| q -> d %= 1) (coprimep p q).
Proof.
rewrite /coprimep; apply: (iffP idP) => [/eqP hs d dvddp dvddq | h].
  have/dvdp_eqp1: d %| gcdp p q by rewrite dvdp_gcd dvddp dvddq.
  by rewrite -size_poly_eq1 hs; exact.
by rewrite size_poly_eq1; case/andP: (dvdp_gcdlr p q); apply: h.
Qed.

Lemma coprimepPn p q : p != 0 ->
  reflect (exists d, (d %| gcdp p q) && ~~ (d %= 1)) (~~ coprimep p q).
Proof.
move=> p0; apply: (iffP idP).
  by rewrite -gcdp_eqp1=> ng1; exists (gcdp p q); rewrite dvdpp /=.
case=> d /andP [dg]; apply: contra; rewrite -gcdp_eqp1=> g1.
by move: dg; rewrite (eqp_dvdr _ g1) dvdp1 size_poly_eq1.
Qed.

Lemma coprimep_dvdl q p r : r %| q -> coprimep p q -> coprimep p r.
Proof.
move=> rp /coprimepP cpq'; apply/coprimepP => d dp dr.
exact/cpq'/(dvdp_trans dr).
Qed.

Lemma coprimep_dvdr p q r : r %| p -> coprimep p q -> coprimep r q.
Proof.
by move=> rp; rewrite ![coprimep _ q]coprimep_sym; apply/coprimep_dvdl.
Qed.

Lemma coprimep_modl p q : coprimep (p %% q) q = coprimep p q.
Proof.
rewrite !coprimep_def [in RHS]gcdpE.
by case: ltnP => // hpq; rewrite modp_small // gcdpE hpq.
Qed.

Lemma coprimep_modr q p : coprimep q (p %% q) = coprimep q p.
Proof. by rewrite ![coprimep q _]coprimep_sym coprimep_modl. Qed.

Lemma rcoprimep_coprimep q p : rcoprimep q p = coprimep q p.
Proof. by rewrite /coprimep /rcoprimep (eqp_size (eqp_rgcd_gcd _ _)). Qed.

Lemma eqp_coprimepr p q r : q %= r -> coprimep p q = coprimep p r.
Proof. by rewrite -!gcdp_eqp1; move/(eqp_gcdr p)/eqp_ltrans. Qed.

Lemma eqp_coprimepl p q r : q %= r -> coprimep q p = coprimep r p.
Proof. by rewrite !(coprimep_sym _ p); apply: eqp_coprimepr. Qed.

(* This should be implemented with an extended remainder sequence *)
Fixpoint egcdp_rec p q k {struct k} : {poly R} * {poly R} :=
  if k is k'.+1 then
    if q == 0 then (1, 0) else
    let: (u, v) := egcdp_rec q (p %% q) k' in
      (lead_coef q ^+ scalp p q *: v, (u - v * (p %/ q)))
  else (1, 0).

Definition egcdp p q :=
  if size q <= size p then egcdp_rec p q (size q)
    else let e := egcdp_rec q p (size p) in (e.2, e.1).

(* No provable egcd0p *)
Lemma egcdp0 p : egcdp p 0 = (1, 0). Proof. by rewrite /egcdp size_poly0. Qed.

Lemma egcdp_recP : forall k p q, q != 0 -> size q <= k -> size q <= size p ->
  let e := (egcdp_rec p q k) in
    [/\ size e.1 <= size q, size e.2 <= size p & gcdp p q %= e.1 * p + e.2 * q].
Proof.
elim=> [|k ihk] p q /= qn0; first by rewrite size_poly_leq0 (negPf qn0).
move=> sqSn qsp; rewrite (negPf qn0).
have sp : size p > 0 by apply: leq_trans qsp; rewrite size_poly_gt0.
have [r0 | rn0] /= := eqVneq (p %%q) 0.
  rewrite r0 /egcdp_rec; case: k ihk sqSn => [|n] ihn sqSn /=.
    rewrite !scaler0 !mul0r subr0 add0r mul1r size_poly0 size_poly1.
    by rewrite dvdp_gcd_idr /dvdp ?r0.
  rewrite !eqxx mul0r scaler0 /= mul0r add0r subr0 mul1r size_poly0 size_poly1.
  by rewrite dvdp_gcd_idr /dvdp ?r0 //.
have h1 : size (p %% q) <= k.
  by rewrite -ltnS; apply: leq_trans sqSn; rewrite ltn_modp.
have h2 : size (p %% q) <= size q by rewrite ltnW // ltn_modp.
have := ihk q (p %% q) rn0 h1 h2.
case: (egcdp_rec _ _)=> u v /= => [[ihn'1 ihn'2 ihn'3]].
rewrite gcdpE ltnNge qsp //= (eqp_ltrans (gcdpC _ _)); split; last first.
- apply: (eqp_trans ihn'3).
  rewrite mulrBl addrCA -scalerAl scalerAr -mulrA -mulrBr.
  by rewrite divp_eq addrAC subrr add0r eqpxx.
- apply: (leq_trans (size_add _ _)).
  have [-> | vn0] := eqVneq v 0.
    rewrite mul0r size_opp size_poly0 maxn0; apply: leq_trans ihn'1 _.
    exact: leq_modp.
  have [-> | qqn0] := eqVneq (p %/ q) 0.
    rewrite mulr0 size_opp size_poly0 maxn0; apply: leq_trans ihn'1 _.
    exact: leq_modp.
  rewrite geq_max (leq_trans ihn'1) ?leq_modp //= size_opp size_mul //.
  move: (ihn'2); rewrite (polySpred vn0) (polySpred qn0).
  rewrite -(ltn_add2r (size (p %/ q))) !addSn /= ltnS; move/leq_trans; apply.
  rewrite size_divp // addnBA ?addKn //.
  by apply: leq_trans qsp; apply: leq_pred.
- by rewrite size_scale // lc_expn_scalp_neq0.
Qed.

Lemma egcdpP p q : p != 0 -> q != 0 -> forall (e := egcdp p q),
  [/\ size e.1 <= size q, size e.2 <= size p & gcdp p q %= e.1 * p + e.2 * q].
Proof.
rewrite /egcdp => pn0 qn0; case: (leqP (size q) (size p)) => /= [|/ltnW] hp.
  exact: egcdp_recP.
case: (egcdp_recP pn0 (leqnn (size p)) hp) => h1 h2 h3; split => //.
by rewrite (eqp_ltrans (gcdpC _ _)) addrC.
Qed.

Lemma egcdpE p q (e := egcdp p q) : gcdp p q %= e.1 * p + e.2 * q.
Proof.
rewrite {}/e; have [-> /= | qn0] := eqVneq q 0.
  by rewrite gcdp0 egcdp0 mul1r mulr0 addr0.
have [-> | pn0] := eqVneq p 0; last by case: (egcdpP pn0 qn0).
by rewrite gcd0p /egcdp size_poly0 size_poly_leq0 (negPf qn0) /= !simp.
Qed.

Lemma Bezoutp p q : exists u, u.1 * p + u.2 * q %= (gcdp p q).
Proof.
have [-> | pn0] := eqVneq p 0.
  by rewrite gcd0p; exists (0, 1); rewrite mul0r mul1r add0r.
have [-> | qn0] := eqVneq q 0.
  by rewrite gcdp0; exists (1, 0); rewrite mul0r mul1r addr0.
pose e := egcdp p q; exists e; rewrite eqp_sym.
by case: (egcdpP pn0 qn0).
Qed.

Lemma Bezout_coprimepP p q :
  reflect (exists u, u.1 * p + u.2 * q %= 1) (coprimep p q).
Proof.
rewrite -gcdp_eqp1; apply: (iffP idP)=> [g1|].
  by case: (Bezoutp p q) => [[u v] Puv]; exists (u, v); apply: eqp_trans g1.
case=> [[u v]]; rewrite eqp_sym=> Puv; rewrite /eqp (eqp_dvdr _ Puv).
by rewrite dvdp_addr dvdp_mull ?dvdp_gcdl ?dvdp_gcdr //= dvd1p.
Qed.

Lemma coprimep_root p q x : coprimep p q -> root p x -> q.[x] != 0.
Proof.
case/Bezout_coprimepP=> [[u v] euv] px0.
move/eqpP: euv => [[c1 c2]] /andP /= [c1n0 c2n0 e].
suffices: c1 * (v.[x] * q.[x]) != 0.
  by rewrite !mulf_eq0 !negb_or c1n0 /=; case/andP.
have := f_equal (horner^~ x) e; rewrite /= !hornerZ hornerD.
by rewrite !hornerM (eqP px0) mulr0 add0r hornerC mulr1; move->.
Qed.

Lemma Gauss_dvdpl p q d: coprimep d q -> (d %| p * q) = (d %| p).
Proof.
move/Bezout_coprimepP=>[[u v] Puv]; apply/idP/idP; last exact: dvdp_mulr.
move/(eqp_mull p): Puv; rewrite mulr1 mulrDr eqp_sym=> peq dpq.
rewrite (eqp_dvdr _ peq) dvdp_addr; first by rewrite mulrA mulrAC dvdp_mulr.
by rewrite mulrA dvdp_mull ?dvdpp.
Qed.

Lemma Gauss_dvdpr p q d: coprimep d q -> (d %| q * p) = (d %| p).
Proof. by rewrite mulrC; apply: Gauss_dvdpl. Qed.

(* This could be simplified with the introduction of lcmp *)
Lemma Gauss_dvdp m n p : coprimep m n -> (m * n %| p) = (m %| p) && (n %| p).
Proof.
have [-> | mn0] := eqVneq m 0.
  by rewrite coprime0p => /eqp_dvdl->; rewrite !mul0r dvd0p dvd1p andbT.
have [-> | nn0] := eqVneq n 0.
  by rewrite coprimep0 => /eqp_dvdl->; rewrite !mulr0 dvd1p.
move=> hc; apply/idP/idP => [mnmp | /andP [dmp dnp]].
  move/Gauss_dvdpl: hc => <-; move: (dvdp_mull m mnmp); rewrite dvdp_mul2l //.
  move->; move: (dvdp_mulr n mnmp); rewrite dvdp_mul2r // andbT.
  exact: dvdp_mulr.
move: (dnp); rewrite dvdp_eq.
set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> e2.
have/esym := Gauss_dvdpl q2 hc; rewrite -e2.
have -> : m %| c2 *: p by rewrite -mul_polyC dvdp_mull.
rewrite dvdp_eq; set c3 := _ ^+ _; set q3 := _ %/ _; move/eqP=> e3.
apply: (@eq_dvdp (c3 * c2) q3).
  by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0.
by rewrite mulrA -e3 -scalerAl -e2 scalerA.
Qed.

Lemma Gauss_gcdpr p m n : coprimep p m -> gcdp p (m * n) %= gcdp p n.
Proof.
move=> co_pm; apply/eqP; rewrite /eqp !dvdp_gcd !dvdp_gcdl /= andbC.
rewrite dvdp_mull ?dvdp_gcdr // -(@Gauss_dvdpl _ m).
  by rewrite mulrC dvdp_gcdr.
apply/coprimepP=> d; rewrite dvdp_gcd; case/andP=> hdp _ hdm.
by move/coprimepP: co_pm; apply.
Qed.

Lemma Gauss_gcdpl p m n : coprimep p n -> gcdp p (m * n) %= gcdp p m.
Proof. by move=> co_pn; rewrite mulrC Gauss_gcdpr. Qed.

Lemma coprimepMr p q r : coprimep p (q * r) = (coprimep p q && coprimep p r).
Proof.
apply/coprimepP/andP=> [hp | [/coprimepP-hq hr]].
  by split; apply/coprimepP=> d dp dq; rewrite hp //;
     [apply/dvdp_mulr | apply/dvdp_mull].
move=> d dp dqr; move/(_ _ dp) in hq.
rewrite Gauss_dvdpl in dqr; first exact: hq.
by move/coprimep_dvdr: hr; apply.
Qed.

Lemma coprimepMl p q r: coprimep (q * r) p = (coprimep q p && coprimep r p).
Proof. by rewrite ![coprimep _ p]coprimep_sym coprimepMr. Qed.

Lemma modp_coprime k u n : k != 0 -> (k * u) %% n %= 1 -> coprimep k n.
Proof.
move=> kn0 hmod; apply/Bezout_coprimepP.
exists (((lead_coef n)^+(scalp (k * u) n) *: u), (- (k * u %/ n))).
rewrite -scalerAl mulrC (divp_eq (u * k) n) mulNr -addrAC subrr add0r.
by rewrite mulrC.
Qed.

Lemma coprimep_pexpl k m n : 0 < k -> coprimep (m ^+ k) n = coprimep m n.
Proof.
case: k => // k _; elim: k => [|k IHk]; first by rewrite expr1.
by rewrite exprS coprimepMl -IHk andbb.
Qed.

Lemma coprimep_pexpr k m n : 0 < k -> coprimep m (n ^+ k) = coprimep m n.
Proof. by move=> k_gt0; rewrite !(coprimep_sym m) coprimep_pexpl. Qed.

Lemma coprimep_expl k m n : coprimep m n -> coprimep (m ^+ k) n.
Proof. by case: k => [|k] co_pm; rewrite ?coprime1p // coprimep_pexpl. Qed.

Lemma coprimep_expr k m n : coprimep m n -> coprimep m (n ^+ k).
Proof. by rewrite !(coprimep_sym m); apply: coprimep_expl. Qed.

Lemma gcdp_mul2l p q r : gcdp (p * q) (p * r) %= (p * gcdp q r).
Proof.
have [->|hp] := eqVneq p 0; first by rewrite !mul0r gcdp0 eqpxx.
rewrite /eqp !dvdp_gcd !dvdp_mul2l // dvdp_gcdr dvdp_gcdl !andbT.
move: (Bezoutp q r) => [[u v]] huv.
rewrite eqp_sym in huv; rewrite (eqp_dvdr _ (eqp_mull _ huv)).
rewrite mulrDr ![p * (_ * _)]mulrCA.
by apply: dvdp_add; rewrite dvdp_mull// (dvdp_gcdr, dvdp_gcdl).
Qed.

Lemma gcdp_mul2r q r p : gcdp (q * p) (r * p) %= gcdp q r * p.
Proof. by rewrite ![_ * p]mulrC gcdp_mul2l. Qed.

Lemma mulp_gcdr p q r : r * (gcdp p q) %= gcdp (r * p) (r * q).
Proof. by rewrite eqp_sym gcdp_mul2l. Qed.

Lemma mulp_gcdl p q r : (gcdp p q) * r %= gcdp (p * r) (q * r).
Proof. by rewrite eqp_sym gcdp_mul2r. Qed.

Lemma coprimep_div_gcd p q : (p != 0) || (q != 0) ->
  coprimep (p %/ (gcdp p q)) (q %/ gcdp p q).
Proof.
rewrite -negb_and -gcdp_eq0 -gcdp_eqp1 => gpq0.
rewrite -(@eqp_mul2r (gcdp p q)) // mul1r (eqp_ltrans (mulp_gcdl _ _ _)).
have: gcdp p q %| p by rewrite dvdp_gcdl.
have: gcdp p q %| q by rewrite dvdp_gcdr.
rewrite !dvdp_eq => /eqP <- /eqP <-.
have lcn0 k : (lead_coef (gcdp p q)) ^+ k != 0.
  by rewrite expf_neq0 ?lead_coef_eq0.
by apply: eqp_gcd; rewrite ?eqp_scale.
Qed.

Lemma divp_eq0 p q : (p %/ q == 0) = [|| p == 0, q ==0 | size p < size q].
Proof.
apply/eqP/idP=> [d0|]; last first.
  case/or3P; [by move/eqP->; rewrite div0p| by move/eqP->; rewrite divp0|].
  by move/divp_small.
case: eqVneq => // _; case: eqVneq => // qn0.
move: (divp_eq p q); rewrite d0 mul0r add0r.
move/(f_equal (fun x : {poly R} => size x)).
by rewrite size_scale ?lc_expn_scalp_neq0 // => ->; rewrite ltn_modp qn0 !orbT.
Qed.

Lemma dvdp_div_eq0 p q : q %| p -> (p %/ q == 0) = (p == 0).
Proof.
move=> dvdp_qp; have [->|p_neq0] := eqVneq p 0; first by rewrite div0p eqxx.
rewrite divp_eq0 ltnNge dvdp_leq // (negPf p_neq0) orbF /=.
by apply: contraTF dvdp_qp=> /eqP ->; rewrite dvd0p.
Qed.

Lemma Bezout_coprimepPn p q : p != 0 -> q != 0 ->
  reflect (exists2 uv : {poly R} * {poly R},
    (0 < size uv.1 < size q) && (0 < size uv.2 < size p) &
      uv.1 * p = uv.2 * q)
    (~~ (coprimep p q)).
Proof.
move=> pn0 qn0; apply: (iffP idP); last first.
  case=> [[u v] /= /andP [/andP [ps1 s1] /andP [ps2 s2]] e].
  have: ~~(size (q * p) <= size (u * p)).
    rewrite -ltnNge !size_mul // -?size_poly_gt0 // (polySpred pn0) !addnS.
    by rewrite ltn_add2r.
  apply: contra => ?; apply: dvdp_leq; rewrite ?mulf_neq0 // -?size_poly_gt0 //.
  by rewrite mulrC Gauss_dvdp // dvdp_mull // e dvdp_mull.
rewrite coprimep_def neq_ltn ltnS size_poly_leq0 gcdp_eq0.
rewrite (negPf pn0) (negPf qn0) /=.
case sg: (size (gcdp p q)) => [|n] //; case: n sg=> [|n] // sg _.
move: (dvdp_gcdl p q); rewrite dvdp_eq; set c1 := _ ^+ _; move/eqP=> hu1.
move: (dvdp_gcdr p q); rewrite dvdp_eq; set c2 := _ ^+ _; move/eqP=> hv1.
exists (c1 *: (q %/ gcdp p q), c2 *: (p %/ gcdp p q)); last first.
  by rewrite -!scalerAl !scalerAr hu1 hv1 mulrCA.
rewrite !size_scale ?lc_expn_scalp_neq0 //= !size_poly_gt0 !divp_eq0.
rewrite gcdp_eq0 !(negPf pn0) !(negPf qn0) /= -!leqNgt leq_gcdpl //.
rewrite leq_gcdpr //= !ltn_divpl -?size_poly_eq0 ?sg //.
rewrite !size_mul // -?size_poly_eq0 ?sg // ![(_ + n.+2)%N]addnS /=.
by rewrite -!(addn1 (size _)) !leq_add2l.
Qed.

Lemma dvdp_pexp2r m n k : k > 0 -> (m ^+ k %| n ^+ k) = (m %| n).
Proof.
move=> k_gt0; apply/idP/idP; last exact: dvdp_exp2r.
have [-> // | nn0] := eqVneq n 0; have [-> | mn0] := eqVneq m 0.
  move/prednK: k_gt0=> {1}<-; rewrite exprS mul0r //= !dvd0p expf_eq0.
  by case/andP=> _ ->.
set d := gcdp m n; have := dvdp_gcdr m n; rewrite -/d dvdp_eq.
set c1 := _ ^+ _; set n' := _ %/ _; move/eqP=> def_n.
have := dvdp_gcdl m n; rewrite -/d dvdp_eq.
set c2 := _ ^+ _; set m' := _ %/ _; move/eqP=> def_m.
have dn0 : d != 0 by rewrite gcdp_eq0 negb_and nn0 orbT.
have c1n0 : c1 != 0 by rewrite !expf_neq0 // lead_coef_eq0.
have c2n0 : c2 != 0 by rewrite !expf_neq0 // lead_coef_eq0.
have c2k_n0 : c2 ^+ k != 0 by rewrite !expf_neq0 // lead_coef_eq0.
rewrite -(@dvdpZr (c1 ^+ k)) ?expf_neq0 ?lead_coef_eq0 //.
rewrite -(@dvdpZl (c2 ^+ k)) // -!exprZn def_m def_n !exprMn.
rewrite dvdp_mul2r ?expf_neq0 //.
have: coprimep (m' ^+ k) (n' ^+ k).
  by rewrite coprimep_pexpl // coprimep_pexpr // coprimep_div_gcd ?mn0.
move/coprimepP=> hc hd.
have /size_poly1P [c cn0 em'] : size m' == 1.
  case: (eqVneq m' 0) def_m => [-> /eqP | m'_n0 def_m].
    by rewrite mul0r scale_poly_eq0 (negPf mn0) (negPf c2n0).
  have := hc _ (dvdpp _) hd; rewrite -size_poly_eq1.
  rewrite polySpred; last by rewrite expf_eq0 negb_and m'_n0 orbT.
  by rewrite size_exp eqSS muln_eq0 orbC eqn0Ngt k_gt0 /= -eqSS -polySpred.
rewrite -(@dvdpZl c2) // def_m em' mul_polyC dvdpZl //.
by rewrite -(@dvdpZr c1) // def_n dvdp_mull.
Qed.

Lemma root_gcd p q x : root (gcdp p q) x = root p x && root q x.
Proof.
rewrite /= !root_factor_theorem; apply/idP/andP=> [dg| [dp dq]].
  by split; apply: dvdp_trans dg _; rewrite ?(dvdp_gcdl, dvdp_gcdr).
have:= Bezoutp p q => [[[u v]]]; rewrite eqp_sym=> e.
by rewrite (eqp_dvdr _ e) dvdp_addl dvdp_mull.
Qed.

Lemma root_biggcd x (ps : seq {poly R}) :
  root (\big[gcdp/0]_(p <- ps) p) x = all (fun p => root p x) ps.
Proof.
elim: ps => [|p ps ihp]; first by rewrite big_nil root0.
by rewrite big_cons /= root_gcd ihp.
Qed.

(* "gdcop Q P" is the Greatest Divisor of P which is coprime to Q *)
(* if P null, we pose that gdcop returns 1 if Q null, 0 otherwise*)
Fixpoint gdcop_rec q p k :=
  if k is m.+1 then
      if coprimep p q then p
        else gdcop_rec q (divp p (gcdp p q)) m
    else (q == 0)%:R.

Definition gdcop q p := gdcop_rec q p (size p).

Variant gdcop_spec q p : {poly R} -> Type :=
  GdcopSpec r of (dvdp r p) & ((coprimep r q) || (p == 0))
  & (forall d, dvdp d p -> coprimep d q -> dvdp d r)
  : gdcop_spec q p r.

Lemma gdcop0 q : gdcop q 0 = (q == 0)%:R.
Proof. by rewrite /gdcop size_poly0. Qed.

Lemma gdcop_recP q p k : size p <= k -> gdcop_spec q p (gdcop_rec q p k).
Proof.
elim: k p => [p | k ihk p] /=.
  move/size_poly_leq0P->.
  have [->|q0] := eqVneq; split; rewrite ?coprime1p // ?eqxx ?orbT //.
  by move=> d _; rewrite coprimep0 dvdp1 size_poly_eq1.
move=> hs; case cop : (coprimep _ _); first by split; rewrite ?dvdpp ?cop.
have [-> | p0] := eqVneq p 0.
  by rewrite div0p; apply: ihk; rewrite size_poly0 leq0n.
have [-> | q0] := eqVneq q 0.
  rewrite gcdp0 divpp ?p0 //= => {hs ihk}; case: k=> /=.
    rewrite eqxx; split; rewrite ?dvd1p ?coprimep0 ?eqpxx //=.
    by move=> d _; rewrite coprimep0 dvdp1 size_poly_eq1.
  move=> n; rewrite coprimep0 polyC_eqp1 //; rewrite lc_expn_scalp_neq0.
  split; first by rewrite (@eqp_dvdl 1) ?dvd1p // polyC_eqp1 lc_expn_scalp_neq0.
    by rewrite coprimep0 polyC_eqp1 // ?lc_expn_scalp_neq0.
  by move=> d _; rewrite coprimep0; move/eqp_dvdl->; rewrite dvd1p.
move: (dvdp_gcdl p q); rewrite dvdp_eq; move/eqP=> e.
have sgp : size (gcdp p q) <= size p.
  by apply: dvdp_leq; rewrite ?gcdp_eq0 ?p0 ?q0 // dvdp_gcdl.
have : p %/ gcdp p q != 0; last move/negPf=>p'n0.
  apply: dvdpN0 (dvdp_mulIl (p %/ gcdp p q) (gcdp p q)) _.
  by rewrite -e scale_poly_eq0 negb_or lc_expn_scalp_neq0.
have gn0 : gcdp p q != 0.
  apply: dvdpN0 (dvdp_mulIr (p %/ gcdp p q) (gcdp p q)) _.
  by rewrite -e scale_poly_eq0 negb_or lc_expn_scalp_neq0.
have sp' : size (p %/ (gcdp p q)) <= k.
  rewrite size_divp ?sgp // leq_subLR (leq_trans hs) // -add1n leq_add2r -subn1.
  by rewrite ltn_subRL add1n ltn_neqAle eq_sym [_ == _]cop size_poly_gt0 gn0.
case (ihk _ sp')=> r' dr'p'; first rewrite p'n0 orbF=> cr'q maxr'.
constructor=> //=; rewrite ?(negPf p0) ?orbF //.
  exact/(dvdp_trans dr'p')/divp_dvd/dvdp_gcdl.
move=> d dp cdq; apply: maxr'; last by rewrite cdq.
case dpq: (d %| gcdp p q).
  move: (dpq); rewrite dvdp_gcd dp /= => dq; apply: dvdUp.
  apply: contraLR cdq => nd1; apply/coprimepPn; last first.
    by exists d; rewrite dvdp_gcd dvdpp dq nd1.
  by apply: contraNneq p0 => d0; move: dp; rewrite d0 dvd0p.
apply: contraLR dp => ndp'.
rewrite (@eqp_dvdr ((lead_coef (gcdp p q) ^+ scalp p (gcdp p q))*:p)).
  by rewrite e; rewrite Gauss_dvdpl //; apply: (coprimep_dvdl (dvdp_gcdr _ _)).
by rewrite eqp_sym eqp_scale // lc_expn_scalp_neq0.
Qed.

Lemma gdcopP q p : gdcop_spec q p (gdcop q p).
Proof. by rewrite /gdcop; apply: gdcop_recP. Qed.

Lemma coprimep_gdco p q : (q != 0)%B -> coprimep (gdcop p q) p.
Proof. by move=> q_neq0; case: gdcopP=> d; rewrite (negPf q_neq0) orbF. Qed.

Lemma size2_dvdp_gdco p q d : p != 0 -> size d = 2 ->
  (d %| (gdcop q p)) = (d %| p) && ~~(d %| q).
Proof.
have [-> | dn0] := eqVneq d 0; first by rewrite size_poly0.
move=> p0 sd; apply/idP/idP.
  case: gdcopP=> r rp crq maxr dr; move/negPf: (p0)=> p0f.
  rewrite (dvdp_trans dr) //=.
  apply: contraL crq => dq; rewrite p0f orbF; apply/coprimepPn.
    by apply: contraNneq p0 => r0; move: rp; rewrite r0 dvd0p.
  by exists d; rewrite dvdp_gcd dr dq -size_poly_eq1 sd.
case/andP=> dp dq; case: gdcopP=> r rp crq maxr; apply: maxr=> //.
apply/coprimepP=> x xd xq.
move: (dvdp_leq dn0 xd); rewrite leq_eqVlt sd; case/orP; last first.
  rewrite ltnS leq_eqVlt ltnS size_poly_leq0 orbC.
  case/predU1P => [x0|]; last by rewrite -size_poly_eq1.
  by move: xd; rewrite x0 dvd0p (negPf dn0).
by rewrite -sd dvdp_size_eqp //; move/(eqp_dvdl q); rewrite xq (negPf dq).
Qed.

Lemma dvdp_gdco p q : (gdcop p q) %| q. Proof. by case: gdcopP. Qed.

Lemma root_gdco p q x : p != 0 -> root (gdcop q p) x = root p x && ~~(root q x).
Proof.
move=> p0 /=; rewrite !root_factor_theorem.
apply: size2_dvdp_gdco; rewrite ?p0 //.
by rewrite size_addl size_polyX // size_opp size_polyC ltnS; case: (x != 0).
Qed.

Lemma dvdp_comp_poly r p q : (p %| q) -> (p \Po r) %| (q \Po r).
Proof.
have [-> | pn0] := eqVneq p 0.
  by rewrite comp_poly0 !dvd0p; move/eqP->; rewrite comp_poly0.
rewrite dvdp_eq; set c := _ ^+ _; set s := _ %/ _; move/eqP=> Hq.
apply: (@eq_dvdp c (s \Po r)); first by rewrite expf_neq0 // lead_coef_eq0.
by rewrite -comp_polyZ Hq comp_polyM.
Qed.

Lemma gcdp_comp_poly r p q : gcdp p q \Po r %= gcdp (p \Po r) (q \Po r).
Proof.
apply/andP; split.
  by rewrite dvdp_gcd !dvdp_comp_poly ?dvdp_gcdl ?dvdp_gcdr.
case: (Bezoutp p q) => [[u v]] /andP [].
move/(dvdp_comp_poly r) => Huv _.
rewrite (dvdp_trans _ Huv) // comp_polyD !comp_polyM.
by rewrite dvdp_add // dvdp_mull // (dvdp_gcdl,dvdp_gcdr).
Qed.

Lemma coprimep_comp_poly r p q : coprimep p q -> coprimep (p \Po r) (q \Po r).
Proof.
rewrite -!gcdp_eqp1 -!size_poly_eq1 -!dvdp1; move/(dvdp_comp_poly r).
rewrite comp_polyC => Hgcd.
by apply: dvdp_trans Hgcd; case/andP: (gcdp_comp_poly r p q).
Qed.

Lemma coprimep_addl_mul p q r : coprimep r (p * r + q) = coprimep r q.
Proof. by rewrite !coprimep_def (eqp_size (gcdp_addl_mul _ _ _)). Qed.

Definition irreducible_poly p :=
  (size p > 1) * (forall q, size q != 1 -> q %| p -> q %= p) : Prop.

Lemma irredp_neq0 p : irreducible_poly p -> p != 0.
Proof. by rewrite -size_poly_gt0 => [[/ltnW]]. Qed.

Definition apply_irredp p (irr_p : irreducible_poly p) := irr_p.2.
Coercion apply_irredp : irreducible_poly >-> Funclass.

Lemma modp_XsubC p c : p %% ('X - c%:P) = p.[c]%:P.
Proof.
have/factor_theorem [q /(canRL (subrK _)) Dp]: root (p - p.[c]%:P) c.
  by rewrite /root !hornerE subrr.
rewrite modpE /= lead_coefXsubC unitr1 expr1n invr1 scale1r [in LHS]Dp.
rewrite RingMonic.rmodp_addl_mul_small // ?monicXsubC // size_XsubC size_polyC.
by case: (p.[c] == 0).
Qed.

Lemma coprimep_XsubC p c : coprimep p ('X - c%:P) = ~~ root p c.
Proof.
rewrite -coprimep_modl modp_XsubC /root -alg_polyC.
have [-> | /coprimepZl->] := eqVneq; last exact: coprime1p.
by rewrite scale0r /coprimep gcd0p size_XsubC.
Qed.

Lemma coprimep_XsubC2 (a b : R) : b - a != 0 ->
  coprimep ('X - a%:P) ('X - b%:P).
Proof. by move=> bBa_neq0; rewrite coprimep_XsubC rootE hornerXsubC. Qed.

Lemma coprimepX p : coprimep p 'X = ~~ root p 0.
Proof. by rewrite -['X]subr0 coprimep_XsubC. Qed.

Lemma eqp_monic : {in monic &, forall p q, (p %= q) = (p == q)}.
Proof.
move=> p q monic_p monic_q; apply/idP/eqP=> [|-> //].
case/eqpP=> [[a b] /= /andP[a_neq0 _] eq_pq].
apply: (@mulfI _ a%:P); first by rewrite polyC_eq0.
rewrite !mul_polyC eq_pq; congr (_ *: q); apply: (mulIf (oner_neq0 _)).
by rewrite -[in LHS](monicP monic_q) -(monicP monic_p) -!lead_coefZ eq_pq.
Qed.

Lemma dvdp_mul_XsubC p q c :
  (p %| ('X - c%:P) * q) = ((if root p c then p %/ ('X - c%:P) else p) %| q).
Proof.
case: ifPn => [| not_pc0]; last by rewrite Gauss_dvdpr ?coprimep_XsubC.
rewrite root_factor_theorem -eqp_div_XsubC mulrC => /eqP{1}->.
by rewrite dvdp_mul2l ?polyXsubC_eq0.
Qed.

Lemma dvdp_prod_XsubC (I : Type) (r : seq I) (F : I -> R) p :
    p %| \prod_(i <- r) ('X - (F i)%:P) ->
  {m | p %= \prod_(i <- mask m r) ('X - (F i)%:P)}.
Proof.
elim: r => [|i r IHr] in p *.
  by rewrite big_nil dvdp1; exists nil; rewrite // big_nil -size_poly_eq1.
rewrite big_cons dvdp_mul_XsubC root_factor_theorem -eqp_div_XsubC.
case: eqP => [{2}-> | _] /IHr[m Dp]; last by exists (false :: m).
by exists (true :: m); rewrite /= mulrC big_cons eqp_mul2l ?polyXsubC_eq0.
Qed.

Lemma irredp_XsubC (x : R) : irreducible_poly ('X - x%:P).
Proof.
split=> [|d size_d d_dv_Xx]; first by rewrite size_XsubC.
have: ~ d %= 1 by apply/negP; rewrite -size_poly_eq1.
have [|m /=] := @dvdp_prod_XsubC _ [:: x] id d; first by rewrite big_seq1.
by case: m => [|[] [|_ _] /=]; rewrite (big_nil, big_seq1).
Qed.

Lemma irredp_XaddC (x : R) : irreducible_poly ('X + x%:P).
Proof. by rewrite -[x]opprK rmorphN; apply: irredp_XsubC. Qed.

Lemma irredp_XsubCP d p :
  irreducible_poly p -> d %| p -> {d %= 1} + {d %= p}.
Proof.
move=> irred_p dvd_dp; have [] := boolP (_ %= 1); first by left.
by rewrite -size_poly_eq1=> /irred_p /(_ dvd_dp); right.
Qed.

Lemma dvdp_exp_XsubCP (p : {poly R}) (c : R) (n : nat) :
  reflect (exists2 k, (k <= n)%N & p %= ('X - c%:P) ^+ k)
          (p %| ('X - c%:P) ^+ n).
Proof.
apply: (iffP idP) => [|[k lkn /eqp_dvdl->]]; last by rewrite dvdp_exp2l.
move=> /Pdiv.WeakIdomain.dvdpP[[/= a q] a_neq0].
have [m [r]] := multiplicity_XsubC p c; have [->|pN0]/= := eqVneq p 0.
  rewrite mulr0 => _ _ /eqP;  rewrite scale_poly_eq0 (negPf a_neq0)/=.
  by rewrite expf_eq0/= andbC polyXsubC_eq0.
move=> rNc ->; rewrite mulrA => eq_qrm; exists m.
  have: ('X - c%:P) ^+ m %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm dvdp_mull.
  by rewrite (eqp_dvdr _ (eqp_scale _ _))// dvdp_Pexp2l// size_XsubC.
suff /eqP : size r = 1%N.
  by rewrite size_poly_eq1 => /eqp_mulr/eqp_trans->//; rewrite mul1r eqpxx.
have : r %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm mulrAC dvdp_mull.
rewrite (eqp_dvdr _ (eqp_scale _ _))//.
move: rNc; rewrite -coprimep_XsubC => /(coprimep_expr n) /coprimepP.
by move=> /(_ _ (dvdpp _)); rewrite -size_poly_eq1 => /(_ _)/eqP.
Qed.

End IDomainPseudoDivision.
Arguments gcdp : simpl never.

#[global] Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 : core.
#[global] Hint Resolve dvdp_mull dvdp_mulr dvdpp dvdp0 : core.
Arguments dvdp_exp_XsubCP {R p c n}.

End CommonIdomain.

Module Idomain.

Include IdomainDefs.
Export IdomainDefs.
Include WeakIdomain.
Include CommonIdomain.

End Idomain.

Module IdomainMonic.

Import Ring ComRing UnitRing IdomainDefs Idomain.

Section IdomainMonic.

Variable R : idomainType.

Implicit Type p d r : {poly R}.

Section MonicDivisor.

Variable q : {poly R}.
Hypothesis monq : q \is monic.

Lemma divpE p : p %/ q = rdivp p q.
Proof. by rewrite divpE (eqP monq) unitr1 expr1n invr1 scale1r. Qed.

Lemma modpE p : p %% q = rmodp p q.
Proof. by rewrite modpE (eqP monq) unitr1 expr1n invr1 scale1r. Qed.

Lemma scalpE p : scalp p q = 0.
Proof. by rewrite scalpE (eqP monq) unitr1. Qed.

Lemma divp_eq p : p = (p %/ q) * q + (p %% q).
Proof. by rewrite -divp_eq (eqP monq) expr1n scale1r. Qed.

Lemma divpp p : q %/ q = 1.
Proof. by rewrite divpp ?monic_neq0 // (eqP monq) expr1n. Qed.

Lemma dvdp_eq p : (q %| p) = (p == (p %/ q) * q).
Proof. by rewrite dvdp_eq (eqP monq) expr1n scale1r. Qed.

Lemma dvdpP p : reflect (exists qq, p = qq * q) (q %| p).
Proof.
apply: (iffP idP); first by rewrite dvdp_eq; move/eqP=> e; exists (p %/ q).
by case=> qq ->; rewrite dvdp_mull // dvdpp.
Qed.

Lemma mulpK p : p * q %/ q = p.
Proof. by rewrite mulpK ?monic_neq0 // (eqP monq) expr1n scale1r. Qed.

Lemma mulKp p : q * p %/ q = p. Proof. by rewrite mulrC mulpK. Qed.

End MonicDivisor.

Lemma drop_poly_divp n p : drop_poly n p = p %/ 'X^n.
Proof. by rewrite RingMonic.drop_poly_rdivp divpE // monicXn. Qed.

Lemma take_poly_modp n p : take_poly n p = p %% 'X^n.
Proof. by rewrite RingMonic.take_poly_rmodp modpE // monicXn. Qed.

End IdomainMonic.

End IdomainMonic.

Module IdomainUnit.

Import Ring ComRing UnitRing IdomainDefs Idomain.

Section UnitDivisor.

Variable R : idomainType.
Variable d : {poly R}.

Hypothesis ulcd : lead_coef d \in GRing.unit.

Implicit Type p q r : {poly R}.

Lemma divp_eq p : p = (p %/ d) * d + (p %% d).
Proof. by have := divp_eq p d; rewrite scalpE ulcd expr0 scale1r. Qed.

Lemma edivpP p q r : p = q * d + r -> size r < size d ->
  q = (p %/ d) /\ r = p %% d.
Proof.
move=> ep srd; have := divp_eq p; rewrite [LHS]ep.
move/eqP; rewrite -subr_eq -addrA addrC eq_sym -subr_eq -mulrBl; move/eqP.
have lcdn0 : lead_coef d != 0 by apply: contraTneq ulcd => ->; rewrite unitr0.
have [-> /esym /eqP|abs] := eqVneq (p %/ d) q.
  by rewrite subrr mul0r subr_eq0 => /eqP<-.
have hleq : size d <= size ((p %/ d - q) * d).
  rewrite size_proper_mul; last first.
    by rewrite mulf_eq0 (negPf lcdn0) orbF lead_coef_eq0 subr_eq0.
  by move: abs; rewrite -subr_eq0; move/polySpred->; rewrite addSn /= leq_addl.
have hlt : size (r - p %% d) < size d.
  apply: leq_ltn_trans (size_add _ _) _.
  by rewrite gtn_max srd size_opp ltn_modp -lead_coef_eq0.
by move=> e; have:= leq_trans hlt hleq; rewrite e ltnn.
Qed.

Lemma divpP p q r : p = q * d + r -> size r < size d -> q = (p %/ d).
Proof. by move/edivpP=> h; case/h. Qed.

Lemma modpP p q r : p = q * d + r -> size r < size d -> r = (p %% d).
Proof. by move/edivpP=> h; case/h. Qed.

Lemma ulc_eqpP p q : lead_coef q \is a GRing.unit ->
  reflect (exists2 c : R, c != 0 & p = c *: q) (p %= q).
Proof.
have [->|] := eqVneq (lead_coef q) 0; first by rewrite unitr0.
rewrite lead_coef_eq0 => nz_q ulcq; apply: (iffP idP).
  have [->|nz_p] := eqVneq p 0; first by rewrite eqp_sym eqp0 (negPf nz_q).
  move/eqp_eq=> eq; exists (lead_coef p / lead_coef q).
    by rewrite mulf_neq0 // ?invr_eq0 lead_coef_eq0.
  by apply/(scaler_injl ulcq); rewrite scalerA mulrCA divrr // mulr1.
by case=> c nz_c ->; apply/eqpP; exists (1, c); rewrite ?scale1r ?oner_eq0.
Qed.

Lemma dvdp_eq p : (d %| p) = (p == p %/ d * d).
Proof.
apply/eqP/eqP=> [modp0 | ->]; last exact: modp_mull.
by rewrite [p in LHS]divp_eq modp0 addr0.
Qed.

Lemma ucl_eqp_eq p q : lead_coef q \is a GRing.unit ->
  p %= q -> p = (lead_coef p / lead_coef q) *: q.
Proof.
move=> ulcq /eqp_eq; move/(congr1 ( *:%R (lead_coef q)^-1 )).
by rewrite !scalerA mulrC divrr // scale1r mulrC.
Qed.

Lemma modpZl c p : (c *: p) %% d = c *: (p %% d).
Proof.
have [-> | cn0] := eqVneq c 0; first by rewrite !scale0r mod0p.
have e : (c *: p) = (c *: (p %/ d)) * d + c *: (p %% d).
  by rewrite -scalerAl -scalerDr -divp_eq.
suff s: size (c *: (p %% d)) < size d by case: (edivpP e s) => _ ->.
rewrite -mul_polyC; apply: leq_ltn_trans (size_mul_leq _ _) _.
rewrite size_polyC cn0 addSn add0n /= ltn_modp -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.

Lemma divpZl c p : (c *: p) %/ d = c *: (p %/ d).
Proof.
have [-> | cn0] := eqVneq c 0; first by rewrite !scale0r div0p.
have e : (c *: p) = (c *: (p %/ d)) * d + c *: (p %% d).
  by rewrite -scalerAl -scalerDr -divp_eq.
suff s: size (c *: (p %% d)) < size d by case: (edivpP e s) => ->.
rewrite -mul_polyC; apply: leq_ltn_trans (size_mul_leq _ _) _.
rewrite size_polyC cn0 addSn add0n /= ltn_modp -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.

Lemma eqp_modpl p q : p %= q -> (p %% d) %= (q %% d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 //= -!modpZl e.
Qed.

Lemma eqp_divl p q : p %= q -> (p %/ d) %= (q %/ d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!divpZl e.
Qed.

Lemma modpN p : (- p) %% d = - (p %% d).
Proof. by rewrite -mulN1r -[RHS]mulN1r -polyCN !mul_polyC modpZl. Qed.

Lemma divpN p : (- p) %/ d = - (p %/ d).
Proof. by rewrite -mulN1r -[RHS]mulN1r -polyCN !mul_polyC divpZl. Qed.

Lemma modpD p q : (p + q) %% d = p %% d + q %% d.
Proof.
have/edivpP [] // : (p + q) = (p %/ d + q %/ d) * d + (p %% d + q %% d).
  by rewrite mulrDl addrACA -!divp_eq.
apply: leq_ltn_trans (size_add _ _) _.
rewrite gtn_max !ltn_modp andbb -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.

Lemma divpD p q : (p + q) %/ d = p %/ d + q %/ d.
Proof.
have/edivpP [] // : (p + q) = (p %/ d + q %/ d) * d + (p %% d + q %% d).
  by rewrite mulrDl addrACA -!divp_eq.
apply: leq_ltn_trans (size_add _ _) _.
rewrite gtn_max !ltn_modp andbb -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.

Lemma mulpK q : (q * d) %/ d = q.
Proof.
case/esym/edivpP: (addr0 (q * d)); rewrite // size_poly0 size_poly_gt0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0.
Qed.

Lemma mulKp q : (d * q) %/ d = q. Proof. by rewrite mulrC; apply: mulpK. Qed.

Lemma divp_addl_mul_small q r : size r < size d -> (q * d + r) %/ d = q.
Proof. by move=> srd; rewrite divpD (divp_small srd) addr0 mulpK. Qed.

Lemma modp_addl_mul_small q r : size r < size d -> (q * d + r) %% d = r.
Proof. by move=> srd; rewrite modpD modp_mull add0r modp_small. Qed.

Lemma divp_addl_mul q r : (q * d + r) %/ d = q + r %/ d.
Proof. by rewrite divpD mulpK. Qed.

Lemma divpp : d %/ d = 1. Proof. by rewrite -[d in d %/ _]mul1r mulpK. Qed.

Lemma leq_trunc_divp m : size (m %/ d * d) <= size m.
Proof.
case: (eqVneq d 0) ulcd => [->|dn0 _]; first by rewrite lead_coef0 unitr0.
have [->|q0] := eqVneq (m %/ d) 0; first by rewrite mul0r size_poly0 leq0n.
rewrite {2}(divp_eq m) size_addl // size_mul // (polySpred q0) addSn /=.
by rewrite ltn_addl // ltn_modp.
Qed.

Lemma dvdpP p : reflect (exists q, p = q * d) (d %| p).
Proof.
apply: (iffP idP) => [| [k ->]]; last by apply/eqP; rewrite modp_mull.
by rewrite dvdp_eq; move/eqP->; exists (p %/ d).
Qed.

Lemma divpK p : d %| p -> p %/ d * d = p.
Proof. by rewrite dvdp_eq; move/eqP. Qed.

Lemma divpKC p : d %| p -> d * (p %/ d) = p.
Proof. by move=> ?; rewrite mulrC divpK. Qed.

Lemma dvdp_eq_div p q : d %| p -> (q == p %/ d) = (q * d == p).
Proof.
move/divpK=> {2}<-; apply/eqP/eqP; first by move->.
apply/mulIf; rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->.
by rewrite unitr0.
Qed.

Lemma dvdp_eq_mul p q : d %| p -> (p == q * d) = (p %/ d == q).
Proof. by move=> dv_d_p; rewrite eq_sym -dvdp_eq_div // eq_sym. Qed.

Lemma divp_mulA p q : d %| q -> p * (q %/ d) = p * q %/ d.
Proof.
move=> hdm; apply/eqP; rewrite eq_sym -dvdp_eq_mul.
  by rewrite -mulrA divpK.
by move/divpK: hdm<-; rewrite mulrA dvdp_mull // dvdpp.
Qed.

Lemma divp_mulAC m n : d %| m -> m %/ d * n = m * n %/ d.
Proof. by move=> hdm; rewrite mulrC (mulrC m); apply: divp_mulA. Qed.

Lemma divp_mulCA p q : d %| p -> d %| q -> p * (q %/ d) = q * (p %/ d).
Proof. by move=> hdp hdq; rewrite mulrC divp_mulAC // divp_mulA. Qed.

Lemma modp_mul p q : (p * (q %% d)) %% d = (p * q) %% d.
Proof. by rewrite [q in RHS]divp_eq mulrDr modpD mulrA modp_mull add0r. Qed.

End UnitDivisor.

Section MoreUnitDivisor.

Variable R : idomainType.
Variable d : {poly R}.
Hypothesis ulcd : lead_coef d \in GRing.unit.

Implicit Types p q : {poly R}.

Lemma expp_sub m n : n <= m -> (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
Proof. by move/subnK=> {2}<-; rewrite exprD mulpK // lead_coef_exp unitrX. Qed.

Lemma divp_pmul2l p q : lead_coef q \in GRing.unit -> d * p %/ (d * q) = p %/ q.
Proof.
move=> uq; rewrite {1}(divp_eq uq p) mulrDr mulrCA divp_addl_mul //; last first.
  by rewrite lead_coefM unitrM_comm ?ulcd //; red; rewrite mulrC.
have dn0 : d != 0.
  by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0.
have qn0 : q != 0.
  by rewrite -lead_coef_eq0; apply: contraTneq uq => ->; rewrite unitr0.
have dqn0 : d * q != 0 by rewrite mulf_eq0 negb_or dn0.
suff : size (d * (p %% q)) < size (d * q).
  by rewrite ltnNge -divpN0 // negbK => /eqP ->; rewrite addr0.
have [-> | rn0] := eqVneq (p %% q) 0.
  by rewrite mulr0 size_poly0 size_poly_gt0.
by rewrite !size_mul // (polySpred dn0) !addSn /= ltn_add2l ltn_modp.
Qed.

Lemma divp_pmul2r p q : lead_coef p \in GRing.unit -> q * d %/ (p * d) = q %/ p.
Proof. by move=> uq; rewrite -!(mulrC d) divp_pmul2l. Qed.

Lemma divp_divl r p q :
    lead_coef r \in GRing.unit -> lead_coef p \in GRing.unit ->
  q %/ p %/ r = q %/ (p * r).
Proof.
move=> ulcr ulcp.
have e : q = (q %/ p %/ r) * (p * r) + ((q %/ p) %% r * p + q %% p).
  by rewrite addrA (mulrC p) mulrA -mulrDl; rewrite -divp_eq //; apply: divp_eq.
have pn0 : p != 0.
  by rewrite -lead_coef_eq0; apply: contraTneq ulcp => ->; rewrite unitr0.
have rn0 : r != 0.
  by rewrite -lead_coef_eq0; apply: contraTneq ulcr => ->; rewrite unitr0.
have s : size ((q %/ p) %% r * p + q %% p) < size (p * r).
  have [-> | qn0] := eqVneq ((q %/ p) %% r) 0.
    rewrite mul0r add0r size_mul // (polySpred rn0) addnS /=.
    by apply: leq_trans (leq_addr _ _); rewrite ltn_modp.
  rewrite size_addl mulrC.
    by rewrite !size_mul // (polySpred pn0) !addSn /= ltn_add2l ltn_modp.
  rewrite size_mul // (polySpred qn0) addnS /=.
  by apply: leq_trans (leq_addr _ _); rewrite ltn_modp.
case: (edivpP _ e s) => //; rewrite lead_coefM unitrM_comm ?ulcp //.
by red; rewrite mulrC.
Qed.

Lemma divpAC p q : lead_coef p \in GRing.unit -> q %/ d %/ p = q %/ p %/ d.
Proof. by move=> ulcp; rewrite !divp_divl // mulrC. Qed.

Lemma modpZr c p : c \in GRing.unit -> p %% (c *: d) = (p %% d).
Proof.
case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !modp0.
have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
  by rewrite scalerCA scalerA mulVr // scale1r -(divp_eq ulcd).
suff s : size (p %% d) < size (c *: d).
  by rewrite (modpP _ e s) // -mul_polyC lead_coefM lead_coefC unitrM cn0.
by rewrite size_scale ?ltn_modp //; apply: contraTneq cn0 => ->; rewrite unitr0.
Qed.

Lemma divpZr c p : c \in GRing.unit -> p %/ (c *: d) = c^-1 *: (p %/ d).
Proof.
case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !divp0 scaler0.
have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
  by rewrite scalerCA scalerA mulVr // scale1r -(divp_eq ulcd).
suff s : size (p %% d) < size (c *: d).
  by rewrite (divpP _ e s) // -mul_polyC lead_coefM lead_coefC unitrM cn0.
by rewrite size_scale ?ltn_modp //; apply: contraTneq cn0 => ->; rewrite unitr0.
Qed.

End MoreUnitDivisor.

End IdomainUnit.

Module Field.

Import Ring ComRing UnitRing.
Include IdomainDefs.
Export IdomainDefs.
Include CommonIdomain.

Section FieldDivision.

Variable F : fieldType.

Implicit Type p q r d : {poly F}.

Lemma divp_eq p q : p = (p %/ q) * q + (p %% q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite modp0 mulr0 add0r.
by apply: IdomainUnit.divp_eq; rewrite unitfE lead_coef_eq0.
Qed.

Lemma divp_modpP p q d r : p = q * d + r -> size r < size d ->
  q = (p %/ d) /\ r = p %% d.
Proof.
move=> he hs; apply: IdomainUnit.edivpP => //; rewrite unitfE lead_coef_eq0.
by rewrite -size_poly_gt0; apply: leq_trans hs.
Qed.

Lemma divpP p q d r : p = q * d + r -> size r < size d ->
  q = (p %/ d).
Proof. by move/divp_modpP=> h; case/h. Qed.

Lemma modpP p q d r : p = q * d + r -> size r < size d -> r = (p %% d).
Proof. by move/divp_modpP=> h; case/h. Qed.

Lemma eqpfP p q : p %= q -> p = (lead_coef p / lead_coef q) *: q.
Proof.
have [->|nz_q] := eqVneq q 0; first by rewrite eqp0 scaler0 => /eqP ->.
by apply/IdomainUnit.ucl_eqp_eq; rewrite unitfE lead_coef_eq0.
Qed.

Lemma dvdp_eq q p : (q %| p) = (p == p %/ q * q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite dvd0p mulr0 eq_sym.
by apply: IdomainUnit.dvdp_eq; rewrite unitfE lead_coef_eq0.
Qed.

Lemma eqpf_eq p q : reflect (exists2 c, c != 0 & p = c *: q) (p %= q).
Proof.
apply: (iffP idP); last first.
  case=> c nz_c ->; apply/eqpP.
  by exists (1, c); rewrite ?scale1r ?oner_eq0.
have [->|nz_q] := eqVneq q 0.
  by rewrite eqp0=> /eqP ->; exists 1; rewrite ?scale1r ?oner_eq0.
case/IdomainUnit.ulc_eqpP; first by rewrite unitfE lead_coef_eq0.
by move=> c nz_c ->; exists c.
Qed.

Lemma modpZl c p q : (c *: p) %% q = c *: (p %% q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite !modp0.
by apply: IdomainUnit.modpZl; rewrite unitfE lead_coef_eq0.
Qed.

Lemma mulpK p q : q != 0 -> p * q %/ q = p.
Proof. by move=> qn0; rewrite IdomainUnit.mulpK // unitfE lead_coef_eq0. Qed.

Lemma mulKp p q : q != 0 -> q * p %/ q = p.
Proof. by rewrite mulrC; apply: mulpK. Qed.

Lemma divpZl c p q : (c *: p) %/ q = c *: (p %/ q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite !divp0 scaler0.
by apply: IdomainUnit.divpZl; rewrite unitfE lead_coef_eq0.
Qed.

Lemma modpZr c p d : c != 0 -> p %% (c *: d) = (p %% d).
Proof.
case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !modp0.
have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
  by rewrite scalerCA scalerA mulVf // scale1r -divp_eq.
suff s : size (p %% d) < size (c *: d) by rewrite (modpP e s).
by rewrite size_scale ?ltn_modp.
Qed.

Lemma divpZr c p d : c != 0 -> p %/ (c *: d) = c^-1 *: (p %/ d).
Proof.
case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !divp0 scaler0.
have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
  by rewrite scalerCA scalerA mulVf // scale1r -divp_eq.
suff s : size (p %% d) < size (c *: d) by rewrite (divpP e s).
by rewrite size_scale ?ltn_modp.
Qed.

Lemma eqp_modpl d p q : p %= q -> (p %% d) %= (q %% d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!modpZl e.
Qed.

Lemma eqp_divl d p q : p %= q -> (p %/ d) %= (q %/ d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!divpZl e.
Qed.

Lemma eqp_modpr d p q : p %= q -> (d %% p) %= (d %% q).
Proof.
case/eqpP=> [[c1 c2]] /andP [c1n0 c2n0 e].
have -> : p = (c1^-1 * c2) *: q by rewrite -scalerA -e scalerA mulVf // scale1r.
by rewrite modpZr ?eqpxx // mulf_eq0 negb_or invr_eq0 c1n0.
Qed.

Lemma eqp_mod p1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> p1 %% q1 %= p2 %% q2.
Proof. move=> e1 e2; exact: eqp_trans (eqp_modpl _ e1) (eqp_modpr _ e2). Qed.

Lemma eqp_divr (d m n : {poly F}) : m %= n -> (d %/ m) %= (d %/ n).
Proof.
case/eqpP=> [[c1 c2]] /andP [c1n0 c2n0 e].
have -> : m = (c1^-1 * c2) *: n by rewrite -scalerA -e scalerA mulVf // scale1r.
by rewrite divpZr ?eqp_scale // ?invr_eq0 mulf_eq0 negb_or invr_eq0 c1n0.
Qed.

Lemma eqp_div p1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> p1 %/ q1 %= p2 %/ q2.
Proof. move=> e1 e2; exact: eqp_trans (eqp_divl _ e1) (eqp_divr _ e2). Qed.

Lemma eqp_gdcor p q r : q %= r -> gdcop p q %= gdcop p r.
Proof.
move=> eqr; rewrite /gdcop (eqp_size eqr).
move: (size r)=> n; elim: n p q r eqr => [|n ihn] p q r; first by rewrite eqpxx.
move=> eqr /=; rewrite (eqp_coprimepl p eqr); case: ifP => _ //.
exact/ihn/eqp_div/eqp_gcdl.
Qed.

Lemma eqp_gdcol p q r : q %= r -> gdcop q p %= gdcop r p.
Proof.
move=> eqr; rewrite /gdcop; move: (size p)=> n.
elim: n p q r eqr {1 3}p (eqpxx p) => [|n ihn] p q r eqr s esp /=.
  case: (eqVneq q 0) eqr => [-> | nq0 eqr] /=.
    by rewrite eqp_sym eqp0 => ->; rewrite eqpxx.
  by case: (eqVneq r 0) eqr nq0 => [->|]; rewrite ?eqpxx // eqp0 => ->.
rewrite (eqp_coprimepr _ eqr) (eqp_coprimepl _ esp); case: ifP=> _ //.
exact/ihn/eqp_div/eqp_gcd.
Qed.

Lemma eqp_rgdco_gdco q p : rgdcop q p %= gdcop q p.
Proof.
rewrite /rgdcop /gdcop; move: (size p)=> n.
elim: n p q {1 3}p {1 3}q (eqpxx p) (eqpxx q) => [|n ihn] p q s t /= sp tq.
  case: (eqVneq t 0) tq => [-> | nt0 etq].
    by rewrite eqp_sym eqp0 => ->; rewrite eqpxx.
  by case: (eqVneq q 0) etq nt0 => [->|]; rewrite ?eqpxx // eqp0 => ->.
rewrite rcoprimep_coprimep (eqp_coprimepl t sp) (eqp_coprimepr p tq).
case: ifP=> // _; apply: ihn => //; apply: eqp_trans (eqp_rdiv_div _ _) _.
by apply: eqp_div => //; apply: eqp_trans (eqp_rgcd_gcd _ _) _; apply: eqp_gcd.
Qed.

Lemma modpD d p q : (p + q) %% d = p %% d + q %% d.
Proof.
have [-> | dn0] := eqVneq d 0; first by rewrite !modp0.
by apply: IdomainUnit.modpD; rewrite unitfE lead_coef_eq0.
Qed.

Lemma modpN p q : (- p) %% q = - (p %% q).
Proof. by apply/eqP; rewrite -addr_eq0 -modpD addNr mod0p. Qed.

Lemma modNp p q : (- p) %% q = - (p %% q). Proof. exact: modpN. Qed.

Lemma divpD d p q : (p + q) %/ d = p %/ d + q %/ d.
Proof.
have [-> | dn0] := eqVneq d 0; first by rewrite !divp0 addr0.
by apply: IdomainUnit.divpD; rewrite unitfE lead_coef_eq0.
Qed.

Lemma divpN p q : (- p) %/ q = - (p %/ q).
Proof. by apply/eqP; rewrite -addr_eq0 -divpD addNr div0p. Qed.

Lemma divp_addl_mul_small d q r : size r < size d -> (q * d + r) %/ d = q.
Proof.
move=> srd; rewrite divpD (divp_small srd) addr0 mulpK // -size_poly_gt0.
exact: leq_trans srd.
Qed.

Lemma modp_addl_mul_small d q r : size r < size d -> (q * d + r) %% d = r.
Proof. by move=> srd; rewrite modpD modp_mull add0r modp_small. Qed.

Lemma divp_addl_mul d q r : d != 0 -> (q * d + r) %/ d = q + r %/ d.
Proof. by move=> dn0; rewrite divpD mulpK. Qed.

Lemma divpp d : d != 0 -> d %/ d = 1.
Proof.
by move=> dn0; apply: IdomainUnit.divpp; rewrite unitfE lead_coef_eq0.
Qed.

Lemma leq_trunc_divp d m : size (m %/ d * d) <= size m.
Proof.
have [-> | dn0] := eqVneq d 0; first by rewrite mulr0 size_poly0.
by apply: IdomainUnit.leq_trunc_divp; rewrite unitfE lead_coef_eq0.
Qed.

Lemma divpK d p : d %| p -> p %/ d * d = p.
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite mulr0.
by apply: IdomainUnit.divpK; rewrite unitfE lead_coef_eq0.
Qed.

Lemma divpKC d p : d %| p -> d * (p %/ d) = p.
Proof. by move=> ?; rewrite mulrC divpK. Qed.

Lemma dvdp_eq_div d p q : d != 0 -> d %| p -> (q == p %/ d) = (q * d == p).
Proof.
by move=> dn0; apply: IdomainUnit.dvdp_eq_div; rewrite unitfE lead_coef_eq0.
Qed.

Lemma dvdp_eq_mul d p q : d != 0 -> d %| p -> (p == q * d) = (p %/ d == q).
Proof. by move=> dn0 dv_d_p; rewrite eq_sym -dvdp_eq_div // eq_sym. Qed.

Lemma divp_mulA d p q : d %| q -> p * (q %/ d) = p * q %/ d.
Proof.
case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite !divp0 mulr0.
by apply: IdomainUnit.divp_mulA; rewrite unitfE lead_coef_eq0.
Qed.

Lemma divp_mulAC d m n : d %| m -> m %/ d * n = m * n %/ d.
Proof. by move=> hdm; rewrite mulrC (mulrC m); apply: divp_mulA. Qed.

Lemma divp_mulCA d p q : d %| p -> d %| q -> p * (q %/ d) = q * (p %/ d).
Proof. by move=> hdp hdq; rewrite mulrC divp_mulAC // divp_mulA. Qed.

Lemma expp_sub d m n : d != 0 -> m >= n -> (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
Proof. by move=> dn0 /subnK=> {2}<-; rewrite exprD mulpK // expf_neq0. Qed.

Lemma divp_pmul2l d q p : d != 0 -> q != 0 -> d * p %/ (d * q) = p %/ q.
Proof.
by move=> dn0 qn0; apply: IdomainUnit.divp_pmul2l; rewrite unitfE lead_coef_eq0.
Qed.

Lemma divp_pmul2r d p q : d != 0 -> p != 0 -> q * d %/ (p * d) = q %/ p.
Proof. by move=> dn0 qn0; rewrite -!(mulrC d) divp_pmul2l. Qed.

Lemma divp_divl r p q : q %/ p %/ r = q %/ (p * r).
Proof.
have [-> | rn0] := eqVneq r 0; first by rewrite mulr0 !divp0.
have [-> | pn0] := eqVneq p 0; first by rewrite mul0r !divp0 div0p.
by apply: IdomainUnit.divp_divl; rewrite unitfE lead_coef_eq0.
Qed.

Lemma divpAC d p q : q %/ d %/ p = q %/ p %/ d.
Proof. by rewrite !divp_divl // mulrC. Qed.

Lemma edivp_def p q : edivp p q = (0, p %/ q, p %% q).
Proof.
rewrite Idomain.edivp_def; congr (_, _, _); rewrite /scalp 2!unlock /=.
have [-> | qn0] := eqVneq; first by rewrite lead_coef0 unitr0.
by rewrite unitfE lead_coef_eq0 qn0 /=; case: (redivp_rec _ _ _ _) => [[]].
Qed.

Lemma divpE p q : p %/ q = (lead_coef q)^-(rscalp p q) *: (rdivp p q).
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite rdivp0 divp0 scaler0.
by rewrite Idomain.divpE unitfE lead_coef_eq0 qn0.
Qed.

Lemma modpE p q : p %% q = (lead_coef q)^-(rscalp p q) *: (rmodp p q).
Proof.
have [-> | qn0] := eqVneq q 0.
  by rewrite rmodp0 modp0 /rscalp unlock eqxx lead_coef0 expr0 invr1 scale1r.
by rewrite Idomain.modpE unitfE lead_coef_eq0 qn0.
Qed.

Lemma scalpE p q : scalp p q = 0.
Proof.
have [-> | qn0] := eqVneq q 0; first by rewrite scalp0.
by rewrite Idomain.scalpE unitfE lead_coef_eq0 qn0.
Qed.

(* Just to have it without importing the weak theory *)
Lemma dvdpE p q : p %| q = rdvdp p q. Proof. exact: Idomain.dvdpE. Qed.

Variant edivp_spec m d : nat * {poly F} * {poly F} -> Type :=
  EdivpSpec n q r of
  m = q * d + r & (d != 0) ==> (size r < size d) : edivp_spec m d (n, q, r).

Lemma edivpP m d : edivp_spec m d (edivp m d).
Proof.
rewrite edivp_def; constructor; first exact: divp_eq.
by apply/implyP=> dn0; rewrite ltn_modp.
Qed.

Lemma edivp_eq d q r : size r < size d -> edivp (q * d + r) d = (0, q, r).
Proof.
move=> srd; apply: Idomain.edivp_eq; rewrite // unitfE lead_coef_eq0.
by rewrite -size_poly_gt0; apply: leq_trans srd.
Qed.

Lemma modp_mul p q m : (p * (q %% m)) %% m = (p * q) %% m.
Proof. by rewrite [in RHS](divp_eq q m) mulrDr modpD mulrA modp_mull add0r. Qed.

Lemma horner_mod p q x : root q x -> (p %% q).[x] = p.[x].
Proof.
by rewrite [in RHS](divp_eq p q) !hornerE => /eqP->; rewrite mulr0 add0r.
Qed.

Lemma dvdpP p q : reflect (exists qq, p = qq * q) (q %| p).
Proof.
have [-> | qn0] := eqVneq q 0; last first.
  by apply: IdomainUnit.dvdpP; rewrite unitfE lead_coef_eq0.
by rewrite dvd0p; apply: (iffP eqP) => [->| [? ->]]; [exists 1|]; rewrite mulr0.
Qed.

Lemma Bezout_eq1_coprimepP p q :
  reflect (exists u, u.1 * p + u.2 * q = 1) (coprimep p q).
Proof.
apply: (iffP idP)=> [hpq|]; last first.
  by case=> [[u v]] /= e; apply/Bezout_coprimepP; exists (u, v); rewrite e eqpxx.
case/Bezout_coprimepP: hpq => [[u v]] /=.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0] e.
exists (c2^-1 *: (c1 *: u), c2^-1 *: (c1 *: v)); rewrite /= -!scalerAl.
by rewrite -!scalerDr e scalerA mulVf // scale1r.
Qed.

Lemma dvdp_gdcor p q : q != 0 -> p %| (gdcop q p) * (q ^+ size p).
Proof.
rewrite /gdcop => nz_q; have [n hsp] := ubnPleq (size p).
elim: n => [|n IHn] /= in p hsp *; first by rewrite (negPf nz_q) mul0r dvdp0.
have [_ | ncop_pq] := ifPn; first by rewrite dvdp_mulr.
have g_gt1: 1 < size (gcdp p q).
  rewrite ltn_neqAle eq_sym ncop_pq size_poly_gt0 gcdp_eq0.
  by rewrite negb_and nz_q orbT.
have [-> | nz_p] := eqVneq p 0.
  by rewrite div0p exprSr mulrA dvdp_mulr // IHn // size_poly0.
have le_d_p: size (p %/ gcdp p q) < size p.
  rewrite size_divp -?size_poly_eq0 -(subnKC g_gt1) // add2n /=.
  by rewrite polySpred // ltnS subSS leq_subr.
rewrite -[p in p %| _](divpK (dvdp_gcdl p q)) exprSr mulrA.
by rewrite dvdp_mul ?IHn ?dvdp_gcdr // -ltnS (leq_trans le_d_p).
Qed.

Lemma reducible_cubic_root p q :
  size p <= 4 -> 1 < size q < size p -> q %| p -> {r | root p r}.
Proof.
move=> p_le4 /andP[]; rewrite leq_eqVlt eq_sym.
have [/poly2_root[x qx0] _ _ | _ /= q_gt2 p_gt_q] := size q =P 2.
  by exists x; rewrite -!dvdp_XsubCl in qx0 *; apply: (dvdp_trans qx0).
case/dvdpP/sig_eqW=> r def_p; rewrite def_p.
suffices /poly2_root[x rx0]: size r = 2 by exists x; rewrite rootM rx0.
have /norP[nz_r nz_q]: ~~ [|| r == 0 | q == 0].
  by rewrite -mulf_eq0 -def_p -size_poly_gt0 (leq_ltn_trans _ p_gt_q).
rewrite def_p size_mul // -subn1 leq_subLR ltn_subRL in p_gt_q p_le4.
by apply/eqP; rewrite -(eqn_add2r (size q)) eqn_leq (leq_trans p_le4).
Qed.

Lemma cubic_irreducible p :
  1 < size p <= 4 -> (forall x, ~~ root p x) -> irreducible_poly p.
Proof.
move=> /andP[p_gt1 p_le4] root'p; split=> // q sz_q_neq1 q_dv_p.
have nz_p: p != 0 by rewrite -size_poly_gt0 ltnW.
have nz_q: q != 0 by apply: contraTneq q_dv_p => ->; rewrite dvd0p.
have q_gt1: size q > 1 by rewrite ltn_neqAle eq_sym sz_q_neq1 size_poly_gt0.
rewrite -dvdp_size_eqp // eqn_leq dvdp_leq //= leqNgt; apply/negP=> p_gt_q.
by have [|x /idPn//] := reducible_cubic_root p_le4 _ q_dv_p; rewrite q_gt1.
Qed.

Section Multiplicity.

Definition mup x q :=
  [arg max_(n > ord0 : 'I_(size q).+1 | ('X - x%:P) ^+ n %| q) n] : nat.

Lemma mup_geq x q n : q != 0 -> (n <= mup x q)%N = (('X - x%:P) ^+ n %| q).
Proof.
move=> q_neq0; rewrite /mup; symmetry.
case: arg_maxnP; rewrite ?expr0 ?dvd1p//= => i i_dvd gti.
case: ltnP => [|/dvdp_exp2l/dvdp_trans]; last exact.
apply: contraTF => dvdq; rewrite -leqNgt.
suff n_small : (n < (size q).+1)%N by exact: (gti (Ordinal n_small)).
by rewrite ltnS ltnW// -(size_exp_XsubC _ x) dvdp_leq.
Qed.

Lemma mup_leq x q n : q != 0 -> (mup x q <= n)%N = ~~ (('X - x%:P) ^+ n.+1 %| q).
Proof. by move=> qN0; rewrite leqNgt mup_geq. Qed.

Lemma mup_ltn x q n : q != 0 -> (mup x q < n)%N = ~~ (('X - x%:P) ^+ n %| q).
Proof. by move=> qN0; rewrite ltnNge mup_geq. Qed.

Lemma XsubC_dvd x q : q != 0 -> ('X - x%:P %| q) = (0 < mup x q)%N.
Proof. by move=> /mup_geq-/(_ _ 1%N)/esym; apply. Qed.

Lemma mup_XsubCX n x y :
  mup x (('X - y%:P) ^+ n) = (if (y == x) then n else 0)%N.
Proof.
have Xxn0 : ('X - y%:P) ^+ n != 0 by rewrite ?expf_neq0 ?polyXsubC_eq0.
apply/eqP; rewrite eqn_leq mup_leq ?mup_geq//.
have [->|Nxy] := eqVneq x y.
  by rewrite /= dvdpp ?dvdp_Pexp2l ?size_XsubC ?ltnn.
by rewrite dvd1p dvdp_XsubCl /root horner_exp !hornerE expf_neq0// subr_eq0.
Qed.

Lemma mupNroot x q : ~~ root q x -> mup x q = 0%N.
Proof.
move=> qNx; have qN0 : q != 0 by apply: contraNneq qNx => ->; rewrite root0.
by move: qNx; rewrite -dvdp_XsubCl XsubC_dvd// lt0n negbK => /eqP.
Qed.

Lemma mupMr x q1 q2 : ~~ root q1 x -> mup x (q1 * q2) = mup x q2.
Proof.
move=> q1Nx; have q1N0 : q1 != 0 by apply: contraNneq q1Nx => ->; rewrite root0.
have [->|q2N0] := eqVneq q2 0; first by rewrite mulr0.
apply/esym/eqP; rewrite eqn_leq mup_geq ?mulf_neq0// dvdp_mull -?mup_geq//=.
rewrite mup_leq ?mulf_neq0// Gauss_dvdpr -?mup_ltn//.
by rewrite coprimep_expl// coprimep_sym coprimep_XsubC.
Qed.

Lemma mupMl x q1 q2 : ~~ root q2 x -> mup x (q1 * q2) = mup x q1.
Proof. by rewrite mulrC; apply/mupMr. Qed.

Lemma mupM x q1 q2 : q1 != 0 -> q2 != 0 ->
  mup x (q1 * q2) = (mup x q1 + mup x q2)%N.
Proof.
move=> q1N0 q2N0; apply/eqP; rewrite eqn_leq mup_leq ?mulf_neq0//.
rewrite mup_geq ?mulf_neq0// exprD ?dvdp_mul; do ?by rewrite -mup_geq.
have [m1 [r1]] := multiplicity_XsubC q1 x; rewrite q1N0 /= => r1Nx ->.
have [m2 [r2]] := multiplicity_XsubC q2 x; rewrite q2N0 /= => r2Nx ->.
rewrite !mupMr// ?mup_XsubCX eqxx/= mulrACA exprS exprD.
rewrite dvdp_mul2r ?mulf_neq0 ?expf_neq0 ?polyXsubC_eq0//.
by rewrite dvdp_XsubCl rootM negb_or r1Nx r2Nx.
Qed.

Lemma mu_prod_XsubC x (s : seq F) :
  mup x (\prod_(y <- s) ('X - y%:P)) = count_mem x s.
Proof.
elim: s => [|y s IHs]; rewrite (big_cons, big_nil)/=.
  by rewrite mupNroot// root1.
rewrite mupM ?polyXsubC_eq0// ?monic_neq0 ?monic_prod_XsubC//.
by rewrite IHs (@mup_XsubCX 1).
Qed.

Lemma prod_XsubC_eq (s t : seq F) :
  \prod_(x <- s) ('X - x%:P) = \prod_(x <- t) ('X - x%:P) -> perm_eq s t.
Proof.
move=> eq_prod; apply/allP => x _ /=; apply/eqP.
by have /(congr1 (mup x)) := eq_prod; rewrite !mu_prod_XsubC.
Qed.

End Multiplicity.

Section FieldRingMap.

Variable rR : ringType.

Variable f : {rmorphism F -> rR}.
Local Notation "p ^f" := (map_poly f p) : ring_scope.

Implicit Type a b : {poly F}.

Lemma redivp_map a b :
  redivp a^f b^f = (rscalp a b, (rdivp a b)^f, (rmodp a b)^f).
Proof.
rewrite /rdivp /rscalp /rmodp !unlock map_poly_eq0 size_map_poly.
have [// | q_nz] := ifPn; rewrite -(rmorph0 (map_poly f)) //.
have [m _] := ubnPeq (size a); elim: m 0%N 0 a => [|m IHm] qq r a /=.
  rewrite -!mul_polyC !size_map_poly !lead_coef_map // -(map_polyXn f).
  by rewrite -!(map_polyC f) -!rmorphM -rmorphB -rmorphD; case: (_ < _).
rewrite -!mul_polyC !size_map_poly !lead_coef_map // -(map_polyXn f).
by rewrite -!(map_polyC f) -!rmorphM -rmorphB -rmorphD /= IHm; case: (_ < _).
Qed.

End FieldRingMap.

Section FieldMap.

Variable rR : idomainType.

Variable f : {rmorphism F -> rR}.
Local Notation "p ^f" := (map_poly f p) : ring_scope.

Implicit Type a b : {poly F}.

Lemma edivp_map a b :
  edivp a^f b^f = (0, (a %/ b)^f, (a %% b)^f).
Proof.
have [-> | bn0] := eqVneq b 0.
  rewrite (rmorph0 (map_poly f)) WeakIdomain.edivp_def !modp0 !divp0.
  by rewrite (rmorph0 (map_poly f)) scalp0.
rewrite unlock redivp_map lead_coef_map rmorph_unit; last first.
  by rewrite unitfE lead_coef_eq0.
rewrite modpE divpE !map_polyZ [in RHS]rmorphV ?rmorphXn // unitfE.
by rewrite expf_neq0 // lead_coef_eq0.
Qed.

Lemma scalp_map p q : scalp p^f q^f = scalp p q.
Proof. by rewrite /scalp edivp_map edivp_def. Qed.

Lemma map_divp p q : (p %/ q)^f = p^f %/ q^f.
Proof. by rewrite /divp edivp_map edivp_def. Qed.

Lemma map_modp p q : (p %% q)^f = p^f %% q^f.
Proof. by rewrite /modp edivp_map edivp_def. Qed.

Lemma egcdp_map p q :
  egcdp (map_poly f p) (map_poly f q)
     = (map_poly f (egcdp p q).1, map_poly f (egcdp p q).2).
Proof.
wlog le_qp: p q / size q <= size p.
  move=> IH; have [/IH// | lt_qp] := leqP (size q) (size p).
  have /IH := ltnW lt_qp; rewrite /egcdp !size_map_poly ltnW // leqNgt lt_qp /=.
  by case: (egcdp_rec _ _ _) => u v [-> ->].
rewrite /egcdp !size_map_poly {}le_qp; move: (size q) => n.
elim: n => /= [|n IHn] in p q *; first by rewrite rmorph1 rmorph0.
rewrite map_poly_eq0; have [_ | nz_q] := ifPn; first by rewrite rmorph1 rmorph0.
rewrite -map_modp (IHn q (p %% q)); case: (egcdp_rec _ _ n) => u v /=.
rewrite map_polyZ lead_coef_map -rmorphXn scalp_map rmorphB rmorphM.
by rewrite -map_divp.
Qed.

Lemma dvdp_map p q : (p^f %| q^f) = (p %| q).
Proof. by rewrite /dvdp -map_modp map_poly_eq0. Qed.

Lemma eqp_map p q : (p^f %= q^f) = (p %= q).
Proof. by rewrite /eqp !dvdp_map. Qed.

Lemma gcdp_map p q : (gcdp p q)^f = gcdp p^f q^f.
Proof.
wlog lt_p_q: p q / size p < size q.
  move=> IHpq; case: (ltnP (size p) (size q)) => [|le_q_p]; first exact: IHpq.
  rewrite gcdpE (gcdpE p^f) !size_map_poly ltnNge le_q_p /= -map_modp.
  have [-> | q_nz] := eqVneq q 0; first by rewrite rmorph0 !gcdp0.
  by rewrite IHpq ?ltn_modp.
have [m le_q_m] := ubnP (size q); elim: m => // m IHm in p q lt_p_q le_q_m *.
rewrite gcdpE (gcdpE p^f) !size_map_poly lt_p_q -map_modp.
have [-> | q_nz] := eqVneq p 0; first by rewrite rmorph0 !gcdp0.
by rewrite IHm ?(leq_trans lt_p_q) ?ltn_modp.
Qed.

Lemma coprimep_map p q : coprimep p^f q^f = coprimep p q.
Proof. by rewrite -!gcdp_eqp1 -eqp_map rmorph1 gcdp_map. Qed.

Lemma gdcop_rec_map p q n : (gdcop_rec p q n)^f = gdcop_rec p^f q^f n.
Proof.
elim: n p q => [|n IH] => /= p q.
  by rewrite map_poly_eq0; case: eqP; rewrite ?rmorph1 ?rmorph0.
rewrite /coprimep -gcdp_map size_map_poly.
by case: eqP => Hq0 //; rewrite -map_divp -IH.
Qed.

Lemma gdcop_map p q : (gdcop p q)^f = gdcop p^f q^f.
Proof. by rewrite /gdcop gdcop_rec_map !size_map_poly. Qed.

End FieldMap.

End FieldDivision.

End Field.

Module ClosedField.

Import Field.

Section closed.

Variable F : closedFieldType.

Lemma root_coprimep (p q : {poly F}):
  (forall x, root p x -> q.[x] != 0) -> coprimep p q.
Proof.
move=> Ncmn; rewrite -gcdp_eqp1 -size_poly_eq1; apply/closed_rootP.
by case=> r; rewrite root_gcd !rootE=> /andP [/Ncmn/negPf->].
Qed.

Lemma coprimepP (p q : {poly F}):
  reflect (forall x, root p x -> q.[x] != 0) (coprimep p q).
Proof. by apply: (iffP idP)=> [/coprimep_root|/root_coprimep]. Qed.

End closed.

End ClosedField.

End Pdiv.

Export Pdiv.Field.