1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype choice ssrnat seq.
From mathcomp Require Import path div fintype tuple finfun bigop prime order.
From mathcomp Require Import ssralg poly finset gproduct fingroup morphism.
From mathcomp Require Import perm automorphism quotient finalg action zmodp.
From mathcomp Require Import commutator cyclic center pgroup nilpotent sylow.
From mathcomp Require Import abelian matrix mxalgebra mxpoly mxrepresentation.
From mathcomp Require Import vector ssrnum algC classfun archimedean.
(******************************************************************************)
(* This file contains the basic notions of character theory, based on Isaacs. *)
(* irr G == tuple of the elements of 'CF(G) that are irreducible *)
(* characters of G. *)
(* Nirr G == number of irreducible characters of G. *)
(* Iirr G == index type for the irreducible characters of G. *)
(* := 'I_(Nirr G). *)
(* 'chi_i == the i-th element of irr G, for i : Iirr G. *)
(* 'chi[G]_i Note that 'chi_0 = 1, the principal character of G. *)
(* 'Chi_i == an irreducible representation that affords 'chi_i. *)
(* socle_of_Iirr i == the Wedderburn component of the regular representation *)
(* of G, corresponding to 'Chi_i. *)
(* Iirr_of_socle == the inverse of socle_of_Iirr (which is one-to-one). *)
(* phi.[A]%CF == the image of A \in group_ring G under phi : 'CF(G). *)
(* cfRepr rG == the character afforded by the representation rG of G. *)
(* cfReg G == the regular character, afforded by the regular *)
(* representation of G. *)
(* detRepr rG == the linear character afforded by the determinant of rG. *)
(* cfDet phi == the linear character afforded by the determinant of a *)
(* representation affording phi. *)
(* 'o(phi) == the "determinential order" of phi (the multiplicative *)
(* order of cfDet phi. *)
(* phi \is a character <=> phi : 'CF(G) is a character of G or 0. *)
(* i \in irr_constt phi <=> 'chi_i is an irreducible constituent of phi: phi *)
(* has a non-zero coordinate on 'chi_i over the basis irr G. *)
(* xi \is a linear_char xi <=> xi : 'CF(G) is a linear character of G. *)
(* 'Z(chi)%CF == the center of chi when chi is a character of G, i.e., *)
(* rcenter rG where rG is a representation that affords phi. *)
(* If phi is not a character then 'Z(chi)%CF = cfker phi. *)
(* aut_Iirr u i == the index of cfAut u 'chi_i in irr G. *)
(* conjC_Iirr i == the index of 'chi_i^*%CF in irr G. *)
(* morph_Iirr i == the index of cfMorph 'chi[f @* G]_i in irr G. *)
(* isom_Iirr isoG i == the index of cfIsom isoG 'chi[G]_i in irr R. *)
(* mod_Iirr i == the index of ('chi[G / H]_i %% H)%CF in irr G. *)
(* quo_Iirr i == the index of ('chi[G]_i / H)%CF in irr (G / H). *)
(* Ind_Iirr G i == the index of 'Ind[G, H] 'chi_i, provided it is an *)
(* irreducible character (such as when if H is the inertia *)
(* group of 'chi_i). *)
(* Res_Iirr H i == the index of 'Res[H, G] 'chi_i, provided it is an *)
(* irreducible character (such as when 'chi_i is linear). *)
(* sdprod_Iirr defG i == the index of cfSdprod defG 'chi_i in irr G, given *)
(* defG : K ><| H = G. *)
(* And, for KxK : K \x H = G. *)
(* dprodl_Iirr KxH i == the index of cfDprodl KxH 'chi[K]_i in irr G. *)
(* dprodr_Iirr KxH j == the index of cfDprodr KxH 'chi[H]_j in irr G. *)
(* dprod_Iirr KxH (i, j) == the index of cfDprod KxH 'chi[K]_i 'chi[H]_j. *)
(* inv_dprod_Iirr KxH == the inverse of dprod_Iirr KxH. *)
(* The following are used to define and exploit the character table: *)
(* character_table G == the character table of G, whose i-th row lists the *)
(* values taken by 'chi_i on the conjugacy classes *)
(* of G; this is a square Nirr G x NirrG matrix. *)
(* irr_class i == the conjugacy class of G with index i : Iirr G. *)
(* class_Iirr xG == the index of xG \in classes G, in Iirr G. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GroupScope GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Section AlgC.
Variable (gT : finGroupType).
Lemma groupC : group_closure_field algC gT.
Proof. exact: group_closure_closed_field. Qed.
End AlgC.
Section Tensor.
Variable (F : fieldType).
Fixpoint trow (n1 : nat) :
forall (A : 'rV[F]_n1) m2 n2 (B : 'M[F]_(m2,n2)), 'M[F]_(m2,n1 * n2) :=
if n1 is n'1.+1
then
fun (A : 'M[F]_(1,(1 + n'1))) m2 n2 (B : 'M[F]_(m2,n2)) =>
(row_mx (lsubmx A 0 0 *: B) (trow (rsubmx A) B))
else (fun _ _ _ _ => 0).
Lemma trow0 n1 m2 n2 B : @trow n1 0 m2 n2 B = 0.
Proof.
elim: n1=> //= n1 IH.
rewrite !mxE scale0r linear0.
rewrite IH //; apply/matrixP=> i j; rewrite !mxE.
by case: split=> *; rewrite mxE.
Qed.
Definition trowb n1 m2 n2 B A := @trow n1 A m2 n2 B.
Lemma trowbE n1 m2 n2 A B : trowb B A = @trow n1 A m2 n2 B.
Proof. by []. Qed.
Lemma trowb_is_linear n1 m2 n2 (B : 'M_(m2,n2)) : linear (@trowb n1 m2 n2 B).
Proof.
elim: n1=> [|n1 IH] //= k A1 A2 /=; first by rewrite scaler0 add0r.
rewrite !linearD /= !linearZ /= IH 2!mxE.
by rewrite scalerDl -scalerA -add_row_mx -scale_row_mx.
Qed.
HB.instance Definition _ n1 m2 n2 B :=
GRing.isLinear.Build _ _ _ _ (trowb B) (@trowb_is_linear n1 m2 n2 B).
Lemma trow_is_linear n1 m2 n2 (A : 'rV_n1) : linear (@trow n1 A m2 n2).
Proof.
elim: n1 A => [|n1 IH] //= A k A1 A2 /=; first by rewrite scaler0 add0r.
rewrite linearP /=; apply/matrixP=> i j; rewrite !mxE.
by case: split=> a; rewrite ?IH !mxE.
Qed.
HB.instance Definition _ n1 m2 n2 A :=
GRing.isLinear.Build _ _ _ _ (@trow n1 A m2 n2)
(@trow_is_linear n1 m2 n2 A).
Fixpoint tprod (m1 : nat) :
forall n1 (A : 'M[F]_(m1,n1)) m2 n2 (B : 'M[F]_(m2,n2)),
'M[F]_(m1 * m2,n1 * n2) :=
if m1 is m'1.+1
return forall n1 (A : 'M[F]_(m1,n1)) m2 n2 (B : 'M[F]_(m2,n2)),
'M[F]_(m1 * m2,n1 * n2)
then
fun n1 (A : 'M[F]_(1 + m'1,n1)) m2 n2 B =>
(col_mx (trow (usubmx A) B) (tprod (dsubmx A) B))
else (fun _ _ _ _ _ => 0).
Lemma dsumx_mul m1 m2 n p A B :
dsubmx ((A *m B) : 'M[F]_(m1 + m2, n)) = dsubmx (A : 'M_(m1 + m2, p)) *m B.
Proof.
apply/matrixP=> i j /[!mxE]; apply: eq_bigr=> k _.
by rewrite !mxE.
Qed.
Lemma usumx_mul m1 m2 n p A B :
usubmx ((A *m B) : 'M[F]_(m1 + m2, n)) = usubmx (A : 'M_(m1 + m2, p)) *m B.
Proof.
by apply/matrixP=> i j /[!mxE]; apply: eq_bigr=> k _ /[!mxE].
Qed.
Let trow_mul (m1 m2 n2 p2 : nat)
(A : 'rV_m1) (B1: 'M[F]_(m2,n2)) (B2 :'M[F]_(n2,p2)) :
trow A (B1 *m B2) = B1 *m trow A B2.
Proof.
elim: m1 A => [|m1 IH] A /=; first by rewrite mulmx0.
by rewrite IH mul_mx_row -scalemxAr.
Qed.
Lemma tprodE m1 n1 p1 (A1 :'M[F]_(m1,n1)) (A2 :'M[F]_(n1,p1))
m2 n2 p2 (B1 :'M[F]_(m2,n2)) (B2 :'M[F]_(n2,p2)) :
tprod (A1 *m A2) (B1 *m B2) = (tprod A1 B1) *m (tprod A2 B2).
Proof.
elim: m1 n1 p1 A1 A2 m2 n2 p2 B1 B2 => /= [|m1 IH].
by move=> *; rewrite mul0mx.
move=> n1 p1 A1 A2 m2 n2 p2 B1 B2.
rewrite mul_col_mx -IH.
congr col_mx; last by rewrite dsumx_mul.
rewrite usumx_mul.
elim: n1 {A1}(usubmx (A1: 'M_(1 + m1, n1))) p1 A2=> //= [u p1 A2|].
by rewrite [A2](flatmx0) !mulmx0 -trowbE linear0.
move=> n1 IH1 A p1 A2 //=.
set Al := lsubmx _; set Ar := rsubmx _.
set Su := usubmx _; set Sd := dsubmx _.
rewrite mul_row_col -IH1.
rewrite -{1}(@hsubmxK F 1 1 n1 A).
rewrite -{1}(@vsubmxK F 1 n1 p1 A2).
rewrite (@mul_row_col F 1 1 n1 p1).
rewrite -trowbE linearD /= trowbE -/Al.
congr (_ + _).
rewrite {1}[Al]mx11_scalar mul_scalar_mx.
by rewrite -trowbE linearZ /= trowbE -/Su trow_mul scalemxAl.
Qed.
Let tprod_tr m1 n1 (A :'M[F]_(m1, 1 + n1)) m2 n2 (B :'M[F]_(m2, n2)) :
tprod A B = row_mx (trow (lsubmx A)^T B^T)^T (tprod (rsubmx A) B).
Proof.
elim: m1 n1 A m2 n2 B=> [|m1 IH] n1 A m2 n2 B //=.
by rewrite trmx0 row_mx0.
rewrite !IH.
pose A1 := A : 'M_(1 + m1, 1 + n1).
have F1: dsubmx (rsubmx A1) = rsubmx (dsubmx A1).
by apply/matrixP=> i j; rewrite !mxE.
have F2: rsubmx (usubmx A1) = usubmx (rsubmx A1).
by apply/matrixP=> i j; rewrite !mxE.
have F3: lsubmx (dsubmx A1) = dsubmx (lsubmx A1).
by apply/matrixP=> i j; rewrite !mxE.
rewrite tr_row_mx -block_mxEv -block_mxEh !(F1,F2,F3); congr block_mx.
- by rewrite !mxE linearZ /= trmxK.
by rewrite -trmx_dsub.
Qed.
Lemma tprod1 m n : tprod (1%:M : 'M[F]_(m,m)) (1%:M : 'M[F]_(n,n)) = 1%:M.
Proof.
elim: m n => [|m IH] n //=; first by rewrite [1%:M]flatmx0.
rewrite tprod_tr.
set u := rsubmx _; have->: u = 0.
apply/matrixP=> i j; rewrite !mxE.
by case: i; case: j=> /= j Hj; case.
set v := lsubmx (dsubmx _); have->: v = 0.
apply/matrixP=> i j; rewrite !mxE.
by case: i; case: j; case.
set w := rsubmx _; have->: w = 1%:M.
apply/matrixP=> i j; rewrite !mxE.
by case: i; case: j; case.
rewrite IH -!trowbE !linear0.
rewrite -block_mxEv.
set z := (lsubmx _) 0 0; have->: z = 1.
by rewrite /z !mxE eqxx.
by rewrite scale1r scalar_mx_block.
Qed.
Lemma mxtrace_prod m n (A :'M[F]_(m)) (B :'M[F]_(n)) :
\tr (tprod A B) = \tr A * \tr B.
Proof.
elim: m n A B => [|m IH] n A B //=.
by rewrite [A]flatmx0 mxtrace0 mul0r.
rewrite tprod_tr -block_mxEv mxtrace_block IH.
rewrite linearZ/= -mulrDl -trace_mx11; congr (_ * _).
pose A1 := A : 'M_(1 + m).
rewrite -[A in RHS](@submxK _ 1 m 1 m A1).
by rewrite (@mxtrace_block _ _ _ (ulsubmx A1)).
Qed.
End Tensor.
(* Representation sigma type and standard representations. *)
Section StandardRepresentation.
Variables (R : fieldType) (gT : finGroupType) (G : {group gT}).
Local Notation reprG := (mx_representation R G).
Record representation :=
Representation {rdegree; mx_repr_of_repr :> reprG rdegree}.
Lemma mx_repr0 : mx_repr G (fun _ : gT => 1%:M : 'M[R]_0).
Proof. by split=> // g h Hg Hx; rewrite mulmx1. Qed.
Definition grepr0 := Representation (MxRepresentation mx_repr0).
Lemma add_mx_repr (rG1 rG2 : representation) :
mx_repr G (fun g => block_mx (rG1 g) 0 0 (rG2 g)).
Proof.
split=> [|x y Hx Hy]; first by rewrite !repr_mx1 -scalar_mx_block.
by rewrite mulmx_block !(mulmx0, mul0mx, addr0, add0r, repr_mxM).
Qed.
Definition dadd_grepr rG1 rG2 :=
Representation (MxRepresentation (add_mx_repr rG1 rG2)).
Section DsumRepr.
Variables (n : nat) (rG : reprG n).
Lemma mx_rsim_dadd (U V W : 'M_n) (rU rV : representation)
(modU : mxmodule rG U) (modV : mxmodule rG V) (modW : mxmodule rG W) :
(U + V :=: W)%MS -> mxdirect (U + V) ->
mx_rsim (submod_repr modU) rU -> mx_rsim (submod_repr modV) rV ->
mx_rsim (submod_repr modW) (dadd_grepr rU rV).
Proof.
case: rU; case: rV=> nV rV nU rU defW dxUV /=.
have tiUV := mxdirect_addsP dxUV.
move=> [fU def_nU]; rewrite -{nU}def_nU in rU fU * => inv_fU hom_fU.
move=> [fV def_nV]; rewrite -{nV}def_nV in rV fV * => inv_fV hom_fV.
pose pU := in_submod U (proj_mx U V) *m fU.
pose pV := in_submod V (proj_mx V U) *m fV.
exists (val_submod 1%:M *m row_mx pU pV) => [||g Gg].
- by rewrite -defW (mxdirectP dxUV).
- apply/row_freeP.
pose pU' := invmx fU *m val_submod 1%:M.
pose pV' := invmx fV *m val_submod 1%:M.
exists (in_submod _ (col_mx pU' pV')).
rewrite in_submodE mulmxA -in_submodE -mulmxA mul_row_col mulmxDr.
rewrite -[pU *m _]mulmxA -[pV *m _]mulmxA !mulKVmx -?row_free_unit //.
rewrite addrC (in_submodE V) 2![val_submod 1%:M *m _]mulmxA -in_submodE.
rewrite addrC (in_submodE U) 2![val_submod 1%:M *m _ in X in X + _]mulmxA.
rewrite -in_submodE -!val_submodE !in_submodK ?proj_mx_sub //.
by rewrite add_proj_mx ?val_submodK // val_submod1 defW.
rewrite mulmxA -val_submodE -[submod_repr _ g]mul1mx val_submodJ //.
rewrite -(mulmxA _ (rG g)) mul_mx_row -[in RHS]mulmxA mul_row_block.
rewrite !mulmx0 addr0 add0r !mul_mx_row.
set W' := val_submod 1%:M; congr (row_mx _ _).
rewrite 3!mulmxA in_submodE mulmxA.
have hom_pU: (W' <= dom_hom_mx rG (proj_mx U V))%MS.
by rewrite val_submod1 -defW proj_mx_hom.
rewrite (hom_mxP hom_pU) // -in_submodE (in_submodJ modU) ?proj_mx_sub //.
rewrite -(mulmxA _ _ fU) hom_fU // in_submodE -2!(mulmxA W') -in_submodE.
by rewrite -mulmxA (mulmxA _ fU).
rewrite 3!mulmxA in_submodE mulmxA.
have hom_pV: (W' <= dom_hom_mx rG (proj_mx V U))%MS.
by rewrite val_submod1 -defW addsmxC proj_mx_hom // capmxC.
rewrite (hom_mxP hom_pV) // -in_submodE (in_submodJ modV) ?proj_mx_sub //.
rewrite -(mulmxA _ _ fV) hom_fV // in_submodE -2!(mulmxA W') -in_submodE.
by rewrite -mulmxA (mulmxA _ fV).
Qed.
Lemma mx_rsim_dsum (I : finType) (P : pred I) U rU (W : 'M_n)
(modU : forall i, mxmodule rG (U i)) (modW : mxmodule rG W) :
let S := (\sum_(i | P i) U i)%MS in (S :=: W)%MS -> mxdirect S ->
(forall i, mx_rsim (submod_repr (modU i)) (rU i : representation)) ->
mx_rsim (submod_repr modW) (\big[dadd_grepr/grepr0]_(i | P i) rU i).
Proof.
move=> /= defW dxW rsimU.
rewrite mxdirectE /= -!(big_filter _ P) in dxW defW *.
elim: {P}(filter P _) => [|i e IHe] in W modW dxW defW *.
rewrite !big_nil /= in defW *.
by exists 0 => [||? _]; rewrite ?mul0mx ?mulmx0 // /row_free -defW !mxrank0.
rewrite !big_cons /= in dxW defW *.
rewrite 2!(big_nth i) !big_mkord /= in IHe dxW defW.
set Wi := (\sum_i _)%MS in defW dxW IHe.
rewrite -mxdirectE mxdirect_addsE !mxdirectE eqxx /= -/Wi in dxW.
have modWi: mxmodule rG Wi by apply: sumsmx_module.
case/andP: dxW; move/(IHe Wi modWi) {IHe}; move/(_ (eqmx_refl _))=> rsimWi.
by move/eqP; move/mxdirect_addsP=> dxUiWi; apply: mx_rsim_dadd (rsimU i) rsimWi.
Qed.
Definition muln_grepr rW k := \big[dadd_grepr/grepr0]_(i < k) rW.
Lemma mx_rsim_socle (sG : socleType rG) (W : sG) (rW : representation) :
let modW : mxmodule rG W := component_mx_module rG (socle_base W) in
mx_rsim (socle_repr W) rW ->
mx_rsim (submod_repr modW) (muln_grepr rW (socle_mult W)).
Proof.
set M := socle_base W => modW rsimM.
have simM: mxsimple rG M := socle_simple W.
have rankM_gt0: (\rank M > 0)%N by rewrite lt0n mxrank_eq0; case: simM.
have [I /= U_I simU]: mxsemisimple rG W by apply: component_mx_semisimple.
pose U (i : 'I_#|I|) := U_I (enum_val i).
have reindexI := reindex _ (onW_bij I (enum_val_bij I)).
rewrite mxdirectE /= !reindexI -mxdirectE /= => defW dxW.
have isoU: forall i, mx_iso rG M (U i).
move=> i; have sUiW: (U i <= W)%MS by rewrite -defW (sumsmx_sup i).
exact: component_mx_iso (simU _) sUiW.
have ->: socle_mult W = #|I|.
rewrite -(mulnK #|I| rankM_gt0); congr (_ %/ _)%N.
rewrite -defW (mxdirectP dxW) /= -sum_nat_const reindexI /=.
by apply: eq_bigr => i _; rewrite -(mxrank_iso (isoU i)).
have modU: mxmodule rG (U _) := mxsimple_module (simU _).
suff: mx_rsim (submod_repr (modU _)) rW by apply: mx_rsim_dsum defW dxW.
by move=> i; apply: mx_rsim_trans (mx_rsim_sym _) rsimM; apply/mx_rsim_iso.
Qed.
End DsumRepr.
Section ProdRepr.
Variables (n1 n2 : nat) (rG1 : reprG n1) (rG2 : reprG n2).
Lemma prod_mx_repr : mx_repr G (fun g => tprod (rG1 g) (rG2 g)).
Proof.
split=>[|i j InG JnG]; first by rewrite !repr_mx1 tprod1.
by rewrite !repr_mxM // tprodE.
Qed.
Definition prod_repr := MxRepresentation prod_mx_repr.
End ProdRepr.
Lemma prod_repr_lin n2 (rG1 : reprG 1) (rG2 : reprG n2) :
{in G, forall x, let cast_n2 := esym (mul1n n2) in
prod_repr rG1 rG2 x = castmx (cast_n2, cast_n2) (rG1 x 0 0 *: rG2 x)}.
Proof.
move=> x Gx /=; set cast_n2 := esym _; rewrite /prod_repr /= !mxE !lshift0.
apply/matrixP=> i j; rewrite castmxE /=.
do 2![rewrite mxE; case: splitP => [? ? | []//]].
by congr ((_ *: rG2 x) _ _); apply: val_inj.
Qed.
End StandardRepresentation.
Arguments grepr0 {R gT G}.
Prenex Implicits dadd_grepr.
Section Char.
Variables (gT : finGroupType) (G : {group gT}).
Fact cfRepr_subproof n (rG : mx_representation algC G n) :
is_class_fun <<G>> [ffun x => \tr (rG x) *+ (x \in G)].
Proof.
rewrite genGid; apply: intro_class_fun => [x y Gx Gy | _ /negbTE-> //].
by rewrite groupJr // !repr_mxM ?groupM ?groupV // mxtrace_mulC repr_mxK.
Qed.
Definition cfRepr n rG := Cfun 0 (@cfRepr_subproof n rG).
Lemma cfRepr1 n rG : @cfRepr n rG 1%g = n%:R.
Proof. by rewrite cfunE group1 repr_mx1 mxtrace1. Qed.
Lemma cfRepr_sim n1 n2 rG1 rG2 :
mx_rsim rG1 rG2 -> @cfRepr n1 rG1 = @cfRepr n2 rG2.
Proof.
case/mx_rsim_def=> f12 [f21] fK def_rG1; apply/cfun_inP=> x Gx.
by rewrite !cfunE def_rG1 // mxtrace_mulC mulmxA fK mul1mx.
Qed.
Lemma cfRepr0 : cfRepr grepr0 = 0.
Proof. by apply/cfun_inP=> x Gx; rewrite !cfunE Gx mxtrace1. Qed.
Lemma cfRepr_dadd rG1 rG2 :
cfRepr (dadd_grepr rG1 rG2) = cfRepr rG1 + cfRepr rG2.
Proof. by apply/cfun_inP=> x Gx; rewrite !cfunE Gx mxtrace_block. Qed.
Lemma cfRepr_dsum I r (P : pred I) rG :
cfRepr (\big[dadd_grepr/grepr0]_(i <- r | P i) rG i)
= \sum_(i <- r | P i) cfRepr (rG i).
Proof. exact: (big_morph _ cfRepr_dadd cfRepr0). Qed.
Lemma cfRepr_muln rG k : cfRepr (muln_grepr rG k) = cfRepr rG *+ k.
Proof. by rewrite cfRepr_dsum /= sumr_const card_ord. Qed.
Section StandardRepr.
Variables (n : nat) (rG : mx_representation algC G n).
Let sG := DecSocleType rG.
Let iG : irrType algC G := DecSocleType _.
Definition standard_irr (W : sG) := irr_comp iG (socle_repr W).
Definition standard_socle i := pick [pred W | standard_irr W == i].
Local Notation soc := standard_socle.
Definition standard_irr_coef i := oapp (fun W => socle_mult W) 0 (soc i).
Definition standard_grepr :=
\big[dadd_grepr/grepr0]_i
muln_grepr (Representation (socle_repr i)) (standard_irr_coef i).
Lemma mx_rsim_standard : mx_rsim rG standard_grepr.
Proof.
pose W i := oapp val 0 (soc i); pose S := (\sum_i W i)%MS.
have C'G: [char algC]^'.-group G := algC'G G.
have [defS dxS]: (S :=: 1%:M)%MS /\ mxdirect S.
rewrite /S mxdirectE /= !(bigID soc xpredT) /=.
rewrite addsmxC big1 => [|i]; last by rewrite /W; case (soc i).
rewrite adds0mx_id addnC (@big1 nat) ?add0n => [|i]; last first.
by rewrite /W; case: (soc i); rewrite ?mxrank0.
have <-: Socle sG = 1%:M := reducible_Socle1 sG (mx_Maschke rG C'G).
have [W0 _ | noW] := pickP sG; last first.
suff no_i: (soc : pred iG) =1 xpred0 by rewrite /Socle !big_pred0 ?mxrank0.
by move=> i; rewrite /soc; case: pickP => // W0; have:= noW W0.
have irrK Wi: soc (standard_irr Wi) = Some Wi.
rewrite /soc; case: pickP => [W' | /(_ Wi)] /= /eqP // eqWi.
apply/eqP/socle_rsimP.
apply: mx_rsim_trans (rsim_irr_comp iG C'G (socle_irr _)) (mx_rsim_sym _).
by rewrite [irr_comp _ _]eqWi; apply: rsim_irr_comp (socle_irr _).
have bij_irr: {on [pred i | soc i], bijective standard_irr}.
exists (odflt W0 \o soc) => [Wi _ | i]; first by rewrite /= irrK.
by rewrite inE /soc /=; case: pickP => //= Wi; move/eqP.
rewrite !(reindex standard_irr) {bij_irr}//=.
have all_soc Wi: soc (standard_irr Wi) by rewrite irrK.
rewrite (eq_bigr val) => [|Wi _]; last by rewrite /W irrK.
rewrite !(eq_bigl _ _ all_soc); split=> //.
rewrite (eq_bigr (mxrank \o val)) => [|Wi _]; last by rewrite /W irrK.
by rewrite -mxdirectE /= Socle_direct.
pose modW i : mxmodule rG (W i) :=
if soc i is Some Wi as oWi return mxmodule rG (oapp val 0 oWi) then
component_mx_module rG (socle_base Wi)
else mxmodule0 rG n.
apply: mx_rsim_trans (mx_rsim_sym (rsim_submod1 (mxmodule1 rG) _)) _ => //.
apply: mx_rsim_dsum (modW) _ defS dxS _ => i.
rewrite /W /standard_irr_coef /modW /soc; case: pickP => [Wi|_] /=; last first.
rewrite /muln_grepr big_ord0.
by exists 0 => [||x _]; rewrite /row_free ?mxrank0 ?mulmx0 ?mul0mx.
by move/eqP=> <-; apply: mx_rsim_socle; apply: rsim_irr_comp (socle_irr Wi).
Qed.
End StandardRepr.
Definition cfReg (B : {set gT}) : 'CF(B) := #|B|%:R *: '1_[1].
Lemma cfRegE x : @cfReg G x = #|G|%:R *+ (x == 1%g).
Proof. by rewrite cfunE cfuniE ?normal1 // inE mulr_natr. Qed.
(* This is Isaacs, Lemma (2.10). *)
Lemma cfReprReg : cfRepr (regular_repr algC G) = cfReg G.
Proof.
apply/cfun_inP=> x Gx; rewrite cfRegE.
have [-> | ntx] := eqVneq x 1%g; first by rewrite cfRepr1.
rewrite cfunE Gx [\tr _]big1 // => i _; rewrite 2!mxE /=.
rewrite -(inj_eq enum_val_inj) gring_indexK ?groupM ?enum_valP //.
by rewrite eq_mulVg1 mulKg (negbTE ntx).
Qed.
Definition xcfun (chi : 'CF(G)) A :=
(gring_row A *m (\col_(i < #|G|) chi (enum_val i))) 0 0.
Lemma xcfun_is_additive phi : additive (xcfun phi).
Proof. by move=> A B; rewrite /xcfun [gring_row _]linearB mulmxBl !mxE. Qed.
HB.instance Definition _ phi :=
GRing.isAdditive.Build 'M_(gcard G) _ (xcfun phi) (xcfun_is_additive phi).
Lemma xcfunZr a phi A : xcfun phi (a *: A) = a * xcfun phi A.
Proof. by rewrite /xcfun linearZ -scalemxAl mxE. Qed.
(* In order to add a second canonical structure on xcfun *)
Definition xcfun_r A phi := xcfun phi A.
Arguments xcfun_r A phi /.
Lemma xcfun_rE A chi : xcfun_r A chi = xcfun chi A. Proof. by []. Qed.
Fact xcfun_r_is_additive A : additive (xcfun_r A).
Proof.
move=> phi psi; rewrite /= /xcfun !mxE -sumrB; apply: eq_bigr => i _.
by rewrite !mxE !cfunE mulrBr.
Qed.
HB.instance Definition _ A := GRing.isAdditive.Build _ _ (xcfun_r A)
(xcfun_r_is_additive A).
Lemma xcfunZl a phi A : xcfun (a *: phi) A = a * xcfun phi A.
Proof.
rewrite /xcfun !mxE big_distrr; apply: eq_bigr => i _ /=.
by rewrite !mxE cfunE mulrCA.
Qed.
Lemma xcfun_repr n rG A : xcfun (@cfRepr n rG) A = \tr (gring_op rG A).
Proof.
rewrite gring_opE [gring_row A]row_sum_delta !linear_sum /xcfun !mxE.
apply: eq_bigr => i _; rewrite !mxE /= !linearZ cfunE enum_valP /=.
by congr (_ * \tr _); rewrite {A}/gring_mx /= -rowE rowK mxvecK.
Qed.
End Char.
Arguments xcfun_r {_ _} A phi /.
Notation "phi .[ A ]" := (xcfun phi A) : cfun_scope.
Definition pred_Nirr gT B := #|@classes gT B|.-1.
Arguments pred_Nirr {gT} B%g.
Notation Nirr G := (pred_Nirr G).+1.
Notation Iirr G := 'I_(Nirr G).
Section IrrClassDef.
Variables (gT : finGroupType) (G : {group gT}).
Let sG := DecSocleType (regular_repr algC G).
Lemma NirrE : Nirr G = #|classes G|.
Proof. by rewrite /pred_Nirr (cardD1 [1]) classes1. Qed.
Fact Iirr_cast : Nirr G = #|sG|.
Proof. by rewrite NirrE ?card_irr ?algC'G //; apply: groupC. Qed.
Let offset := cast_ord (esym Iirr_cast) (enum_rank [1 sG]%irr).
Definition socle_of_Iirr (i : Iirr G) : sG :=
enum_val (cast_ord Iirr_cast (i + offset)).
Definition irr_of_socle (Wi : sG) : Iirr G :=
cast_ord (esym Iirr_cast) (enum_rank Wi) - offset.
Local Notation W := socle_of_Iirr.
Lemma socle_Iirr0 : W 0 = [1 sG]%irr.
Proof. by rewrite /W add0r cast_ordKV enum_rankK. Qed.
Lemma socle_of_IirrK : cancel W irr_of_socle.
Proof. by move=> i; rewrite /irr_of_socle enum_valK cast_ordK addrK. Qed.
Lemma irr_of_socleK : cancel irr_of_socle W.
Proof. by move=> Wi; rewrite /W subrK cast_ordKV enum_rankK. Qed.
Hint Resolve socle_of_IirrK irr_of_socleK : core.
Lemma irr_of_socle_bij (A : {pred (Iirr G)}) : {on A, bijective irr_of_socle}.
Proof. by apply: onW_bij; exists W. Qed.
Lemma socle_of_Iirr_bij (A : {pred sG}) : {on A, bijective W}.
Proof. by apply: onW_bij; exists irr_of_socle. Qed.
End IrrClassDef.
Prenex Implicits socle_of_IirrK irr_of_socleK.
Arguments socle_of_Iirr {gT G%G} i%R.
Notation "''Chi_' i" := (irr_repr (socle_of_Iirr i))
(at level 8, i at level 2, format "''Chi_' i").
HB.lock Definition irr gT B : (Nirr B).-tuple 'CF(B) :=
let irr_of i := 'Res[B, <<B>>] (@cfRepr gT _ _ 'Chi_(inord i)) in
[tuple of mkseq irr_of (Nirr B)].
Arguments irr {gT} B%g.
Notation "''chi_' i" := (tnth (irr _) i%R)
(at level 8, i at level 2, format "''chi_' i") : ring_scope.
Notation "''chi[' G ]_ i" := (tnth (irr G) i%R)
(at level 8, i at level 2, only parsing) : ring_scope.
Section IrrClass.
Variable (gT : finGroupType) (G : {group gT}).
Implicit Types (i : Iirr G) (B : {set gT}).
Open Scope group_ring_scope.
Lemma congr_irr i1 i2 : i1 = i2 -> 'chi_i1 = 'chi_i2. Proof. by move->. Qed.
Lemma Iirr1_neq0 : G :!=: 1%g -> inord 1 != 0 :> Iirr G.
Proof. by rewrite -classes_gt1 -NirrE -val_eqE /= => /inordK->. Qed.
Lemma has_nonprincipal_irr : G :!=: 1%g -> {i : Iirr G | i != 0}.
Proof. by move/Iirr1_neq0; exists (inord 1). Qed.
Lemma irrRepr i : cfRepr 'Chi_i = 'chi_i.
Proof.
rewrite irr.unlock (tnth_nth 0) nth_mkseq // -[<<G>>]/(gval _) genGidG.
by rewrite cfRes_id inord_val.
Qed.
Lemma irr0 : 'chi[G]_0 = 1.
Proof.
apply/cfun_inP=> x Gx; rewrite -irrRepr cfun1E cfunE Gx.
by rewrite socle_Iirr0 irr1_repr // mxtrace1 degree_irr1.
Qed.
Lemma cfun1_irr : 1 \in irr G.
Proof. by rewrite -irr0 mem_tnth. Qed.
Lemma mem_irr i : 'chi_i \in irr G.
Proof. exact: mem_tnth. Qed.
Lemma irrP xi : reflect (exists i, xi = 'chi_i) (xi \in irr G).
Proof.
apply: (iffP idP) => [/(nthP 0)[i] | [i ->]]; last exact: mem_irr.
rewrite size_tuple => lt_i_G <-.
by exists (Ordinal lt_i_G); rewrite (tnth_nth 0).
Qed.
Let sG := DecSocleType (regular_repr algC G).
Let C'G := algC'G G.
Let closG := @groupC _ G.
Local Notation W i := (@socle_of_Iirr _ G i).
Local Notation "''n_' i" := 'n_(W i).
Local Notation "''R_' i" := 'R_(W i).
Local Notation "''e_' i" := 'e_(W i).
Lemma irr1_degree i : 'chi_i 1%g = ('n_i)%:R.
Proof. by rewrite -irrRepr cfRepr1. Qed.
Lemma Cnat_irr1 i : 'chi_i 1%g \in Num.nat.
Proof. by rewrite irr1_degree rpred_nat. Qed.
Lemma irr1_gt0 i : 0 < 'chi_i 1%g.
Proof. by rewrite irr1_degree ltr0n irr_degree_gt0. Qed.
Lemma irr1_neq0 i : 'chi_i 1%g != 0.
Proof. by rewrite eq_le lt_geF ?irr1_gt0. Qed.
Lemma irr_neq0 i : 'chi_i != 0.
Proof. by apply: contraNneq (irr1_neq0 i) => ->; rewrite cfunE. Qed.
Local Remark cfIirr_key : unit. Proof. by []. Qed.
Definition cfIirr : forall B, 'CF(B) -> Iirr B :=
locked_with cfIirr_key (fun B chi => inord (index chi (irr B))).
Lemma cfIirrE chi : chi \in irr G -> 'chi_(cfIirr chi) = chi.
Proof.
move=> chi_irr; rewrite (tnth_nth 0) [cfIirr]unlock inordK ?nth_index //.
by rewrite -index_mem size_tuple in chi_irr.
Qed.
Lemma cfIirrPE J (f : J -> 'CF(G)) (P : pred J) :
(forall j, P j -> f j \in irr G) ->
forall j, P j -> 'chi_(cfIirr (f j)) = f j.
Proof. by move=> irr_f j /irr_f; apply: cfIirrE. Qed.
(* This is Isaacs, Corollary (2.7). *)
Corollary irr_sum_square : \sum_i ('chi[G]_i 1%g) ^+ 2 = #|G|%:R.
Proof.
rewrite -(sum_irr_degree sG) // natr_sum (reindex _ (socle_of_Iirr_bij _)) /=.
by apply: eq_bigr => i _; rewrite irr1_degree natrX.
Qed.
(* This is Isaacs, Lemma (2.11). *)
Lemma cfReg_sum : cfReg G = \sum_i 'chi_i 1%g *: 'chi_i.
Proof.
apply/cfun_inP=> x Gx; rewrite -cfReprReg cfunE Gx (mxtrace_regular sG) //=.
rewrite sum_cfunE (reindex _ (socle_of_Iirr_bij _)); apply: eq_bigr => i _.
by rewrite -irrRepr cfRepr1 !cfunE Gx mulr_natl.
Qed.
Let aG := regular_repr algC G.
Let R_G := group_ring algC G.
Lemma xcfun_annihilate i j A : i != j -> (A \in 'R_j)%MS -> ('chi_i).[A]%CF = 0.
Proof.
move=> neq_ij RjA; rewrite -irrRepr xcfun_repr.
by rewrite (irr_repr'_op0 _ _ RjA) ?raddf0 // eq_sym (can_eq socle_of_IirrK).
Qed.
Lemma xcfunG phi x : x \in G -> phi.[aG x]%CF = phi x.
Proof.
by move=> Gx; rewrite /xcfun /gring_row rowK -rowE !mxE !(gring_indexK, mul1g).
Qed.
Lemma xcfun_mul_id i A :
(A \in R_G)%MS -> ('chi_i).['e_i *m A]%CF = ('chi_i).[A]%CF.
Proof.
move=> RG_A; rewrite -irrRepr !xcfun_repr gring_opM //.
by rewrite op_Wedderburn_id ?mul1mx.
Qed.
Lemma xcfun_id i j : ('chi_i).['e_j]%CF = 'chi_i 1%g *+ (i == j).
Proof.
have [<-{j} | /xcfun_annihilate->//] := eqVneq; last exact: Wedderburn_id_mem.
by rewrite -xcfunG // repr_mx1 -(xcfun_mul_id _ (envelop_mx1 _)) mulmx1.
Qed.
Lemma irr_free : free (irr G).
Proof.
apply/freeP=> s s0 i; apply: (mulIf (irr1_neq0 i)).
rewrite mul0r -(raddf0 (xcfun_r 'e_i)) -{}s0 raddf_sum /=.
rewrite (bigD1 i)//= -tnth_nth xcfunZl xcfun_id eqxx big1 ?addr0 // => j ne_ji.
by rewrite -tnth_nth xcfunZl xcfun_id (negbTE ne_ji) mulr0.
Qed.
Lemma irr_inj : injective (tnth (irr G)).
Proof. by apply/injectiveP/free_uniq; rewrite map_tnth_enum irr_free. Qed.
Lemma irrK : cancel (tnth (irr G)) (@cfIirr G).
Proof. by move=> i; apply: irr_inj; rewrite cfIirrE ?mem_irr. Qed.
Lemma irr_eq1 i : ('chi_i == 1) = (i == 0).
Proof. by rewrite -irr0 (inj_eq irr_inj). Qed.
Lemma cforder_irr_eq1 i : (#['chi_i]%CF == 1) = (i == 0).
Proof. by rewrite -dvdn1 dvdn_cforder irr_eq1. Qed.
Lemma irr_basis : basis_of 'CF(G)%VS (irr G).
Proof.
rewrite /basis_of irr_free andbT -dimv_leqif_eq ?subvf //.
by rewrite dim_cfun (eqnP irr_free) size_tuple NirrE.
Qed.
Lemma eq_sum_nth_irr a : \sum_i a i *: 'chi[G]_i = \sum_i a i *: (irr G)`_i.
Proof. by apply: eq_bigr => i; rewrite -tnth_nth. Qed.
(* This is Isaacs, Theorem (2.8). *)
Theorem cfun_irr_sum phi : {a | phi = \sum_i a i *: 'chi[G]_i}.
Proof.
rewrite (coord_basis irr_basis (memvf phi)) -eq_sum_nth_irr.
by exists ((coord (irr G))^~ phi).
Qed.
Lemma cfRepr_standard n (rG : mx_representation algC G n) :
cfRepr (standard_grepr rG)
= \sum_i (standard_irr_coef rG (W i))%:R *: 'chi_i.
Proof.
rewrite cfRepr_dsum (reindex _ (socle_of_Iirr_bij _)).
by apply: eq_bigr => i _; rewrite scaler_nat cfRepr_muln irrRepr.
Qed.
Lemma cfRepr_inj n1 n2 rG1 rG2 :
@cfRepr _ G n1 rG1 = @cfRepr _ G n2 rG2 -> mx_rsim rG1 rG2.
Proof.
move=> eq_repr12; pose c i : algC := (standard_irr_coef _ (W i))%:R.
have [rsim1 rsim2] := (mx_rsim_standard rG1, mx_rsim_standard rG2).
apply: mx_rsim_trans (rsim1) (mx_rsim_sym _).
suffices ->: standard_grepr rG1 = standard_grepr rG2 by [].
apply: eq_bigr => Wi _; congr (muln_grepr _ _); apply/eqP; rewrite -eqC_nat.
rewrite -[Wi]irr_of_socleK -!/(c _ _ _) -!(coord_sum_free (c _ _) _ irr_free).
rewrite -!eq_sum_nth_irr -!cfRepr_standard.
by rewrite -(cfRepr_sim rsim1) -(cfRepr_sim rsim2) eq_repr12.
Qed.
Lemma cfRepr_rsimP n1 n2 rG1 rG2 :
reflect (mx_rsim rG1 rG2) (@cfRepr _ G n1 rG1 == @cfRepr _ G n2 rG2).
Proof. by apply: (iffP eqP) => [/cfRepr_inj | /cfRepr_sim]. Qed.
Lemma irr_reprP xi :
reflect (exists2 rG : representation _ G, mx_irreducible rG & xi = cfRepr rG)
(xi \in irr G).
Proof.
apply: (iffP (irrP xi)) => [[i ->] | [[n rG] irr_rG ->]].
by exists (Representation 'Chi_i); [apply: socle_irr | rewrite irrRepr].
exists (irr_of_socle (irr_comp sG rG)); rewrite -irrRepr irr_of_socleK /=.
exact/cfRepr_sim/rsim_irr_comp.
Qed.
(* This is Isaacs, Theorem (2.12). *)
Lemma Wedderburn_id_expansion i :
'e_i = #|G|%:R^-1 *: \sum_(x in G) 'chi_i 1%g * 'chi_i x^-1%g *: aG x.
Proof.
have Rei: ('e_i \in 'R_i)%MS by apply: Wedderburn_id_mem.
have /envelop_mxP[a def_e]: ('e_i \in R_G)%MS; last rewrite -/aG in def_e.
by move: Rei; rewrite genmxE mem_sub_gring => /andP[].
apply: canRL (scalerK (neq0CG _)) _; rewrite def_e linear_sum /=.
apply: eq_bigr => x Gx; have Gx' := groupVr Gx; rewrite scalerA; congr (_ *: _).
transitivity (cfReg G).['e_i *m aG x^-1%g]%CF.
rewrite def_e mulmx_suml raddf_sum (bigD1 x) //= -scalemxAl xcfunZr.
rewrite -repr_mxM // mulgV xcfunG // cfRegE eqxx mulrC big1 ?addr0 //.
move=> y /andP[Gy /negbTE neq_xy]; rewrite -scalemxAl xcfunZr -repr_mxM //.
by rewrite xcfunG ?groupM // cfRegE -eq_mulgV1 neq_xy mulr0.
rewrite cfReg_sum -xcfun_rE raddf_sum /= (bigD1 i) //= xcfunZl.
rewrite xcfun_mul_id ?envelop_mx_id ?xcfunG ?groupV ?big1 ?addr0 // => j ne_ji.
rewrite xcfunZl (xcfun_annihilate ne_ji) ?mulr0 //.
have /andP[_ /(submx_trans _)-> //] := Wedderburn_ideal (W i).
by rewrite mem_mulsmx // envelop_mx_id ?groupV.
Qed.
End IrrClass.
Arguments cfReg {gT} B%g.
Prenex Implicits cfIirr irrK.
Arguments irrP {gT G xi}.
Arguments irr_reprP {gT G xi}.
Arguments irr_inj {gT G} [x1 x2].
Section IsChar.
Variable gT : finGroupType.
Definition character_pred {G : {set gT}} :=
fun phi : 'CF(G) => [forall i, coord (irr G) i phi \in Num.nat].
Arguments character_pred _ _ /.
Definition character {G : {set gT}} := [qualify a phi | @character_pred G phi].
Variable G : {group gT}.
Implicit Types (phi chi xi : 'CF(G)) (i : Iirr G).
Lemma irr_char i : 'chi_i \is a character.
Proof. by apply/forallP=> j; rewrite (tnth_nth 0) coord_free ?irr_free. Qed.
Lemma cfun1_char : (1 : 'CF(G)) \is a character.
Proof. by rewrite -irr0 irr_char. Qed.
Lemma cfun0_char : (0 : 'CF(G)) \is a character.
Proof. by apply/forallP=> i; rewrite linear0 rpred0. Qed.
Fact add_char : addr_closed (@character G).
Proof.
split=> [|chi xi /forallP-Nchi /forallP-Nxi]; first exact: cfun0_char.
by apply/forallP=> i; rewrite linearD rpredD /=.
Qed.
HB.instance Definition _ := GRing.isAddClosed.Build (classfun G) character_pred
add_char.
Lemma char_sum_irrP {phi} :
reflect (exists n, phi = \sum_i (n i)%:R *: 'chi_i) (phi \is a character).
Proof.
apply: (iffP idP)=> [/forallP-Nphi | [n ->]]; last first.
by apply: rpred_sum => i _; rewrite scaler_nat rpredMn // irr_char.
do [have [a ->] := cfun_irr_sum phi] in Nphi *; exists (Num.trunc \o a).
apply: eq_bigr => i _; congr (_ *: _); have:= eqP (Nphi i).
by rewrite eq_sum_nth_irr coord_sum_free ?irr_free.
Qed.
Lemma char_sum_irr chi :
chi \is a character -> {r | chi = \sum_(i <- r) 'chi_i}.
Proof.
move=> Nchi; apply: sig_eqW; case/char_sum_irrP: Nchi => n {chi}->.
elim/big_rec: _ => [|i _ _ [r ->]]; first by exists nil; rewrite big_nil.
exists (ncons (n i) i r); rewrite scaler_nat.
by elim: {n}(n i) => [|n IHn]; rewrite ?add0r //= big_cons mulrS -addrA IHn.
Qed.
Lemma Cnat_char1 chi : chi \is a character -> chi 1%g \in Num.nat.
Proof.
case/char_sum_irr=> r ->{chi}.
by elim/big_rec: _ => [|i chi _ Nchi1]; rewrite cfunE ?rpredD // Cnat_irr1.
Qed.
Lemma char1_ge0 chi : chi \is a character -> 0 <= chi 1%g.
Proof. by move/Cnat_char1/natr_ge0. Qed.
Lemma char1_eq0 chi : chi \is a character -> (chi 1%g == 0) = (chi == 0).
Proof.
case/char_sum_irr=> r ->; apply/idP/idP=> [|/eqP->]; last by rewrite cfunE.
case: r => [|i r]; rewrite ?big_nil // sum_cfunE big_cons.
rewrite paddr_eq0 ?sumr_ge0 => // [||j _]; rewrite 1?ltW ?irr1_gt0 //.
by rewrite (negbTE (irr1_neq0 i)).
Qed.
Lemma char1_gt0 chi : chi \is a character -> (0 < chi 1%g) = (chi != 0).
Proof. by move=> Nchi; rewrite -char1_eq0 // natr_gt0 ?Cnat_char1. Qed.
Lemma char_reprP phi :
reflect (exists rG : representation algC G, phi = cfRepr rG)
(phi \is a character).
Proof.
apply: (iffP char_sum_irrP) => [[n ->] | [[n rG] ->]]; last first.
exists (fun i => standard_irr_coef rG (socle_of_Iirr i)).
by rewrite -cfRepr_standard (cfRepr_sim (mx_rsim_standard rG)).
exists (\big[dadd_grepr/grepr0]_i muln_grepr (Representation 'Chi_i) (n i)).
rewrite cfRepr_dsum; apply: eq_bigr => i _.
by rewrite cfRepr_muln irrRepr scaler_nat.
Qed.
Local Notation reprG := (mx_representation algC G).
Lemma cfRepr_char n (rG : reprG n) : cfRepr rG \is a character.
Proof. by apply/char_reprP; exists (Representation rG). Qed.
Lemma cfReg_char : cfReg G \is a character.
Proof. by rewrite -cfReprReg cfRepr_char. Qed.
Lemma cfRepr_prod n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
cfRepr rG1 * cfRepr rG2 = cfRepr (prod_repr rG1 rG2).
Proof. by apply/cfun_inP=> x Gx; rewrite !cfunE /= Gx mxtrace_prod. Qed.
Lemma mul_char : mulr_closed (@character G).
Proof.
split=> [|_ _ /char_reprP[rG1 ->] /char_reprP[rG2 ->]]; first exact: cfun1_char.
apply/char_reprP; exists (Representation (prod_repr rG1 rG2)).
by rewrite cfRepr_prod.
Qed.
HB.instance Definition _ := GRing.isMulClosed.Build (classfun G) character_pred
mul_char.
End IsChar.
Prenex Implicits character.
Arguments character_pred _ _ _ /.
Arguments char_reprP {gT G phi}.
Section AutChar.
Variables (gT : finGroupType) (G : {group gT}).
Implicit Type u : {rmorphism algC -> algC}.
Implicit Type chi : 'CF(G).
Lemma cfRepr_map u n (rG : mx_representation algC G n) :
cfRepr (map_repr u rG) = cfAut u (cfRepr rG).
Proof. by apply/cfun_inP=> x Gx; rewrite !cfunE Gx map_reprE trace_map_mx. Qed.
Lemma cfAut_char u chi : (cfAut u chi \is a character) = (chi \is a character).
Proof.
without loss /char_reprP[rG ->]: u chi / chi \is a character.
by move=> IHu; apply/idP/idP=> ?; first rewrite -(cfAutK u chi); rewrite IHu.
rewrite cfRepr_char; apply/char_reprP.
by exists (Representation (map_repr u rG)); rewrite cfRepr_map.
Qed.
Lemma cfConjC_char chi : (chi^*%CF \is a character) = (chi \is a character).
Proof. exact: cfAut_char. Qed.
Lemma cfAut_char1 u (chi : 'CF(G)) :
chi \is a character -> cfAut u chi 1%g = chi 1%g.
Proof. by move/Cnat_char1=> Nchi1; rewrite cfunE /= aut_natr. Qed.
Lemma cfAut_irr1 u i : (cfAut u 'chi[G]_i) 1%g = 'chi_i 1%g.
Proof. exact: cfAut_char1 (irr_char i). Qed.
Lemma cfConjC_char1 (chi : 'CF(G)) :
chi \is a character -> chi^*%CF 1%g = chi 1%g.
Proof. exact: cfAut_char1. Qed.
Lemma cfConjC_irr1 u i : ('chi[G]_i)^*%CF 1%g = 'chi_i 1%g.
Proof. exact: cfAut_irr1. Qed.
End AutChar.
Section Linear.
Variables (gT : finGroupType) (G : {group gT}).
Definition linear_char_pred {B : {set gT}} :=
fun phi : 'CF(B) => (phi \is a character) && (phi 1%g == 1).
Arguments linear_char_pred _ _ /.
Definition linear_char {B : {set gT}} :=
[qualify a phi | @linear_char_pred B phi].
Section OneChar.
Variable xi : 'CF(G).
Hypothesis CFxi : xi \is a linear_char.
Lemma lin_char1: xi 1%g = 1.
Proof. by case/andP: CFxi => _ /eqP. Qed.
Lemma lin_charW : xi \is a character.
Proof. by case/andP: CFxi. Qed.
Lemma cfun1_lin_char : (1 : 'CF(G)) \is a linear_char.
Proof. by rewrite qualifE/= cfun1_char /= cfun11. Qed.
Lemma lin_charM : {in G &, {morph xi : x y / (x * y)%g >-> x * y}}.
Proof.
move=> x y Gx Gy; case/andP: CFxi => /char_reprP[[n rG] -> /=].
rewrite cfRepr1 pnatr_eq1 => /eqP n1; rewrite {n}n1 in rG *.
rewrite !cfunE Gx Gy groupM //= !mulr1n repr_mxM //.
by rewrite [rG x]mx11_scalar [rG y]mx11_scalar -scalar_mxM !mxtrace_scalar.
Qed.
Lemma lin_char_prod I r (P : pred I) (x : I -> gT) :
(forall i, P i -> x i \in G) ->
xi (\prod_(i <- r | P i) x i)%g = \prod_(i <- r | P i) xi (x i).
Proof.
move=> Gx; elim/(big_load (fun y => y \in G)): _.
elim/big_rec2: _ => [|i a y Pi [Gy <-]]; first by rewrite lin_char1.
by rewrite groupM ?lin_charM ?Gx.
Qed.
Let xiMV x : x \in G -> xi x * xi (x^-1)%g = 1.
Proof. by move=> Gx; rewrite -lin_charM ?groupV // mulgV lin_char1. Qed.
Lemma lin_char_neq0 x : x \in G -> xi x != 0.
Proof.
by move/xiMV/(congr1 (predC1 0)); rewrite /= oner_eq0 mulf_eq0 => /norP[].
Qed.
Lemma lin_charV x : x \in G -> xi x^-1%g = (xi x)^-1.
Proof. by move=> Gx; rewrite -[_^-1]mulr1 -(xiMV Gx) mulKf ?lin_char_neq0. Qed.
Lemma lin_charX x n : x \in G -> xi (x ^+ n)%g = xi x ^+ n.
Proof.
move=> Gx; elim: n => [|n IHn]; first exact: lin_char1.
by rewrite expgS exprS lin_charM ?groupX ?IHn.
Qed.
Lemma lin_char_unity_root x : x \in G -> xi x ^+ #[x] = 1.
Proof. by move=> Gx; rewrite -lin_charX // expg_order lin_char1. Qed.
Lemma normC_lin_char x : x \in G -> `|xi x| = 1.
Proof.
move=> Gx; apply/eqP; rewrite -(@pexpr_eq1 _ _ #[x]) //.
by rewrite -normrX // lin_char_unity_root ?normr1.
Qed.
Lemma lin_charV_conj x : x \in G -> xi x^-1%g = (xi x)^*.
Proof.
move=> Gx; rewrite lin_charV // invC_norm mulrC normC_lin_char //.
by rewrite expr1n divr1.
Qed.
Lemma lin_char_irr : xi \in irr G.
Proof.
case/andP: CFxi => /char_reprP[rG ->]; rewrite cfRepr1 pnatr_eq1 => /eqP n1.
by apply/irr_reprP; exists rG => //; apply/mx_abs_irrW/linear_mx_abs_irr.
Qed.
Lemma mul_conjC_lin_char : xi * xi^*%CF = 1.
Proof.
apply/cfun_inP=> x Gx.
by rewrite !cfunE cfun1E Gx -normCK normC_lin_char ?expr1n.
Qed.
Lemma lin_char_unitr : xi \in GRing.unit.
Proof. by apply/unitrPr; exists xi^*%CF; apply: mul_conjC_lin_char. Qed.
Lemma invr_lin_char : xi^-1 = xi^*%CF.
Proof. by rewrite -[_^-1]mulr1 -mul_conjC_lin_char mulKr ?lin_char_unitr. Qed.
Lemma fful_lin_char_inj : cfaithful xi -> {in G &, injective xi}.
Proof.
move=> fful_phi x y Gx Gy xi_xy; apply/eqP; rewrite eq_mulgV1 -in_set1.
rewrite (subsetP fful_phi) // inE groupM ?groupV //=; apply/forallP=> z.
have [Gz | G'z] := boolP (z \in G); last by rewrite !cfun0 ?groupMl ?groupV.
by rewrite -mulgA lin_charM ?xi_xy -?lin_charM ?groupM ?groupV // mulKVg.
Qed.
End OneChar.
Lemma cfAut_lin_char u (xi : 'CF(G)) :
(cfAut u xi \is a linear_char) = (xi \is a linear_char).
Proof. by rewrite qualifE/= cfAut_char; apply/andb_id2l=> /cfAut_char1->. Qed.
Lemma cfConjC_lin_char (xi : 'CF(G)) :
(xi^*%CF \is a linear_char) = (xi \is a linear_char).
Proof. exact: cfAut_lin_char. Qed.
Lemma card_Iirr_abelian : abelian G -> #|Iirr G| = #|G|.
Proof. by rewrite card_ord NirrE card_classes_abelian => /eqP. Qed.
Lemma card_Iirr_cyclic : cyclic G -> #|Iirr G| = #|G|.
Proof. by move/cyclic_abelian/card_Iirr_abelian. Qed.
Lemma char_abelianP :
reflect (forall i : Iirr G, 'chi_i \is a linear_char) (abelian G).
Proof.
apply: (iffP idP) => [cGG i | CF_G].
rewrite qualifE/= irr_char /= irr1_degree.
by rewrite irr_degree_abelian //; last apply: groupC.
rewrite card_classes_abelian -NirrE -eqC_nat -irr_sum_square //.
rewrite -{1}[Nirr G]card_ord -sumr_const; apply/eqP/eq_bigr=> i _.
by rewrite lin_char1 ?expr1n ?CF_G.
Qed.
Lemma irr_repr_lin_char (i : Iirr G) x :
x \in G -> 'chi_i \is a linear_char ->
irr_repr (socle_of_Iirr i) x = ('chi_i x)%:M.
Proof.
move=> Gx CFi; rewrite -irrRepr cfunE Gx.
move: (_ x); rewrite -[irr_degree _](@natrK algC) -irr1_degree lin_char1 //.
by rewrite (natrK 1) => A; rewrite trace_mx11 -mx11_scalar.
Qed.
Fact linear_char_divr : divr_closed (@linear_char G).
Proof.
split=> [|chi xi Lchi Lxi]; first exact: cfun1_lin_char.
rewrite invr_lin_char // qualifE/= cfunE.
by rewrite rpredM ?lin_char1 ?mulr1 ?lin_charW //= cfConjC_lin_char.
Qed.
HB.instance Definition _ :=
GRing.isDivClosed.Build (classfun G) linear_char_pred linear_char_divr.
Lemma irr_cyclic_lin i : cyclic G -> 'chi[G]_i \is a linear_char.
Proof. by move/cyclic_abelian/char_abelianP. Qed.
Lemma irr_prime_lin i : prime #|G| -> 'chi[G]_i \is a linear_char.
Proof. by move/prime_cyclic/irr_cyclic_lin. Qed.
End Linear.
Prenex Implicits linear_char.
Arguments linear_char_pred _ _ _ /.
Section OrthogonalityRelations.
Variables aT gT : finGroupType.
(* This is Isaacs, Lemma (2.15) *)
Lemma repr_rsim_diag (G : {group gT}) f (rG : mx_representation algC G f) x :
x \in G -> let chi := cfRepr rG in
exists e,
[/\ (*a*) exists2 B, B \in unitmx & rG x = invmx B *m diag_mx e *m B,
(*b*) (forall i, e 0 i ^+ #[x] = 1) /\ (forall i, `|e 0 i| = 1),
(*c*) chi x = \sum_i e 0 i /\ `|chi x| <= chi 1%g
& (*d*) chi x^-1%g = (chi x)^*].
Proof.
move=> Gx; without loss cGG: G rG Gx / abelian G.
have sXG: <[x]> \subset G by rewrite cycle_subG.
move/(_ _ (subg_repr rG sXG) (cycle_id x) (cycle_abelian x)).
by rewrite /= !cfunE !groupV Gx (cycle_id x) !group1.
have [I U W simU W1 dxW]: mxsemisimple rG 1%:M.
rewrite -(reducible_Socle1 (DecSocleType rG) (mx_Maschke _ (algC'G G))).
exact: Socle_semisimple.
have linU i: \rank (U i) = 1.
by apply: mxsimple_abelian_linear cGG (simU i); apply: groupC.
have castI: f = #|I|.
by rewrite -(mxrank1 algC f) -W1 (eqnP dxW) /= -sum1_card; apply/eq_bigr.
pose B := \matrix_j nz_row (U (enum_val (cast_ord castI j))).
have rowU i: (nz_row (U i) :=: U i)%MS.
apply/eqmxP; rewrite -(geq_leqif (mxrank_leqif_eq (nz_row_sub _))) linU.
by rewrite lt0n mxrank_eq0 (nz_row_mxsimple (simU i)).
have unitB: B \in unitmx.
rewrite -row_full_unit -sub1mx -W1; apply/sumsmx_subP=> i _.
pose j := cast_ord (esym castI) (enum_rank i).
by rewrite (submx_trans _ (row_sub j B)) // rowK cast_ordKV enum_rankK rowU.
pose e := \row_j row j (B *m rG x *m invmx B) 0 j.
have rGx: rG x = invmx B *m diag_mx e *m B.
rewrite -mulmxA; apply: canRL (mulKmx unitB) _.
apply/row_matrixP=> j; rewrite 2!row_mul; set u := row j B.
have /sub_rVP[a def_ux]: (u *m rG x <= u)%MS.
rewrite /u rowK rowU (eqmxMr _ (rowU _)).
exact: (mxmoduleP (mxsimple_module (simU _))).
rewrite def_ux [u]rowE scalemxAl; congr (_ *m _).
apply/rowP=> k; rewrite 5!mxE !row_mul def_ux [u]rowE scalemxAl mulmxK //.
by rewrite !mxE !eqxx !mulr_natr eq_sym.
have exp_e j: e 0 j ^+ #[x] = 1.
suffices: (diag_mx e j j) ^+ #[x] = (B *m rG (x ^+ #[x])%g *m invmx B) j j.
by rewrite expg_order repr_mx1 mulmx1 mulmxV // [e]lock !mxE eqxx.
elim: #[x] => [|n IHn]; first by rewrite repr_mx1 mulmx1 mulmxV // !mxE eqxx.
rewrite expgS repr_mxM ?groupX // {1}rGx -!mulmxA mulKVmx //.
by rewrite mul_diag_mx mulmxA [M in _ = M]mxE -IHn exprS {1}mxE eqxx.
have norm1_e j: `|e 0 j| = 1.
by apply/eqP; rewrite -(@pexpr_eq1 _ _ #[x]) // -normrX exp_e normr1.
exists e; split=> //; first by exists B.
rewrite cfRepr1 !cfunE Gx rGx mxtrace_mulC mulKVmx // mxtrace_diag.
split=> //=; apply: (le_trans (ler_norm_sum _ _ _)).
by rewrite (eq_bigr _ (in1W norm1_e)) sumr_const card_ord lexx.
rewrite !cfunE groupV !mulrb Gx rGx mxtrace_mulC mulKVmx //.
rewrite -trace_map_mx map_diag_mx; set d' := diag_mx _.
rewrite -[d'](mulKVmx unitB) mxtrace_mulC -[_ *m _](repr_mxK rG Gx) rGx.
rewrite -!mulmxA mulKVmx // (mulmxA d').
suffices->: d' *m diag_mx e = 1%:M by rewrite mul1mx mulKmx.
rewrite mulmx_diag -diag_const_mx; congr diag_mx; apply/rowP=> j.
by rewrite [e]lock !mxE mulrC -normCK -lock norm1_e expr1n.
Qed.
Variables (A : {group aT}) (G : {group gT}).
(* This is Isaacs, Lemma (2.15) (d). *)
Lemma char_inv (chi : 'CF(G)) x : chi \is a character -> chi x^-1%g = (chi x)^*.
Proof.
case Gx: (x \in G); last by rewrite !cfun0 ?rmorph0 ?groupV ?Gx.
by case/char_reprP=> rG ->; have [e [_ _ _]] := repr_rsim_diag rG Gx.
Qed.
Lemma irr_inv i x : 'chi[G]_i x^-1%g = ('chi_i x)^*.
Proof. exact/char_inv/irr_char. Qed.
(* This is Isaacs, Theorem (2.13). *)
Theorem generalized_orthogonality_relation y (i j : Iirr G) :
#|G|%:R^-1 * (\sum_(x in G) 'chi_i (x * y)%g * 'chi_j x^-1%g)
= (i == j)%:R * ('chi_i y / 'chi_i 1%g).
Proof.
pose W := @socle_of_Iirr _ G; pose e k := Wedderburn_id (W k).
pose aG := regular_repr algC G.
have [Gy | notGy] := boolP (y \in G); last first.
rewrite cfun0 // mul0r big1 ?mulr0 // => x Gx.
by rewrite cfun0 ?groupMl ?mul0r.
transitivity (('chi_i).[e j *m aG y]%CF / 'chi_j 1%g).
rewrite [e j]Wedderburn_id_expansion -scalemxAl xcfunZr -mulrA; congr (_ * _).
rewrite mulmx_suml raddf_sum big_distrl; apply: eq_bigr => x Gx /=.
rewrite -scalemxAl xcfunZr -repr_mxM // xcfunG ?groupM // mulrAC mulrC.
by congr (_ * _); rewrite mulrC mulKf ?irr1_neq0.
rewrite mulr_natl mulrb; have [<-{j} | neq_ij] := eqVneq.
by congr (_ / _); rewrite xcfun_mul_id ?envelop_mx_id ?xcfunG.
rewrite (xcfun_annihilate neq_ij) ?mul0r //.
case/andP: (Wedderburn_ideal (W j)) => _; apply: submx_trans.
by rewrite mem_mulsmx ?Wedderburn_id_mem ?envelop_mx_id.
Qed.
(* This is Isaacs, Corollary (2.14). *)
Corollary first_orthogonality_relation (i j : Iirr G) :
#|G|%:R^-1 * (\sum_(x in G) 'chi_i x * 'chi_j x^-1%g) = (i == j)%:R.
Proof.
have:= generalized_orthogonality_relation 1 i j.
rewrite mulrA mulfK ?irr1_neq0 // => <-; congr (_ * _).
by apply: eq_bigr => x; rewrite mulg1.
Qed.
(* The character table. *)
Definition irr_class i := enum_val (cast_ord (NirrE G) i).
Definition class_Iirr xG :=
cast_ord (esym (NirrE G)) (enum_rank_in (classes1 G) xG).
Local Notation c := irr_class.
Local Notation g i := (repr (c i)).
Local Notation iC := class_Iirr.
Definition character_table := \matrix_(i, j) 'chi[G]_i (g j).
Local Notation X := character_table.
Lemma irr_classP i : c i \in classes G.
Proof. exact: enum_valP. Qed.
Lemma repr_irr_classK i : g i ^: G = c i.
Proof. by case/repr_classesP: (irr_classP i). Qed.
Lemma irr_classK : cancel c iC.
Proof. by move=> i; rewrite /iC enum_valK_in cast_ordK. Qed.
Lemma class_IirrK : {in classes G, cancel iC c}.
Proof. by move=> xG GxG; rewrite /c cast_ordKV enum_rankK_in. Qed.
Lemma reindex_irr_class R idx (op : @Monoid.com_law R idx) F :
\big[op/idx]_(xG in classes G) F xG = \big[op/idx]_i F (c i).
Proof.
rewrite (reindex c); first by apply: eq_bigl => i; apply: enum_valP.
by exists iC; [apply: in1W; apply: irr_classK | apply: class_IirrK].
Qed.
(* The explicit value of the inverse is needed for the proof of the second *)
(* orthogonality relation. *)
Let X' := \matrix_(i, j) (#|'C_G[g i]|%:R^-1 * ('chi[G]_j (g i))^*).
Let XX'_1: X *m X' = 1%:M.
Proof.
apply/matrixP=> i j; rewrite !mxE -first_orthogonality_relation mulr_sumr.
rewrite sum_by_classes => [|u v Gu Gv]; last by rewrite -conjVg !cfunJ.
rewrite reindex_irr_class /=; apply/esym/eq_bigr=> k _.
rewrite !mxE irr_inv // -/(g k) -divg_index -indexgI /=.
rewrite (char0_natf_div Cchar) ?dvdn_indexg // index_cent1 invfM invrK.
by rewrite repr_irr_classK mulrCA mulrA mulrCA.
Qed.
Lemma character_table_unit : X \in unitmx.
Proof. by case/mulmx1_unit: XX'_1. Qed.
Let uX := character_table_unit.
(* This is Isaacs, Theorem (2.18). *)
Theorem second_orthogonality_relation x y :
y \in G ->
\sum_i 'chi[G]_i x * ('chi_i y)^* = #|'C_G[x]|%:R *+ (x \in y ^: G).
Proof.
move=> Gy; pose i_x := iC (x ^: G); pose i_y := iC (y ^: G).
have [Gx | notGx] := boolP (x \in G); last first.
rewrite (contraNF (subsetP _ x) notGx) ?class_subG ?big1 // => i _.
by rewrite cfun0 ?mul0r.
transitivity ((#|'C_G[repr (y ^: G)]|%:R *: (X' *m X)) i_y i_x).
rewrite scalemxAl !mxE; apply: eq_bigr => k _; rewrite !mxE mulrC -!mulrA.
by rewrite !class_IirrK ?mem_classes // !cfun_repr mulVKf ?neq0CG.
rewrite mulmx1C // !mxE -!divg_index !(index_cent1, =^~ indexgI).
rewrite (class_eqP (mem_repr y _)) ?class_refl // mulr_natr.
rewrite (can_in_eq class_IirrK) ?mem_classes //.
have [-> | not_yGx] := eqVneq; first by rewrite class_refl.
by rewrite [x \in _](contraNF _ not_yGx) // => /class_eqP->.
Qed.
Lemma eq_irr_mem_classP x y :
y \in G -> reflect (forall i, 'chi[G]_i x = 'chi_i y) (x \in y ^: G).
Proof.
move=> Gy; apply: (iffP idP) => [/imsetP[z Gz ->] i | xGy]; first exact: cfunJ.
have Gx: x \in G.
congr is_true: Gy; apply/eqP; rewrite -(can_eq oddb) -eqC_nat -!cfun1E.
by rewrite -irr0 xGy.
congr is_true: (class_refl G x); apply/eqP; rewrite -(can_eq oddb).
rewrite -(eqn_pmul2l (cardG_gt0 'C_G[x])) -eqC_nat !mulrnA; apply/eqP.
by rewrite -!second_orthogonality_relation //; apply/eq_bigr=> i _; rewrite xGy.
Qed.
(* This is Isaacs, Theorem (6.32) (due to Brauer). *)
Lemma card_afix_irr_classes (ito : action A (Iirr G)) (cto : action A _) a :
a \in A -> [acts A, on classes G | cto] ->
(forall i x y, x \in G -> y \in cto (x ^: G) a ->
'chi_i x = 'chi_(ito i a) y) ->
#|'Fix_ito[a]| = #|'Fix_(classes G | cto)[a]|.
Proof.
move=> Aa actsAG stabAchi; apply/eqP; rewrite -eqC_nat; apply/eqP.
have [[cP cK] iCK] := (irr_classP, irr_classK, class_IirrK).
pose icto b i := iC (cto (c i) b).
have Gca i: cto (c i) a \in classes G by rewrite (acts_act actsAG).
have inj_qa: injective (icto a).
by apply: can_inj (icto a^-1%g) _ => i; rewrite /icto iCK ?actKin ?cK.
pose Pa : 'M[algC]_(Nirr G) := perm_mx (actperm ito a).
pose qa := perm inj_qa; pose Qa : 'M[algC]_(Nirr G) := perm_mx qa^-1^-1%g.
transitivity (\tr Pa).
rewrite -sumr_const big_mkcond; apply: eq_bigr => i _.
by rewrite !mxE permE inE sub1set inE; case: ifP.
symmetry; transitivity (\tr Qa).
rewrite cardsE -sumr_const -big_filter_cond big_mkcond big_filter /=.
rewrite reindex_irr_class; apply: eq_bigr => i _; rewrite !mxE invgK permE.
by rewrite inE sub1set inE -(can_eq cK) iCK //; case: ifP.
rewrite -[Pa](mulmxK uX) -[Qa](mulKmx uX) mxtrace_mulC; congr (\tr(_ *m _)).
rewrite -row_permE -col_permE; apply/matrixP=> i j; rewrite !mxE.
rewrite -{2}[j](permKV qa); move: {j}(_ j) => j; rewrite !permE iCK //.
apply: stabAchi; first by case/repr_classesP: (cP j).
by rewrite repr_irr_classK (mem_repr_classes (Gca _)).
Qed.
End OrthogonalityRelations.
Prenex Implicits irr_class class_Iirr irr_classK.
Arguments class_IirrK {gT G%G} [xG%g] GxG : rename.
Arguments character_table {gT} G%g.
Section InnerProduct.
Variable (gT : finGroupType) (G : {group gT}).
Lemma cfdot_irr i j : '['chi_i, 'chi_j]_G = (i == j)%:R.
Proof.
rewrite -first_orthogonality_relation; congr (_ * _).
by apply: eq_bigr => x Gx; rewrite irr_inv.
Qed.
Lemma cfnorm_irr i : '['chi[G]_i] = 1.
Proof. by rewrite cfdot_irr eqxx. Qed.
Lemma irr_orthonormal : orthonormal (irr G).
Proof.
apply/orthonormalP; split; first exact: free_uniq (irr_free G).
move=> _ _ /irrP[i ->] /irrP[j ->].
by rewrite cfdot_irr (inj_eq irr_inj).
Qed.
Lemma coord_cfdot phi i : coord (irr G) i phi = '[phi, 'chi_i].
Proof.
rewrite {2}(coord_basis (irr_basis G) (memvf phi)).
rewrite cfdot_suml (bigD1 i) // cfdotZl /= -tnth_nth cfdot_irr eqxx mulr1.
rewrite big1 ?addr0 // => j neq_ji; rewrite cfdotZl /= -tnth_nth cfdot_irr.
by rewrite (negbTE neq_ji) mulr0.
Qed.
Lemma cfun_sum_cfdot phi : phi = \sum_i '[phi, 'chi_i]_G *: 'chi_i.
Proof.
rewrite {1}(coord_basis (irr_basis G) (memvf phi)).
by apply: eq_bigr => i _; rewrite coord_cfdot -tnth_nth.
Qed.
Lemma cfdot_sum_irr phi psi :
'[phi, psi]_G = \sum_i '[phi, 'chi_i] * '[psi, 'chi_i]^*.
Proof.
rewrite {1}[phi]cfun_sum_cfdot cfdot_suml; apply: eq_bigr => i _.
by rewrite cfdotZl -cfdotC.
Qed.
Lemma Cnat_cfdot_char_irr i phi :
phi \is a character -> '[phi, 'chi_i]_G \in Num.nat.
Proof. by move/forallP/(_ i); rewrite coord_cfdot. Qed.
Lemma cfdot_char_r phi chi :
chi \is a character -> '[phi, chi]_G = \sum_i '[phi, 'chi_i] * '[chi, 'chi_i].
Proof.
move=> Nchi; rewrite cfdot_sum_irr; apply: eq_bigr => i _; congr (_ * _).
by rewrite conj_natr ?Cnat_cfdot_char_irr.
Qed.
Lemma Cnat_cfdot_char chi xi :
chi \is a character -> xi \is a character -> '[chi, xi]_G \in Num.nat.
Proof.
move=> Nchi Nxi; rewrite cfdot_char_r ?rpred_sum // => i _.
by rewrite rpredM ?Cnat_cfdot_char_irr.
Qed.
Lemma cfdotC_char chi xi :
chi \is a character-> xi \is a character -> '[chi, xi]_G = '[xi, chi].
Proof. by move=> Nchi Nxi; rewrite cfdotC conj_natr ?Cnat_cfdot_char. Qed.
Lemma irrEchar chi : (chi \in irr G) = (chi \is a character) && ('[chi] == 1).
Proof.
apply/irrP/andP=> [[i ->] | [Nchi]]; first by rewrite irr_char cfnorm_irr.
rewrite cfdot_sum_irr => /eqP/natr_sum_eq1[i _| i [_ ci1 cj0]].
by rewrite rpredM // ?conj_natr ?Cnat_cfdot_char_irr.
exists i; rewrite [chi]cfun_sum_cfdot (bigD1 i) //=.
rewrite -(normr_idP (natr_ge0 (Cnat_cfdot_char_irr i Nchi))).
rewrite normC_def {}ci1 sqrtC1 scale1r big1 ?addr0 // => j neq_ji.
by rewrite (('[_] =P 0) _) ?scale0r // -normr_eq0 normC_def cj0 ?sqrtC0.
Qed.
Lemma irrWchar chi : chi \in irr G -> chi \is a character.
Proof. by rewrite irrEchar => /andP[]. Qed.
Lemma irrWnorm chi : chi \in irr G -> '[chi] = 1.
Proof. by rewrite irrEchar => /andP[_ /eqP]. Qed.
Lemma mul_lin_irr xi chi :
xi \is a linear_char -> chi \in irr G -> xi * chi \in irr G.
Proof.
move=> Lxi; rewrite !irrEchar => /andP[Nphi /eqP <-].
rewrite rpredM // ?lin_charW //=; apply/eqP; congr (_ * _).
apply: eq_bigr=> x Gx; rewrite !cfunE rmorphM/= mulrACA -(lin_charV_conj Lxi)//.
by rewrite -lin_charM ?groupV // mulgV lin_char1 ?mul1r.
Qed.
Lemma eq_scaled_irr a b i j :
(a *: 'chi[G]_i == b *: 'chi_j) = (a == b) && ((a == 0) || (i == j)).
Proof.
apply/eqP/andP=> [|[/eqP-> /pred2P[]-> //]]; last by rewrite !scale0r.
move/(congr1 (cfdotr 'chi__)) => /= eq_ai_bj.
move: {eq_ai_bj}(eq_ai_bj i) (esym (eq_ai_bj j)); rewrite !cfdotZl !cfdot_irr.
by rewrite !mulr_natr !mulrb !eqxx eq_sym orbC; case: ifP => _ -> //= ->.
Qed.
Lemma eq_signed_irr (s t : bool) i j :
((-1) ^+ s *: 'chi[G]_i == (-1) ^+ t *: 'chi_j) = (s == t) && (i == j).
Proof. by rewrite eq_scaled_irr signr_eq0 (inj_eq signr_inj). Qed.
Lemma eq_scale_irr a (i j : Iirr G) :
(a *: 'chi_i == a *: 'chi_j) = (a == 0) || (i == j).
Proof. by rewrite eq_scaled_irr eqxx. Qed.
Lemma eq_addZ_irr a b (i j r t : Iirr G) :
(a *: 'chi_i + b *: 'chi_j == a *: 'chi_r + b *: 'chi_t)
= [|| [&& (a == 0) || (i == r) & (b == 0) || (j == t)],
[&& i == t, j == r & a == b] | [&& i == j, r == t & a == - b]].
Proof.
rewrite -!eq_scale_irr; apply/eqP/idP; last first.
case/orP; first by case/andP=> /eqP-> /eqP->.
case/orP=> /and3P[/eqP-> /eqP-> /eqP->]; first by rewrite addrC.
by rewrite !scaleNr !addNr.
have [-> /addrI/eqP-> // | /=] := eqVneq.
rewrite eq_scale_irr => /norP[/negP nz_a /negPf neq_ir].
move/(congr1 (cfdotr 'chi__))/esym/eqP => /= eq_cfdot.
move: {eq_cfdot}(eq_cfdot i) (eq_cfdot r); rewrite eq_sym !cfdotDl !cfdotZl.
rewrite !cfdot_irr !mulr_natr !mulrb !eqxx -!(eq_sym i) neq_ir !add0r.
have [<- _ | _] := i =P t; first by rewrite neq_ir addr0; case: ifP => // _ ->.
rewrite 2!fun_if if_arg addr0 addr_eq0; case: eqP => //= <- ->.
by rewrite neq_ir 2!fun_if if_arg eq_sym addr0; case: ifP.
Qed.
Lemma eq_subZnat_irr (a b : nat) (i j r t : Iirr G) :
(a%:R *: 'chi_i - b%:R *: 'chi_j == a%:R *: 'chi_r - b%:R *: 'chi_t)
= [|| a == 0 | i == r] && [|| b == 0 | j == t]
|| [&& i == j, r == t & a == b].
Proof.
rewrite -!scaleNr eq_addZ_irr oppr_eq0 opprK -addr_eq0 -natrD eqr_nat.
by rewrite !pnatr_eq0 addn_eq0; case: a b => [|a] [|b]; rewrite ?andbF.
Qed.
End InnerProduct.
Section IrrConstt.
Variable (gT : finGroupType) (G H : {group gT}).
Lemma char1_ge_norm (chi : 'CF(G)) x :
chi \is a character -> `|chi x| <= chi 1%g.
Proof.
case/char_reprP=> rG ->; case Gx: (x \in G); last first.
by rewrite cfunE cfRepr1 Gx normr0 ler0n.
by have [e [_ _ []]] := repr_rsim_diag rG Gx.
Qed.
Lemma max_cfRepr_norm_scalar n (rG : mx_representation algC G n) x :
x \in G -> `|cfRepr rG x| = cfRepr rG 1%g ->
exists2 c, `|c| = 1 & rG x = c%:M.
Proof.
move=> Gx; have [e [[B uB def_x] [_ e1] [-> _] _]] := repr_rsim_diag rG Gx.
rewrite cfRepr1 -[n in n%:R]card_ord -sumr_const -(eq_bigr _ (in1W e1)).
case/normC_sum_eq1=> [i _ | c /eqP norm_c_1 def_e]; first by rewrite e1.
have{} def_e: e = const_mx c by apply/rowP=> i; rewrite mxE def_e ?andbT.
by exists c => //; rewrite def_x def_e diag_const_mx scalar_mxC mulmxKV.
Qed.
Lemma max_cfRepr_mx1 n (rG : mx_representation algC G n) x :
x \in G -> cfRepr rG x = cfRepr rG 1%g -> rG x = 1%:M.
Proof.
move=> Gx kerGx; have [|c _ def_x] := @max_cfRepr_norm_scalar n rG x Gx.
by rewrite kerGx cfRepr1 normr_nat.
move/eqP: kerGx; rewrite cfRepr1 cfunE Gx {rG}def_x mxtrace_scalar.
case: n => [_|n]; first by rewrite ![_%:M]flatmx0.
rewrite mulrb -subr_eq0 -mulrnBl -mulr_natl mulf_eq0 pnatr_eq0 /=.
by rewrite subr_eq0 => /eqP->.
Qed.
Definition irr_constt (B : {set gT}) phi := [pred i | '[phi, 'chi_i]_B != 0].
Lemma irr_consttE i phi : (i \in irr_constt phi) = ('[phi, 'chi_i]_G != 0).
Proof. by []. Qed.
Lemma constt_charP (i : Iirr G) chi :
chi \is a character ->
reflect (exists2 chi', chi' \is a character & chi = 'chi_i + chi')
(i \in irr_constt chi).
Proof.
move=> Nchi; apply: (iffP idP) => [i_in_chi| [chi' Nchi' ->]]; last first.
rewrite inE /= cfdotDl cfdot_irr eqxx -(eqP (Cnat_cfdot_char_irr i Nchi')).
by rewrite -natrD pnatr_eq0.
exists (chi - 'chi_i); last by rewrite addrC subrK.
apply/forallP=> j; rewrite coord_cfdot cfdotBl cfdot_irr.
have [<- | _] := eqP; last by rewrite subr0 Cnat_cfdot_char_irr.
move: i_in_chi; rewrite inE; case/natrP: (Cnat_cfdot_char_irr i Nchi) => n ->.
by rewrite pnatr_eq0 -lt0n => /natrB <-; apply: rpred_nat.
Qed.
Lemma cfun_sum_constt (phi : 'CF(G)) :
phi = \sum_(i in irr_constt phi) '[phi, 'chi_i] *: 'chi_i.
Proof.
rewrite {1}[phi]cfun_sum_cfdot (bigID [pred i | '[phi, 'chi_i] == 0]) /=.
by rewrite big1 ?add0r // => i /eqP->; rewrite scale0r.
Qed.
Lemma neq0_has_constt (phi : 'CF(G)) :
phi != 0 -> exists i, i \in irr_constt phi.
Proof.
move=> nz_phi; apply/existsP; apply: contra nz_phi => /pred0P phi0.
by rewrite [phi]cfun_sum_constt big_pred0.
Qed.
Lemma constt_irr i : irr_constt 'chi[G]_i =i pred1 i.
Proof.
by move=> j; rewrite !inE cfdot_irr pnatr_eq0 (eq_sym j); case: (i == j).
Qed.
Lemma char1_ge_constt (i : Iirr G) chi :
chi \is a character -> i \in irr_constt chi -> 'chi_i 1%g <= chi 1%g.
Proof.
move=> {chi} _ /constt_charP[// | chi Nchi ->].
by rewrite cfunE addrC -subr_ge0 addrK char1_ge0.
Qed.
Lemma constt_ortho_char (phi psi : 'CF(G)) i j :
phi \is a character -> psi \is a character ->
i \in irr_constt phi -> j \in irr_constt psi ->
'[phi, psi] = 0 -> '['chi_i, 'chi_j] = 0.
Proof.
move=> _ _ /constt_charP[//|phi1 Nphi1 ->] /constt_charP[//|psi1 Npsi1 ->].
rewrite cfdot_irr; case: eqP => // -> /eqP/idPn[].
rewrite cfdotDl !cfdotDr cfnorm_irr -addrA gt_eqF ?ltr_wpDr ?ltr01 //.
by rewrite natr_ge0 ?rpredD ?Cnat_cfdot_char ?irr_char.
Qed.
End IrrConstt.
Arguments irr_constt {gT B%g} phi%CF.
Section Kernel.
Variable (gT : finGroupType) (G : {group gT}).
Implicit Types (phi chi xi : 'CF(G)) (H : {group gT}).
Lemma cfker_repr n (rG : mx_representation algC G n) :
cfker (cfRepr rG) = rker rG.
Proof.
apply/esym/setP=> x; rewrite inE mul1mx /=.
case Gx: (x \in G); last by rewrite inE Gx.
apply/eqP/idP=> Kx; last by rewrite max_cfRepr_mx1 // cfker1.
rewrite inE Gx; apply/forallP=> y; rewrite !cfunE !mulrb groupMl //.
by case: ifP => // Gy; rewrite repr_mxM // Kx mul1mx.
Qed.
Lemma cfkerEchar chi :
chi \is a character -> cfker chi = [set x in G | chi x == chi 1%g].
Proof.
move=> Nchi; apply/setP=> x; apply/idP/setIdP=> [Kx | [Gx /eqP chi_x]].
by rewrite (subsetP (cfker_sub chi)) // cfker1.
case/char_reprP: Nchi => rG -> in chi_x *; rewrite inE Gx; apply/forallP=> y.
rewrite !cfunE groupMl // !mulrb; case: ifP => // Gy.
by rewrite repr_mxM // max_cfRepr_mx1 ?mul1mx.
Qed.
Lemma cfker_nzcharE chi :
chi \is a character -> chi != 0 -> cfker chi = [set x | chi x == chi 1%g].
Proof.
move=> Nchi nzchi; apply/setP=> x; rewrite cfkerEchar // !inE andb_idl //.
by apply: contraLR => /cfun0-> //; rewrite eq_sym char1_eq0.
Qed.
Lemma cfkerEirr i : cfker 'chi[G]_i = [set x | 'chi_i x == 'chi_i 1%g].
Proof. by rewrite cfker_nzcharE ?irr_char ?irr_neq0. Qed.
Lemma cfker_irr0 : cfker 'chi[G]_0 = G.
Proof. by rewrite irr0 cfker_cfun1. Qed.
Lemma cfaithful_reg : cfaithful (cfReg G).
Proof.
apply/subsetP=> x; rewrite cfkerEchar ?cfReg_char // !inE !cfRegE eqxx.
by case/andP=> _; apply: contraLR => /negbTE->; rewrite eq_sym neq0CG.
Qed.
Lemma cfkerE chi :
chi \is a character ->
cfker chi = G :&: \bigcap_(i in irr_constt chi) cfker 'chi_i.
Proof.
move=> Nchi; rewrite cfkerEchar //; apply/setP=> x; rewrite !inE.
apply: andb_id2l => Gx; rewrite {1 2}[chi]cfun_sum_constt !sum_cfunE.
apply/eqP/bigcapP=> [Kx i Ci | Kx]; last first.
by apply: eq_bigr => i /Kx Kx_i; rewrite !cfunE cfker1.
rewrite cfkerEirr inE /= -(inj_eq (mulfI Ci)).
have:= (normC_sum_upper _ Kx) i; rewrite !cfunE => -> // {Ci}i _.
have chi_i_ge0: 0 <= '[chi, 'chi_i].
by rewrite natr_ge0 ?Cnat_cfdot_char_irr.
by rewrite !cfunE normrM (normr_idP _) ?ler_wpM2l ?char1_ge_norm ?irr_char.
Qed.
Lemma TI_cfker_irr : \bigcap_i cfker 'chi[G]_i = [1].
Proof.
apply/trivgP; apply: subset_trans cfaithful_reg; rewrite cfkerE ?cfReg_char //.
rewrite subsetI (bigcap_min 0) //=; last by rewrite cfker_irr0.
by apply/bigcapsP=> i _; rewrite bigcap_inf.
Qed.
Lemma cfker_constt i chi :
chi \is a character -> i \in irr_constt chi ->
cfker chi \subset cfker 'chi[G]_i.
Proof. by move=> Nchi Ci; rewrite cfkerE ?subIset ?(bigcap_min i) ?orbT. Qed.
Section KerLin.
Variable xi : 'CF(G).
Hypothesis lin_xi : xi \is a linear_char.
Let Nxi: xi \is a character. Proof. by have [] := andP lin_xi. Qed.
Lemma lin_char_der1 : G^`(1)%g \subset cfker xi.
Proof.
rewrite gen_subG /=; apply/subsetP=> _ /imset2P[x y Gx Gy ->].
rewrite cfkerEchar // inE groupR //= !lin_charM ?lin_charV ?in_group //.
by rewrite mulrCA mulKf ?mulVf ?lin_char_neq0 // lin_char1.
Qed.
Lemma cforder_lin_char : #[xi]%CF = exponent (G / cfker xi)%g.
Proof.
apply/eqP; rewrite eqn_dvd; apply/andP; split.
apply/dvdn_cforderP=> x Gx; rewrite -lin_charX // -cfQuoEker ?groupX //.
rewrite morphX ?(subsetP (cfker_norm xi)) //= expg_exponent ?mem_quotient //.
by rewrite cfQuo1 ?cfker_normal ?lin_char1.
have abGbar: abelian (G / cfker xi) := sub_der1_abelian lin_char_der1.
have [_ /morphimP[x Nx Gx ->] ->] := exponent_witness (abelian_nil abGbar).
rewrite order_dvdn -morphX //= coset_id cfkerEchar // !inE groupX //=.
by rewrite lin_charX ?lin_char1 // (dvdn_cforderP _ _ _).
Qed.
Lemma cforder_lin_char_dvdG : #[xi]%CF %| #|G|.
Proof.
by rewrite cforder_lin_char (dvdn_trans (exponent_dvdn _)) ?dvdn_morphim.
Qed.
Lemma cforder_lin_char_gt0 : (0 < #[xi]%CF)%N.
Proof. by rewrite cforder_lin_char exponent_gt0. Qed.
End KerLin.
End Kernel.
Section Restrict.
Variable (gT : finGroupType) (G H : {group gT}).
Lemma cfRepr_sub n (rG : mx_representation algC G n) (sHG : H \subset G) :
cfRepr (subg_repr rG sHG) = 'Res[H] (cfRepr rG).
Proof.
by apply/cfun_inP => x Hx; rewrite cfResE // !cfunE Hx (subsetP sHG).
Qed.
Lemma cfRes_char chi : chi \is a character -> 'Res[H, G] chi \is a character.
Proof.
have [sHG | not_sHG] := boolP (H \subset G).
by case/char_reprP=> rG ->; rewrite -(cfRepr_sub rG sHG) cfRepr_char.
by move/Cnat_char1=> Nchi1; rewrite cfResEout // rpredZ_nat ?rpred1.
Qed.
Lemma cfRes_eq0 phi : phi \is a character -> ('Res[H, G] phi == 0) = (phi == 0).
Proof. by move=> Nchi; rewrite -!char1_eq0 ?cfRes_char // cfRes1. Qed.
Lemma cfRes_lin_char chi :
chi \is a linear_char -> 'Res[H, G] chi \is a linear_char.
Proof. by case/andP=> Nchi; rewrite qualifE/= cfRes_char ?cfRes1. Qed.
Lemma Res_irr_neq0 i : 'Res[H, G] 'chi_i != 0.
Proof. by rewrite cfRes_eq0 ?irr_neq0 ?irr_char. Qed.
Lemma cfRes_lin_lin (chi : 'CF(G)) :
chi \is a character -> 'Res[H] chi \is a linear_char -> chi \is a linear_char.
Proof. by rewrite !qualifE/= !qualifE/= cfRes1 => -> /andP[]. Qed.
Lemma cfRes_irr_irr chi :
chi \is a character -> 'Res[H] chi \in irr H -> chi \in irr G.
Proof.
have [sHG /char_reprP[rG ->] | not_sHG Nchi] := boolP (H \subset G).
rewrite -(cfRepr_sub _ sHG) => /irr_reprP[rH irrH def_rH]; apply/irr_reprP.
suffices /subg_mx_irr: mx_irreducible (subg_repr rG sHG) by exists rG.
by apply: mx_rsim_irr irrH; apply/cfRepr_rsimP/eqP.
rewrite cfResEout // => /irrP[j Dchi_j]; apply/lin_char_irr/cfRes_lin_lin=> //.
suffices j0: j = 0 by rewrite cfResEout // Dchi_j j0 irr0 rpred1.
apply: contraNeq (irr1_neq0 j) => nz_j.
have:= xcfun_id j 0; rewrite -Dchi_j cfunE xcfunZl -irr0 xcfun_id eqxx => ->.
by rewrite (negPf nz_j).
Qed.
Definition Res_Iirr (A B : {set gT}) i := cfIirr ('Res[B, A] 'chi_i).
Lemma Res_Iirr0 : Res_Iirr H (0 : Iirr G) = 0.
Proof. by rewrite /Res_Iirr irr0 rmorph1 -irr0 irrK. Qed.
Lemma lin_Res_IirrE i : 'chi[G]_i 1%g = 1 -> 'chi_(Res_Iirr H i) = 'Res 'chi_i.
Proof.
move=> chi1; rewrite cfIirrE ?lin_char_irr ?cfRes_lin_char //.
by rewrite qualifE/= irr_char /= chi1.
Qed.
End Restrict.
Arguments Res_Iirr {gT A%g} B%g i%R.
Section MoreConstt.
Variables (gT : finGroupType) (G H : {group gT}).
Lemma constt_Ind_Res i j :
i \in irr_constt ('Ind[G] 'chi_j) = (j \in irr_constt ('Res[H] 'chi_i)).
Proof. by rewrite !irr_consttE cfdotC conjC_eq0 -cfdot_Res_l. Qed.
Lemma cfdot_Res_ge_constt i j psi :
psi \is a character -> j \in irr_constt psi ->
'['Res[H, G] 'chi_j, 'chi_i] <= '['Res[H] psi, 'chi_i].
Proof.
move=> {psi} _ /constt_charP[// | psi Npsi ->].
rewrite linearD cfdotDl addrC -subr_ge0 addrK natr_ge0 //=.
by rewrite Cnat_cfdot_char_irr // cfRes_char.
Qed.
Lemma constt_Res_trans j psi :
psi \is a character -> j \in irr_constt psi ->
{subset irr_constt ('Res[H, G] 'chi_j) <= irr_constt ('Res[H] psi)}.
Proof.
move=> Npsi Cj i; apply: contraNneq; rewrite eq_le => {1}<-.
rewrite cfdot_Res_ge_constt ?natr_ge0 ?Cnat_cfdot_char_irr //.
by rewrite cfRes_char ?irr_char.
Qed.
End MoreConstt.
Section Morphim.
Variables (aT rT : finGroupType) (G D : {group aT}) (f : {morphism D >-> rT}).
Implicit Type chi : 'CF(f @* G).
Lemma cfRepr_morphim n (rfG : mx_representation algC (f @* G) n) sGD :
cfRepr (morphim_repr rfG sGD) = cfMorph (cfRepr rfG).
Proof.
apply/cfun_inP=> x Gx; have Dx: x \in D := subsetP sGD x Gx.
by rewrite cfMorphE // !cfunE ?mem_morphim ?Gx.
Qed.
Lemma cfMorph_char chi : chi \is a character -> cfMorph chi \is a character.
Proof.
have [sGD /char_reprP[rfG ->] | outGD Nchi] := boolP (G \subset D); last first.
by rewrite cfMorphEout // rpredZ_nat ?rpred1 ?Cnat_char1.
apply/char_reprP; exists (Representation (morphim_repr rfG sGD)).
by rewrite cfRepr_morphim.
Qed.
Lemma cfMorph_lin_char chi :
chi \is a linear_char -> cfMorph chi \is a linear_char.
Proof. by case/andP=> Nchi; rewrite qualifE/= cfMorph1 cfMorph_char. Qed.
Lemma cfMorph_charE chi :
G \subset D -> (cfMorph chi \is a character) = (chi \is a character).
Proof.
move=> sGD; apply/idP/idP=> [/char_reprP[[n rG] /=Dfchi] | /cfMorph_char//].
pose H := 'ker_G f; have kerH: H \subset rker rG.
by rewrite -cfker_repr -Dfchi cfker_morph // setIS // ker_sub_pre.
have nHG: G \subset 'N(H) by rewrite normsI // (subset_trans sGD) ?ker_norm.
have [h injh im_h] := first_isom_loc f sGD; rewrite -/H in h injh im_h.
have DfG: invm injh @*^-1 (G / H) == (f @* G)%g by rewrite morphpre_invm im_h.
pose rfG := eqg_repr (morphpre_repr _ (quo_repr kerH nHG)) DfG.
apply/char_reprP; exists (Representation rfG).
apply/cfun_inP=> _ /morphimP[x Dx Gx ->]; rewrite -cfMorphE // Dfchi !cfunE Gx.
pose xH := coset H x; have GxH: xH \in (G / H)%g by apply: mem_quotient.
suffices Dfx: f x = h xH by rewrite mem_morphim //= Dfx invmE ?quo_repr_coset.
by apply/set1_inj; rewrite -?morphim_set1 ?im_h ?(subsetP nHG) ?sub1set.
Qed.
Lemma cfMorph_lin_charE chi :
G \subset D -> (cfMorph chi \is a linear_char) = (chi \is a linear_char).
Proof. by rewrite qualifE/= cfMorph1 => /cfMorph_charE->. Qed.
Lemma cfMorph_irr chi :
G \subset D -> (cfMorph chi \in irr G) = (chi \in irr (f @* G)).
Proof. by move=> sGD; rewrite !irrEchar cfMorph_charE // cfMorph_iso. Qed.
Definition morph_Iirr i := cfIirr (cfMorph 'chi[f @* G]_i).
Lemma morph_Iirr0 : morph_Iirr 0 = 0.
Proof. by rewrite /morph_Iirr irr0 rmorph1 -irr0 irrK. Qed.
Hypothesis sGD : G \subset D.
Lemma morph_IirrE i : 'chi_(morph_Iirr i) = cfMorph 'chi_i.
Proof. by rewrite cfIirrE ?cfMorph_irr ?mem_irr. Qed.
Lemma morph_Iirr_inj : injective morph_Iirr.
Proof.
by move=> i j eq_ij; apply/irr_inj/cfMorph_inj; rewrite // -!morph_IirrE eq_ij.
Qed.
Lemma morph_Iirr_eq0 i : (morph_Iirr i == 0) = (i == 0).
Proof. by rewrite -!irr_eq1 morph_IirrE cfMorph_eq1. Qed.
End Morphim.
Section Isom.
Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
Variables (R : {group rT}) (isoGR : isom G R f).
Implicit Type chi : 'CF(G).
Lemma cfIsom_char chi :
(cfIsom isoGR chi \is a character) = (chi \is a character).
Proof.
rewrite [cfIsom _]locked_withE cfMorph_charE //.
by rewrite (isom_im (isom_sym _)) cfRes_id.
Qed.
Lemma cfIsom_lin_char chi :
(cfIsom isoGR chi \is a linear_char) = (chi \is a linear_char).
Proof. by rewrite qualifE/= cfIsom_char cfIsom1. Qed.
Lemma cfIsom_irr chi : (cfIsom isoGR chi \in irr R) = (chi \in irr G).
Proof. by rewrite !irrEchar cfIsom_char cfIsom_iso. Qed.
Definition isom_Iirr i := cfIirr (cfIsom isoGR 'chi_i).
Lemma isom_IirrE i : 'chi_(isom_Iirr i) = cfIsom isoGR 'chi_i.
Proof. by rewrite cfIirrE ?cfIsom_irr ?mem_irr. Qed.
Lemma isom_Iirr_inj : injective isom_Iirr.
Proof.
by move=> i j eqij; apply/irr_inj/(cfIsom_inj isoGR); rewrite -!isom_IirrE eqij.
Qed.
Lemma isom_Iirr_eq0 i : (isom_Iirr i == 0) = (i == 0).
Proof. by rewrite -!irr_eq1 isom_IirrE cfIsom_eq1. Qed.
Lemma isom_Iirr0 : isom_Iirr 0 = 0.
Proof. by apply/eqP; rewrite isom_Iirr_eq0. Qed.
End Isom.
Arguments isom_Iirr_inj {aT rT G f R} isoGR [i1 i2] : rename.
Section IsomInv.
Variables (aT rT : finGroupType) (G : {group aT}) (f : {morphism G >-> rT}).
Variables (R : {group rT}) (isoGR : isom G R f).
Lemma isom_IirrK : cancel (isom_Iirr isoGR) (isom_Iirr (isom_sym isoGR)).
Proof. by move=> i; apply: irr_inj; rewrite !isom_IirrE cfIsomK. Qed.
Lemma isom_IirrKV : cancel (isom_Iirr (isom_sym isoGR)) (isom_Iirr isoGR).
Proof. by move=> i; apply: irr_inj; rewrite !isom_IirrE cfIsomKV. Qed.
End IsomInv.
Section Sdprod.
Variables (gT : finGroupType) (K H G : {group gT}).
Hypothesis defG : K ><| H = G.
Let nKG: G \subset 'N(K). Proof. by have [/andP[]] := sdprod_context defG. Qed.
Lemma cfSdprod_char chi :
(cfSdprod defG chi \is a character) = (chi \is a character).
Proof. by rewrite unlock cfMorph_charE // cfIsom_char. Qed.
Lemma cfSdprod_lin_char chi :
(cfSdprod defG chi \is a linear_char) = (chi \is a linear_char).
Proof. by rewrite qualifE/= cfSdprod_char cfSdprod1. Qed.
Lemma cfSdprod_irr chi : (cfSdprod defG chi \in irr G) = (chi \in irr H).
Proof. by rewrite !irrEchar cfSdprod_char cfSdprod_iso. Qed.
Definition sdprod_Iirr j := cfIirr (cfSdprod defG 'chi_j).
Lemma sdprod_IirrE j : 'chi_(sdprod_Iirr j) = cfSdprod defG 'chi_j.
Proof. by rewrite cfIirrE ?cfSdprod_irr ?mem_irr. Qed.
Lemma sdprod_IirrK : cancel sdprod_Iirr (Res_Iirr H).
Proof. by move=> j; rewrite /Res_Iirr sdprod_IirrE cfSdprodK irrK. Qed.
Lemma sdprod_Iirr_inj : injective sdprod_Iirr.
Proof. exact: can_inj sdprod_IirrK. Qed.
Lemma sdprod_Iirr_eq0 i : (sdprod_Iirr i == 0) = (i == 0).
Proof. by rewrite -!irr_eq1 sdprod_IirrE cfSdprod_eq1. Qed.
Lemma sdprod_Iirr0 : sdprod_Iirr 0 = 0.
Proof. by apply/eqP; rewrite sdprod_Iirr_eq0. Qed.
Lemma Res_sdprod_irr phi :
K \subset cfker phi -> phi \in irr G -> 'Res phi \in irr H.
Proof.
move=> kerK /irrP[i Dphi]; rewrite irrEchar -(cfSdprod_iso defG).
by rewrite cfRes_sdprodK // Dphi cfnorm_irr cfRes_char ?irr_char /=.
Qed.
Lemma sdprod_Res_IirrE i :
K \subset cfker 'chi[G]_i -> 'chi_(Res_Iirr H i) = 'Res 'chi_i.
Proof. by move=> kerK; rewrite cfIirrE ?Res_sdprod_irr ?mem_irr. Qed.
Lemma sdprod_Res_IirrK i :
K \subset cfker 'chi_i -> sdprod_Iirr (Res_Iirr H i) = i.
Proof.
by move=> kerK; rewrite /sdprod_Iirr sdprod_Res_IirrE ?cfRes_sdprodK ?irrK.
Qed.
End Sdprod.
Arguments sdprod_Iirr_inj {gT K H G} defG [i1 i2] : rename.
Section DProd.
Variables (gT : finGroupType) (G K H : {group gT}).
Hypothesis KxH : K \x H = G.
Lemma cfDprodKl_abelian j : abelian H -> cancel ((cfDprod KxH)^~ 'chi_j) 'Res.
Proof. by move=> cHH; apply: cfDprodKl; apply/lin_char1/char_abelianP. Qed.
Lemma cfDprodKr_abelian i : abelian K -> cancel (cfDprod KxH 'chi_i) 'Res.
Proof. by move=> cKK; apply: cfDprodKr; apply/lin_char1/char_abelianP. Qed.
Lemma cfDprodl_char phi :
(cfDprodl KxH phi \is a character) = (phi \is a character).
Proof. exact: cfSdprod_char. Qed.
Lemma cfDprodr_char psi :
(cfDprodr KxH psi \is a character) = (psi \is a character).
Proof. exact: cfSdprod_char. Qed.
Lemma cfDprod_char phi psi :
phi \is a character -> psi \is a character ->
cfDprod KxH phi psi \is a character.
Proof. by move=> Nphi Npsi; rewrite rpredM ?cfDprodl_char ?cfDprodr_char. Qed.
Lemma cfDprod_eq1 phi psi :
phi \is a character -> psi \is a character ->
(cfDprod KxH phi psi == 1) = (phi == 1) && (psi == 1).
Proof.
move=> /Cnat_char1 Nphi /Cnat_char1 Npsi.
apply/eqP/andP=> [phi_psi_1 | [/eqP-> /eqP->]]; last by rewrite cfDprod_cfun1.
have /andP[/eqP phi1 /eqP psi1]: (phi 1%g == 1) && (psi 1%g == 1).
by rewrite -natr_mul_eq1 // -(cfDprod1 KxH) phi_psi_1 cfun11.
rewrite -[phi](cfDprodKl KxH psi1) -{2}[psi](cfDprodKr KxH phi1) phi_psi_1.
by rewrite !rmorph1.
Qed.
Lemma cfDprodl_lin_char phi :
(cfDprodl KxH phi \is a linear_char) = (phi \is a linear_char).
Proof. exact: cfSdprod_lin_char. Qed.
Lemma cfDprodr_lin_char psi :
(cfDprodr KxH psi \is a linear_char) = (psi \is a linear_char).
Proof. exact: cfSdprod_lin_char. Qed.
Lemma cfDprod_lin_char phi psi :
phi \is a linear_char -> psi \is a linear_char ->
cfDprod KxH phi psi \is a linear_char.
Proof. by move=> Nphi Npsi; rewrite rpredM ?cfSdprod_lin_char. Qed.
Lemma cfDprodl_irr chi : (cfDprodl KxH chi \in irr G) = (chi \in irr K).
Proof. exact: cfSdprod_irr. Qed.
Lemma cfDprodr_irr chi : (cfDprodr KxH chi \in irr G) = (chi \in irr H).
Proof. exact: cfSdprod_irr. Qed.
Definition dprodl_Iirr i := cfIirr (cfDprodl KxH 'chi_i).
Lemma dprodl_IirrE i : 'chi_(dprodl_Iirr i) = cfDprodl KxH 'chi_i.
Proof. exact: sdprod_IirrE. Qed.
Lemma dprodl_IirrK : cancel dprodl_Iirr (Res_Iirr K).
Proof. exact: sdprod_IirrK. Qed.
Lemma dprodl_Iirr_eq0 i : (dprodl_Iirr i == 0) = (i == 0).
Proof. exact: sdprod_Iirr_eq0. Qed.
Lemma dprodl_Iirr0 : dprodl_Iirr 0 = 0.
Proof. exact: sdprod_Iirr0. Qed.
Definition dprodr_Iirr j := cfIirr (cfDprodr KxH 'chi_j).
Lemma dprodr_IirrE j : 'chi_(dprodr_Iirr j) = cfDprodr KxH 'chi_j.
Proof. exact: sdprod_IirrE. Qed.
Lemma dprodr_IirrK : cancel dprodr_Iirr (Res_Iirr H).
Proof. exact: sdprod_IirrK. Qed.
Lemma dprodr_Iirr_eq0 j : (dprodr_Iirr j == 0) = (j == 0).
Proof. exact: sdprod_Iirr_eq0. Qed.
Lemma dprodr_Iirr0 : dprodr_Iirr 0 = 0.
Proof. exact: sdprod_Iirr0. Qed.
Lemma cfDprod_irr i j : cfDprod KxH 'chi_i 'chi_j \in irr G.
Proof.
rewrite irrEchar cfDprod_char ?irr_char //=.
by rewrite cfdot_dprod !cfdot_irr !eqxx mul1r.
Qed.
Definition dprod_Iirr ij := cfIirr (cfDprod KxH 'chi_ij.1 'chi_ij.2).
Lemma dprod_IirrE i j : 'chi_(dprod_Iirr (i, j)) = cfDprod KxH 'chi_i 'chi_j.
Proof. by rewrite cfIirrE ?cfDprod_irr. Qed.
Lemma dprod_IirrEl i : 'chi_(dprod_Iirr (i, 0)) = cfDprodl KxH 'chi_i.
Proof. by rewrite dprod_IirrE /cfDprod irr0 rmorph1 mulr1. Qed.
Lemma dprod_IirrEr j : 'chi_(dprod_Iirr (0, j)) = cfDprodr KxH 'chi_j.
Proof. by rewrite dprod_IirrE /cfDprod irr0 rmorph1 mul1r. Qed.
Lemma dprod_Iirr_inj : injective dprod_Iirr.
Proof.
move=> [i1 j1] [i2 j2] /eqP; rewrite -[_ == _]oddb -(@natrK algC (_ == _)).
rewrite -cfdot_irr !dprod_IirrE cfdot_dprod !cfdot_irr -natrM mulnb.
by rewrite natrK oddb -xpair_eqE => /eqP.
Qed.
Lemma dprod_Iirr0 : dprod_Iirr (0, 0) = 0.
Proof. by apply/irr_inj; rewrite dprod_IirrE !irr0 cfDprod_cfun1. Qed.
Lemma dprod_Iirr0l j : dprod_Iirr (0, j) = dprodr_Iirr j.
Proof.
by apply/irr_inj; rewrite dprod_IirrE irr0 dprodr_IirrE cfDprod_cfun1l.
Qed.
Lemma dprod_Iirr0r i : dprod_Iirr (i, 0) = dprodl_Iirr i.
Proof.
by apply/irr_inj; rewrite dprod_IirrE irr0 dprodl_IirrE cfDprod_cfun1r.
Qed.
Lemma dprod_Iirr_eq0 i j : (dprod_Iirr (i, j) == 0) = (i == 0) && (j == 0).
Proof. by rewrite -xpair_eqE -(inj_eq dprod_Iirr_inj) dprod_Iirr0. Qed.
Lemma cfdot_dprod_irr i1 i2 j1 j2 :
'['chi_(dprod_Iirr (i1, j1)), 'chi_(dprod_Iirr (i2, j2))]
= ((i1 == i2) && (j1 == j2))%:R.
Proof. by rewrite cfdot_irr (inj_eq dprod_Iirr_inj). Qed.
Lemma dprod_Iirr_onto k : k \in codom dprod_Iirr.
Proof.
set D := codom _; have Df: dprod_Iirr _ \in D := codom_f dprod_Iirr _.
have: 'chi_k 1%g ^+ 2 != 0 by rewrite mulf_neq0 ?irr1_neq0.
apply: contraR => notDk; move/eqP: (irr_sum_square G).
rewrite (bigID [in D]) (reindex _ (bij_on_codom dprod_Iirr_inj (0, 0))) /=.
have ->: #|G|%:R = \sum_i \sum_j 'chi_(dprod_Iirr (i, j)) 1%g ^+ 2.
rewrite -(dprod_card KxH) natrM.
do 2![rewrite -irr_sum_square (mulr_suml, mulr_sumr); apply: eq_bigr => ? _].
by rewrite dprod_IirrE -exprMn -{3}(mulg1 1%g) cfDprodE.
rewrite (eq_bigl _ _ Df) pair_bigA addrC -subr_eq0 addrK.
by move/eqP/psumr_eq0P=> -> //= i _; rewrite irr1_degree -natrX ler0n.
Qed.
Definition inv_dprod_Iirr i := iinv (dprod_Iirr_onto i).
Lemma dprod_IirrK : cancel dprod_Iirr inv_dprod_Iirr.
Proof. by move=> p; apply: (iinv_f dprod_Iirr_inj). Qed.
Lemma inv_dprod_IirrK : cancel inv_dprod_Iirr dprod_Iirr.
Proof. by move=> i; apply: f_iinv. Qed.
Lemma inv_dprod_Iirr0 : inv_dprod_Iirr 0 = (0, 0).
Proof. by apply/(canLR dprod_IirrK); rewrite dprod_Iirr0. Qed.
End DProd.
Arguments dprod_Iirr_inj {gT G K H} KxH [i1 i2] : rename.
Lemma dprod_IirrC (gT : finGroupType) (G K H : {group gT})
(KxH : K \x H = G) (HxK : H \x K = G) i j :
dprod_Iirr KxH (i, j) = dprod_Iirr HxK (j, i).
Proof. by apply: irr_inj; rewrite !dprod_IirrE; apply: cfDprodC. Qed.
Section BigDprod.
Variables (gT : finGroupType) (I : finType) (P : pred I).
Variables (A : I -> {group gT}) (G : {group gT}).
Hypothesis defG : \big[dprod/1%g]_(i | P i) A i = G.
Let sAG i : P i -> A i \subset G.
Proof. by move=> Pi; rewrite -(bigdprodWY defG) (bigD1 i) ?joing_subl. Qed.
Lemma cfBigdprodi_char i (phi : 'CF(A i)) :
phi \is a character -> cfBigdprodi defG phi \is a character.
Proof. by move=> Nphi; rewrite cfDprodl_char cfRes_char. Qed.
Lemma cfBigdprodi_charE i (phi : 'CF(A i)) :
P i -> (cfBigdprodi defG phi \is a character) = (phi \is a character).
Proof. by move=> Pi; rewrite cfDprodl_char Pi cfRes_id. Qed.
Lemma cfBigdprod_char phi :
(forall i, P i -> phi i \is a character) ->
cfBigdprod defG phi \is a character.
Proof.
by move=> Nphi; apply: rpred_prod => i /Nphi; apply: cfBigdprodi_char.
Qed.
Lemma cfBigdprodi_lin_char i (phi : 'CF(A i)) :
phi \is a linear_char -> cfBigdprodi defG phi \is a linear_char.
Proof. by move=> Lphi; rewrite cfDprodl_lin_char ?cfRes_lin_char. Qed.
Lemma cfBigdprodi_lin_charE i (phi : 'CF(A i)) :
P i -> (cfBigdprodi defG phi \is a linear_char) = (phi \is a linear_char).
Proof. by move=> Pi; rewrite qualifE/= cfBigdprodi_charE // cfBigdprodi1. Qed.
Lemma cfBigdprod_lin_char phi :
(forall i, P i -> phi i \is a linear_char) ->
cfBigdprod defG phi \is a linear_char.
Proof.
by move=> Lphi; apply/rpred_prod=> i /Lphi; apply: cfBigdprodi_lin_char.
Qed.
Lemma cfBigdprodi_irr i chi :
P i -> (cfBigdprodi defG chi \in irr G) = (chi \in irr (A i)).
Proof. by move=> Pi; rewrite !irrEchar cfBigdprodi_charE ?cfBigdprodi_iso. Qed.
Lemma cfBigdprod_irr chi :
(forall i, P i -> chi i \in irr (A i)) -> cfBigdprod defG chi \in irr G.
Proof.
move=> Nchi; rewrite irrEchar cfBigdprod_char => [|i /Nchi/irrWchar] //=.
by rewrite cfdot_bigdprod big1 // => i /Nchi/irrWnorm.
Qed.
Lemma cfBigdprod_eq1 phi :
(forall i, P i -> phi i \is a character) ->
(cfBigdprod defG phi == 1) = [forall (i | P i), phi i == 1].
Proof.
move=> Nphi; set Phi := cfBigdprod defG phi.
apply/eqP/eqfun_inP=> [Phi1 i Pi | phi1]; last first.
by apply: big1 => i /phi1->; rewrite rmorph1.
have Phi1_1: Phi 1%g = 1 by rewrite Phi1 cfun1E group1.
have nz_Phi1: Phi 1%g != 0 by rewrite Phi1_1 oner_eq0.
have [_ <-] := cfBigdprodK nz_Phi1 Pi.
rewrite Phi1_1 divr1 -/Phi Phi1 rmorph1.
rewrite prod_cfunE // in Phi1_1; have := natr_prod_eq1 _ Phi1_1 Pi.
rewrite -(cfRes1 (A i)) cfBigdprodiK // => ->; first by rewrite scale1r.
by move=> {i Pi} j /Nphi Nphi_j; rewrite Cnat_char1 ?cfBigdprodi_char.
Qed.
Lemma cfBigdprod_Res_lin chi :
chi \is a linear_char -> cfBigdprod defG (fun i => 'Res[A i] chi) = chi.
Proof.
move=> Lchi; apply/cfun_inP=> _ /(mem_bigdprod defG)[x [Ax -> _]].
rewrite (lin_char_prod Lchi) ?cfBigdprodE // => [|i Pi]; last first.
by rewrite (subsetP (sAG Pi)) ?Ax.
by apply/eq_bigr=> i Pi; rewrite cfResE ?sAG ?Ax.
Qed.
Lemma cfBigdprodKlin phi :
(forall i, P i -> phi i \is a linear_char) ->
forall i, P i -> 'Res (cfBigdprod defG phi) = phi i.
Proof.
move=> Lphi i Pi; have Lpsi := cfBigdprod_lin_char Lphi.
have [_ <-] := cfBigdprodK (lin_char_neq0 Lpsi (group1 G)) Pi.
by rewrite !lin_char1 ?Lphi // divr1 scale1r.
Qed.
Lemma cfBigdprodKabelian Iphi (phi := fun i => 'chi_(Iphi i)) :
abelian G -> forall i, P i -> 'Res (cfBigdprod defG phi) = 'chi_(Iphi i).
Proof.
move=> /(abelianS _) cGG.
by apply: cfBigdprodKlin => i /sAG/cGG/char_abelianP->.
Qed.
End BigDprod.
Section Aut.
Variables (gT : finGroupType) (G : {group gT}).
Implicit Type u : {rmorphism algC -> algC}.
Lemma conjC_charAut u (chi : 'CF(G)) x :
chi \is a character -> (u (chi x))^* = u (chi x)^*.
Proof.
have [Gx | /cfun0->] := boolP (x \in G); last by rewrite !rmorph0.
case/char_reprP=> rG ->; have [e [_ [en1 _] [-> _] _]] := repr_rsim_diag rG Gx.
by rewrite !rmorph_sum; apply: eq_bigr => i _; apply: aut_unity_rootC (en1 i).
Qed.
Lemma conjC_irrAut u i x : (u ('chi[G]_i x))^* = u ('chi_i x)^*.
Proof. exact: conjC_charAut (irr_char i). Qed.
Lemma cfdot_aut_char u (phi chi : 'CF(G)) :
chi \is a character -> '[cfAut u phi, cfAut u chi] = u '[phi, chi].
Proof. by move/conjC_charAut=> Nchi; apply: cfdot_cfAut => _ /mapP[x _ ->]. Qed.
Lemma cfdot_aut_irr u phi i :
'[cfAut u phi, cfAut u 'chi[G]_i] = u '[phi, 'chi_i].
Proof. exact: cfdot_aut_char (irr_char i). Qed.
Lemma cfAut_irr u chi : (cfAut u chi \in irr G) = (chi \in irr G).
Proof.
rewrite !irrEchar cfAut_char; apply/andb_id2l=> /cfdot_aut_char->.
exact: fmorph_eq1.
Qed.
Lemma cfConjC_irr i : (('chi_i)^*)%CF \in irr G.
Proof. by rewrite cfAut_irr mem_irr. Qed.
Lemma irr_aut_closed u : cfAut_closed u (irr G).
Proof. by move=> chi; rewrite /= cfAut_irr. Qed.
Definition aut_Iirr u i := cfIirr (cfAut u 'chi[G]_i).
Lemma aut_IirrE u i : 'chi_(aut_Iirr u i) = cfAut u 'chi_i.
Proof. by rewrite cfIirrE ?cfAut_irr ?mem_irr. Qed.
Definition conjC_Iirr := aut_Iirr conjC.
Lemma conjC_IirrE i : 'chi[G]_(conjC_Iirr i) = ('chi_i)^*%CF.
Proof. exact: aut_IirrE. Qed.
Lemma conjC_IirrK : involutive conjC_Iirr.
Proof. by move=> i; apply: irr_inj; rewrite !conjC_IirrE cfConjCK. Qed.
Lemma aut_Iirr0 u : aut_Iirr u 0 = 0 :> Iirr G.
Proof. by apply/irr_inj; rewrite aut_IirrE irr0 cfAut_cfun1. Qed.
Lemma conjC_Iirr0 : conjC_Iirr 0 = 0 :> Iirr G.
Proof. exact: aut_Iirr0. Qed.
Lemma aut_Iirr_eq0 u i : (aut_Iirr u i == 0) = (i == 0).
Proof. by rewrite -!irr_eq1 aut_IirrE cfAut_eq1. Qed.
Lemma conjC_Iirr_eq0 i : (conjC_Iirr i == 0 :> Iirr G) = (i == 0).
Proof. exact: aut_Iirr_eq0. Qed.
Lemma aut_Iirr_inj u : injective (aut_Iirr u).
Proof.
by move=> i j eq_ij; apply/irr_inj/(cfAut_inj u); rewrite -!aut_IirrE eq_ij.
Qed.
End Aut.
Arguments aut_Iirr_inj {gT G} u [i1 i2] : rename.
Arguments conjC_IirrK {gT G} i : rename.
Section Coset.
Variable (gT : finGroupType).
Implicit Types G H : {group gT}.
Lemma cfQuo_char G H (chi : 'CF(G)) :
chi \is a character -> (chi / H)%CF \is a character.
Proof.
move=> Nchi; without loss kerH: / H \subset cfker chi.
move/contraNF=> IHchi; apply/wlog_neg=> N'chiH.
suffices ->: (chi / H)%CF = (chi 1%g)%:A.
by rewrite rpredZ_nat ?Cnat_char1 ?rpred1.
by apply/cfunP=> x; rewrite cfunE cfun1E mulr_natr cfunElock IHchi.
without loss nsHG: G chi Nchi kerH / H <| G.
move=> IHchi; have nsHN := normalSG (subset_trans kerH (cfker_sub chi)).
by rewrite cfQuoInorm ?(cfRes_char, IHchi) ?sub_cfker_Res // ?normal_sub.
have [rG Dchi] := char_reprP Nchi; rewrite Dchi cfker_repr in kerH.
apply/char_reprP; exists (Representation (quo_repr kerH (normal_norm nsHG))).
apply/cfun_inP=> _ /morphimP[x nHx Gx ->]; rewrite Dchi cfQuoE ?cfker_repr //=.
by rewrite !cfunE Gx quo_repr_coset ?mem_quotient.
Qed.
Lemma cfQuo_lin_char G H (chi : 'CF(G)) :
chi \is a linear_char -> (chi / H)%CF \is a linear_char.
Proof. by case/andP=> Nchi; rewrite qualifE/= cfQuo_char ?cfQuo1. Qed.
Lemma cfMod_char G H (chi : 'CF(G / H)) :
chi \is a character -> (chi %% H)%CF \is a character.
Proof. exact: cfMorph_char. Qed.
Lemma cfMod_lin_char G H (chi : 'CF(G / H)) :
chi \is a linear_char -> (chi %% H)%CF \is a linear_char.
Proof. exact: cfMorph_lin_char. Qed.
Lemma cfMod_charE G H (chi : 'CF(G / H)) :
H <| G -> (chi %% H \is a character)%CF = (chi \is a character).
Proof. by case/andP=> _; apply: cfMorph_charE. Qed.
Lemma cfMod_lin_charE G H (chi : 'CF(G / H)) :
H <| G -> (chi %% H \is a linear_char)%CF = (chi \is a linear_char).
Proof. by case/andP=> _; apply: cfMorph_lin_charE. Qed.
Lemma cfQuo_charE G H (chi : 'CF(G)) :
H <| G -> H \subset cfker chi ->
(chi / H \is a character)%CF = (chi \is a character).
Proof. by move=> nsHG kerH; rewrite -cfMod_charE ?cfQuoK. Qed.
Lemma cfQuo_lin_charE G H (chi : 'CF(G)) :
H <| G -> H \subset cfker chi ->
(chi / H \is a linear_char)%CF = (chi \is a linear_char).
Proof. by move=> nsHG kerH; rewrite -cfMod_lin_charE ?cfQuoK. Qed.
Lemma cfMod_irr G H chi :
H <| G -> (chi %% H \in irr G)%CF = (chi \in irr (G / H)).
Proof. by case/andP=> _; apply: cfMorph_irr. Qed.
Definition mod_Iirr G H i := cfIirr ('chi[G / H]_i %% H)%CF.
Lemma mod_Iirr0 G H : mod_Iirr (0 : Iirr (G / H)) = 0.
Proof. exact: morph_Iirr0. Qed.
Lemma mod_IirrE G H i : H <| G -> 'chi_(mod_Iirr i) = ('chi[G / H]_i %% H)%CF.
Proof. by move=> nsHG; rewrite cfIirrE ?cfMod_irr ?mem_irr. Qed.
Lemma mod_Iirr_eq0 G H i :
H <| G -> (mod_Iirr i == 0) = (i == 0 :> Iirr (G / H)).
Proof. by case/andP=> _ /morph_Iirr_eq0->. Qed.
Lemma cfQuo_irr G H chi :
H <| G -> H \subset cfker chi ->
((chi / H)%CF \in irr (G / H)) = (chi \in irr G).
Proof. by move=> nsHG kerH; rewrite -cfMod_irr ?cfQuoK. Qed.
Definition quo_Iirr G H i := cfIirr ('chi[G]_i / H)%CF.
Lemma quo_Iirr0 G H : quo_Iirr H (0 : Iirr G) = 0.
Proof. by rewrite /quo_Iirr irr0 cfQuo_cfun1 -irr0 irrK. Qed.
Lemma quo_IirrE G H i :
H <| G -> H \subset cfker 'chi[G]_i -> 'chi_(quo_Iirr H i) = ('chi_i / H)%CF.
Proof. by move=> nsHG kerH; rewrite cfIirrE ?cfQuo_irr ?mem_irr. Qed.
Lemma quo_Iirr_eq0 G H i :
H <| G -> H \subset cfker 'chi[G]_i -> (quo_Iirr H i == 0) = (i == 0).
Proof. by move=> nsHG kerH; rewrite -!irr_eq1 quo_IirrE ?cfQuo_eq1. Qed.
Lemma mod_IirrK G H : H <| G -> cancel (@mod_Iirr G H) (@quo_Iirr G H).
Proof.
move=> nsHG i; apply: irr_inj.
by rewrite quo_IirrE ?mod_IirrE ?cfker_mod // cfModK.
Qed.
Lemma quo_IirrK G H i :
H <| G -> H \subset cfker 'chi[G]_i -> mod_Iirr (quo_Iirr H i) = i.
Proof.
by move=> nsHG kerH; apply: irr_inj; rewrite mod_IirrE ?quo_IirrE ?cfQuoK.
Qed.
Lemma quo_IirrKeq G H :
H <| G ->
forall i, (mod_Iirr (quo_Iirr H i) == i) = (H \subset cfker 'chi[G]_i).
Proof.
move=> nsHG i; apply/eqP/idP=> [<- | ]; last exact: quo_IirrK.
by rewrite mod_IirrE ?cfker_mod.
Qed.
Lemma mod_Iirr_bij H G :
H <| G -> {on [pred i | H \subset cfker 'chi_i], bijective (@mod_Iirr G H)}.
Proof.
by exists (quo_Iirr H) => [i _ | i]; [apply: mod_IirrK | apply: quo_IirrK].
Qed.
Lemma sum_norm_irr_quo H G x :
x \in G -> H <| G ->
\sum_i `|'chi[G / H]_i (coset H x)| ^+ 2
= \sum_(i | H \subset cfker 'chi_i) `|'chi[G]_i x| ^+ 2.
Proof.
move=> Gx nsHG; rewrite (reindex _ (mod_Iirr_bij nsHG)) /=.
by apply/esym/eq_big=> [i | i _]; rewrite mod_IirrE ?cfker_mod ?cfModE.
Qed.
Lemma cap_cfker_normal G H :
H <| G -> \bigcap_(i | H \subset cfker 'chi[G]_i) (cfker 'chi_i) = H.
Proof.
move=> nsHG; have [sHG nHG] := andP nsHG; set lhs := \bigcap_(i | _) _.
have nHlhs: lhs \subset 'N(H) by rewrite (bigcap_min 0) ?cfker_irr0.
apply/esym/eqP; rewrite eqEsubset (introT bigcapsP) //= -quotient_sub1 //.
rewrite -(TI_cfker_irr (G / H)); apply/bigcapsP=> i _.
rewrite sub_quotient_pre // (bigcap_min (mod_Iirr i)) ?mod_IirrE ?cfker_mod //.
by rewrite cfker_morph ?subsetIr.
Qed.
Lemma cfker_reg_quo G H : H <| G -> cfker (cfReg (G / H)%g %% H) = H.
Proof.
move=> nsHG; have [sHG nHG] := andP nsHG.
apply/setP=> x; rewrite cfkerEchar ?cfMod_char ?cfReg_char //.
rewrite -[in RHS in _ = RHS](setIidPr sHG) !inE; apply: andb_id2l => Gx.
rewrite !cfModE // !cfRegE // morph1 eqxx.
rewrite (sameP eqP (kerP _ (subsetP nHG x Gx))) ker_coset.
by rewrite -!mulrnA eqr_nat eqn_pmul2l ?cardG_gt0 // (can_eq oddb) eqb_id.
Qed.
End Coset.
Section DerivedGroup.
Variable gT : finGroupType.
Implicit Types G H : {group gT}.
Lemma lin_irr_der1 G i :
('chi_i \is a linear_char) = (G^`(1)%g \subset cfker 'chi[G]_i).
Proof.
apply/idP/idP=> [|sG'K]; first exact: lin_char_der1.
have nsG'G: G^`(1) <| G := der_normal 1 G.
rewrite qualifE/= irr_char -[i](quo_IirrK nsG'G) // mod_IirrE //=.
by rewrite cfModE // morph1 lin_char1 //; apply/char_abelianP/der_abelian.
Qed.
Lemma subGcfker G i : (G \subset cfker 'chi[G]_i) = (i == 0).
Proof.
rewrite -irr_eq1; apply/idP/eqP=> [chiG1 | ->]; last by rewrite cfker_cfun1.
apply/cfun_inP=> x Gx; rewrite cfun1E Gx cfker1 ?(subsetP chiG1) ?lin_char1 //.
by rewrite lin_irr_der1 (subset_trans (der_sub 1 G)).
Qed.
Lemma irr_prime_injP G i :
prime #|G| -> reflect {in G &, injective 'chi[G]_i} (i != 0).
Proof.
move=> pr_G; apply: (iffP idP) => [nz_i | inj_chi].
apply: fful_lin_char_inj (irr_prime_lin i pr_G) _.
by rewrite cfaithfulE -(setIidPr (cfker_sub _)) prime_TIg // subGcfker.
have /trivgPn[x Gx ntx]: G :!=: 1%g by rewrite -cardG_gt1 prime_gt1.
apply: contraNneq ntx => i0; apply/eqP/inj_chi=> //.
by rewrite i0 irr0 !cfun1E Gx group1.
Qed.
(* This is Isaacs (2.23)(a). *)
Lemma cap_cfker_lin_irr G :
\bigcap_(i | 'chi[G]_i \is a linear_char) (cfker 'chi_i) = G^`(1)%g.
Proof.
rewrite -(cap_cfker_normal (der_normal 1 G)).
by apply: eq_bigl => i; rewrite lin_irr_der1.
Qed.
(* This is Isaacs (2.23)(b) *)
Lemma card_lin_irr G :
#|[pred i | 'chi[G]_i \is a linear_char]| = #|G : G^`(1)%g|.
Proof.
have nsG'G := der_normal 1 G; rewrite (eq_card (@lin_irr_der1 G)).
rewrite -(on_card_preimset (mod_Iirr_bij nsG'G)).
rewrite -card_quotient ?normal_norm //.
move: (der_abelian 0 G); rewrite card_classes_abelian; move/eqP<-.
rewrite -NirrE -[RHS]card_ord.
by apply: eq_card => i; rewrite !inE mod_IirrE ?cfker_mod.
(* Alternative: use the equivalent result in modular representation theory
transitivity #|@socle_of_Iirr _ G @^-1: linear_irr _|; last first.
rewrite (on_card_preimset (socle_of_Iirr_bij _)).
by rewrite card_linear_irr ?algC'G; last apply: groupC.
by apply: eq_card => i; rewrite !inE /lin_char irr_char irr1_degree -eqC_nat.
*)
Qed.
(* A non-trivial solvable group has a nonprincipal linear character. *)
Lemma solvable_has_lin_char G :
G :!=: 1%g -> solvable G ->
exists2 i, 'chi[G]_i \is a linear_char & 'chi_i != 1.
Proof.
move=> ntG solG.
suff /subsetPn[i]: ~~ ([pred i | 'chi[G]_i \is a linear_char] \subset pred1 0).
by rewrite !inE -(inj_eq irr_inj) irr0; exists i.
rewrite (contra (@subset_leq_card _ _ _)) // -ltnNge card1 card_lin_irr.
by rewrite indexg_gt1 proper_subn // (sol_der1_proper solG).
Qed.
(* A combinatorial group isommorphic to the linear characters. *)
Lemma lin_char_group G :
{linG : finGroupType & {cF : linG -> 'CF(G) |
[/\ injective cF, #|linG| = #|G : G^`(1)|,
forall u, cF u \is a linear_char
& forall phi, phi \is a linear_char -> exists u, phi = cF u]
& [/\ cF 1%g = 1%R,
{morph cF : u v / (u * v)%g >-> (u * v)%R},
forall k, {morph cF : u / (u^+ k)%g >-> u ^+ k},
{morph cF: u / u^-1%g >-> u^-1%CF}
& {mono cF: u / #[u]%g >-> #[u]%CF} ]}}.
Proof.
pose linT := {i : Iirr G | 'chi_i \is a linear_char}.
pose cF (u : linT) := 'chi_(sval u).
have cFlin u: cF u \is a linear_char := svalP u.
have cFinj: injective cF := inj_comp irr_inj val_inj.
have inT xi : xi \is a linear_char -> {u | cF u = xi}.
move=> lin_xi; have /irrP/sig_eqW[i Dxi] := lin_char_irr lin_xi.
by apply: (exist _ (Sub i _)) => //; rewrite -Dxi.
have [one cFone] := inT 1 (rpred1 _).
pose inv u := sval (inT _ (rpredVr (cFlin u))).
pose mul u v := sval (inT _ (rpredM (cFlin u) (cFlin v))).
have cFmul u v: cF (mul u v) = cF u * cF v := svalP (inT _ _).
have cFinv u: cF (inv u) = (cF u)^-1 := svalP (inT _ _).
have mulA: associative mul by move=> u v w; apply: cFinj; rewrite !cFmul mulrA.
have mul1: left_id one mul by move=> u; apply: cFinj; rewrite cFmul cFone mul1r.
have mulV: left_inverse one inv mul.
by move=> u; apply: cFinj; rewrite cFmul cFinv cFone mulVr ?lin_char_unitr.
pose imA := isMulGroup.Build linT mulA mul1 mulV.
pose linG : finGroupType := HB.pack linT imA.
have cFexp k: {morph cF : u / ((u : linG) ^+ k)%g >-> u ^+ k}.
by move=> u; elim: k => // k IHk; rewrite expgS exprS cFmul IHk.
do [exists linG, cF; split=> //] => [|xi /inT[u <-]|u]; first 2 [by exists u].
have inj_cFI: injective (cfIirr \o cF).
apply: can_inj (insubd one) _ => u; apply: val_inj.
by rewrite insubdK /= ?irrK //; apply: cFlin.
rewrite -(card_image inj_cFI) -card_lin_irr.
apply/eq_card=> i /[1!inE]; apply/codomP/idP=> [[u ->] | /inT[u Du]].
by rewrite /= irrK; apply: cFlin.
by exists u; apply: irr_inj; rewrite /= irrK.
apply/eqP; rewrite eqn_dvd; apply/andP; split.
by rewrite dvdn_cforder; rewrite -cFexp expg_order cFone.
by rewrite order_dvdn -(inj_eq cFinj) cFone cFexp exp_cforder.
Qed.
Lemma cfExp_prime_transitive G (i j : Iirr G) :
prime #|G| -> i != 0 -> j != 0 ->
exists2 k, coprime k #['chi_i]%CF & 'chi_j = 'chi_i ^+ k.
Proof.
set p := #|G| => pr_p nz_i nz_j; have cycG := prime_cyclic pr_p.
have [L [h [injh oL Lh h_ontoL]] [h1 hM hX _ o_h]] := lin_char_group G.
rewrite (derG1P (cyclic_abelian cycG)) indexg1 -/p in oL.
have /fin_all_exists[h' h'K] := h_ontoL _ (irr_cyclic_lin _ cycG).
have o_h' k: k != 0 -> #[h' k] = p.
rewrite -cforder_irr_eq1 h'K -o_h => nt_h'k.
by apply/prime_nt_dvdP=> //; rewrite cforder_lin_char_dvdG.
have{oL} genL k: k != 0 -> generator [set: L] (h' k).
move=> /o_h' o_h'k; rewrite /generator eq_sym eqEcard subsetT /=.
by rewrite cardsT oL -o_h'k.
have [/(_ =P <[_]>)-> gen_j] := (genL i nz_i, genL j nz_j).
have /cycleP[k Dj] := cycle_generator gen_j.
by rewrite !h'K Dj o_h hX generator_coprime coprime_sym in gen_j *; exists k.
Qed.
(* This is Isaacs (2.24). *)
Lemma card_subcent1_coset G H x :
x \in G -> H <| G -> (#|'C_(G / H)[coset H x]| <= #|'C_G[x]|)%N.
Proof.
move=> Gx nsHG; rewrite -leC_nat.
move: (second_orthogonality_relation x Gx); rewrite mulrb class_refl => <-.
have GHx: coset H x \in (G / H)%g by apply: mem_quotient.
move: (second_orthogonality_relation (coset H x) GHx).
rewrite mulrb class_refl => <-.
rewrite -2!(eq_bigr _ (fun _ _ => normCK _)) sum_norm_irr_quo // -subr_ge0.
rewrite (bigID (fun i => H \subset cfker 'chi[G]_i)) //= addrC addKr.
by apply: sumr_ge0 => i _; rewrite normCK mul_conjC_ge0.
Qed.
End DerivedGroup.
Arguments irr_prime_injP {gT G i}.
(* Determinant characters and determinential order. *)
Section DetRepr.
Variables (gT : finGroupType) (G : {group gT}).
Variables (n : nat) (rG : mx_representation algC G n).
Definition det_repr_mx x : 'M_1 := (\det (rG x))%:M.
Fact det_is_repr : mx_repr G det_repr_mx.
Proof.
split=> [|g h Gg Gh]; first by rewrite /det_repr_mx repr_mx1 det1.
by rewrite /det_repr_mx repr_mxM // det_mulmx !mulmxE scalar_mxM.
Qed.
Canonical det_repr := MxRepresentation det_is_repr.
Definition detRepr := cfRepr det_repr.
Lemma detRepr_lin_char : detRepr \is a linear_char.
Proof.
by rewrite qualifE/= cfRepr_char cfunE group1 repr_mx1 mxtrace1 mulr1n /=.
Qed.
End DetRepr.
HB.lock
Definition cfDet (gT : finGroupType) (G : {group gT}) phi :=
\prod_i detRepr 'Chi_i ^+ Num.trunc '[phi, 'chi[G]_i].
Canonical cfDet_unlockable := Unlockable cfDet.unlock.
Section DetOrder.
Variables (gT : finGroupType) (G : {group gT}).
Local Notation cfDet := (@cfDet gT G).
Lemma cfDet_lin_char phi : cfDet phi \is a linear_char.
Proof. by rewrite unlock; apply: rpred_prod => i _; apply: rpredX; apply: detRepr_lin_char. Qed.
Lemma cfDetD :
{in character &, {morph cfDet : phi psi / phi + psi >-> phi * psi}}.
Proof.
move=> phi psi Nphi Npsi; rewrite unlock /= -big_split; apply: eq_bigr => i _ /=.
by rewrite -exprD cfdotDl truncD ?nnegrE ?natr_ge0 // Cnat_cfdot_char_irr.
Qed.
Lemma cfDet0 : cfDet 0 = 1.
Proof. by rewrite unlock big1 // => i _; rewrite cfdot0l trunc0. Qed.
Lemma cfDetMn k :
{in character, {morph cfDet : phi / phi *+ k >-> phi ^+ k}}.
Proof.
move=> phi Nphi; elim: k => [|k IHk]; rewrite ?cfDet0 // mulrS exprS -{}IHk.
by rewrite cfDetD ?rpredMn.
Qed.
Lemma cfDetRepr n rG : cfDet (cfRepr rG) = @detRepr _ _ n rG.
Proof.
transitivity (\prod_W detRepr (socle_repr W) ^+ standard_irr_coef rG W).
rewrite (reindex _ (socle_of_Iirr_bij _)) unlock /=.
apply: eq_bigr => i _; congr (_ ^+ _).
rewrite (cfRepr_sim (mx_rsim_standard rG)) cfRepr_standard.
rewrite cfdot_suml (bigD1 i) ?big1 //= => [|j i'j]; last first.
by rewrite cfdotZl cfdot_irr (negPf i'j) mulr0.
by rewrite cfdotZl cfnorm_irr mulr1 addr0 natrK.
apply/cfun_inP=> x Gx; rewrite prod_cfunE //.
transitivity (detRepr (standard_grepr rG) x); last first.
rewrite !cfunE Gx !trace_mx11 !mxE eqxx !mulrb.
case: (standard_grepr rG) (mx_rsim_standard rG) => /= n1 rG1 [B Dn1].
rewrite -{n1}Dn1 in rG1 B *; rewrite row_free_unit => uB rG_B.
by rewrite -[rG x](mulmxK uB) rG_B // !det_mulmx mulrC -!det_mulmx mulKmx.
rewrite /standard_grepr; elim/big_rec2: _ => [|W y _ _ ->].
by rewrite cfunE trace_mx11 mxE Gx det1.
rewrite !cfunE Gx /= !{1}trace_mx11 !{1}mxE det_ublock; congr (_ * _).
rewrite exp_cfunE //; elim: (standard_irr_coef rG W) => /= [|k IHk].
by rewrite /muln_grepr big_ord0 det1.
rewrite exprS /muln_grepr big_ord_recl det_ublock -IHk; congr (_ * _).
by rewrite cfunE trace_mx11 mxE Gx.
Qed.
Lemma cfDet_id xi : xi \is a linear_char -> cfDet xi = xi.
Proof.
move=> lin_xi; have /irrP[i Dxi] := lin_char_irr lin_xi.
apply/cfun_inP=> x Gx; rewrite Dxi -irrRepr cfDetRepr !cfunE trace_mx11 mxE.
move: lin_xi (_ x) => /andP[_]; rewrite Dxi irr1_degree pnatr_eq1 => /eqP-> X.
by rewrite {1}[X]mx11_scalar det_scalar1 trace_mx11.
Qed.
Definition cfDet_order phi := #[cfDet phi]%CF.
Definition cfDet_order_lin xi :
xi \is a linear_char -> cfDet_order xi = #[xi]%CF.
Proof. by rewrite /cfDet_order => /cfDet_id->. Qed.
Definition cfDet_order_dvdG phi : cfDet_order phi %| #|G|.
Proof. by rewrite cforder_lin_char_dvdG ?cfDet_lin_char. Qed.
End DetOrder.
Notation "''o' ( phi )" := (cfDet_order phi)
(at level 8, format "''o' ( phi )") : cfun_scope.
Section CfDetOps.
Implicit Types gT aT rT : finGroupType.
Lemma cfDetRes gT (G H : {group gT}) phi :
phi \is a character -> cfDet ('Res[H, G] phi) = 'Res (cfDet phi).
Proof.
move=> Nphi; have [sGH | not_sHG] := boolP (H \subset G); last first.
have /natrP[n Dphi1] := Cnat_char1 Nphi.
rewrite !cfResEout // Dphi1 lin_char1 ?cfDet_lin_char // scale1r.
by rewrite scaler_nat cfDetMn ?cfDet_id ?rpred1 // expr1n.
have [rG ->] := char_reprP Nphi; rewrite !(=^~ cfRepr_sub, cfDetRepr) //.
apply: cfRepr_sim; exists 1%:M; rewrite ?row_free_unit ?unitmx1 // => x Hx.
by rewrite mulmx1 mul1mx.
Qed.
Lemma cfDetMorph aT rT (D G : {group aT}) (f : {morphism D >-> rT})
(phi : 'CF(f @* G)) :
phi \is a character -> cfDet (cfMorph phi) = cfMorph (cfDet phi).
Proof.
move=> Nphi; have [sGD | not_sGD] := boolP (G \subset D); last first.
have /natrP[n Dphi1] := Cnat_char1 Nphi.
rewrite !cfMorphEout // Dphi1 lin_char1 ?cfDet_lin_char // scale1r.
by rewrite scaler_nat cfDetMn ?cfDet_id ?rpred1 // expr1n.
have [rG ->] := char_reprP Nphi; rewrite !(=^~ cfRepr_morphim, cfDetRepr) //.
apply: cfRepr_sim; exists 1%:M; rewrite ?row_free_unit ?unitmx1 // => x Hx.
by rewrite mulmx1 mul1mx.
Qed.
Lemma cfDetIsom aT rT (G : {group aT}) (R : {group rT})
(f : {morphism G >-> rT}) (isoGR : isom G R f) phi :
cfDet (cfIsom isoGR phi) = cfIsom isoGR (cfDet phi).
Proof.
rewrite unlock rmorph_prod (reindex (isom_Iirr isoGR)); last first.
by exists (isom_Iirr (isom_sym isoGR)) => i; rewrite ?isom_IirrK ?isom_IirrKV.
apply: eq_bigr=> i; rewrite -!cfDetRepr !irrRepr isom_IirrE rmorphXn cfIsom_iso.
by rewrite /= ![in cfIsom _]unlock cfDetMorph ?cfRes_char ?cfDetRes ?irr_char.
Qed.
Lemma cfDet_mul_lin gT (G : {group gT}) (lambda phi : 'CF(G)) :
lambda \is a linear_char -> phi \is a character ->
cfDet (lambda * phi) = lambda ^+ Num.trunc (phi 1%g) * cfDet phi.
Proof.
case/andP=> /char_reprP[[n1 rG1] ->] /= n1_1 /char_reprP[[n2 rG2] ->] /=.
do [rewrite !cfRepr1 pnatr_eq1 natrK; move/eqP] in n1_1 *.
rewrite {n1}n1_1 in rG1 *; rewrite cfRepr_prod cfDetRepr.
apply/cfun_inP=> x Gx; rewrite !cfunE cfDetRepr cfunE Gx !mulrb !trace_mx11.
rewrite !mxE prod_repr_lin ?mulrb //=; case: _ / (esym _); rewrite detZ.
congr (_ * _); case: {rG2}n2 => [|n2]; first by rewrite cfun1E Gx.
by rewrite expS_cfunE //= cfunE Gx trace_mx11.
Qed.
End CfDetOps.
Definition cfcenter (gT : finGroupType) (G : {set gT}) (phi : 'CF(G)) :=
if phi \is a character then [set g in G | `|phi g| == phi 1%g] else cfker phi.
Notation "''Z' ( phi )" := (cfcenter phi) : cfun_scope.
Section Center.
Variable (gT : finGroupType) (G : {group gT}).
Implicit Types (phi chi : 'CF(G)) (H : {group gT}).
(* This is Isaacs (2.27)(a). *)
Lemma cfcenter_repr n (rG : mx_representation algC G n) :
'Z(cfRepr rG)%CF = rcenter rG.
Proof.
rewrite /cfcenter /rcenter cfRepr_char /=.
apply/setP=> x /[!inE]; apply/andb_id2l=> Gx.
apply/eqP/is_scalar_mxP=> [|[c rG_c]].
by case/max_cfRepr_norm_scalar=> // c; exists c.
rewrite -(sqrCK (char1_ge0 (cfRepr_char rG))) normC_def; congr (sqrtC _).
rewrite expr2 -{2}(mulgV x) -char_inv ?cfRepr_char ?cfunE ?groupM ?groupV //.
rewrite Gx group1 repr_mx1 repr_mxM ?repr_mxV ?groupV // !mulrb rG_c.
by rewrite invmx_scalar -scalar_mxM !mxtrace_scalar mulrnAr mulrnAl mulr_natl.
Qed.
(* This is part of Isaacs (2.27)(b). *)
Fact cfcenter_group_set phi : group_set ('Z(phi))%CF.
Proof.
have [[rG ->] | /negbTE notNphi] := altP (@char_reprP _ G phi).
by rewrite cfcenter_repr groupP.
by rewrite /cfcenter notNphi groupP.
Qed.
Canonical cfcenter_group f := Group (cfcenter_group_set f).
Lemma char_cfcenterE chi x :
chi \is a character -> x \in G ->
(x \in ('Z(chi))%CF) = (`|chi x| == chi 1%g).
Proof. by move=> Nchi Gx; rewrite /cfcenter Nchi inE Gx. Qed.
Lemma irr_cfcenterE i x :
x \in G -> (x \in 'Z('chi[G]_i)%CF) = (`|'chi_i x| == 'chi_i 1%g).
Proof. by move/char_cfcenterE->; rewrite ?irr_char. Qed.
(* This is also Isaacs (2.27)(b). *)
Lemma cfcenter_sub phi : ('Z(phi))%CF \subset G.
Proof. by rewrite /cfcenter /cfker !setIdE -fun_if subsetIl. Qed.
Lemma cfker_center_normal phi : cfker phi <| 'Z(phi)%CF.
Proof.
apply: normalS (cfcenter_sub phi) (cfker_normal phi).
rewrite /= /cfcenter; case: ifP => // Hphi; rewrite cfkerEchar //.
apply/subsetP=> x /[!inE] /andP[-> /eqP->] /=.
by rewrite ger0_norm ?char1_ge0.
Qed.
Lemma cfcenter_normal phi : 'Z(phi)%CF <| G.
Proof.
have [[rG ->] | /negbTE notNphi] := altP (@char_reprP _ _ phi).
by rewrite cfcenter_repr rcenter_normal.
by rewrite /cfcenter notNphi cfker_normal.
Qed.
(* This is Isaacs (2.27)(c). *)
Lemma cfcenter_Res chi :
exists2 chi1, chi1 \is a linear_char & 'Res['Z(chi)%CF] chi = chi 1%g *: chi1.
Proof.
have [[rG ->] | /negbTE notNphi] := altP (@char_reprP _ _ chi); last first.
exists 1; first exact: cfun1_lin_char.
rewrite /cfcenter notNphi; apply/cfun_inP=> x Kx.
by rewrite cfunE cfun1E Kx mulr1 cfResE ?cfker_sub // cfker1.
rewrite cfcenter_repr -(cfRepr_sub _ (normal_sub (rcenter_normal _))).
case: rG => [[|n] rG] /=; rewrite cfRepr1.
exists 1; first exact: cfun1_lin_char.
by apply/cfun_inP=> x Zx; rewrite scale0r !cfunE flatmx0 raddf0 Zx.
pose rZmx x := ((rG x 0 0)%:M : 'M_(1,1)).
have rZmxP: mx_repr [group of rcenter rG] rZmx.
split=> [|x y]; first by rewrite /rZmx repr_mx1 mxE eqxx.
move=> /setIdP[Gx /is_scalar_mxP[a rGx]] /setIdP[Gy /is_scalar_mxP[b rGy]].
by rewrite /rZmx repr_mxM // rGx rGy -!scalar_mxM !mxE.
exists (cfRepr (MxRepresentation rZmxP)).
by rewrite qualifE/= cfRepr_char cfRepr1 eqxx.
apply/cfun_inP=> x Zx; rewrite !cfunE Zx /= /rZmx mulr_natl.
by case/setIdP: Zx => Gx /is_scalar_mxP[a ->]; rewrite mxE !mxtrace_scalar.
Qed.
(* This is Isaacs (2.27)(d). *)
Lemma cfcenter_cyclic chi : cyclic ('Z(chi)%CF / cfker chi)%g.
Proof.
case Nchi: (chi \is a character); last first.
by rewrite /cfcenter Nchi trivg_quotient cyclic1.
have [-> | nz_chi] := eqVneq chi 0.
rewrite quotientS1 ?cyclic1 //= /cfcenter cfkerEchar ?cfun0_char //.
by apply/subsetP=> x /setIdP[Gx _]; rewrite inE Gx /= !cfunE.
have [xi Lxi def_chi] := cfcenter_Res chi.
set Z := ('Z(_))%CF in xi Lxi def_chi *.
have sZG: Z \subset G by apply: cfcenter_sub.
have ->: cfker chi = cfker xi.
rewrite -(setIidPr (normal_sub (cfker_center_normal _))) -/Z.
rewrite !cfkerEchar // ?lin_charW //= -/Z.
apply/setP=> x /[!inE]; apply: andb_id2l => Zx.
rewrite (subsetP sZG) //= -!(cfResE chi sZG) ?group1 // def_chi !cfunE.
by rewrite (inj_eq (mulfI _)) ?char1_eq0.
have: abelian (Z / cfker xi) by rewrite sub_der1_abelian ?lin_char_der1.
have /irr_reprP[rG irrG ->] := lin_char_irr Lxi; rewrite cfker_repr.
apply: mx_faithful_irr_abelian_cyclic (kquo_mx_faithful rG) _.
exact/quo_mx_irr.
Qed.
(* This is Isaacs (2.27)(e). *)
Lemma cfcenter_subset_center chi :
('Z(chi)%CF / cfker chi)%g \subset 'Z(G / cfker chi)%g.
Proof.
case Nchi: (chi \is a character); last first.
by rewrite /cfcenter Nchi trivg_quotient sub1G.
rewrite subsetI quotientS ?cfcenter_sub // quotient_cents2r //=.
case/char_reprP: Nchi => rG ->{chi}; rewrite cfker_repr cfcenter_repr gen_subG.
apply/subsetP=> _ /imset2P[x y /setIdP[Gx /is_scalar_mxP[c rGx]] Gy ->].
rewrite inE groupR //= !repr_mxM ?groupM ?groupV // rGx -(scalar_mxC c) -rGx.
by rewrite !mulmxA !repr_mxKV.
Qed.
(* This is Isaacs (2.27)(f). *)
Lemma cfcenter_eq_center (i : Iirr G) :
('Z('chi_i)%CF / cfker 'chi_i)%g = 'Z(G / cfker 'chi_i)%g.
Proof.
apply/eqP; rewrite eqEsubset; rewrite cfcenter_subset_center ?irr_char //.
apply/subsetP=> _ /setIP[/morphimP[x /= _ Gx ->] cGx]; rewrite mem_quotient //=.
rewrite -irrRepr cfker_repr cfcenter_repr inE Gx in cGx *.
apply: mx_abs_irr_cent_scalar 'Chi_i _ _ _; first exact/groupC/socle_irr.
have nKG: G \subset 'N(rker 'Chi_i) by apply: rker_norm.
(* GG -- locking here is critical to prevent Coq kernel divergence. *)
apply/centgmxP=> y Gy; rewrite [eq]lock -2?(quo_repr_coset (subxx _) nKG) //.
move: (quo_repr _ _) => rG; rewrite -2?repr_mxM ?mem_quotient // -lock.
by rewrite (centP cGx) // mem_quotient.
Qed.
(* This is Isaacs (2.28). *)
Lemma cap_cfcenter_irr : \bigcap_i 'Z('chi[G]_i)%CF = 'Z(G).
Proof.
apply/esym/eqP; rewrite eqEsubset (introT bigcapsP) /= => [|i _]; last first.
rewrite -(quotientSGK _ (normal_sub (cfker_center_normal _))).
by rewrite cfcenter_eq_center morphim_center.
by rewrite subIset // normal_norm // cfker_normal.
set Z := \bigcap_i _.
have sZG: Z \subset G by rewrite (bigcap_min 0) ?cfcenter_sub.
rewrite subsetI sZG (sameP commG1P trivgP) -(TI_cfker_irr G).
apply/bigcapsP=> i _; have nKiG := normal_norm (cfker_normal 'chi_i).
rewrite -quotient_cents2 ?(subset_trans sZG) //.
rewrite (subset_trans (quotientS _ (bigcap_inf i _))) //.
by rewrite cfcenter_eq_center subsetIr.
Qed.
(* This is Isaacs (2.29). *)
Lemma cfnorm_Res_leif H phi :
H \subset G ->
'['Res[H] phi] <= #|G : H|%:R * '[phi] ?= iff (phi \in 'CF(G, H)).
Proof.
move=> sHG; rewrite cfun_onE mulrCA natf_indexg // -mulrA mulKf ?neq0CG //.
rewrite (big_setID H) (setIidPr sHG) /= addrC.
rewrite (mono_leif (ler_pM2l _)) ?invr_gt0 ?gt0CG // -leifBLR -sumrB.
rewrite big1 => [|x Hx]; last by rewrite !cfResE ?subrr.
have ->: (support phi \subset H) = (G :\: H \subset [set x | phi x == 0]).
rewrite subDset setUC -subDset; apply: eq_subset => x.
by rewrite !inE (andb_idr (contraR _)) // => /cfun0->.
rewrite (sameP subsetP forall_inP); apply: leif_0_sum => x _.
by rewrite !inE /<?=%R mul_conjC_ge0 eq_sym mul_conjC_eq0.
Qed.
(* This is Isaacs (2.30). *)
Lemma irr1_bound (i : Iirr G) :
('chi_i 1%g) ^+ 2 <= #|G : 'Z('chi_i)%CF|%:R
?= iff ('chi_i \in 'CF(G, 'Z('chi_i)%CF)).
Proof.
congr (_ <= _ ?= iff _): (cfnorm_Res_leif 'chi_i (cfcenter_sub 'chi_i)).
have [xi Lxi ->] := cfcenter_Res 'chi_i.
have /irrP[j ->] := lin_char_irr Lxi; rewrite cfdotZl cfdotZr cfdot_irr eqxx.
by rewrite mulr1 irr1_degree conjC_nat.
by rewrite cfdot_irr eqxx mulr1.
Qed.
(* This is Isaacs (2.31). *)
Lemma irr1_abelian_bound (i : Iirr G) :
abelian (G / 'Z('chi_i)%CF) -> ('chi_i 1%g) ^+ 2 = #|G : 'Z('chi_i)%CF|%:R.
Proof.
move=> AbGc; apply/eqP; rewrite irr1_bound cfun_onE; apply/subsetP=> x nz_chi_x.
have Gx: x \in G by apply: contraR nz_chi_x => /cfun0->.
have nKx := subsetP (normal_norm (cfker_normal 'chi_i)) _ Gx.
rewrite -(quotientGK (cfker_center_normal _)) inE nKx inE /=.
rewrite cfcenter_eq_center inE mem_quotient //=.
apply/centP=> _ /morphimP[y nKy Gy ->]; apply/commgP; rewrite -morphR //=.
set z := [~ x, y]; rewrite coset_id //.
have: z \in 'Z('chi_i)%CF.
apply: subsetP (mem_commg Gx Gy).
by rewrite der1_min // normal_norm ?cfcenter_normal.
rewrite -irrRepr cfker_repr cfcenter_repr !inE in nz_chi_x *.
case/andP=> Gz /is_scalar_mxP[c Chi_z]; rewrite Gz Chi_z mul1mx /=.
apply/eqP; congr _%:M; apply: (mulIf nz_chi_x); rewrite mul1r.
rewrite -{2}(cfunJ _ x Gy) conjg_mulR -/z !cfunE Gx groupM // !{1}mulrb.
by rewrite repr_mxM // Chi_z mul_mx_scalar mxtraceZ.
Qed.
(* This is Isaacs (2.32)(a). *)
Lemma irr_faithful_center i : cfaithful 'chi[G]_i -> cyclic 'Z(G).
Proof.
rewrite (isog_cyclic (isog_center (quotient1_isog G))) /=.
by move/trivgP <-; rewrite -cfcenter_eq_center cfcenter_cyclic.
Qed.
Lemma cfcenter_fful_irr i : cfaithful 'chi[G]_i -> 'Z('chi_i)%CF = 'Z(G).
Proof.
move/trivgP=> Ki1; have:= cfcenter_eq_center i; rewrite {}Ki1.
have inj1: 'injm (@coset gT 1%g) by rewrite ker_coset.
by rewrite -injm_center; first apply: injm_morphim_inj; rewrite ?norms1.
Qed.
(* This is Isaacs (2.32)(b). *)
Lemma pgroup_cyclic_faithful (p : nat) :
p.-group G -> cyclic 'Z(G) -> exists i, cfaithful 'chi[G]_i.
Proof.
pose Z := 'Ohm_1('Z(G)) => pG cycZG; have nilG := pgroup_nil pG.
have [-> | ntG] := eqsVneq G [1]; first by exists 0; apply: cfker_sub.
have{pG} [[p_pr _ _] pZ] := (pgroup_pdiv pG ntG, pgroupS (center_sub G) pG).
have ntZ: 'Z(G) != [1] by rewrite center_nil_eq1.
have{pZ} oZ: #|Z| = p by apply: Ohm1_cyclic_pgroup_prime.
apply/existsP; apply: contraR ntZ => /existsPn-not_ffulG.
rewrite -Ohm1_eq1 -subG1 /= -/Z -(TI_cfker_irr G); apply/bigcapsP=> i _.
rewrite prime_meetG ?oZ // setIC meet_Ohm1 // meet_center_nil ?cfker_normal //.
by rewrite -subG1 not_ffulG.
Qed.
End Center.
Section Induced.
Variables (gT : finGroupType) (G H : {group gT}).
Implicit Types (phi : 'CF(G)) (chi : 'CF(H)).
Lemma cfInd_char chi : chi \is a character -> 'Ind[G] chi \is a character.
Proof.
move=> Nchi; apply/forallP=> i; rewrite coord_cfdot -Frobenius_reciprocity //.
by rewrite Cnat_cfdot_char ?cfRes_char ?irr_char.
Qed.
Lemma cfInd_eq0 chi :
H \subset G -> chi \is a character -> ('Ind[G] chi == 0) = (chi == 0).
Proof.
move=> sHG Nchi; rewrite -!(char1_eq0) ?cfInd_char // cfInd1 //.
by rewrite (mulrI_eq0 _ (mulfI _)) ?neq0CiG.
Qed.
Lemma Ind_irr_neq0 i : H \subset G -> 'Ind[G, H] 'chi_i != 0.
Proof. by move/cfInd_eq0->; rewrite ?irr_neq0 ?irr_char. Qed.
Definition Ind_Iirr (A B : {set gT}) i := cfIirr ('Ind[B, A] 'chi_i).
Lemma constt_cfRes_irr i : {j | j \in irr_constt ('Res[H, G] 'chi_i)}.
Proof. apply/sigW/neq0_has_constt/Res_irr_neq0. Qed.
Lemma constt_cfInd_irr i :
H \subset G -> {j | j \in irr_constt ('Ind[G, H] 'chi_i)}.
Proof. by move=> sHG; apply/sigW/neq0_has_constt/Ind_irr_neq0. Qed.
Lemma cfker_Res phi :
H \subset G -> phi \is a character -> cfker ('Res[H] phi) = H :&: cfker phi.
Proof.
move=> sHG Nphi; apply/setP=> x; rewrite !cfkerEchar ?cfRes_char // !inE.
by apply/andb_id2l=> Hx; rewrite (subsetP sHG) ?cfResE.
Qed.
(* This is Isaacs Lemma (5.11). *)
Lemma cfker_Ind chi :
H \subset G -> chi \is a character -> chi != 0 ->
cfker ('Ind[G, H] chi) = gcore (cfker chi) G.
Proof.
move=> sHG Nchi nzchi; rewrite !cfker_nzcharE ?cfInd_char ?cfInd_eq0 //.
apply/setP=> x; rewrite inE cfIndE // (can2_eq (mulVKf _) (mulKf _)) ?neq0CG //.
rewrite cfInd1 // mulrA -natrM Lagrange // mulr_natl -sumr_const.
apply/eqP/bigcapP=> [/normC_sum_upper ker_chiG_x y Gy | ker_chiG_x].
by rewrite mem_conjg inE ker_chiG_x ?groupV // => z _; apply: char1_ge_norm.
by apply: eq_bigr => y /groupVr/ker_chiG_x; rewrite mem_conjgV inE => /eqP.
Qed.
Lemma cfker_Ind_irr i :
H \subset G -> cfker ('Ind[G, H] 'chi_i) = gcore (cfker 'chi_i) G.
Proof. by move/cfker_Ind->; rewrite ?irr_neq0 ?irr_char. Qed.
End Induced.
Arguments Ind_Iirr {gT A%g} B%g i%R.
|