File: vector.v

package info (click to toggle)
ssreflect 2.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,536 kB
  • sloc: ml: 506; sh: 190; lisp: 39; makefile: 39
file content (2348 lines) | stat: -rw-r--r-- 86,001 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype bigop finfun tuple.
From mathcomp Require Import ssralg matrix mxalgebra zmodp.

(******************************************************************************)
(*                    Finite dimensional vector spaces                        *)
(*                                                                            *)
(* NB: See CONTRIBUTING.md for an introduction to HB concepts and commands.   *)
(*                                                                            *)
(*           vectType R == interface structure for finite dimensional (more   *)
(*                         precisely, detachable) vector spaces over R, which *)
(*                         should be at least a ringType                      *)
(*                         The HB class is called Vector.                     *)
(*     Vector.axiom n M <-> type M is linearly isomorphic to 'rV_n            *)
(*                         := {v2r : M -> 'rV_n| linear v2r & bijective v2r}  *)
(*          {vspace vT} == the type of (detachable) subspaces of vT; vT       *)
(*                         should have a vectType structure over a fieldType  *)
(*           subvs_of U == the subtype of elements of V in the subspace U     *)
(*                         This is canonically a vectType.                    *)
(*              vsval u == linear injection of u : subvs_of U into V          *)
(*           vsproj U v == linear projection of v : V in subvs U              *)
(*             rVof e v == row vector in 'rV_(\dim vT) of coordinates of      *)
(*                         v : vT in the basis e                              *)
(*            vecof e v == vector in vT whose coordinates in the basis e are  *)
(*                         given by v : 'rV_(\dim vT)                         *)
(*                         Note that this is the inverse of rVof.             *)
(*          mxof e e' f == \dim uT * \dim vT matrix of the linear function    *)
(*                         f : 'Hom(uT, vT) in the bases e of uT and e' of vT,*)
(*                         acting on row vectors                              *)
(*          hommx e f M == linear function in 'Hom(uT, vT) whose matrix       *)
(*                         in the bases e and f is M : 'M_(\dim uT, \dim vT)  *)
(*                         Note that this is the inverse of mxof.             *)
(*             vsof e M == the subspace of vT generated by the rows of M,     *)
(*                         seen as coordinates in the basis e                 *)
(*             msof e U == matrix whose rows, seen as coordinates in the      *)
(*                         basis e, generate the subspace U of vT             *)
(*                         Note that this is the inverse of vsof.             *)
(*         'Hom(aT, rT) == the type of linear functions (homomorphisms) from  *)
(*                         aT to rT, where aT and rT are vectType structures  *)
(*                         Elements of 'Hom(aT, rT) coerce to Coq functions.  *)
(*             linfun f == a vector linear function in 'Hom(aT, rT) that      *)
(*                         coincides with f : aT -> rT when f is linear       *)
(*             'End(vT) == endomorphisms of vT (:= 'Hom(vT, vT))              *)
(* --> The types subvs_of U, 'Hom(aT, rT), 'End(vT), K^o, 'M[K]_(m, n),       *)
(*     vT * wT, {ffun I -> vT}, vT ^ n all have canonical vectType instances. *)
(*                                                                            *)
(*  Functions:                                                                *)
(*             <[v]>%VS == the vector space generated by v (a line if v != 0) *)
(*                 0%VS == the trivial vector subspace                        *)
(*         fullv, {:vT} == the complete vector subspace (displays as fullv)   *)
(*           (U + V)%VS == the join (sum) of two subspaces U and V            *)
(*         (U :&: V)%VS == intersection of vector subspaces U and V           *)
(*             (U^C)%VS == a complement of the vector subspace U              *)
(*         (U :\: V)%VS == a local complement to U :& V in the subspace U     *)
(*               \dim U == dimension of a vector space U                      *)
(*     span X, <<X>>%VS == the subspace spanned by the vector sequence X      *)
(*          coord X i v == i'th coordinate of v on X, when v \in <<X>>%VS and *)
(*                         where X : n.-tuple vT and i : 'I_n                 *)
(*                         Note that coord X i is a scalar function.          *)
(*              vpick U == a nonzero element of U if U= 0%VS, or 0 if U = 0   *)
(*             vbasis U == a (\dim U).-tuple that is a basis of U             *)
(*                \1%VF == the identity linear function                       *)
(*          (f \o g)%VF == the composite of two linear functions f and g      *)
(*            (f^-1)%VF == a linear function that is a right inverse to the   *)
(*                         linear function f on the codomain of f             *)
(*          (f @: U)%VS == the image of U by the linear function f            *)
(*       (f @^-1: U)%VS == the pre-image of U by the linear function f        *)
(*               lker f == the kernel of the linear function f                *)
(*               limg f == the image of the linear function f                 *)
(*         fixedSpace f == the fixed space of a linear endomorphism f         *)
(*         daddv_pi U V == projection onto U along V if U and V are disjoint; *)
(*                         daddv_pi U V + daddv_pi V U is then a projection   *)
(*                         onto the direct sum (U + V)%VS                     *)
(*              projv U == projection onto U (along U^C, := daddv_pi U U^C)   *)
(*         addv_pi1 U V == projection onto the subspace U :\: V of U along V  *)
(*         addv_pi2 U V == projection onto V along U :\: V; note that         *)
(*                         addv_pi1 U V and addv_pi2 U V are (asymmetrical)   *)
(*                         complementary projections on (U + V)%VS            *)
(*   sumv_pi_for defV i == for defV : V = (V \sum_(j <- r | P j) Vs j)%VS,    *)
(*                         j ranging over an eqType, this is a projection on  *)
(*                         a subspace of Vs i, along a complement in V, such  *)
(*                         that \sum_(j <- r | P j) sumv_pi_for defV j is a   *)
(*                         projection onto V if filter P r is duplicate-free  *)
(*                         (e.g., when V := \sum_(j | P j) Vs j)              *)
(*          sumv_pi V i == notation the above when defV == erefl V, and V is  *)
(*                         convertible to \sum_(j <- r | P j) Vs j)%VS        *)
(*      leigenspace f a == linear eigenspace of the linear function f for     *)
(*                         the (potential) eigenvalue a                       *)
(*                                                                            *)
(*  Predicates:                                                               *)
(*              v \in U == v belongs to U (:= (<[v]> <= U)%VS)                *)
(*          (U <= V)%VS == U is a subspace of V                               *)
(*               free B == B is a sequence of nonzero linearly independent    *)
(*                         vectors                                            *)
(*         basis_of U b == b is a basis of the subspace U                     *)
(*            directv S == S is the expression for a direct sum of subspaces  *)
(*      leigenvalue f a == a is a linear eigenvalue of the linear function f  *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Declare Scope vspace_scope.
Declare Scope lfun_scope.

Local Open Scope ring_scope.

Reserved Notation "{ 'vspace' T }" (at level 0, format "{ 'vspace'  T }").
Reserved Notation "''Hom' ( T , rT )" (at level 8, format "''Hom' ( T ,  rT )").
Reserved Notation "''End' ( T )" (at level 8, format "''End' ( T )").
Reserved Notation "\dim A" (at level 10, A at level 8, format "\dim  A").

Delimit Scope vspace_scope with VS.

Import GRing.Theory.

(* Finite dimension vector space *)
Definition vector_axiom_def (R : ringType) n (V : lmodType R) :=
  {v2r : V -> 'rV[R]_n | linear v2r & bijective v2r}.
Arguments vector_axiom_def [R] n%N V%type.

HB.mixin Record Lmodule_hasFinDim (R : ringType) (V : Type) of GRing.Lmodule R V :=
  { dim : nat;
    vector_subdef : vector_axiom_def dim V }.

#[mathcomp(axiom="vector_axiom_def"), short(type="vectType")]
HB.structure Definition Vector (R : ringType) :=
  { V of Lmodule_hasFinDim R V & GRing.Lmodule R V }.

#[deprecated(since="mathcomp 2.2.0", note="Use Vector.axiom instead.")]
Notation vector_axiom := Vector.axiom.
Arguments dim {R} s.

(* FIXME: S/space and H/hom were defined behind the module Vector *
 * Perhaps we should change their names to avoid conflicts.       *)
Section OtherDefs.
Local Coercion dim : Vector.type >-> nat.
Inductive space (K : fieldType) (vT : Vector.type K) :=
  Space (mx : 'M[K]_vT) & <<mx>>%MS == mx.
Inductive hom (R : ringType) (vT wT : Vector.type R) :=
  Hom of 'M[R]_(vT, wT).
End OtherDefs.
(* /FIXME *)

Module Import VectorExports.
Bind Scope ring_scope with Vector.sort.

Arguments space [K] vT%type.

Notation "{ 'vspace' vT }" := (space vT) : type_scope.
Notation "''Hom' ( aT , rT )" := (hom aT rT) : type_scope.
Notation "''End' ( vT )" := (hom vT vT) : type_scope.

Prenex Implicits Hom.

Delimit Scope vspace_scope with VS.
Bind Scope vspace_scope with space.
Delimit Scope lfun_scope with VF.
Bind Scope lfun_scope with hom.

End VectorExports.

(* The contents of this module exposes the matrix encodings, and should       *)
(* therefore not be used outside of the vector library implementation.        *)
Module VectorInternalTheory.

Section Iso.
Variables (R : ringType) (vT rT : vectType R).
Local Coercion dim : Vector.type >-> nat.

Fact v2r_subproof : Vector.axiom vT vT. Proof. exact: vector_subdef. Qed.
Definition v2r := s2val v2r_subproof.

Let v2r_bij : bijective v2r := s2valP' v2r_subproof.
Fact r2v_subproof : {r2v | cancel r2v v2r}.
Proof.
have r2vP r: {v | v2r v = r}.
  by apply: sig_eqW; have [v _ vK] := v2r_bij; exists (v r).
by exists (fun r => sval (r2vP r)) => r; case: (r2vP r).
Qed.
Definition r2v := sval r2v_subproof.

Lemma r2vK : cancel r2v v2r.   Proof. exact: svalP r2v_subproof. Qed.
Lemma r2v_inj : injective r2v. Proof. exact: can_inj r2vK. Qed.
Lemma v2rK : cancel v2r r2v.   Proof. by have/bij_can_sym:= r2vK; apply. Qed.
Lemma v2r_inj : injective v2r. Proof. exact: can_inj v2rK. Qed.

HB.instance Definition _ := GRing.isLinear.Build R vT 'rV_vT _ v2r
  (s2valP v2r_subproof).
HB.instance Definition _ := GRing.isLinear.Build R 'rV_vT vT _ r2v
  (can2_linear v2rK r2vK).
End Iso.

Section Vspace.
Variables (K : fieldType) (vT : vectType K).
Local Coercion dim : Vector.type >-> nat.

Definition b2mx n (X : n.-tuple vT) := \matrix_i v2r (tnth X i).
Lemma b2mxK n (X : n.-tuple vT) i : r2v (row i (b2mx X)) = X`_i.
Proof. by rewrite rowK v2rK -tnth_nth. Qed.

Definition vs2mx (U : @space K vT) := let: Space mx _ := U in mx.
Lemma gen_vs2mx (U : {vspace vT}) : <<vs2mx U>>%MS = vs2mx U.
Proof. by apply/eqP; rewrite /vs2mx; case: U. Qed.

Fact mx2vs_subproof m (A : 'M[K]_(m, vT)) : <<(<<A>>)>>%MS == <<A>>%MS.
Proof. by rewrite genmx_id. Qed.
Definition mx2vs {m} A : {vspace vT} := Space (@mx2vs_subproof m A).

HB.instance Definition _ := [isSub of {vspace vT} for vs2mx].
Lemma vs2mxK : cancel vs2mx mx2vs.
Proof. by move=> v; apply: val_inj; rewrite /= gen_vs2mx. Qed.
Lemma mx2vsK m (M : 'M_(m, vT)) : (vs2mx (mx2vs M) :=: M)%MS.
Proof. exact: genmxE. Qed.
End Vspace.

Section Hom.
Variables (R : ringType) (aT rT : vectType R).
Definition f2mx (f : 'Hom(aT, rT)) := let: Hom A := f in A.
HB.instance Definition _ : isSub _ _ 'Hom(aT, rT) := [isNew for f2mx].
End Hom.

Arguments mx2vs {K vT m%N} A%MS.
Prenex Implicits v2r r2v v2rK r2vK b2mx vs2mx vs2mxK f2mx.

End VectorInternalTheory.

Export VectorExports.
Import VectorInternalTheory.

Section VspaceDefs.

Variables (K : fieldType) (vT : vectType K).
Implicit Types (u : vT) (X : seq vT) (U V : {vspace vT}).

HB.instance Definition _ := [Choice of {vspace vT} by <:].

Definition dimv U := \rank (vs2mx U).
Definition subsetv U V := (vs2mx U <= vs2mx V)%MS.
Definition vline u := mx2vs (v2r u).

(* Vspace membership is defined as line inclusion. *)
Definition pred_of_vspace (U : space vT) : {pred vT} :=
  fun v => (vs2mx (vline v) <= vs2mx U)%MS.
Canonical vspace_predType := @PredType _ (unkeyed {vspace vT}) pred_of_vspace.

Definition fullv : {vspace vT} := mx2vs 1%:M.
Definition addv U V := mx2vs (vs2mx U + vs2mx V).
Definition capv U V := mx2vs (vs2mx U :&: vs2mx V).
Definition complv U := mx2vs (vs2mx U)^C.
Definition diffv U V := mx2vs (vs2mx U :\: vs2mx V).
Definition vpick U := r2v (nz_row (vs2mx U)).
Fact span_key : unit. Proof. by []. Qed.
Definition span_expanded_def X := mx2vs (b2mx (in_tuple X)).
Definition span := locked_with span_key span_expanded_def.
Canonical span_unlockable := [unlockable fun span].
Definition vbasis_def U :=
  [tuple r2v (row i (row_base (vs2mx U))) | i < dimv U].
Definition vbasis := locked_with span_key vbasis_def.
Canonical vbasis_unlockable := [unlockable fun vbasis].

(* coord and directv are defined in the VectorTheory section. *)

Definition free X := dimv (span X) == size X.
Definition basis_of U X := (span X == U) && free X.

End VspaceDefs.

Coercion pred_of_vspace : space >-> pred_sort.
Notation "\dim U" := (dimv U) : nat_scope.
Notation "U <= V" := (subsetv U V) : vspace_scope.
Notation "U <= V <= W" := (subsetv U V && subsetv V W) : vspace_scope.
Notation "<[ v ] >" := (vline v) : vspace_scope.
Notation "<< X >>" := (span X) : vspace_scope.
Notation "0" := (vline 0) : vspace_scope.
Arguments fullv {K vT}.
Prenex Implicits subsetv addv capv complv diffv span free basis_of.

Notation "U + V" := (addv U V) : vspace_scope.
Notation "U :&: V" := (capv U V) : vspace_scope.
Notation "U ^C" := (complv U) (at level 8, format "U ^C") : vspace_scope.
Notation "U :\: V" := (diffv U V) : vspace_scope.
Notation "{ : vT }" := (@fullv _ vT) (only parsing) : vspace_scope.

Notation "\sum_ ( i <- r | P ) U" :=
  (\big[addv/0%VS]_(i <- r | P%B) U%VS) : vspace_scope.
Notation "\sum_ ( i <- r ) U" :=
  (\big[addv/0%VS]_(i <- r) U%VS) : vspace_scope.
Notation "\sum_ ( m <= i < n | P ) U" :=
  (\big[addv/0%VS]_(m <= i < n | P%B) U%VS) : vspace_scope.
Notation "\sum_ ( m <= i < n ) U" :=
  (\big[addv/0%VS]_(m <= i < n) U%VS) : vspace_scope.
Notation "\sum_ ( i | P ) U" :=
  (\big[addv/0%VS]_(i | P%B) U%VS) : vspace_scope.
Notation "\sum_ i U" :=
  (\big[addv/0%VS]_i U%VS) : vspace_scope.
Notation "\sum_ ( i : t | P ) U" :=
  (\big[addv/0%VS]_(i : t | P%B) U%VS) (only parsing) : vspace_scope.
Notation "\sum_ ( i : t ) U" :=
  (\big[addv/0%VS]_(i : t) U%VS) (only parsing) : vspace_scope.
Notation "\sum_ ( i < n | P ) U" :=
  (\big[addv/0%VS]_(i < n | P%B) U%VS) : vspace_scope.
Notation "\sum_ ( i < n ) U" :=
  (\big[addv/0%VS]_(i < n) U%VS) : vspace_scope.
Notation "\sum_ ( i 'in' A | P ) U" :=
  (\big[addv/0%VS]_(i in A | P%B) U%VS) : vspace_scope.
Notation "\sum_ ( i 'in' A ) U" :=
  (\big[addv/0%VS]_(i in A) U%VS) : vspace_scope.

Notation "\bigcap_ ( i <- r | P ) U" :=
  (\big[capv/fullv]_(i <- r | P%B) U%VS) : vspace_scope.
Notation "\bigcap_ ( i <- r ) U" :=
  (\big[capv/fullv]_(i <- r) U%VS) : vspace_scope.
Notation "\bigcap_ ( m <= i < n | P ) U" :=
  (\big[capv/fullv]_(m <= i < n | P%B) U%VS) : vspace_scope.
Notation "\bigcap_ ( m <= i < n ) U" :=
  (\big[capv/fullv]_(m <= i < n) U%VS) : vspace_scope.
Notation "\bigcap_ ( i | P ) U" :=
  (\big[capv/fullv]_(i | P%B) U%VS) : vspace_scope.
Notation "\bigcap_ i U" :=
  (\big[capv/fullv]_i U%VS) : vspace_scope.
Notation "\bigcap_ ( i : t | P ) U" :=
  (\big[capv/fullv]_(i : t | P%B) U%VS) (only parsing) : vspace_scope.
Notation "\bigcap_ ( i : t ) U" :=
  (\big[capv/fullv]_(i : t) U%VS) (only parsing) : vspace_scope.
Notation "\bigcap_ ( i < n | P ) U" :=
  (\big[capv/fullv]_(i < n | P%B) U%VS) : vspace_scope.
Notation "\bigcap_ ( i < n ) U" :=
  (\big[capv/fullv]_(i < n) U%VS) : vspace_scope.
Notation "\bigcap_ ( i 'in' A | P ) U" :=
  (\big[capv/fullv]_(i in A | P%B) U%VS) : vspace_scope.
Notation "\bigcap_ ( i 'in' A ) U" :=
  (\big[capv/fullv]_(i in A) U%VS) : vspace_scope.

Section VectorTheory.

Variables (K : fieldType) (vT : vectType K).
Implicit Types (a : K) (u v w : vT) (X Y : seq vT) (U V W : {vspace vT}).

Local Notation subV := (@subsetv K vT) (only parsing).
Local Notation addV := (@addv K vT) (only parsing).
Local Notation capV := (@capv K vT) (only parsing).

(* begin hide *)

(* Internal theory facts *)
Let vs2mxP U V : reflect (U = V) (vs2mx U == vs2mx V)%MS.
Proof. by rewrite (sameP genmxP eqP) !gen_vs2mx; apply: eqP. Qed.

Let memvK v U : (v \in U) = (v2r v <= vs2mx U)%MS.
Proof. by rewrite -genmxE. Qed.

Let mem_r2v rv U : (r2v rv \in U) = (rv <= vs2mx U)%MS.
Proof. by rewrite memvK r2vK. Qed.

Let vs2mx0 : @vs2mx K vT 0 = 0.
Proof. by rewrite /= linear0 genmx0. Qed.

Let vs2mxD U V : vs2mx (U + V) = (vs2mx U + vs2mx V)%MS.
Proof. by rewrite /= genmx_adds !gen_vs2mx. Qed.

Let vs2mx_sum := big_morph _ vs2mxD vs2mx0.

Let vs2mxI U V : vs2mx (U :&: V) = (vs2mx U :&: vs2mx V)%MS.
Proof. by rewrite /= genmx_cap !gen_vs2mx. Qed.

Let vs2mxF : vs2mx {:vT} = 1%:M.
Proof. by rewrite /= genmx1. Qed.

Let row_b2mx n (X : n.-tuple vT) i : row i (b2mx X) = v2r X`_i.
Proof. by rewrite -tnth_nth rowK. Qed.

Let span_b2mx n (X : n.-tuple vT) : span X = mx2vs (b2mx X).
Proof. by rewrite unlock tvalK; case: _ / (esym _). Qed.

Let mul_b2mx n (X : n.-tuple vT) (rk : 'rV_n) :
  \sum_i rk 0 i *: X`_i = r2v (rk *m b2mx X).
Proof.
rewrite mulmx_sum_row linear_sum; apply: eq_bigr => i _.
by rewrite row_b2mx linearZ /= v2rK.
Qed.

Let lin_b2mx n (X : n.-tuple vT) k :
  \sum_(i < n) k i *: X`_i = r2v (\row_i k i *m b2mx X).
Proof. by rewrite -mul_b2mx; apply: eq_bigr => i _; rewrite mxE. Qed.

Let free_b2mx n (X : n.-tuple vT) : free X = row_free (b2mx X).
Proof. by rewrite /free /dimv span_b2mx genmxE size_tuple. Qed.
(* end hide *)

Lemma memvE v U : (v \in U) = (<[v]> <= U)%VS. Proof. by []. Qed.

Lemma vlineP v1 v2 : reflect (exists k, v1 = k *: v2) (v1 \in <[v2]>)%VS.
Proof.
apply: (iffP idP) => [|[k ->]]; rewrite memvK genmxE ?linearZ ?scalemx_sub //.
by case/sub_rVP=> k; rewrite -linearZ => /v2r_inj->; exists k.
Qed.

Fact memv_submod_closed U : submod_closed U.
Proof.
split=> [|a u v]; rewrite !memvK 1?linear0 1?sub0mx // => Uu Uv.
by rewrite linearP addmx_sub ?scalemx_sub.
Qed.
HB.instance Definition _ (U : {vspace vT}) :=
  GRing.isSubmodClosed.Build K vT (pred_of_vspace U) (memv_submod_closed U).

Lemma mem0v U : 0 \in U. Proof. exact: rpred0. Qed.
Lemma memvN U v : (- v \in U) = (v \in U). Proof. exact: rpredN. Qed.
Lemma memvD U : {in U &, forall u v, u + v \in U}. Proof. exact: rpredD. Qed.
Lemma memvB U : {in U &, forall u v, u - v \in U}. Proof. exact: rpredB. Qed.
Lemma memvZ U k : {in U, forall v, k *: v \in U}. Proof. exact: rpredZ. Qed.

Lemma memv_suml I r (P : pred I) vs U :
  (forall i, P i -> vs i \in U) -> \sum_(i <- r | P i) vs i \in U.
Proof. exact: rpred_sum. Qed.

Lemma memv_line u : u \in <[u]>%VS.
Proof. by apply/vlineP; exists 1; rewrite scale1r. Qed.

Lemma subvP U V : reflect {subset U <= V} (U <= V)%VS.
Proof.
apply: (iffP rV_subP) => sU12 u.
  by rewrite !memvE /subsetv !genmxE => /sU12.
by have:= sU12 (r2v u); rewrite !memvE /subsetv !genmxE r2vK.
Qed.

Lemma subvv U : (U <= U)%VS. Proof. exact/subvP. Qed.
Hint Resolve subvv : core.

Lemma subv_trans : transitive subV.
Proof. by move=> U V W /subvP sUV /subvP sVW; apply/subvP=> u /sUV/sVW. Qed.

Lemma subv_anti : antisymmetric subV.
Proof. by move=> U V; apply/vs2mxP. Qed.

Lemma eqEsubv U V : (U == V) = (U <= V <= U)%VS.
Proof. by apply/eqP/idP=> [-> | /subv_anti//]; rewrite subvv. Qed.

Lemma vspaceP U V : U =i V <-> U = V.
Proof.
split=> [eqUV | -> //]; apply/subv_anti/andP.
by split; apply/subvP=> v; rewrite eqUV.
Qed.

Lemma subvPn {U V} : reflect (exists2 u, u \in U & u \notin V) (~~ (U <= V)%VS).
Proof.
apply: (iffP idP) => [|[u Uu]]; last by apply: contra => /subvP->.
case/row_subPn=> i; set vi := row i _ => V'vi.
by exists (r2v vi); rewrite memvK r2vK ?row_sub.
Qed.

(* Empty space. *)
Lemma sub0v U : (0 <= U)%VS.
Proof. exact: mem0v. Qed.

Lemma subv0 U : (U <= 0)%VS = (U == 0%VS).
Proof. by rewrite eqEsubv sub0v andbT. Qed.

Lemma memv0 v : v \in 0%VS = (v == 0).
Proof. by apply/idP/eqP=> [/vlineP[k ->] | ->]; rewrite (scaler0, mem0v). Qed.

(* Full space *)

Lemma subvf U : (U <= fullv)%VS. Proof. by rewrite /subsetv vs2mxF submx1. Qed.
Lemma memvf v : v \in fullv. Proof. exact: subvf. Qed.

(* Picking a non-zero vector in a subspace. *)
Lemma memv_pick U : vpick U \in U. Proof. by rewrite mem_r2v nz_row_sub. Qed.

Lemma vpick0 U : (vpick U == 0) = (U == 0%VS).
Proof. by  rewrite -memv0 mem_r2v -subv0 /subV vs2mx0 !submx0 nz_row_eq0. Qed.

(* Sum of subspaces. *)
Lemma subv_add U V W : (U + V <= W)%VS = (U <= W)%VS && (V <= W)%VS.
Proof. by rewrite /subV vs2mxD addsmx_sub. Qed.

Lemma addvS U1 U2 V1 V2 : (U1 <= U2 -> V1 <= V2 -> U1 + V1 <= U2 + V2)%VS.
Proof. by rewrite /subV !vs2mxD; apply: addsmxS. Qed.

Lemma addvSl U V : (U <= U + V)%VS.
Proof. by rewrite /subV vs2mxD addsmxSl. Qed.

Lemma addvSr U V : (V <= U + V)%VS.
Proof. by rewrite /subV vs2mxD addsmxSr. Qed.

Lemma addvC : commutative addV.
Proof. by move=> U V; apply/vs2mxP; rewrite !vs2mxD addsmxC submx_refl. Qed.

Lemma addvA : associative addV.
Proof. by move=> U V W; apply/vs2mxP; rewrite !vs2mxD addsmxA submx_refl. Qed.

Lemma addv_idPl {U V}: reflect (U + V = U)%VS (V <= U)%VS.
Proof. by rewrite /subV (sameP addsmx_idPl eqmxP) -vs2mxD; apply: vs2mxP. Qed.

Lemma addv_idPr {U V} : reflect (U + V = V)%VS (U <= V)%VS.
Proof. by rewrite addvC; apply: addv_idPl. Qed.

Lemma addvv : idempotent_op addV.
Proof. by move=> U; apply/addv_idPl. Qed.

Lemma add0v : left_id 0%VS addV.
Proof. by move=> U; apply/addv_idPr/sub0v. Qed.

Lemma addv0 : right_id 0%VS addV.
Proof. by move=> U; apply/addv_idPl/sub0v. Qed.

Lemma sumfv : left_zero fullv addV.
Proof. by move=> U; apply/addv_idPl/subvf. Qed.

Lemma addvf : right_zero fullv addV.
Proof. by move=> U; apply/addv_idPr/subvf. Qed.

HB.instance Definition _ := Monoid.isComLaw.Build {vspace vT} 0%VS addv
  addvA addvC add0v.

Lemma memv_add u v U V : u \in U -> v \in V -> u + v \in (U + V)%VS.
Proof. by rewrite !memvK genmxE linearD; apply: addmx_sub_adds. Qed.

Lemma memv_addP {w U V} :
  reflect (exists2 u, u \in U & exists2 v, v \in V & w = u + v)
          (w \in U + V)%VS.
Proof.
apply: (iffP idP) => [|[u Uu [v Vv ->]]]; last exact: memv_add.
rewrite memvK genmxE => /sub_addsmxP[r /(canRL v2rK)->].
rewrite linearD /=; set u := r2v _; set v := r2v _.
by exists u; last exists v; rewrite // mem_r2v submxMl.
Qed.

Section BigSum.
Variable I : finType.
Implicit Type P : pred I.

Lemma sumv_sup i0 P U Vs :
  P i0 -> (U <= Vs i0)%VS -> (U <= \sum_(i | P i) Vs i)%VS.
Proof. by move=> Pi0 /subv_trans-> //; rewrite (bigD1 i0) ?addvSl. Qed.
Arguments sumv_sup i0 [P U Vs].

Lemma subv_sumP {P Us V} :
  reflect (forall i, P i -> Us i <= V)%VS  (\sum_(i | P i) Us i <= V)%VS.
Proof.
apply: (iffP idP) => [sUV i Pi | sUV].
  by apply: subv_trans sUV; apply: sumv_sup Pi _.
by elim/big_rec: _ => [|i W Pi sWV]; rewrite ?sub0v // subv_add sUV.
Qed.

Lemma memv_sumr P vs (Us : I -> {vspace vT}) :
    (forall i, P i -> vs i \in Us i) ->
  \sum_(i | P i) vs i \in (\sum_(i | P i) Us i)%VS.
Proof. by move=> Uv; apply/rpred_sum=> i Pi; apply/(sumv_sup i Pi)/Uv. Qed.

Lemma memv_sumP {P} {Us : I -> {vspace vT}} {v} :
  reflect (exists2 vs, forall i, P i ->  vs i \in Us i
                     & v = \sum_(i | P i) vs i)
          (v \in \sum_(i | P i) Us i)%VS.
Proof.
apply: (iffP idP) => [|[vs Uv ->]]; last exact: memv_sumr.
rewrite memvK vs2mx_sum => /sub_sumsmxP[r /(canRL v2rK)->].
pose f i := r2v (r i *m vs2mx (Us i)); rewrite linear_sum /=.
by exists f => //= i _; rewrite mem_r2v submxMl.
Qed.

End BigSum.

(* Intersection *)

Lemma subv_cap U V W : (U <= V :&: W)%VS = (U <= V)%VS && (U <= W)%VS.
Proof. by rewrite /subV vs2mxI sub_capmx. Qed.

Lemma capvS U1 U2 V1 V2 : (U1 <= U2 -> V1 <= V2 -> U1 :&: V1 <= U2 :&: V2)%VS.
Proof. by rewrite /subV !vs2mxI; apply: capmxS. Qed.

Lemma capvSl U V : (U :&: V <= U)%VS.
Proof. by rewrite /subV vs2mxI capmxSl. Qed.

Lemma capvSr U V : (U :&: V <= V)%VS.
Proof. by rewrite /subV vs2mxI capmxSr. Qed.

Lemma capvC : commutative capV.
Proof. by move=> U V; apply/vs2mxP; rewrite !vs2mxI capmxC submx_refl. Qed.

Lemma capvA : associative capV.
Proof. by move=> U V W; apply/vs2mxP; rewrite !vs2mxI capmxA submx_refl. Qed.

Lemma capv_idPl {U V} : reflect (U :&: V = U)%VS (U <= V)%VS.
Proof. by rewrite /subV(sameP capmx_idPl eqmxP) -vs2mxI; apply: vs2mxP. Qed.

Lemma capv_idPr {U V} : reflect (U :&: V = V)%VS (V <= U)%VS.
Proof. by rewrite capvC; apply: capv_idPl. Qed.

Lemma capvv : idempotent_op capV.
Proof. by move=> U; apply/capv_idPl. Qed.

Lemma cap0v : left_zero 0%VS capV.
Proof. by move=> U; apply/capv_idPl/sub0v. Qed.

Lemma capv0 : right_zero 0%VS capV.
Proof. by move=> U; apply/capv_idPr/sub0v. Qed.

Lemma capfv : left_id fullv capV.
Proof. by move=> U; apply/capv_idPr/subvf. Qed.

Lemma capvf : right_id fullv capV.
Proof. by move=> U; apply/capv_idPl/subvf. Qed.

HB.instance Definition _ := Monoid.isComLaw.Build {vspace vT} fullv capv
  capvA capvC capfv.

Lemma memv_cap w U V : (w \in U :&: V)%VS = (w \in U) && (w \in V).
Proof. by rewrite !memvE subv_cap. Qed.

Lemma memv_capP {w U V} : reflect (w \in U /\ w \in V) (w \in U :&: V)%VS.
Proof. by rewrite memv_cap; apply: andP. Qed.

Lemma vspace_modl U V W : (U <= W -> U + (V :&: W) = (U + V) :&: W)%VS.
Proof.
by move=> sUV; apply/vs2mxP; rewrite !(vs2mxD, vs2mxI); apply/eqmxP/matrix_modl.
Qed.

Lemma vspace_modr  U V W : (W <= U -> (U :&: V) + W = U :&: (V + W))%VS.
Proof. by rewrite -!(addvC W) !(capvC U); apply: vspace_modl. Qed.

Section BigCap.
Variable I : finType.
Implicit Type P : pred I.

Lemma bigcapv_inf i0 P Us V :
  P i0 -> (Us i0 <= V -> \bigcap_(i | P i) Us i <= V)%VS.
Proof. by move=> Pi0; apply: subv_trans; rewrite (bigD1 i0) ?capvSl. Qed.

Lemma subv_bigcapP {P U Vs} :
  reflect (forall i, P i -> U <= Vs i)%VS (U <= \bigcap_(i | P i) Vs i)%VS.
Proof.
apply: (iffP idP) => [sUV i Pi | sUV].
  by rewrite (subv_trans sUV) ?(bigcapv_inf Pi).
by elim/big_rec: _ => [|i W Pi]; rewrite ?subvf // subv_cap sUV.
Qed.

End BigCap.

(* Complement *)
Lemma addv_complf U : (U + U^C)%VS = fullv.
Proof.
apply/vs2mxP; rewrite vs2mxD -gen_vs2mx -genmx_adds !genmxE submx1 sub1mx.
exact: addsmx_compl_full.
Qed.

Lemma capv_compl U : (U :&: U^C = 0)%VS.
Proof.
apply/val_inj; rewrite [val]/= vs2mx0 vs2mxI -gen_vs2mx -genmx_cap.
by rewrite capmx_compl genmx0.
Qed.

(* Difference *)
Lemma diffvSl U V : (U :\: V <= U)%VS.
Proof. by rewrite /subV genmxE diffmxSl. Qed.

Lemma capv_diff U V : ((U :\: V) :&: V = 0)%VS.
Proof.
apply/val_inj; rewrite [val]/= vs2mx0 vs2mxI -(gen_vs2mx V) -genmx_cap.
by rewrite capmx_diff genmx0.
Qed.

Lemma addv_diff_cap U V : (U :\: V + U :&: V)%VS = U.
Proof.
apply/vs2mxP; rewrite vs2mxD -genmx_adds !genmxE.
exact/eqmxP/addsmx_diff_cap_eq.
Qed.

Lemma addv_diff U V : (U :\: V + V = U + V)%VS.
Proof. by rewrite -{2}(addv_diff_cap U V) -addvA (addv_idPr (capvSr U V)). Qed.

(* Subspace dimension. *)
Lemma dimv0 : \dim (0%VS : {vspace vT}) = 0.
Proof. by rewrite /dimv vs2mx0 mxrank0. Qed.

Lemma dimv_eq0 U :  (\dim U == 0) = (U == 0%VS).
Proof. by rewrite /dimv /= mxrank_eq0 [in RHS]/eq_op /= linear0 genmx0. Qed.

Lemma dimvf : \dim {:vT} = dim vT.
Proof. by rewrite /dimv vs2mxF mxrank1. Qed.

Lemma dim_vline v : \dim <[v]> = (v != 0).
Proof. by rewrite /dimv mxrank_gen rank_rV (can2_eq v2rK r2vK) linear0. Qed.

Lemma dimvS U V : (U <= V)%VS -> \dim U <= \dim V.
Proof. exact: mxrankS. Qed.

Lemma dimv_leqif_sup U V : (U <= V)%VS -> \dim U <= \dim V ?= iff (V <= U)%VS.
Proof. exact: mxrank_leqif_sup. Qed.

Lemma dimv_leqif_eq U V : (U <= V)%VS -> \dim U <= \dim V ?= iff (U == V).
Proof. by rewrite eqEsubv; apply: mxrank_leqif_eq. Qed.

Lemma eqEdim U V : (U == V) = (U <= V)%VS && (\dim V <= \dim U).
Proof. by apply/idP/andP=> [/eqP | [/dimv_leqif_eq/geq_leqif]] ->. Qed.

Lemma dimv_compl U : \dim U^C = (\dim {:vT} - \dim U)%N.
Proof. by rewrite dimvf /dimv mxrank_gen mxrank_compl. Qed.

Lemma dimv_cap_compl U V : (\dim (U :&: V) + \dim (U :\: V))%N = \dim U.
Proof. by rewrite /dimv !mxrank_gen mxrank_cap_compl. Qed.

Lemma dimv_sum_cap U V : (\dim (U + V) + \dim (U :&: V) = \dim U + \dim V)%N.
Proof. by rewrite /dimv !mxrank_gen mxrank_sum_cap. Qed.

Lemma dimv_disjoint_sum U V :
  (U :&: V = 0)%VS -> \dim (U + V) = (\dim U + \dim V)%N.
Proof. by move=> dxUV; rewrite -dimv_sum_cap dxUV dimv0 addn0. Qed.

Lemma dimv_add_leqif U V :
  \dim (U + V) <= \dim U + \dim V ?= iff (U :&: V <= 0)%VS.
Proof.
by rewrite /dimv /subV !mxrank_gen vs2mx0 genmxE; apply: mxrank_adds_leqif.
Qed.

Lemma diffv_eq0 U V : (U :\: V == 0)%VS = (U <= V)%VS.
Proof.
rewrite -dimv_eq0 -(eqn_add2l (\dim (U :&: V))) addn0 dimv_cap_compl eq_sym.
by rewrite (dimv_leqif_eq (capvSl _ _)) (sameP capv_idPl eqP).
Qed.

Lemma dimv_leq_sum I r (P : pred I) (Us : I -> {vspace vT}) :
  \dim (\sum_(i <- r | P i) Us i) <= \sum_(i <- r | P i) \dim (Us i).
Proof.
elim/big_rec2: _ => [|i d vs _ le_vs_d]; first by rewrite dim_vline eqxx.
by apply: (leq_trans (dimv_add_leqif _ _)); rewrite leq_add2l.
Qed.

Section SumExpr.

(* The vector direct sum theory clones the interface types of the matrix     *)
(* direct sum theory (see mxalgebra for the technical details), but          *)
(* nevetheless reuses much of the matrix theory.                             *)
Structure addv_expr := Sumv {
  addv_val :> wrapped {vspace vT};
  addv_dim : wrapped nat;
  _ : mxsum_spec (vs2mx (unwrap addv_val)) (unwrap addv_dim)
}.

(* Piggyback on mxalgebra theory. *)
Definition vs2mx_sum_expr_subproof (S : addv_expr) :
  mxsum_spec (vs2mx (unwrap S)) (unwrap (addv_dim S)).
Proof. by case: S. Qed.
Canonical vs2mx_sum_expr S := ProperMxsumExpr (vs2mx_sum_expr_subproof S).

Canonical trivial_addv U := @Sumv (Wrap U) (Wrap (\dim U)) (TrivialMxsum _).

Structure proper_addv_expr := ProperSumvExpr {
  proper_addv_val :> {vspace vT};
  proper_addv_dim :> nat;
  _ : mxsum_spec (vs2mx proper_addv_val) proper_addv_dim
}.

Definition proper_addvP (S : proper_addv_expr) :=
  let: ProperSumvExpr _ _ termS := S return mxsum_spec (vs2mx S) S in termS.

Canonical proper_addv (S : proper_addv_expr) :=
  @Sumv (wrap (S : {vspace vT})) (wrap (S : nat)) (proper_addvP S).

Section Binary.
Variables S1 S2 : addv_expr.
Fact binary_addv_subproof :
  mxsum_spec (vs2mx (unwrap S1 + unwrap S2))
             (unwrap (addv_dim S1) + unwrap (addv_dim S2)).
Proof. by rewrite vs2mxD; apply: proper_mxsumP. Qed.
Canonical binary_addv_expr := ProperSumvExpr binary_addv_subproof.
End Binary.

Section Nary.
Variables (I : Type) (r : seq I) (P : pred I) (S_ : I -> addv_expr).
Fact nary_addv_subproof :
  mxsum_spec (vs2mx (\sum_(i <- r | P i) unwrap (S_ i)))
             (\sum_(i <- r | P i) unwrap (addv_dim (S_ i))).
Proof. by rewrite vs2mx_sum; apply: proper_mxsumP. Qed.
Canonical nary_addv_expr := ProperSumvExpr nary_addv_subproof.
End Nary.

Definition directv_def S of phantom {vspace vT} (unwrap (addv_val S)) :=
  \dim (unwrap S) == unwrap (addv_dim S).

End SumExpr.

Local Notation directv A := (directv_def (Phantom {vspace _} A%VS)).

Lemma directvE (S : addv_expr) :
  directv (unwrap S) = (\dim (unwrap S) == unwrap (addv_dim S)).
Proof. by []. Qed.

Lemma directvP {S : proper_addv_expr} : reflect (\dim S = S :> nat) (directv S).
Proof. exact: eqnP. Qed.

Lemma directv_trivial U : directv (unwrap (@trivial_addv U)).
Proof. exact: eqxx. Qed.

Lemma dimv_sum_leqif (S : addv_expr) :
  \dim (unwrap S) <= unwrap (addv_dim S) ?= iff directv (unwrap S).
Proof.
rewrite directvE; case: S => [[U] [d] /= defUd]; split=> //=.
rewrite /dimv; elim: {1}_ {U}_ d / defUd => // m1 m2 A1 A2 r1 r2 _ leA1 _ leA2.
by apply: leq_trans (leq_add leA1 leA2); rewrite mxrank_adds_leqif.
Qed.

Lemma directvEgeq (S : addv_expr) :
  directv (unwrap S) = (\dim (unwrap S) >= unwrap (addv_dim S)).
Proof. by rewrite leq_eqVlt ltnNge eq_sym !dimv_sum_leqif orbF. Qed.

Section BinaryDirect.

Lemma directv_addE (S1 S2 : addv_expr) :
  directv (unwrap S1 + unwrap S2)
    = [&& directv (unwrap S1), directv (unwrap S2)
        & unwrap S1 :&: unwrap S2 == 0]%VS.
Proof.
by rewrite /directv_def /dimv vs2mxD -mxdirectE mxdirect_addsE -vs2mxI -vs2mx0.
Qed.

Lemma directv_addP {U V} : reflect (U :&: V = 0)%VS (directv (U + V)).
Proof. by rewrite directv_addE !directv_trivial; apply: eqP. Qed.

Lemma directv_add_unique {U V} :
   reflect (forall u1 u2 v1 v2, u1 \in U -> u2 \in U -> v1 \in V -> v2 \in V ->
             (u1 + v1 == u2 + v2) = ((u1, v1) == (u2, v2)))
           (directv (U + V)).
Proof.
apply: (iffP directv_addP) => [dxUV u1 u2 v1 v2 Uu1 Uu2 Vv1 Vv2 | dxUV].
  apply/idP/idP=> [| /eqP[-> ->] //]; rewrite -subr_eq0 opprD addrACA addr_eq0.
  move/eqP=> eq_uv; rewrite xpair_eqE -subr_eq0 eq_uv oppr_eq0 subr_eq0 andbb.
  by rewrite -subr_eq0 -memv0 -dxUV memv_cap -memvN -eq_uv !memvB.
apply/eqP; rewrite -subv0; apply/subvP=> v /memv_capP[U1v U2v].
by rewrite memv0 -[v == 0]andbb {1}eq_sym -xpair_eqE -dxUV ?mem0v // addrC.
Qed.

End BinaryDirect.

Section NaryDirect.

Context {I : finType} {P : pred I}.

Lemma directv_sumP {Us : I -> {vspace vT}} :
  reflect (forall i, P i -> Us i :&: (\sum_(j | P j && (j != i)) Us j) = 0)%VS
          (directv (\sum_(i | P i) Us i)).
Proof.
rewrite directvE /= /dimv vs2mx_sum -mxdirectE; apply: (equivP mxdirect_sumsP).
by do [split=> dxU i /dxU; rewrite -vs2mx_sum -vs2mxI -vs2mx0] => [/val_inj|->].
Qed.

Lemma directv_sumE {Ss : I -> addv_expr} (xunwrap := unwrap) :
  reflect [/\ forall i, P i -> directv (unwrap (Ss i))
            & directv (\sum_(i | P i) xunwrap (Ss i))]
          (directv (\sum_(i | P i) unwrap (Ss i))).
Proof.
by rewrite !directvE /= /dimv 2!{1}vs2mx_sum -!mxdirectE; apply: mxdirect_sumsE.
Qed.

Lemma directv_sum_independent {Us : I -> {vspace vT}} :
   reflect (forall us,
               (forall i, P i -> us i \in Us i) -> \sum_(i | P i) us i = 0 ->
             (forall i, P i -> us i = 0))
           (directv (\sum_(i | P i) Us i)).
Proof.
apply: (iffP directv_sumP) => [dxU us Uu u_0 i Pi | dxU i Pi].
  apply/eqP; rewrite -memv0 -(dxU i Pi) memv_cap Uu //= -memvN -sub0r -{1}u_0.
  by rewrite (bigD1 i) //= addrC addKr memv_sumr // => j /andP[/Uu].
apply/eqP; rewrite -subv0; apply/subvP=> v.
rewrite memv_cap memv0 => /andP[Uiv /memv_sumP[us Uu Dv]].
have: \sum_(j | P j) [eta us with i |-> - v] j = 0.
  rewrite (bigD1 i) //= eqxx {1}Dv addrC -sumrB big1 // => j /andP[_ i'j].
  by rewrite (negPf i'j) subrr.
move/dxU/(_ i Pi); rewrite /= eqxx -oppr_eq0 => -> // j Pj.
by have [-> | i'j] := eqVneq; rewrite ?memvN // Uu ?Pj.
Qed.

Lemma directv_sum_unique {Us : I -> {vspace vT}} :
  reflect (forall us vs,
              (forall i, P i -> us i \in Us i) ->
              (forall i, P i -> vs i \in Us i) ->
            (\sum_(i | P i) us i == \sum_(i | P i) vs i)
              = [forall (i | P i), us i == vs i])
          (directv (\sum_(i | P i) Us i)).
Proof.
apply: (iffP directv_sum_independent) => [dxU us vs Uu Uv | dxU us Uu u_0 i Pi].
  apply/idP/forall_inP=> [|eq_uv]; last by apply/eqP/eq_bigr => i /eq_uv/eqP.
  rewrite -subr_eq0 -sumrB => /eqP/dxU eq_uv i Pi.
  by rewrite -subr_eq0 eq_uv // => j Pj; apply: memvB; move: j Pj.
apply/eqP; have:= esym (dxU us \0 Uu _); rewrite u_0 big1_eq eqxx.
by move/(_ _)/forall_inP=> -> // j _; apply: mem0v.
Qed.

End NaryDirect.

(* Linear span generated by a list of vectors *)
Lemma memv_span X v : v \in X -> v \in <<X>>%VS.
Proof.
by case/seq_tnthP=> i {v}->; rewrite unlock memvK genmxE (eq_row_sub i) // rowK.
Qed.

Lemma memv_span1 v : v \in <<[:: v]>>%VS.
Proof. by rewrite memv_span ?mem_head. Qed.

Lemma dim_span X : \dim <<X>> <= size X.
Proof. by rewrite unlock /dimv genmxE rank_leq_row. Qed.

Lemma span_subvP {X U} : reflect {subset X <= U} (<<X>> <= U)%VS.
Proof.
rewrite /subV [@span _ _]unlock genmxE.
apply: (iffP row_subP) => /= [sXU | sXU i].
  by move=> _ /seq_tnthP[i ->]; have:= sXU i; rewrite rowK memvK.
by rewrite rowK -memvK sXU ?mem_tnth.
Qed.

Lemma sub_span X Y : {subset X <= Y} -> (<<X>> <= <<Y>>)%VS.
Proof. by move=> sXY; apply/span_subvP=> v /sXY/memv_span. Qed.

Lemma eq_span X Y : X =i Y -> (<<X>> = <<Y>>)%VS.
Proof.
by move=> eqXY; apply: subv_anti; rewrite !sub_span // => u; rewrite eqXY.
Qed.

Lemma span_def X : span X = (\sum_(u <- X) <[u]>)%VS.
Proof.
apply/subv_anti/andP; split.
  by apply/span_subvP=> v Xv; rewrite (big_rem v) // memvE addvSl.
by rewrite big_tnth; apply/subv_sumP=> i _; rewrite -memvE memv_span ?mem_tnth.
Qed.

Lemma span_nil : (<<Nil vT>> = 0)%VS.
Proof. by rewrite span_def big_nil. Qed.

Lemma span_seq1 v : (<<[:: v]>> = <[v]>)%VS.
Proof. by rewrite span_def big_seq1. Qed.

Lemma span_cons v X : (<<v :: X>> = <[v]> + <<X>>)%VS.
Proof. by rewrite !span_def big_cons. Qed.

Lemma span_cat X Y : (<<X ++ Y>> = <<X>> + <<Y>>)%VS.
Proof. by rewrite !span_def big_cat. Qed.

(* Coordinates function; should perhaps be generalized to nat indices. *)

Definition coord_expanded_def n (X : n.-tuple vT) i v :=
  (v2r v *m pinvmx (b2mx X)) 0 i.
Definition coord := locked_with span_key coord_expanded_def.
Canonical coord_unlockable := [unlockable fun coord].

Fact coord_is_scalar n (X : n.-tuple vT) i : scalar (coord X i).
Proof. by move=> k u v; rewrite unlock linearP mulmxDl -scalemxAl !mxE. Qed.
HB.instance Definition _ n Xn i :=
  GRing.isLinear.Build K vT K _ (coord Xn i) (@coord_is_scalar n Xn i).

Lemma coord_span n (X : n.-tuple vT) v :
  v \in span X -> v = \sum_i coord X i v *: X`_i.
Proof.
rewrite memvK span_b2mx genmxE => Xv.
by rewrite unlock_with mul_b2mx mulmxKpV ?v2rK.
Qed.

Lemma coord0 i v : coord [tuple 0] i v = 0.
Proof.
rewrite unlock /pinvmx rank_rV; case: negP => [[] | _].
  by apply/eqP/rowP=> j; rewrite !mxE (tnth_nth 0) /= linear0 mxE.
by rewrite pid_mx_0 !(mulmx0, mul0mx) mxE.
Qed.

(* Free generator sequences. *)

Lemma nil_free : free (Nil vT).
Proof. by rewrite /free span_nil dimv0. Qed.

Lemma seq1_free v : free [:: v] = (v != 0).
Proof. by rewrite /free span_seq1 dim_vline; case: (~~ _). Qed.

Lemma perm_free X Y : perm_eq X Y -> free X = free Y.
Proof.
by move=> eqXY; rewrite /free (perm_size eqXY) (eq_span (perm_mem eqXY)).
Qed.

Lemma free_directv X : free X = (0 \notin X) && directv (\sum_(v <- X) <[v]>).
Proof.
have leXi i (v := tnth (in_tuple X) i): true -> \dim <[v]> <= 1 ?= iff (v != 0).
  by rewrite -seq1_free -span_seq1 => _; apply/leqif_eq/dim_span.
have [_ /=] := leqif_trans (dimv_sum_leqif _) (leqif_sum leXi).
rewrite sum1_card card_ord !directvE /= /free andbC span_def !(big_tnth _ _ X).
by congr (_ = _ && _); rewrite -has_pred1 -all_predC -big_all big_tnth big_andE.
Qed.

Lemma free_not0 v X : free X -> v \in X -> v != 0.
Proof. by rewrite free_directv andbC => /andP[_ /memPn]; apply. Qed.

Lemma freeP n (X : n.-tuple vT) :
  reflect (forall k, \sum_(i < n) k i *: X`_i = 0 -> (forall i, k i = 0))
          (free X).
Proof.
rewrite free_b2mx; apply: (iffP idP) => [t_free k kt0 i | t_free].
  suffices /rowP/(_ i): \row_i k i = 0 by rewrite !mxE.
  by apply/(row_free_inj t_free)/r2v_inj; rewrite mul0mx -lin_b2mx kt0 linear0.
rewrite -kermx_eq0; apply/rowV0P=> rk /sub_kermxP kt0.
by apply/rowP=> i; rewrite mxE {}t_free // mul_b2mx kt0 linear0.
Qed.

Lemma coord_free n (X : n.-tuple vT) (i j : 'I_n) :
  free X -> coord X j (X`_i) = (i == j)%:R.
Proof.
rewrite unlock free_b2mx => /row_freeP[Ct CtK]; rewrite -row_b2mx.
by rewrite -row_mul -[pinvmx _]mulmx1 -CtK 3!mulmxA mulmxKpV // CtK !mxE.
Qed.

Lemma coord_sum_free n (X : n.-tuple vT) k j :
  free X -> coord X j (\sum_(i < n) k i *: X`_i) = k j.
Proof.
move=> Xfree; rewrite linear_sum (bigD1 j) 1?linearZ //= coord_free // eqxx.
rewrite mulr1 big1 ?addr0 // => i /negPf j'i.
by rewrite linearZ /= coord_free // j'i mulr0.
Qed.

Lemma cat_free X Y :
  free (X ++ Y) = [&& free X, free Y & directv (<<X>> + <<Y>>)].
Proof.
rewrite !free_directv mem_cat directvE /= !big_cat -directvE directv_addE /=.
rewrite negb_or -!andbA; do !bool_congr; rewrite -!span_def.
by rewrite (sameP eqP directv_addP).
Qed.

Lemma catl_free Y X : free (X ++ Y) -> free X.
Proof. by rewrite cat_free => /and3P[]. Qed.

Lemma catr_free X Y : free (X ++ Y) -> free Y.
Proof. by rewrite cat_free => /and3P[]. Qed.

Lemma filter_free p X : free X -> free (filter p X).
Proof.
rewrite -(perm_free (etrans (perm_filterC p X _) (perm_refl X))).
exact: catl_free.
Qed.

Lemma free_cons v X : free (v :: X) = (v \notin <<X>>)%VS && free X.
Proof.
rewrite (cat_free [:: v]) seq1_free directvEgeq /= span_seq1 dim_vline.
case: eqP => [-> | _] /=; first by rewrite mem0v.
rewrite andbC ltnNge (geq_leqif (dimv_leqif_sup _)) ?addvSr //.
by rewrite subv_add subvv andbT -memvE.
Qed.

Lemma freeE n (X : n.-tuple vT) :
  free X = [forall i : 'I_n, X`_i \notin <<drop i.+1 X>>%VS].
Proof.
case: X => X /= /eqP <-{n}; rewrite -(big_andE xpredT) /=.
elim: X => [|v X IH_X] /=; first by rewrite nil_free big_ord0.
by rewrite free_cons IH_X big_ord_recl drop0.
Qed.

Lemma freeNE n (X : n.-tuple vT) :
  ~~ free X = [exists i : 'I_n, X`_i \in <<drop i.+1 X>>%VS].
Proof. by rewrite freeE -negb_exists negbK. Qed.

Lemma free_uniq X : free X -> uniq X.
Proof.
elim: X => //= v b IH_X; rewrite free_cons => /andP[X'v /IH_X->].
by rewrite (contra _ X'v) // => /memv_span.
Qed.

Lemma free_span X v (sumX := fun k => \sum_(x <- X) k x *: x) :
    free X -> v \in <<X>>%VS ->
  {k | v = sumX k & forall k1, v = sumX k1 -> {in X, k1 =1 k}}.
Proof.
rewrite -{2}[X]in_tupleE => freeX /coord_span def_v.
pose k x := oapp (fun i => coord (in_tuple X) i v) 0 (insub (index x X)).
exists k => [|k1 {}def_v _ /(nthP 0)[i ltiX <-]].
  rewrite /sumX (big_nth 0) big_mkord def_v; apply: eq_bigr => i _.
  by rewrite /k index_uniq ?free_uniq // valK.
rewrite /k /= index_uniq ?free_uniq // insubT //= def_v.
by rewrite /sumX (big_nth 0) big_mkord coord_sum_free.
Qed.

Lemma linear_of_free (rT : lmodType K) X (fX : seq rT) :
  {f : {linear vT -> rT} | free X -> size fX = size X -> map f X = fX}.
Proof.
pose f u := \sum_i coord (in_tuple X) i u *: fX`_i.
have lin_f: linear f.
  move=> k u v; rewrite scaler_sumr -big_split; apply: eq_bigr => i _.
  by rewrite /= scalerA -scalerDl linearP.
pose flM := GRing.isLinear.Build _ _ _ _ f lin_f.
pose fL : {linear _ -> _} := HB.pack f flM.
exists fL => freeX eq_szX.
apply/esym/(@eq_from_nth _ 0); rewrite ?size_map eq_szX // => i ltiX.
rewrite (nth_map 0) //= /f (bigD1 (Ordinal ltiX)) //=.
rewrite big1 => [|j /negbTE neqji]; rewrite (coord_free (Ordinal _)) //.
  by rewrite eqxx scale1r addr0.
by rewrite eq_sym neqji scale0r.
Qed.

(* Subspace bases *)

Lemma span_basis U X : basis_of U X -> <<X>>%VS = U.
Proof. by case/andP=> /eqP. Qed.

Lemma basis_free U X : basis_of U X -> free X.
Proof. by case/andP. Qed.

Lemma coord_basis U n (X : n.-tuple vT) v :
  basis_of U X -> v \in U -> v = \sum_i coord X i v *: X`_i.
Proof. by move/span_basis <-; apply: coord_span. Qed.

Lemma nil_basis : basis_of 0 (Nil vT).
Proof. by rewrite /basis_of span_nil eqxx nil_free. Qed.

Lemma seq1_basis v : v != 0 -> basis_of <[v]> [:: v].
Proof. by move=> nz_v; rewrite /basis_of span_seq1 // eqxx seq1_free. Qed.

Lemma basis_not0 x U X : basis_of U X -> x \in X -> x != 0.
Proof. by move/basis_free/free_not0; apply. Qed.

Lemma basis_mem x U X : basis_of U X -> x \in X -> x \in U.
Proof. by move/span_basis=> <- /memv_span. Qed.

Lemma cat_basis U V X Y :
  directv (U + V) -> basis_of U X -> basis_of V Y -> basis_of (U + V) (X ++ Y).
Proof.
move=> dxUV /andP[/eqP defU freeX] /andP[/eqP defV freeY].
by rewrite /basis_of span_cat cat_free defU defV // eqxx freeX freeY.
Qed.

Lemma size_basis U n (X : n.-tuple vT) : basis_of U X -> \dim U = n.
Proof. by case/andP=> /eqP <- /eqnP->; apply: size_tuple. Qed.

Lemma basisEdim X U : basis_of U X = (U <= <<X>>)%VS && (size X <= \dim U).
Proof.
apply/andP/idP=> [[defU /eqnP <-]| ]; first by rewrite -eqEdim eq_sym.
case/andP=> sUX leXU; have leXX := dim_span X.
rewrite /free eq_sym eqEdim sUX eqn_leq !(leq_trans leXX) //.
by rewrite (leq_trans leXU) ?dimvS.
Qed.

Lemma basisEfree X U :
  basis_of U X = [&& free X, (<<X>> <= U)%VS & \dim U <= size X].
Proof.
by rewrite andbC; apply: andb_id2r => freeX; rewrite eqEdim (eqnP freeX).
Qed.

Lemma perm_basis X Y U : perm_eq X Y -> basis_of U X = basis_of U Y.
Proof.
move=> eqXY; congr ((_ == _) && _); last exact: perm_free.
exact/eq_span/perm_mem.
Qed.

Lemma vbasisP U : basis_of U (vbasis U).
Proof.
rewrite /basis_of free_b2mx span_b2mx (sameP eqP (vs2mxP _ _)) !genmxE.
have ->: b2mx (vbasis U) = row_base (vs2mx U).
  by apply/row_matrixP=> i; rewrite unlock rowK tnth_mktuple r2vK.
by rewrite row_base_free !eq_row_base submx_refl.
Qed.

Lemma vbasis_mem v U : v \in (vbasis U) -> v \in U.
Proof. exact: basis_mem (vbasisP _). Qed.

Lemma coord_vbasis v U :
  v \in U -> v = \sum_(i < \dim U) coord (vbasis U) i v *: (vbasis U)`_i.
Proof. exact: coord_basis (vbasisP U). Qed.

Section BigSumBasis.

Variables (I : finType) (P : pred I) (Xs : I -> seq vT).

Lemma span_bigcat :
  (<<\big[cat/[::]]_(i | P i) Xs i>> = \sum_(i | P i) <<Xs i>>)%VS.
Proof. by rewrite (big_morph _ span_cat span_nil). Qed.

Lemma bigcat_free :
    directv (\sum_(i | P i) <<Xs i>>) ->
  (forall i, P i -> free (Xs i)) -> free (\big[cat/[::]]_(i | P i) Xs i).
Proof.
rewrite /free directvE /= span_bigcat => /directvP-> /= freeXs.
rewrite (big_morph _ (@size_cat _) (erefl _)) /=.
by apply/eqP/eq_bigr=> i /freeXs/eqP.
Qed.

Lemma bigcat_basis Us (U := (\sum_(i | P i) Us i)%VS) :
    directv U -> (forall i, P i -> basis_of (Us i) (Xs i)) ->
  basis_of U (\big[cat/[::]]_(i | P i) Xs i).
Proof.
move=> dxU XsUs; rewrite /basis_of span_bigcat.
have defUs i: P i -> span (Xs i) = Us i by case/XsUs/andP=> /eqP.
rewrite (eq_bigr _ defUs) eqxx bigcat_free // => [|_ /XsUs/andP[]//].
apply/directvP; rewrite /= (eq_bigr _ defUs) (directvP dxU) /=.
by apply/eq_bigr=> i /defUs->.
Qed.

End BigSumBasis.

End VectorTheory.

#[global] Hint Resolve subvv : core.
Arguments subvP {K vT U V}.
Arguments addv_idPl {K vT U V}.
Arguments addv_idPr {K vT U V}.
Arguments memv_addP {K vT w U V }.
Arguments sumv_sup [K vT I] i0 [P U Vs].
Arguments memv_sumP {K vT I P Us v}.
Arguments subv_sumP {K vT I P Us V}.
Arguments capv_idPl {K vT U V}.
Arguments capv_idPr {K vT U V}.
Arguments memv_capP {K vT w U V}.
Arguments bigcapv_inf [K vT I] i0 [P Us V].
Arguments subv_bigcapP {K vT I P U Vs}.
Arguments directvP {K vT S}.
Arguments directv_addP {K vT U V}.
Arguments directv_add_unique {K vT U V}.
Arguments directv_sumP {K vT I P Us}.
Arguments directv_sumE {K vT I P Ss}.
Arguments directv_sum_independent {K vT I P Us}.
Arguments directv_sum_unique {K vT I P Us}.
Arguments span_subvP {K vT X U}.
Arguments freeP {K vT n X}.

Prenex Implicits coord.
Notation directv S := (directv_def (Phantom _ S%VS)).

(* Linear functions over a vectType *)
Section LfunDefs.

Variable R : ringType.
Implicit Types aT vT rT : vectType R.

Fact lfun_key : unit. Proof. by []. Qed.
Definition fun_of_lfun_def aT rT (f : 'Hom(aT, rT)) :=
  r2v \o mulmxr (f2mx f) \o v2r.
Definition fun_of_lfun := locked_with lfun_key fun_of_lfun_def.
Canonical fun_of_lfun_unlockable := [unlockable fun fun_of_lfun].
Definition linfun_def aT rT (f : aT -> rT) :=
  Hom (lin1_mx (v2r \o f \o r2v)).
Definition linfun := locked_with lfun_key linfun_def.
Canonical linfun_unlockable := [unlockable fun linfun].

Definition id_lfun vT := @linfun vT vT idfun.
Definition comp_lfun aT vT rT (f : 'Hom(vT, rT)) (g : 'Hom(aT, vT)) :=
  linfun (fun_of_lfun f \o fun_of_lfun g).

End LfunDefs.

Coercion fun_of_lfun : hom >-> Funclass.
Notation "\1" := (@id_lfun _ _) : lfun_scope.
Notation "f \o g" := (comp_lfun f g) : lfun_scope.

Section LfunVspaceDefs.

Variable K : fieldType.
Implicit Types aT rT : vectType K.

Definition inv_lfun aT rT (f : 'Hom(aT, rT)) := Hom (pinvmx (f2mx f)).
Definition lker aT rT (f : 'Hom(aT, rT)) := mx2vs (kermx (f2mx f)).
Fact lfun_img_key : unit. Proof. by []. Qed.
Definition lfun_img_def aT rT f (U : {vspace aT}) : {vspace rT} :=
  mx2vs (vs2mx U *m f2mx f).
Definition lfun_img := locked_with lfun_img_key lfun_img_def.
Canonical lfun_img_unlockable := [unlockable fun lfun_img].
Definition lfun_preim aT rT (f : 'Hom(aT, rT)) W :=
  (lfun_img (inv_lfun f) (W :&: lfun_img f fullv) + lker f)%VS.

End LfunVspaceDefs.

Prenex Implicits linfun lfun_img lker lfun_preim.
Notation "f ^-1" := (inv_lfun f) : lfun_scope.
Notation "f @: U" := (lfun_img f%VF%R U) (at level 24) : vspace_scope.
Notation "f @^-1: W" := (lfun_preim f%VF%R W) (at level 24) : vspace_scope.
Notation limg f := (lfun_img f fullv).

Section LfunZmodType.

Variables (R : ringType) (aT rT : vectType R).
Implicit Types f g h : 'Hom(aT, rT).

HB.instance Definition _ := [Choice of 'Hom(aT, rT) by <:].

Fact lfun_is_linear f : linear f.
Proof. by rewrite unlock; apply: linearP. Qed.
HB.instance Definition _ (f : hom aT rT) :=
  GRing.isLinear.Build R aT rT _ f (lfun_is_linear f).

Lemma lfunE (ff : {linear aT -> rT}) : linfun ff =1 ff.
Proof. by move=> v; rewrite 2!unlock /= mul_rV_lin1 /= !v2rK. Qed.

Lemma fun_of_lfunK : cancel (@fun_of_lfun R aT rT) linfun.
Proof.
move=> f; apply/val_inj/row_matrixP=> i.
by rewrite 2!unlock /= !rowE mul_rV_lin1 /= !r2vK.
Qed.

Lemma lfunP f g : f =1 g <-> f = g.
Proof.
split=> [eq_fg | -> //]; rewrite -[f]fun_of_lfunK -[g]fun_of_lfunK unlock.
by apply/val_inj/row_matrixP=> i; rewrite !rowE !mul_rV_lin1 /= eq_fg.
Qed.

Definition zero_lfun : 'Hom(aT, rT) := linfun \0.
Definition add_lfun f g := linfun (f \+ g).
Definition opp_lfun f := linfun (-%R \o f).

Fact lfun_addA : associative add_lfun.
Proof. by move=> f g h; apply/lfunP=> v; rewrite !lfunE /= !lfunE addrA. Qed.

Fact lfun_addC : commutative add_lfun.
Proof. by move=> f g; apply/lfunP=> v; rewrite !lfunE /= addrC. Qed.

Fact lfun_add0 : left_id zero_lfun add_lfun.
Proof. by move=> f; apply/lfunP=> v; rewrite lfunE /= lfunE add0r. Qed.

Lemma lfun_addN : left_inverse zero_lfun opp_lfun add_lfun.
Proof. by move=> f; apply/lfunP=> v; rewrite !lfunE /= lfunE addNr. Qed.

HB.instance Definition _ := GRing.isZmodule.Build 'Hom(aT, rT)
  lfun_addA lfun_addC lfun_add0 lfun_addN.

Lemma zero_lfunE x : (0 : 'Hom(aT, rT)) x = 0. Proof. exact: lfunE. Qed.
Lemma add_lfunE f g x : (f + g) x = f x + g x. Proof. exact: lfunE. Qed.
Lemma opp_lfunE f x : (- f) x = - f x. Proof. exact: lfunE. Qed.
Lemma sum_lfunE I (r : seq I) (P : pred I) (fs : I -> 'Hom(aT, rT)) x :
  (\sum_(i <- r | P i) fs i) x = \sum_(i <- r | P i) fs i x.
Proof. by elim/big_rec2: _ => [|i _ f _ <-]; rewrite lfunE. Qed.

End LfunZmodType.

Arguments fun_of_lfunK {R aT rT}.

Section LfunVectType.

Variables (R : comRingType) (aT rT : vectType R).
Implicit Types f : 'Hom(aT, rT).

Definition scale_lfun k f := linfun (k \*: f).
Local Infix "*:l" := scale_lfun (at level 40).

Fact lfun_scaleA k1 k2 f : k1 *:l (k2 *:l f) = (k1 * k2) *:l f.
Proof. by apply/lfunP=> v; rewrite !lfunE /= lfunE scalerA. Qed.

Fact lfun_scale1 f : 1 *:l f = f.
Proof. by apply/lfunP=> v; rewrite lfunE /= scale1r. Qed.

Fact lfun_scaleDr k f1 f2 : k *:l (f1 + f2) = k *:l f1 + k *:l f2.
Proof. by apply/lfunP=> v; rewrite !lfunE /= !lfunE scalerDr. Qed.

Fact lfun_scaleDl f k1 k2 : (k1 + k2) *:l f = k1 *:l f + k2 *:l f.
Proof. by apply/lfunP=> v; rewrite !lfunE /= !lfunE scalerDl. Qed.

HB.instance Definition _ :=
  GRing.Zmodule_isLmodule.Build _ 'Hom(aT, rT)
    lfun_scaleA lfun_scale1 lfun_scaleDr lfun_scaleDl.

Lemma scale_lfunE k f x : (k *: f) x = k *: f x. Proof. exact: lfunE. Qed.

Fact lfun_vect_iso : Vector.axiom (dim aT * dim rT) 'Hom(aT, rT).
Proof.
exists (mxvec \o f2mx) => [a f g|].
  rewrite /= -linearP /= -[A in _ = mxvec A]/(f2mx (Hom _)).
  congr (mxvec (f2mx _)); apply/lfunP=> v; do 2!rewrite lfunE /=.
  by rewrite unlock /= -linearP mulmxDr scalemxAr.
apply: Bijective (Hom \o vec_mx) _ _ => [[A]|A] /=; last exact: vec_mxK.
by rewrite mxvecK.
Qed.

HB.instance Definition _ := Lmodule_hasFinDim.Build _ 'Hom(aT, rT)
  lfun_vect_iso.

End LfunVectType.

Section CompLfun.

Variables (R : ringType) (wT aT vT rT : vectType R).
Implicit Types (f : 'Hom(vT, rT)) (g : 'Hom(aT, vT)) (h : 'Hom(wT, aT)).

Lemma id_lfunE u: \1%VF u = u :> aT. Proof. exact: lfunE. Qed.
Lemma comp_lfunE f g u : (f \o g)%VF u = f (g u). Proof. exact: lfunE. Qed.

Lemma comp_lfunA f g h : (f \o (g \o h) = (f \o g) \o h)%VF.
Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed.

Lemma comp_lfun1l f : (\1 \o f)%VF = f.
Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed.

Lemma comp_lfun1r f : (f \o \1)%VF = f.
Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed.

Lemma comp_lfun0l g : (0 \o g)%VF = 0 :> 'Hom(aT, rT).
Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed.

Lemma comp_lfun0r f : (f \o 0)%VF = 0 :> 'Hom(aT, rT).
Proof. by apply/lfunP=> u; do !rewrite lfunE /=; rewrite linear0. Qed.

Lemma comp_lfunDl f1 f2 g : ((f1 + f2) \o g = (f1 \o g) + (f2 \o g))%VF.
Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed.

Lemma comp_lfunDr f g1 g2 : (f \o (g1 + g2) = (f \o g1) + (f \o g2))%VF.
Proof. by apply/lfunP=> u; do !rewrite lfunE /=; rewrite linearD. Qed.

Lemma comp_lfunNl f g : ((- f) \o g = - (f \o g))%VF.
Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed.

Lemma comp_lfunNr f g : (f \o (- g) = - (f \o g))%VF.
Proof. by apply/lfunP=> u; do !rewrite lfunE /=; rewrite linearN. Qed.

End CompLfun.

Definition lfun_simp :=
  (comp_lfunE, scale_lfunE, opp_lfunE, add_lfunE, sum_lfunE, lfunE).

Section ScaleCompLfun.

Variables (R : comRingType) (aT vT rT : vectType R).
Implicit Types (f : 'Hom(vT, rT)) (g : 'Hom(aT, vT)).

Lemma comp_lfunZl k f g : (k *: (f \o g) = (k *: f) \o g)%VF.
Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed.

Lemma comp_lfunZr k f g : (k *: (f \o g) = f \o (k *: g))%VF.
Proof. by apply/lfunP=> u; do !rewrite lfunE /=; rewrite linearZ. Qed.

End ScaleCompLfun.

Section LinearImage.

Variables (K : fieldType) (aT rT : vectType K).
Implicit Types (f g : 'Hom(aT, rT)) (U V : {vspace aT}) (W : {vspace rT}).

Lemma limgS f U V : (U <= V)%VS -> (f @: U <= f @: V)%VS.
Proof. by rewrite unlock /subsetv !genmxE; apply: submxMr. Qed.

Lemma limg_line f v : (f @: <[v]> = <[f v]>)%VS.
Proof.
apply/eqP; rewrite 2!unlock eqEsubv /subsetv /= r2vK !genmxE.
by rewrite !(eqmxMr _ (genmxE _)) submx_refl.
Qed.

Lemma limg0 f : (f @: 0 = 0)%VS. Proof. by rewrite limg_line linear0. Qed.

Lemma memv_img f v U : v \in U -> f v \in (f @: U)%VS.
Proof. by move=> Uv; rewrite memvE -limg_line limgS. Qed.

Lemma memv_imgP f w U :
  reflect (exists2 u, u \in U & w = f u) (w \in f @: U)%VS.
Proof.
apply: (iffP idP) => [|[u Uu ->]]; last exact: memv_img.
rewrite 2!unlock memvE /subsetv !genmxE => /submxP[ku Drw].
exists (r2v (ku *m vs2mx U)); last by rewrite /= r2vK -mulmxA -Drw v2rK.
by rewrite memvE /subsetv !genmxE r2vK submxMl.
Qed.

Lemma lim0g U : (0 @: U = 0 :> {vspace rT})%VS.
Proof.
apply/eqP; rewrite -subv0; apply/subvP=> _ /memv_imgP[u _ ->].
by rewrite lfunE rpred0.
Qed.

Lemma eq_in_limg V f g : {in V, f =1 g} -> (f @: V = g @: V)%VS.
Proof.
move=> eq_fg; apply/vspaceP=> y.
by apply/memv_imgP/memv_imgP=> [][x Vx ->]; exists x; rewrite ?eq_fg.
Qed.

Lemma limgD f : {morph lfun_img f : U V / U + V}%VS.
Proof.
move=> U V; apply/eqP; rewrite unlock eqEsubv /subsetv /= -genmx_adds.
by rewrite !genmxE !(eqmxMr _ (genmxE _)) !addsmxMr submx_refl.
Qed.

Lemma limg_sum f I r (P : pred I) Us :
  (f @: (\sum_(i <- r | P i) Us i) = \sum_(i <- r | P i) f @: Us i)%VS.
Proof. exact: (big_morph _ (limgD f) (limg0 f)). Qed.

Lemma limg_cap f U V : (f @: (U :&: V) <= f @: U :&: f @: V)%VS.
Proof. by rewrite subv_cap !limgS ?capvSl ?capvSr. Qed.

Lemma limg_bigcap f I r (P : pred I) Us :
  (f @: (\bigcap_(i <- r | P i) Us i) <= \bigcap_(i <- r | P i) f @: Us i)%VS.
Proof.
elim/big_rec2: _ => [|i V U _ sUV]; first exact: subvf.
by rewrite (subv_trans (limg_cap f _ U)) ?capvS.
Qed.

Lemma limg_span f X : (f @: <<X>> = <<map f X>>)%VS.
Proof.
by rewrite !span_def big_map limg_sum; apply: eq_bigr => x _; rewrite limg_line.
Qed.

Lemma subset_limgP f U (r : seq rT) :
  {subset r <= (f @: U)%VS} <-> (exists2 a, all (mem U) a & r = map f a).
Proof.
split => [|[{}r /allP/= rE ->] _ /mapP[x xr ->]]; last by rewrite memv_img ?rE.
move=> /(_ _ _)/memv_imgP/sig2_eqW-/(all_sig_cond (0 : aT))[f' f'P].
exists (map f' r); first by apply/allP => _ /mapP [x /f'P[? ?] ->].
by symmetry; rewrite -map_comp; apply: map_id_in => x /f'P[].
Qed.

Lemma lfunPn f g : reflect (exists u, f u != g u) (f != g).
Proof.
apply: (iffP idP) => [f'g|[x]]; last by apply: contraNneq => /lfunP->.
suffices /subvPn[_ /memv_imgP[u _ ->]]: ~~ (limg (f - g) <= 0)%VS.
  by rewrite lfunE /= lfunE /= memv0 subr_eq0; exists u.
apply: contra f'g => /subvP fg0; apply/eqP/lfunP=> u; apply/eqP.
by rewrite -subr_eq0 -opp_lfunE -add_lfunE -memv0 fg0 ?memv_img ?memvf.
Qed.

Lemma inv_lfun_def f : (f \o f^-1 \o f)%VF = f.
Proof.
apply/lfunP=> u; do !rewrite lfunE /=; rewrite unlock /= !r2vK.
by rewrite mulmxKpV ?submxMl.
Qed.

Lemma limg_lfunVK f : {in limg f, cancel f^-1%VF f}.
Proof. by move=> _ /memv_imgP[u _ ->]; rewrite -!comp_lfunE inv_lfun_def. Qed.

Lemma lkerE f U : (U <= lker f)%VS = (f @: U == 0)%VS.
Proof.
rewrite unlock -dimv_eq0 /dimv /subsetv !genmxE mxrank_eq0.
by rewrite (sameP sub_kermxP eqP).
Qed.

Lemma memv_ker f v : (v \in lker f) = (f v == 0).
Proof. by rewrite -memv0 !memvE subv0 lkerE limg_line. Qed.

Lemma eqlfunP f g v : reflect (f v = g v) (v \in lker (f - g)).
Proof. by rewrite memv_ker !lfun_simp subr_eq0; apply: eqP. Qed.

Lemma eqlfun_inP V f g : reflect {in V, f =1 g} (V <= lker (f - g))%VS.
Proof. by apply: (iffP subvP) => E x /E/eqlfunP. Qed.

Lemma limg_ker_compl f U : (f @: (U :\: lker f) = f @: U)%VS.
Proof.
rewrite -{2}(addv_diff_cap U (lker f)) limgD; apply/esym/addv_idPl.
by rewrite (subv_trans _ (sub0v _)) // subv0 -lkerE capvSr.
Qed.

Lemma limg_ker_dim f U : (\dim (U :&: lker f) + \dim (f @: U) = \dim U)%N.
Proof.
rewrite unlock /dimv /= genmx_cap genmx_id -genmx_cap !genmxE.
by rewrite addnC mxrank_mul_ker.
Qed.

Lemma limg_dim_eq f U : (U :&: lker f = 0)%VS -> \dim (f @: U) = \dim U.
Proof. by rewrite -(limg_ker_dim f U) => ->; rewrite dimv0. Qed.

Lemma limg_basis_of f U X :
  (U :&: lker f = 0)%VS -> basis_of U X -> basis_of (f @: U) (map f X).
Proof.
move=> injUf /andP[/eqP defU /eqnP freeX].
by rewrite /basis_of /free size_map -limg_span -freeX defU limg_dim_eq ?eqxx.
Qed.

Lemma lker0P f : reflect (injective f) (lker f == 0%VS).
Proof.
rewrite -subv0; apply: (iffP subvP) => [injf u v eq_fuv | injf u].
  apply/eqP; rewrite -subr_eq0 -memv0 injf //.
  by rewrite memv_ker linearB /= eq_fuv subrr.
by rewrite memv_ker memv0 -(inj_eq injf) linear0.
Qed.

Lemma limg_ker0 f U V : lker f == 0%VS -> (f @: U <= f @: V)%VS = (U <= V)%VS.
Proof.
move/lker0P=> injf; apply/idP/idP=> [/subvP sfUV | ]; last exact: limgS.
by apply/subvP=> u Uu; have /memv_imgP[v Vv /injf->] := sfUV _ (memv_img f Uu).
Qed.

Lemma eq_limg_ker0 f U V : lker f == 0%VS -> (f @: U == f @: V)%VS = (U == V).
Proof. by move=> injf; rewrite !eqEsubv !limg_ker0. Qed.

Lemma lker0_lfunK f : lker f == 0%VS -> cancel f f^-1%VF.
Proof.
by move/lker0P=> injf u; apply: injf; rewrite limg_lfunVK ?memv_img ?memvf.
Qed.

Lemma lker0_compVf f : lker f == 0%VS -> (f^-1 \o f = \1)%VF.
Proof. by move/lker0_lfunK=> fK; apply/lfunP=> u; rewrite !lfunE /= fK. Qed.

Lemma lker0_img_cap f U V : lker f == 0%VS ->
  (f @: (U :&: V) = f @: U :&: f @: V)%VS.
Proof.
move=> kf0; apply/eqP; rewrite eqEsubv limg_cap/=; apply/subvP => x.
rewrite memv_cap => /andP[/memv_imgP[u uU ->]] /memv_imgP[v vV].
by move=> /(lker0P _ kf0) eq_uv; rewrite memv_img// memv_cap uU eq_uv vV.
Qed.

End LinearImage.

Arguments memv_imgP {K aT rT f w U}.
Arguments lfunPn {K aT rT f g}.
Arguments lker0P {K aT rT f}.
Arguments eqlfunP {K aT rT f g v}.
Arguments eqlfun_inP {K aT rT V f g}.
Arguments limg_lfunVK {K aT rT f} [x] f_x.

Section FixedSpace.

Variables (K : fieldType) (vT : vectType K).
Implicit Types (f : 'End(vT)) (U : {vspace vT}).

Definition fixedSpace f : {vspace vT} := lker (f - \1%VF).

Lemma fixedSpaceP f a : reflect (f a = a) (a \in fixedSpace f).
Proof.
by rewrite memv_ker add_lfunE opp_lfunE id_lfunE subr_eq0; apply: eqP.
Qed.

Lemma fixedSpacesP f U : reflect {in U, f =1 id} (U <= fixedSpace f)%VS.
Proof. by apply: (iffP subvP) => cUf x /cUf/fixedSpaceP. Qed.

Lemma fixedSpace_limg f U : (U <= fixedSpace f -> f @: U = U)%VS.
Proof.
move/fixedSpacesP=> cUf; apply/vspaceP=> x.
by apply/memv_imgP/idP=> [[{}x Ux ->] | Ux]; last exists x; rewrite ?cUf.
Qed.

Lemma fixedSpace_id : fixedSpace \1 = {:vT}%VS.
Proof.
by apply/vspaceP=> x; rewrite memvf; apply/fixedSpaceP; rewrite lfunE.
Qed.

End FixedSpace.

Arguments fixedSpaceP {K vT f a}.
Arguments fixedSpacesP {K vT f U}.

Section LinAut.

Variables (K : fieldType) (vT : vectType K) (f : 'End(vT)).
Hypothesis kerf0 : lker f == 0%VS.

Lemma lker0_limgf : limg f = fullv.
Proof.
by apply/eqP; rewrite eqEdim subvf limg_dim_eq //= (eqP kerf0) capv0.
Qed.

Lemma lker0_lfunVK : cancel f^-1%VF f.
Proof. by move=> u; rewrite limg_lfunVK // lker0_limgf memvf. Qed.

Lemma lker0_compfV : (f \o f^-1 = \1)%VF.
Proof. by apply/lfunP=> u; rewrite !lfunE /= lker0_lfunVK. Qed.

Lemma lker0_compVKf aT g : (f \o (f^-1 \o g))%VF = g :> 'Hom(aT, vT).
Proof. by rewrite comp_lfunA lker0_compfV comp_lfun1l. Qed.

Lemma lker0_compKf aT g : (f^-1 \o (f \o g))%VF = g :> 'Hom(aT, vT).
Proof. by rewrite comp_lfunA lker0_compVf ?comp_lfun1l. Qed.

Lemma lker0_compfK rT h : ((h \o f) \o f^-1)%VF = h :> 'Hom(vT, rT).
Proof. by rewrite -comp_lfunA lker0_compfV comp_lfun1r. Qed.

Lemma lker0_compfVK rT h : ((h \o f^-1) \o f)%VF = h :> 'Hom(vT, rT).
Proof. by rewrite -comp_lfunA lker0_compVf ?comp_lfun1r. Qed.

End LinAut.

Section LinearImageComp.

Variables (K : fieldType) (aT vT rT : vectType K).
Implicit Types (f : 'Hom(aT, vT)) (g : 'Hom(vT, rT)) (U : {vspace aT}).

Lemma lim1g U : (\1 @: U)%VS = U.
Proof.
have /andP[/eqP <- _] := vbasisP U; rewrite limg_span map_id_in // => u _.
by rewrite lfunE.
Qed.

Lemma limg_comp f g U : ((g \o f) @: U = g @: (f @: U))%VS.
Proof.
have /andP[/eqP <- _] := vbasisP U; rewrite !limg_span; congr (span _).
by rewrite -map_comp; apply/eq_map => u; rewrite lfunE.
Qed.

End LinearImageComp.

Section LinearPreimage.

Variables (K : fieldType) (aT rT : vectType K).
Implicit Types (f : 'Hom(aT, rT)) (U : {vspace aT}) (V W : {vspace rT}).

Lemma lpreim_cap_limg f W : (f @^-1: (W :&: limg f))%VS = (f @^-1: W)%VS.
Proof. by rewrite /lfun_preim -capvA capvv. Qed.

Lemma lpreim0 f : (f @^-1: 0)%VS = lker f.
Proof. by rewrite /lfun_preim cap0v limg0 add0v. Qed.

Lemma lpreimS f V W : (V <= W)%VS-> (f @^-1: V <= f @^-1: W)%VS.
Proof. by move=> sVW; rewrite addvS // limgS // capvS. Qed.

Lemma lpreimK f W : (W <= limg f)%VS -> (f @: (f @^-1: W))%VS = W.
Proof.
move=> sWf; rewrite limgD (capv_idPl sWf) // -limg_comp.
have /eqP->: (f @: lker f == 0)%VS by rewrite -lkerE.
have /andP[/eqP defW _] := vbasisP W; rewrite addv0 -defW limg_span.
rewrite map_id_in // => x Xx; rewrite lfunE /= limg_lfunVK //.
by apply: span_subvP Xx; rewrite defW.
Qed.

Lemma memv_preim f u W : (f u \in W) = (u \in f @^-1: W)%VS.
Proof.
apply/idP/idP=> [Wfu | /(memv_img f)]; last first.
  by rewrite -lpreim_cap_limg lpreimK ?capvSr // => /memv_capP[].
rewrite -[u](addNKr (f^-1%VF (f u))) memv_add ?memv_img //.
  by rewrite memv_cap Wfu memv_img ?memvf.
by rewrite memv_ker addrC linearB /= subr_eq0 limg_lfunVK ?memv_img ?memvf.
Qed.

End LinearPreimage.

Arguments lpreimK {K aT rT f} [W] fW.

Section LfunAlgebra.
(* This section is a bit of a place holder: the instances we build here can't *)
(* be canonical because we are missing an interface for proper vectTypes,     *)
(* would sit between Vector and Falgebra. For now, we just supply structure   *)
(* definitions here and supply actual instances for F-algebras in a submodule *)
(* of the algebra library (there is currently no actual use of the End(vT)    *)
(* algebra structure). Also note that the unit ring structure is missing.     *)

Variables (R : comRingType) (vT : vectType R).
Hypothesis vT_proper : dim vT > 0.

Fact lfun1_neq0 : \1%VF != 0 :> 'End(vT).
Proof.
apply/eqP=> /lfunP/(_ (r2v (const_mx 1))); rewrite !lfunE /= => /(canRL r2vK).
by move=> /rowP/(_ (Ordinal vT_proper))/eqP; rewrite linear0 !mxE oner_eq0.
Qed.

Prenex Implicits comp_lfunA comp_lfun1l comp_lfun1r comp_lfunDl comp_lfunDr.

(* FIXME: as explained above, the following structures should not be declared *
 * as canonical, so mixins and structures are built separately, and we        *
 * don't use HB.instance Definition _ := ...                                  *
 *  This is ok, but maybe we could introduce an alias                         *)
Definition lfun_comp_ringMixin := GRing.Zmodule_isRing.Build 'End(vT)
  comp_lfunA comp_lfun1l comp_lfun1r comp_lfunDl comp_lfunDr lfun1_neq0.
Definition lfun_comp_ringType : ringType :=
  HB.pack 'End(vT) lfun_comp_ringMixin.

(* In the standard endomorphism ring product is categorical composition. *)
Definition lfun_ringType : ringType := lfun_comp_ringType^c.

Definition lfun_lalgMixin := GRing.Lmodule_isLalgebra.Build R lfun_ringType
  (fun k x y => comp_lfunZr k y x).
Definition lfun_lalgType : lalgType R :=
  HB.pack 'End(vT) lfun_ringType lfun_lalgMixin.

Definition lfun_algMixin := GRing.Lalgebra_isAlgebra.Build R lfun_lalgType
  (fun k x y => comp_lfunZl k y x).
Definition lfun_algType : algType R :=
  HB.pack 'End(vT) lfun_lalgType lfun_algMixin.

End LfunAlgebra.

Section Projection.

Variables (K : fieldType) (vT : vectType K).
Implicit Types U V : {vspace vT}.

Definition daddv_pi U V := Hom (proj_mx (vs2mx U) (vs2mx V)).
Definition projv U := daddv_pi U U^C.
Definition addv_pi1 U V := daddv_pi (U :\: V) V.
Definition addv_pi2 U V := daddv_pi V (U :\: V).

Lemma memv_pi U V w : (daddv_pi U V) w \in U.
Proof. by rewrite unlock memvE /subsetv genmxE /= r2vK proj_mx_sub. Qed.

Lemma memv_proj U w : projv U w \in U. Proof. exact: memv_pi. Qed.

Lemma memv_pi1 U V w : (addv_pi1 U V) w \in U.
Proof. by rewrite (subvP (diffvSl U V)) ?memv_pi. Qed.

Lemma memv_pi2 U V w : (addv_pi2 U V) w \in V. Proof. exact: memv_pi. Qed.

Lemma daddv_pi_id U V u : (U :&: V = 0)%VS -> u \in U -> daddv_pi U V u = u.
Proof.
move/eqP; rewrite -dimv_eq0 memvE /subsetv /dimv !genmxE mxrank_eq0 => /eqP.
by move=> dxUV Uu; rewrite unlock /= proj_mx_id ?v2rK.
Qed.

Lemma daddv_pi_proj U V w (pi := daddv_pi U V) :
  (U :&: V = 0)%VS -> pi (pi w) = pi w.
Proof. by move/daddv_pi_id=> -> //; apply: memv_pi. Qed.

Lemma daddv_pi_add U V w :
  (U :&: V = 0)%VS -> (w \in U + V)%VS -> daddv_pi U V w + daddv_pi V U w = w.
Proof.
move/eqP; rewrite -dimv_eq0 memvE /subsetv /dimv !genmxE mxrank_eq0 => /eqP.
by move=> dxUW UVw; rewrite unlock /= -linearD /= add_proj_mx ?v2rK.
Qed.

Lemma projv_id U u : u \in U -> projv U u = u.
Proof. exact: daddv_pi_id (capv_compl _). Qed.

Lemma projv_proj U w : projv U (projv U w) = projv U w.
Proof. exact: daddv_pi_proj (capv_compl _). Qed.

Lemma memv_projC U w : w - projv U w \in (U^C)%VS.
Proof.
rewrite -{1}[w](daddv_pi_add (capv_compl U)) ?addv_complf ?memvf //.
by rewrite addrC addKr memv_pi.
Qed.

Lemma limg_proj U : limg (projv U) = U.
Proof.
apply/vspaceP=> u; apply/memv_imgP/idP=> [[u1 _ ->] | ]; first exact: memv_proj.
by exists (projv U u); rewrite ?projv_id ?memv_img ?memvf.
Qed.

Lemma lker_proj U : lker (projv U) = (U^C)%VS.
Proof.
apply/eqP; rewrite eqEdim andbC; apply/andP; split.
  by rewrite dimv_compl -(limg_ker_dim (projv U) fullv) limg_proj addnK capfv.
by apply/subvP=> v; rewrite memv_ker -{2}[v]subr0 => /eqP <-; apply: memv_projC.
Qed.

Lemma addv_pi1_proj U V w (pi1 := addv_pi1 U V) : pi1 (pi1 w) = pi1 w.
Proof. by rewrite daddv_pi_proj // capv_diff. Qed.

Lemma addv_pi2_id U V v : v \in V -> addv_pi2 U V v = v.
Proof. by apply: daddv_pi_id; rewrite capvC capv_diff. Qed.

Lemma addv_pi2_proj U V w (pi2 := addv_pi2 U V) : pi2 (pi2 w) = pi2 w.
Proof. by rewrite addv_pi2_id ?memv_pi2. Qed.

Lemma addv_pi1_pi2 U V w :
  w \in (U + V)%VS -> addv_pi1 U V w + addv_pi2 U V w = w.
Proof. by rewrite -addv_diff; exact/daddv_pi_add/capv_diff. Qed.

Section Sumv_Pi.

Variables (I : eqType) (r0 : seq I) (P : pred I) (Vs : I -> {vspace vT}).

Let sumv_pi_rec i :=
  fix loop r := if r is j :: r1 then
    let V1 := (\sum_(k <- r1) Vs k)%VS in
    if j == i then addv_pi1 (Vs j) V1 else (loop r1 \o addv_pi2 (Vs j) V1)%VF
  else 0.

Notation sumV := (\sum_(i <- r0 | P i) Vs i)%VS.
Definition sumv_pi_for V of V = sumV := fun i => sumv_pi_rec i (filter P r0).

Variables (V : {vspace vT}) (defV : V = sumV).

Lemma memv_sum_pi i v : sumv_pi_for defV i v \in Vs i.
Proof.
rewrite /sumv_pi_for.
elim: (filter P r0) v => [|j r IHr] v /=; first by rewrite lfunE mem0v.
by case: eqP => [->|_]; rewrite ?lfunE ?memv_pi1 /=.
Qed.

Lemma sumv_pi_uniq_sum v :
    uniq (filter P r0) -> v \in V ->
  \sum_(i <- r0 | P i) sumv_pi_for defV i v = v.
Proof.
rewrite /sumv_pi_for defV -!(big_filter r0 P).
elim: (filter P r0) v => [|i r IHr] v /= => [_ | /andP[r'i /IHr{}IHr]].
  by rewrite !big_nil memv0 => /eqP.
rewrite !big_cons eqxx => /addv_pi1_pi2; congr (_ + _ = v).
rewrite -[_ v]IHr ?memv_pi2 //; apply: eq_big_seq => j /=.
by case: eqP => [<- /idPn | _]; rewrite ?lfunE.
Qed.

End Sumv_Pi.

End Projection.

Prenex Implicits daddv_pi projv addv_pi1 addv_pi2.
Notation sumv_pi V := (sumv_pi_for (erefl V)).

Section SumvPi.

Variable (K : fieldType) (vT : vectType K).

Lemma sumv_pi_sum (I : finType) (P : pred I) Vs v (V : {vspace vT})
                  (defV : V = (\sum_(i | P i) Vs i)%VS) :
  v \in V -> \sum_(i | P i) sumv_pi_for defV i v = v :> vT.
Proof. by apply: sumv_pi_uniq_sum; have [e _ []] := big_enumP. Qed.

Lemma sumv_pi_nat_sum m n (P : pred nat) Vs v (V : {vspace vT})
                      (defV : V = (\sum_(m <= i < n | P i) Vs i)%VS) :
  v \in V -> \sum_(m <= i < n | P i) sumv_pi_for defV i v = v :> vT.
Proof. by apply: sumv_pi_uniq_sum; apply/filter_uniq/iota_uniq. Qed.

End SumvPi.

Section SubVector.

(* Turn a {vspace V} into a vectType                                          *)
Variable (K : fieldType) (vT : vectType K) (U : {vspace vT}).

Inductive subvs_of : predArgType := Subvs u & u \in U.

Definition vsval w : vT := let: Subvs u _ := w in u.
HB.instance Definition _ := [isSub of subvs_of for vsval].
HB.instance Definition _ := [Choice of subvs_of by <:].
HB.instance Definition _ := [SubChoice_isSubZmodule of subvs_of by <:].
HB.instance Definition _ := [SubZmodule_isSubLmodule of subvs_of by <:].

Lemma subvsP w : vsval w \in U. Proof. exact: valP. Qed.
Lemma subvs_inj : injective vsval. Proof. exact: val_inj. Qed.
Lemma congr_subvs u v : u = v -> vsval u = vsval v. Proof. exact: congr1. Qed.

Lemma vsval_is_linear : linear vsval. Proof. by []. Qed.
HB.instance Definition _ := GRing.isLinear.Build K subvs_of vT _ vsval
  vsval_is_linear.

Fact vsproj_key : unit. Proof. by []. Qed.
Definition vsproj_def u := Subvs (memv_proj U u).
Definition vsproj := locked_with vsproj_key vsproj_def.
Canonical vsproj_unlockable := [unlockable fun vsproj].

Lemma vsprojK : {in U, cancel vsproj vsval}.
Proof. by rewrite unlock; apply: projv_id. Qed.
Lemma vsvalK : cancel vsval vsproj.
Proof. by move=> w; apply/val_inj/vsprojK/subvsP. Qed.

Lemma vsproj_is_linear : linear vsproj.
Proof. by move=> k w1 w2; apply: val_inj; rewrite unlock /= linearP. Qed.
HB.instance Definition _ := GRing.isLinear.Build K vT subvs_of _ vsproj
  vsproj_is_linear.

Fact subvs_vect_iso : Vector.axiom (\dim U) subvs_of.
Proof.
exists (fun w => \row_i coord (vbasis U) i (vsval w)).
  by move=> k w1 w2; apply/rowP=> i; rewrite !mxE linearP.
exists (fun rw : 'rV_(\dim U) => vsproj (\sum_i rw 0 i *: (vbasis U)`_i)).
  move=> w /=; congr (vsproj _ = w): (vsvalK w).
  by rewrite {1}(coord_vbasis (subvsP w)); apply: eq_bigr => i _; rewrite mxE.
move=> rw; apply/rowP=> i; rewrite mxE vsprojK.
  by rewrite coord_sum_free ?(basis_free (vbasisP U)).
by apply: rpred_sum => j _; rewrite rpredZ ?vbasis_mem ?memt_nth.
Qed.

HB.instance Definition _ := Lmodule_hasFinDim.Build K subvs_of subvs_vect_iso.

Lemma SubvsE x (xU : x \in U) : Subvs xU = vsproj x.
Proof. by apply/val_inj; rewrite /= vsprojK. Qed.

End SubVector.
Prenex Implicits vsval vsproj vsvalK.
Arguments subvs_inj {K vT U} [x1 x2].
Arguments vsprojK {K vT U} [x] Ux.

Section MatrixVectType.

Variables (R : ringType) (m n : nat).

(* The apparently useless => /= in line 1 of the proof performs some evar     *)
(* expansions that the Ltac interpretation of exists is incapable of doing.   *)
Fact matrix_vect_iso : Vector.axiom (m * n) 'M[R]_(m, n).
Proof.
exists mxvec => /=; first exact: linearP.
by exists vec_mx; [apply: mxvecK | apply: vec_mxK].
Qed.
HB.instance Definition _ := Lmodule_hasFinDim.Build _ 'M[R]_(m, n) matrix_vect_iso.

Lemma dim_matrix : dim 'M[R]_(m, n) = m * n.
Proof. by []. Qed.

End MatrixVectType.

(* A ring is a one-dimension vector space *)
Section RegularVectType.

Variable R : ringType.

Fact regular_vect_iso : Vector.axiom 1 R^o.
Proof.
exists (fun a => a%:M) => [a b c|]; first by rewrite rmorphD scale_scalar_mx.
by exists (fun A : 'M_1 => A 0 0) => [a | A]; rewrite ?mxE // -mx11_scalar.
Qed.
HB.instance Definition _ := Lmodule_hasFinDim.Build _ R^o regular_vect_iso.

End RegularVectType.

(* External direct product of two vectTypes. *)
Section ProdVector.

Variables (R : ringType) (vT1 vT2 : vectType R).

Fact pair_vect_iso : Vector.axiom (dim vT1 + dim vT2) (vT1 * vT2).
Proof.
pose p2r (u : vT1 * vT2) := row_mx (v2r u.1) (v2r u.2).
pose r2p w := (r2v (lsubmx w) : vT1, r2v (rsubmx w) : vT2).
have r2pK : cancel r2p p2r by move=> w; rewrite /p2r !r2vK hsubmxK.
have p2rK : cancel p2r r2p by case=> u v; rewrite /r2p row_mxKl row_mxKr !v2rK.
have r2p_lin: linear r2p by move=> a u v; congr (_ , _); rewrite /= !linearP.
pose r2plM := GRing.isLinear.Build _ _ _ _ r2p r2p_lin.
pose r2pL : {linear _ -> _} := HB.pack r2p r2plM.
by exists p2r; [apply: (@can2_linear _ _ _ r2pL) | exists r2p].
Qed.
HB.instance Definition _ := Lmodule_hasFinDim.Build _ (vT1 * vT2)%type
  pair_vect_iso.

End ProdVector.

(* Function from a finType into a ring form a vectype. *)
Section FunVectType.

Variable (I : finType) (R : ringType) (vT : vectType R).

(* Type unification with exist is again a problem in this proof. *)
Fact ffun_vect_iso : Vector.axiom (#|I| * dim vT) {ffun I -> vT}.
Proof.
pose fr (f : {ffun I -> vT}) := mxvec (\matrix_(i < #|I|) v2r (f (enum_val i))).
exists fr => /= [k f g|].
  rewrite -linearP; congr mxvec; apply/matrixP=> i j.
  by rewrite !mxE !ffunE linearP !mxE.
exists (fun r => [ffun i => r2v (row (enum_rank i) (vec_mx r)) : vT]) => [g|r].
  by apply/ffunP=> i; rewrite ffunE mxvecK rowK v2rK enum_rankK.
by apply/(canLR vec_mxK)/matrixP=> i j; rewrite mxE ffunE r2vK enum_valK mxE.
Qed.

HB.instance Definition _ := Lmodule_hasFinDim.Build _ {ffun I -> vT}
  ffun_vect_iso.

End FunVectType.

HB.instance Definition _ (K : fieldType) (vT : vectType K) n :=
  Vector.on (vT ^ n)%type.

(* Solving a tuple of linear equations. *)
Section Solver.

Variable (K : fieldType) (vT : vectType K).
Variables (n : nat) (lhs : n.-tuple 'End(vT)) (rhs : n.-tuple vT).

Let lhsf u := finfun ((tnth lhs)^~ u).
Definition vsolve_eq U := finfun (tnth rhs) \in (linfun lhsf @: U)%VS.

Lemma vsolve_eqP (U : {vspace vT}) :
  reflect (exists2 u, u \in U & forall i, tnth lhs i u = tnth rhs i)
          (vsolve_eq U).
Proof.
have lhsZ: linear lhsf by move=> a u v; apply/ffunP=> i; rewrite !ffunE linearP.
pose lhslM := GRing.isLinear.Build _ _ _ _ lhsf lhsZ.
pose lhsL : {linear _ -> _} := HB.pack lhsf lhslM.
apply: (iffP memv_imgP) => [] [u Uu sol_u]; exists u => //.
  by move=> i; rewrite -[tnth rhs i]ffunE sol_u (lfunE lhsL) ffunE.
by apply/ffunP=> i; rewrite (lfunE lhsL) !ffunE sol_u.
Qed.

End Solver.

Section lfunP.
Variable (F : fieldType).
Context {uT vT : vectType F}.
Local Notation m := (\dim {:uT}).
Local Notation n := (\dim {:vT}).

Lemma span_lfunP (U : seq uT) (phi psi : 'Hom(uT,vT)) :
  {in <<U>>%VS, phi =1 psi} <-> {in U, phi =1 psi}.
Proof.
split=> eq_phi_psi u uU; first by rewrite eq_phi_psi ?memv_span.
rewrite [u](@coord_span _ _ _ (in_tuple U))// !linear_sum/=.
by apply: eq_bigr=> i _; rewrite 2!linearZ/= eq_phi_psi// ?mem_nth.
Qed.

Lemma fullv_lfunP (U : seq uT) (phi psi : 'Hom(uT,vT)) : <<U>>%VS = fullv ->
  phi = psi <-> {in U, phi =1 psi}.
Proof.
by move=> Uf; split=> [->//|/span_lfunP]; rewrite Uf=> /(_ _ (memvf _))-/lfunP.
Qed.
End lfunP.

Module passmx.
Section passmx.
Variable (F : fieldType).

Section vecmx.
Context {vT : vectType F}.
Local Notation n := (\dim {:vT}).

Variables (e : n.-tuple vT).

Definition rVof (v : vT) := \row_i coord e i v.
Lemma rVof_linear : linear rVof.
Proof. by move=> x v1 v2; apply/rowP=> i; rewrite !mxE linearP. Qed.
HB.instance Definition _ := GRing.isLinear.Build F _ _ _ rVof rVof_linear.

Lemma coord_rVof i v : coord e i v = rVof v 0 i.
Proof. by rewrite !mxE. Qed.

Definition vecof (v : 'rV_n) := \sum_i v 0 i *: e`_i.

Lemma vecof_delta i : vecof (delta_mx 0 i) = e`_i.
Proof.
rewrite /vecof (bigD1 i)//= mxE !eqxx scale1r big1 ?addr0// => j neq_ji.
by rewrite mxE (negPf neq_ji) andbF scale0r.
Qed.

Lemma vecof_linear : linear vecof.
Proof.
move=> x v1 v2; rewrite linear_sum -big_split/=.
by apply: eq_bigr => i _/=; rewrite !mxE scalerDl scalerA.
Qed.
HB.instance Definition _ := GRing.isLinear.Build F _ _ _ vecof vecof_linear.

Variable e_basis : basis_of {:vT} e.

Lemma rVofK : cancel rVof vecof.
Proof.
move=> v; rewrite [v in RHS](coord_basis e_basis) ?memvf//.
by apply: eq_bigr => i; rewrite !mxE.
Qed.

Lemma vecofK : cancel vecof rVof.
Proof.
move=> v; apply/rowP=> i; rewrite !(lfunE, mxE).
by rewrite coord_sum_free ?(basis_free e_basis).
Qed.

Lemma rVofE (i : 'I_n) : rVof e`_i = delta_mx 0 i.
Proof.
apply/rowP=> k; rewrite !mxE.
by rewrite eqxx coord_free ?(basis_free e_basis)// eq_sym.
Qed.

Lemma coord_vecof i v : coord e i (vecof v) = v 0 i.
Proof. by rewrite coord_rVof vecofK. Qed.

Lemma rVof_eq0 v : (rVof v == 0) = (v == 0).
Proof. by rewrite -(inj_eq (can_inj vecofK)) rVofK linear0. Qed.

Lemma vecof_eq0 v : (vecof v == 0) = (v == 0).
Proof. by rewrite -(inj_eq (can_inj rVofK)) vecofK linear0. Qed.

End vecmx.

Section hommx.
Context {uT vT : vectType F}.
Local Notation m := (\dim {:uT}).
Local Notation n := (\dim {:vT}).

Variables (e : m.-tuple uT) (e' : n.-tuple vT).

Definition mxof (h : 'Hom(uT, vT)) := lin1_mx (rVof e' \o h \o vecof e).

Lemma mxof_linear : linear mxof.
Proof.
move=> x h1 h2; apply/matrixP=> i j; do !rewrite ?lfunE/= ?mxE.
by rewrite linearP.
Qed.
HB.instance Definition _ := GRing.isLinear.Build F _ _ _ mxof mxof_linear.

Definition funmx (M : 'M[F]_(m, n)) u := vecof e' (rVof e u *m M).

Lemma funmx_linear M : linear (funmx M).
Proof.
by rewrite /funmx => x u v; rewrite linearP mulmxDl -scalemxAl linearP.
Qed.
HB.instance Definition _ M :=
  GRing.isLinear.Build F _ _ _ (funmx M) (funmx_linear M).

Definition hommx M : 'Hom(uT, vT) := linfun (funmx M).

Lemma hommx_linear : linear hommx.
Proof.
rewrite /hommx; move=> x A B; apply/lfunP=> u; do !rewrite lfunE/=.
by rewrite /funmx mulmxDr -scalemxAr linearP.
Qed.
HB.instance Definition _ M := GRing.isLinear.Build F _ _ _ hommx hommx_linear.

Hypothesis e_basis: basis_of {:uT} e.
Hypothesis f_basis: basis_of {:vT} e'.

Lemma mxofK : cancel mxof hommx.
Proof.
by move=> h; apply/lfunP=> u; rewrite lfunE/= /funmx mul_rV_lin1/= !rVofK.
Qed.

Lemma hommxK : cancel hommx mxof.
Proof.
move=> M; apply/matrixP => i j; rewrite !mxE/= lfunE/=.
by rewrite /funmx vecofK// -rowE coord_vecof// mxE.
Qed.

Lemma mul_mxof phi u : u *m mxof phi = rVof e' (phi (vecof e u)).
Proof. by rewrite mul_rV_lin1/=. Qed.

Lemma hommxE M u : hommx M u = vecof e' (rVof e u *m M).
Proof. by rewrite -[M in RHS]hommxK mul_mxof !rVofK//. Qed.

Lemma rVof_mul M u : rVof e u *m M = rVof e' (hommx M u).
Proof. by rewrite hommxE vecofK. Qed.

Lemma hom_vecof (phi : 'Hom(uT, vT)) u :
  phi (vecof e u) = vecof e' (u *m mxof phi).
Proof. by rewrite mul_mxof rVofK. Qed.

Lemma rVof_app (phi : 'Hom(uT, vT)) u :
  rVof e' (phi u) = rVof e u *m mxof phi.
Proof. by rewrite mul_mxof !rVofK. Qed.

Lemma vecof_mul M u : vecof e' (u *m M) = hommx M (vecof e u).
Proof. by rewrite hommxE vecofK. Qed.

Lemma mxof_eq0 phi : (mxof phi == 0) = (phi == 0).
Proof. by rewrite -(inj_eq (can_inj hommxK)) mxofK linear0. Qed.

Lemma hommx_eq0 M : (hommx M == 0) = (M == 0).
Proof. by rewrite -(inj_eq (can_inj mxofK)) hommxK linear0. Qed.

End hommx.

Section hommx_comp.

Context {uT vT wT : vectType F}.
Local Notation m := (\dim {:uT}).
Local Notation n := (\dim {:vT}).
Local Notation p := (\dim {:wT}).

Variables (e : m.-tuple uT) (f : n.-tuple vT) (g : p.-tuple wT).
Hypothesis e_basis: basis_of {:uT} e.
Hypothesis f_basis: basis_of {:vT} f.
Hypothesis g_basis: basis_of {:wT} g.

Lemma mxof_comp (phi : 'Hom(uT, vT)) (psi : 'Hom(vT, wT)) :
  mxof e g (psi \o phi)%VF = mxof e f phi *m mxof f g psi.
Proof.
apply/matrixP => i k; rewrite !(mxE, comp_lfunE, lfunE) /=.
rewrite [phi _](coord_basis f_basis) ?memvf// 2!linear_sum/=.
by apply: eq_bigr => j _ /=; rewrite !mxE !linearZ/= !vecof_delta.
Qed.

Lemma hommx_mul (A : 'M_(m,n)) (B : 'M_(n, p)) :
  hommx e g (A *m B) = (hommx f g B \o hommx e f A)%VF.
Proof.
by apply: (can_inj (mxofK e_basis g_basis)); rewrite mxof_comp !hommxK.
Qed.

End hommx_comp.

Section vsms.

Context {vT : vectType F}.
Local Notation n := (\dim {:vT}).

Variables (e : n.-tuple vT).

Definition msof (V : {vspace vT}) : 'M_n := mxof e e (projv V).
(* alternative *)
(* (\sum_(v <- vbasis V) <<rVof e v>>)%MS. *)

Definition vsof (M : 'M[F]_n) := limg (hommx e e M).
(* alternative *)
(* <<[seq vecof e (row i M) | i : 'I_n]>>%VS. *)

Lemma mxof1 : free e -> mxof e e \1 = 1%:M.
Proof.
by move=> eF; apply/matrixP=> i j; rewrite !mxE vecof_delta lfunE coord_free.
Qed.

Hypothesis e_basis : basis_of {:vT} e.

Lemma hommx1 : hommx e e 1%:M = \1%VF.
Proof. by rewrite -mxof1 ?(basis_free e_basis)// mxofK. Qed.

Lemma msofK : cancel msof vsof.
Proof. by rewrite /msof /vsof; move=> V; rewrite mxofK// limg_proj. Qed.

Lemma mem_vecof u (V : {vspace vT}) : (vecof e u \in V) = (u <= msof V)%MS.
Proof.
apply/idP/submxP=> [|[v ->{u}]]; last by rewrite -hom_vecof// memv_proj.
rewrite -[V in X in X -> _]msofK => /memv_imgP[v _].
by move=> /(canRL (vecofK _)) ->//; rewrite -rVof_mul//; eexists.
Qed.

Lemma rVof_sub u M : (rVof e u <= M)%MS = (u \in vsof M).
Proof.
apply/submxP/memv_imgP => [[v /(canRL (rVofK _)) ->//]|[v _ ->]]{u}.
  by exists (vecof e v); rewrite ?memvf// -vecof_mul.
by exists (rVof e v); rewrite -rVof_mul.
Qed.

Lemma vsof_sub M V : (vsof M <= V)%VS = (M <= msof V)%MS.
Proof.
apply/subvP/rV_subP => [MsubV _/submxP[u ->]|VsubM _/memv_imgP[u _ ->]].
  by rewrite -mem_vecof MsubV// -rVof_sub vecofK// submxMl.
by rewrite -[V]msofK -rVof_sub VsubM// -rVof_mul// submxMl.
Qed.

Lemma msof_sub V M : (msof V <= M)%MS = (V <= vsof M)%VS.
Proof.
apply/rV_subP/subvP => [VsubM v vV|MsubV _/submxP[u ->]].
  by rewrite -rVof_sub VsubM// -mem_vecof rVofK.
by rewrite mul_mxof rVof_sub MsubV// memv_proj.
Qed.

Lemma vsofK M : (msof (vsof M) == M)%MS.
Proof. by rewrite msof_sub -vsof_sub subvv. Qed.

Lemma sub_msof : {mono msof : V V' / (V <= V')%VS >-> (V <= V')%MS}.
Proof. by move=> V V'; rewrite msof_sub msofK. Qed.

Lemma sub_vsof : {mono vsof : M M' / (M <= M')%MS >-> (M <= M')%VS}.
Proof. by move=> M M'; rewrite vsof_sub (eqmxP (vsofK _)). Qed.

Lemma msof0 : msof 0 = 0.
Proof.
apply/eqP; rewrite -submx0; apply/rV_subP => v.
by rewrite -mem_vecof memv0 vecof_eq0// => /eqP->; rewrite sub0mx.
Qed.

Lemma vsof0 : vsof 0 = 0%VS.
Proof. by apply/vspaceP=> v; rewrite memv0 -rVof_sub submx0 rVof_eq0. Qed.

Lemma msof_eq0 V : (msof V == 0) = (V == 0%VS).
Proof. by rewrite -(inj_eq (can_inj msofK)) msof0. Qed.

Lemma vsof_eq0 M : (vsof M == 0%VS) = (M == 0).
Proof.
rewrite (sameP eqP eqmx0P) -!(eqmxP (vsofK M)) (sameP eqmx0P eqP) -msof0.
by rewrite (inj_eq (can_inj msofK)).
Qed.

End vsms.

Section eigen.

Context {uT : vectType F}.

Definition leigenspace (phi : 'End(uT)) a := lker (phi - a *: \1%VF).
Definition leigenvalue phi a := leigenspace phi a != 0%VS.

Local Notation m := (\dim {:uT}).
Variables (e : m.-tuple uT).
Hypothesis e_basis: basis_of {:uT} e.
Let e_free := basis_free e_basis.

Lemma lker_ker phi : lker phi = vsof e (kermx (mxof e e phi)).
Proof.
apply/vspaceP => v; rewrite memv_ker -rVof_sub// (sameP sub_kermxP eqP).
by rewrite -rVof_app// rVof_eq0.
Qed.

Lemma limgE phi : limg phi = vsof e (mxof e e phi).
Proof.
apply/vspaceP => v; rewrite -rVof_sub//.
apply/memv_imgP/submxP => [[u _ ->]|[u /(canRL (rVofK _)) ->//]].
  by exists (rVof e u); rewrite -rVof_app.
by exists (vecof e u); rewrite ?memvf// -hom_vecof.
Qed.

Lemma leigenspaceE f a : leigenspace f a = vsof e (eigenspace (mxof e e f) a).
Proof. by rewrite [LHS]lker_ker linearB linearZ/= mxof1// scalemx1. Qed.

End eigen.
End passmx.
End passmx.