1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path.
From mathcomp Require Import div choice fintype tuple finfun bigop prime.
From mathcomp Require Import ssralg poly polydiv finset fingroup morphism.
From mathcomp Require Import perm automorphism quotient finalg action zmodp.
From mathcomp Require Import commutator cyclic center pgroup matrix mxalgebra.
From mathcomp Require Import mxpoly.
(******************************************************************************)
(* This file provides linkage between classic Group Theory and commutative *)
(* algebra -- representation theory. Since general abstract linear algebra is *)
(* still being sorted out, we develop the required theory here on the *)
(* assumption that all vector spaces are matrix spaces, indeed that most are *)
(* row matrix spaces; our representation theory is specialized to the latter *)
(* case. We provide many definitions and results of representation theory: *)
(* enveloping algebras, reducible, irreducible and absolutely irreducible *)
(* representations, representation centralisers, submodules and kernels, *)
(* simple and semisimple modules, the Schur lemmas, Maschke's theorem, *)
(* components, socles, homomorphisms and isomorphisms, the Jacobson density *)
(* theorem, similar representations, the Jordan-Holder theorem, Clifford's *)
(* theorem and Wedderburn components, regular representations and the *)
(* Wedderburn structure theorem for semisimple group rings, and the *)
(* construction of a splitting field of an irreducible representation, and of *)
(* reduced, tensored, and factored representations. *)
(* mx_representation F G n == the Structure type for representations of G *)
(* with n x n matrices with coefficients in F. Note that *)
(* rG : mx_representation F G n coerces to a function from *)
(* the element type of G to 'M_n, and conversely all such *)
(* functions have a Canonical mx_representation. *)
(* mx_repr G r <-> r : gT -> 'M_n defines a (matrix) group representation *)
(* on G : {set gT} (Prop predicate). *)
(* enveloping_algebra_mx rG == a #|G| x (n ^ 2) matrix whose rows are the *)
(* mxvec encodings of the image of G under rG, and whose *)
(* row space therefore encodes the enveloping algebra of *)
(* the representation of G. *)
(* rker rG == the kernel of the representation of r on G, i.e., the *)
(* subgroup of elements of G mapped to the identity by rG. *)
(* mx_faithful rG == the representation rG of G is faithful (its kernel is *)
(* trivial). *)
(* rfix_mx rG H == an n x n matrix whose row space is the set of vectors *)
(* fixed (centralised) by the representation of H by rG. *)
(* rcent rG A == the subgroup of G whose representation via rG commutes *)
(* with the square matrix A. *)
(* rcenter rG == the subgroup of G whose representation via rG consists of *)
(* scalar matrices. *)
(* centgmx rG f <=> f commutes with every matrix in the representation of G *)
(* (i.e., f is a total rG-homomorphism). *)
(* rstab rG U == the subgroup of G whose representation via r fixes all *)
(* vectors in U, pointwise. *)
(* rstabs rG U == the subgroup of G whose representation via r fixes the row *)
(* space of U globally. *)
(* mxmodule rG U <=> the row-space of the matrix U is a module (globally *)
(* invariant) under the representation rG of G. *)
(* max_submod rG U V <-> U < V and U is not a proper of any proper *)
(* rG-submodule of V (if both U and V are modules, *)
(* then U is a maximal proper submodule of V). *)
(* mx_subseries rG Us <=> Us : seq 'M_n is a list of rG-modules *)
(* mx_composition_series rG Us <-> Us is an increasing composition series *)
(* for an rG-module (namely, last 0 Us). *)
(* mxsimple rG M <-> M is a simple rG-module (i.e., minimal and nontrivial) *)
(* This is a Prop predicate on square matrices. *)
(* mxnonsimple rG U <-> U is constructively not a submodule, that is, U *)
(* contains a proper nontrivial submodule. *)
(* mxnonsimple_sat rG U == U is not a simple as an rG-module. *)
(* This is a bool predicate, which requires a decField *)
(* structure on the scalar field. *)
(* mxsemisimple rG W <-> W is constructively a direct sum of simple modules. *)
(* mxsplits rG V U <-> V splits over U in rG, i.e., U has an rG-invariant *)
(* complement in V. *)
(* mx_completely_reducible rG V <-> V splits over all its submodules; note *)
(* that this is only classically equivalent to stating that *)
(* V is semisimple. *)
(* mx_irreducible rG <-> the representation rG is irreducible, i.e., the full *)
(* module 1%:M of rG is simple. *)
(* mx_absolutely_irreducible rG == the representation rG of G is absolutely *)
(* irreducible: its enveloping algebra is the full matrix *)
(* ring. This is only classically equivalent to the more *)
(* standard ``rG does not reduce in any field extension''. *)
(* group_splitting_field F G <-> F is a splitting field for the group G: *)
(* every irreducible representation of G is absolutely *)
(* irreducible. Any field can be embedded classically into a *)
(* splitting field. *)
(* group_closure_field F gT <-> F is a splitting field for every group *)
(* G : {group gT}, and indeed for any section of such a *)
(* group. This is a convenient constructive substitute for *)
(* algebraic closures, that can be constructed classically. *)
(* dom_hom_mx rG f == a square matrix encoding the set of vectors for which *)
(* multiplication by the n x n matrix f commutes with the *)
(* representation of G, i.e., the largest domain on which *)
(* f is an rG homomorphism. *)
(* mx_iso rG U V <-> U and V are (constructively) rG-isomorphic; this is *)
(* a Prop predicate. *)
(* mx_simple_iso rG U V == U and V are rG-isomorphic if one of them is *)
(* simple; this is a bool predicate. *)
(* cyclic_mx rG u == the cyclic rG-module generated by the row vector u *)
(* annihilator_mx rG u == the annihilator of the row vector u in the *)
(* enveloping algebra the representation rG. *)
(* row_hom_mx rG u == the image of u by the set of all rG-homomorphisms on *)
(* its cyclic module, or, equivalently, the null-space of the *)
(* annihilator of u. *)
(* component_mx rG M == when M is a simple rG-module, the component of M in *)
(* the representation rG, i.e. the module generated by all *)
(* the (simple) modules rG-isomorphic to M. *)
(* socleType rG == a Structure that represents the type of all components *)
(* of rG (more precisely, it coerces to such a type via *)
(* socle_sort). For sG : socleType, values of type sG (to be *)
(* exact, socle_sort sG) coerce to square matrices. For any *)
(* representation rG we can construct sG : socleType rG *)
(* classically; the socleType structure encapsulates this *)
(* use of classical logic. *)
(* DecSocleType rG == a socleType rG structure, for a representation over a *)
(* decidable field type. DecSocleType rG is opaque. *)
(* socle_base W == for W : (sG : socleType), a simple module whose *)
(* component is W; socle_simple W and socle_module W are *)
(* proofs that socle_base W is a simple module. *)
(* socle_mult W == the multiplicity of socle_base W in W : sG. *)
(* := \rank W %/ \rank (socle_base W) *)
(* Socle sG == the Socle of rG, given sG : socleType rG, i.e., the *)
(* (direct) sum of all the components of rG. *)
(* mx_rsim rG rG' <-> rG and rG' are similar representations of the same *)
(* group G. Note that rG and rG' must then have equal, but *)
(* not necessarily convertible, degree. *)
(* submod_repr modU == a representation of G on 'rV_(\rank U) equivalent to *)
(* the restriction of rG to U (here modU : mxmodule rG U). *)
(* socle_repr W := submod_repr (socle_module W) *)
(* val/in_submod rG U == the projections resp. from/onto 'rV_(\rank U), *)
(* that correspond to submod_repr r G U (these work both on *)
(* vectors and row spaces). *)
(* factmod_repr modV == a representation of G on 'rV_(\rank (cokermx V)) that *)
(* is equivalent to the factor module 'rV_n / V induced by V *)
(* and rG (here modV : mxmodule rG V). *)
(* val/in_factmod rG U == the projections for factmod_repr r G U. *)
(* section_repr modU modV == the restriction to in_factmod V U of the factor *)
(* representation factmod_repr modV (for modU : mxmodule rG U *)
(* and modV : mxmodule rG V); section_repr modU modV is *)
(* irreducible iff max_submod rG U V. *)
(* subseries_repr modUs i == the representation for the section module *)
(* in_factmod (0 :: Us)`_i Us`_i, where *)
(* modUs : mx_subseries rG Us. *)
(* series_repr compUs i == the representation for the section module *)
(* in_factmod (0 :: Us)`_i Us`_i, where *)
(* compUs : mx_composition_series rG Us. The Jordan-Holder *)
(* theorem asserts the uniqueness of the set of such *)
(* representations, up to similarity and permutation. *)
(* regular_repr F G == the regular F-representation of the group G. *)
(* group_ring F G == a #|G| x #|G|^2 matrix that encodes the free group *)
(* ring of G -- that is, the enveloping algebra of the *)
(* regular F-representation of G. *)
(* gring_index x == the index corresponding to x \in G in the matrix *)
(* encoding of regular_repr and group_ring. *)
(* gring_row A == the row vector corresponding to A \in group_ring F G in *)
(* the regular FG-module. *)
(* gring_proj x A == the 1 x 1 matrix holding the coefficient of x \in G in *)
(* (A \in group_ring F G)%MS. *)
(* gring_mx rG u == the image of a row vector u of the regular FG-module, *)
(* in the enveloping algebra of another representation rG. *)
(* gring_op rG A == the image of a matrix of the free group ring of G, *)
(* in the enveloping algebra of rG. *)
(* gset_mx F G C == the group sum of C in the free group ring of G -- the *)
(* sum of the images of all the x \in C in group_ring F G. *)
(* classg_base F G == a #|classes G| x #|G|^2 matrix whose rows encode the *)
(* group sums of the conjugacy classes of G -- this is a *)
(* basis of 'Z(group_ring F G)%MS. *)
(* irrType F G == a type indexing irreducible representations of G over a *)
(* field F, provided its characteristic does not divide the *)
(* order of G; it also indexes Wedderburn subrings. *)
(* := socleType (regular_repr F G) *)
(* irr_repr i == the irreducible representation corresponding to the *)
(* index i : irrType sG *)
(* := socle_repr i as i coerces to a component matrix. *)
(* 'n_i, irr_degree i == the degree of irr_repr i; the notation is only *)
(* active after Open Scope group_ring_scope. *)
(* linear_irr sG == the set of sG-indices of linear irreducible *)
(* representations of G. *)
(* irr_comp sG rG == the sG-index of the unique irreducible representation *)
(* similar to rG, at least when rG is irreducible and the *)
(* characteristic is coprime. *)
(* irr_mode i z == the unique eigenvalue of irr_repr i z, at least when *)
(* irr_repr i z is scalar (e.g., when z \in 'Z(G)). *)
(* [1 sG]%irr == the index of the principal representation of G, in *)
(* sG : irrType F G. The i argument of irr_repr, irr_degree *)
(* and irr_mode is in the %irr scope. This notation may be *)
(* replaced locally by an interpretation of 1%irr as [1 sG] *)
(* for some specific irrType sG. *)
(* 'R_i, Wedderburn_subring i == the subring (indeed, the component) of the *)
(* free group ring of G corresponding to the component i : sG *)
(* of the regular FG-module, where sG : irrType F g. In *)
(* coprime characteristic the Wedderburn structure theorem *)
(* asserts that the free group ring is the direct sum of *)
(* these subrings; as with 'n_i above, the notation is only *)
(* active in group_ring_scope. *)
(* 'e_i, Wedderburn_id i == the projection of the identity matrix 1%:M on the *)
(* Wedderburn subring of i : sG (with sG a socleType). In *)
(* coprime characteristic this is the identity element of *)
(* the subring, and the basis of its center if the field F is *)
(* a splitting field. As 'R_i, 'e_i is in group_ring_scope. *)
(* subg_repr rG sHG == the restriction to H of the representation rG of G; *)
(* here sHG : H \subset G. *)
(* eqg_repr rG eqHG == the representation rG of G viewed a a representation *)
(* of H; here eqHG : G == H. *)
(* morphpre_repr f rG == the representation of f @*^-1 G obtained by *)
(* composing the group morphism f with rG. *)
(* morphim_repr rGf sGD == the representation of G induced by a *)
(* representation rGf of f @* G; here sGD : G \subset D where *)
(* D is the domain of the group morphism f. *)
(* rconj_repr rG uB == the conjugate representation x |-> B * rG x * B^-1; *)
(* here uB : B \in unitmx. *)
(* quo_repr sHK nHG == the representation of G / H induced by rG, given *)
(* sHK : H \subset rker rG, and nHG : G \subset 'N(H). *)
(* kquo_repr rG == the representation induced on G / rker rG by rG. *)
(* map_repr f rG == the representation f \o rG, whose module is the tensor *)
(* product of the module of rG with the extension field into *)
(* which f : {rmorphism F -> Fstar} embeds F. *)
(* 'Cl%act == the transitive action of G on the Wedderburn components of *)
(* H, with nsGH : H <| G, given by Clifford's theorem. More *)
(* precisely this is a total action of G on socle_sort sH, *)
(* where sH : socleType (subg_repr rG (normal_sub sGH)). *)
(* We build on the MatrixFormula toolkit to define decision procedures for *)
(* the reducibility property: *)
(* mxmodule_form rG U == a formula asserting that the interpretation of U is *)
(* a module of the representation rG. *)
(* mxnonsimple_form rG U == a formula asserting that the interpretation of U *)
(* contains a proper nontrivial rG-module. *)
(* mxnonsimple_sat rG U <=> mxnonsimple_form rG U is satisfied. *)
(* More involved constructions are encapsulated in two Coq submodules: *)
(* MatrixGenField == a module that encapsulates the lengthy details of the *)
(* construction of appropriate extension fields. We assume we *)
(* have an irreducible representation rG of a group G, and a *)
(* non-scalar matrix A that centralises rG(G), as this data *)
(* is readily extracted from the Jacobson density theorem. It *)
(* then follows from Schur's lemma that the ring generated by *)
(* A is a field on which the extension of the representation *)
(* rG of G is reducible. Note that this is equivalent to the *)
(* more traditional quotient of the polynomial ring by an *)
(* irreducible polynomial (the minimal polynomial of A), but *)
(* much better suited to our needs. *)
(* Here are the main definitions of MatrixGenField; they all have three *)
(* proofs as arguments: (implicit) rG : mx_repr n G, irrG : mx_irreducible rG *)
(* and cGA : centgmx rG A. These ensure the validity of the construction and *)
(* allow us to define Canonical instances; we assume degree_mxminpoly A > 1 *)
(* (which is equivalent to ~~ is_scalar_mx A) only to prove reducibility. *)
(* + gen_of irrG cGA == the carrier type of the field generated by A. It is *)
(* at least equipped with a fieldType structure; we also *)
(* propagate any decFieldType/finFieldType structures on the *)
(* original field. *)
(* + gen irrG cGA == the morphism injecting into gen_of irrG cGA. *)
(* + groot irrG cGA == the root of mxminpoly A in the gen_of irrG cGA field. *)
(* + pval x, rVval x, mxval x == the interpretation of x : gen_of irrG cGA *)
(* as a polynomial, a row vector, and a matrix, respectively. *)
(* Both irrG and cGA are implicit arguments here. *)
(* + gen_repr irrG cGA == an alternative to the field extension *)
(* representation, which consists in reconsidering the *)
(* original module as a module over the new gen_of field, *)
(* thereby DIVIDING the original dimension n by the degree of *)
(* the minimal polynomial of A. This can be simpler than the *)
(* extension method, is actually required by the proof that *)
(* odd groups are p-stable (B & G 6.1-2, and Appendix A), but *)
(* is only applicable if G is the LARGEST group represented *)
(* by rG (e.g., NOT for B & G 2.6). *)
(* + gen_dim A == the dimension of gen_repr irrG cGA (only depends on A). *)
(* + in_gen irrG cGA W == the ROWWISE image of a matrix W : 'M[F]_(m, n), *)
(* i.e., interpreting W as a sequence of m tow vectors, *)
(* under the bijection from rG to gen_repr irrG cGA. *)
(* The sequence length m is a maximal implicit argument *)
(* passed between the explicit argument cGA and W. *)
(* + val_gen W == the ROWWISE image of an 'M[gen_of irrG cGA]_(m, gen_dim A) *)
(* matrix W under the bijection from gen_repr irrG cGA to rG. *)
(* + rowval_gen W == the ROWSPACE image of W under the bijection from *)
(* gen_repr irrG cGA to rG, i.e., a 'M[F]_n matrix whose row *)
(* space is the image of the row space of W. *)
(* This is the A-ideal generated by val_gen W. *)
(* + gen_sat e f <=> f : GRing.formula (gen_of irrG cGA) is satisfied in *)
(* environment e : seq (gen_of irrG cGA), provided F has a *)
(* decFieldType structure. *)
(* + gen_env e, gen_term t, gen_form f == interpretations of environments, *)
(* terms, and RING formulas over gen_of irrG cGA as row *)
(* vector formulae, used to construct gen_sat. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope irrType_scope.
Declare Scope group_ring_scope.
Import GroupScope GRing.Theory.
Local Open Scope ring_scope.
Reserved Notation "''n_' i" (at level 8, i at level 2, format "''n_' i").
Reserved Notation "''R_' i" (at level 8, i at level 2, format "''R_' i").
Reserved Notation "''e_' i" (at level 8, i at level 2, format "''e_' i").
Delimit Scope irrType_scope with irr.
Section RingRepr.
Variable R : comUnitRingType.
Section OneRepresentation.
Variable gT : finGroupType.
Definition mx_repr (G : {set gT}) n (r : gT -> 'M[R]_n) :=
r 1%g = 1%:M /\ {in G &, {morph r : x y / (x * y)%g >-> x *m y}}.
Structure mx_representation G n :=
MxRepresentation { repr_mx :> gT -> 'M_n; _ : mx_repr G repr_mx }.
Variables (G : {group gT}) (n : nat) (rG : mx_representation G n).
Arguments rG _%group_scope : extra scopes.
Lemma repr_mx1 : rG 1 = 1%:M.
Proof. by case: rG => r []. Qed.
Lemma repr_mxM : {in G &, {morph rG : x y / (x * y)%g >-> x *m y}}.
Proof. by case: rG => r []. Qed.
Lemma repr_mxK m x :
x \in G -> cancel ((@mulmx R m n n)^~ (rG x)) (mulmx^~ (rG x^-1)).
Proof.
by move=> Gx U; rewrite -mulmxA -repr_mxM ?groupV // mulgV repr_mx1 mulmx1.
Qed.
Lemma repr_mxKV m x :
x \in G -> cancel ((@mulmx R m n n)^~ (rG x^-1)) (mulmx^~ (rG x)).
Proof. by rewrite -groupV -{3}[x]invgK; apply: repr_mxK. Qed.
Lemma repr_mx_unit x : x \in G -> rG x \in unitmx.
Proof. by move=> Gx; case/mulmx1_unit: (repr_mxKV Gx 1%:M). Qed.
Lemma repr_mxV : {in G, {morph rG : x / x^-1%g >-> invmx x}}.
Proof.
by move=> x Gx /=; rewrite -[rG x^-1](mulKmx (repr_mx_unit Gx)) mulmxA repr_mxK.
Qed.
(* This is only used in the group ring construction below, as we only have *)
(* developped the theory of matrix subalgebras for F-algebras. *)
Definition enveloping_algebra_mx := \matrix_(i < #|G|) mxvec (rG (enum_val i)).
Section Stabiliser.
Variables (m : nat) (U : 'M[R]_(m, n)).
Definition rstab := [set x in G | U *m rG x == U].
Lemma rstab_sub : rstab \subset G.
Proof. by apply/subsetP=> x; case/setIdP. Qed.
Lemma rstab_group_set : group_set rstab.
Proof.
apply/group_setP; rewrite inE group1 repr_mx1 mulmx1; split=> //= x y.
case/setIdP=> Gx cUx; case/setIdP=> Gy cUy; rewrite inE repr_mxM ?groupM //.
by rewrite mulmxA (eqP cUx).
Qed.
Canonical rstab_group := Group rstab_group_set.
End Stabiliser.
(* Centralizer subgroup and central homomorphisms. *)
Section CentHom.
Variable f : 'M[R]_n.
Definition rcent := [set x in G | f *m rG x == rG x *m f].
Lemma rcent_sub : rcent \subset G.
Proof. by apply/subsetP=> x; case/setIdP. Qed.
Lemma rcent_group_set : group_set rcent.
Proof.
apply/group_setP; rewrite inE group1 repr_mx1 mulmx1 mul1mx; split=> //= x y.
case/setIdP=> Gx; move/eqP=> cfx; case/setIdP=> Gy; move/eqP=> cfy.
by rewrite inE repr_mxM ?groupM //= -mulmxA -cfy !mulmxA cfx.
Qed.
Canonical rcent_group := Group rcent_group_set.
Definition centgmx := G \subset rcent.
Lemma centgmxP : reflect (forall x, x \in G -> f *m rG x = rG x *m f) centgmx.
Proof.
by apply: (iffP subsetP) => cGf x Gx; have /[!(inE, Gx)] /eqP := cGf x Gx.
Qed.
End CentHom.
(* Representation kernel, and faithful representations. *)
Definition rker := rstab 1%:M.
Canonical rker_group := Eval hnf in [group of rker].
Lemma rkerP x : reflect (x \in G /\ rG x = 1%:M) (x \in rker).
Proof. by apply: (iffP setIdP) => [] [->]; move/eqP; rewrite mul1mx. Qed.
Lemma rker_norm : G \subset 'N(rker).
Proof.
apply/subsetP=> x Gx; rewrite inE sub_conjg; apply/subsetP=> y.
case/rkerP=> Gy ry1; rewrite mem_conjgV !inE groupJ //=.
by rewrite !repr_mxM ?groupM ?groupV // ry1 !mulmxA mulmx1 repr_mxKV.
Qed.
Lemma rker_normal : rker <| G.
Proof. by rewrite /normal rstab_sub rker_norm. Qed.
Definition mx_faithful := rker \subset [1].
Lemma mx_faithful_inj : mx_faithful -> {in G &, injective rG}.
Proof.
move=> ffulG x y Gx Gy eq_rGxy; apply/eqP; rewrite eq_mulgV1 -in_set1.
rewrite (subsetP ffulG) // inE groupM ?repr_mxM ?groupV //= eq_rGxy.
by rewrite mulmxA repr_mxK.
Qed.
Lemma rker_linear : n = 1 -> G^`(1)%g \subset rker.
Proof.
move=> n1; rewrite gen_subG; apply/subsetP=> xy; case/imset2P=> x y Gx Gy ->.
rewrite !inE groupR //= /commg mulgA -invMg repr_mxM ?groupV ?groupM //.
rewrite mulmxA (can2_eq (repr_mxK _) (repr_mxKV _)) ?groupM //.
rewrite !repr_mxV ?repr_mxM ?groupM //; move: (rG x) (rG y).
by rewrite n1 => rx ry; rewrite (mx11_scalar rx) scalar_mxC.
Qed.
(* Representation center. *)
Definition rcenter := [set g in G | is_scalar_mx (rG g)].
Fact rcenter_group_set : group_set rcenter.
Proof.
apply/group_setP; split=> [|x y].
by rewrite inE group1 repr_mx1 scalar_mx_is_scalar.
move=> /setIdP[Gx /is_scalar_mxP[a defx]] /setIdP[Gy /is_scalar_mxP[b defy]].
by rewrite !inE groupM ?repr_mxM // defx defy -scalar_mxM ?scalar_mx_is_scalar.
Qed.
Canonical rcenter_group := Group rcenter_group_set.
Lemma rcenter_normal : rcenter <| G.
Proof.
rewrite /normal /rcenter {1}setIdE subsetIl; apply/subsetP=> x Gx /[1!inE].
apply/subsetP=> _ /imsetP[y /setIdP[Gy /is_scalar_mxP[c rGy]] ->].
rewrite inE !repr_mxM ?groupM ?groupV //= mulmxA rGy scalar_mxC repr_mxKV //.
exact: scalar_mx_is_scalar.
Qed.
End OneRepresentation.
Arguments rkerP {gT G n rG x}.
Section Proper.
Variables (gT : finGroupType) (G : {group gT}) (n' : nat).
Local Notation n := n'.+1.
Variable rG : mx_representation G n.
Lemma repr_mxMr : {in G &, {morph rG : x y / (x * y)%g >-> x * y}}.
Proof. exact: repr_mxM. Qed.
Lemma repr_mxVr : {in G, {morph rG : x / (x^-1)%g >-> x^-1}}.
Proof. exact: repr_mxV. Qed.
Lemma repr_mx_unitr x : x \in G -> rG x \is a GRing.unit.
Proof. exact: repr_mx_unit. Qed.
Lemma repr_mxX m : {in G, {morph rG : x / (x ^+ m)%g >-> x ^+ m}}.
Proof.
elim: m => [|m IHm] x Gx; rewrite /= ?repr_mx1 // expgS exprS -IHm //.
by rewrite repr_mxM ?groupX.
Qed.
End Proper.
Section ChangeGroup.
Variables (gT : finGroupType) (G H : {group gT}) (n : nat).
Variables (rG : mx_representation G n).
Section SubGroup.
Hypothesis sHG : H \subset G.
Lemma subg_mx_repr : mx_repr H rG.
Proof.
by split=> [|x y Hx Hy]; rewrite (repr_mx1, repr_mxM) ?(subsetP sHG).
Qed.
Definition subg_repr := MxRepresentation subg_mx_repr.
Local Notation rH := subg_repr.
Lemma rcent_subg U : rcent rH U = H :&: rcent rG U.
Proof. by apply/setP=> x; rewrite !inE andbA -in_setI (setIidPl sHG). Qed.
Section Stabiliser.
Variables (m : nat) (U : 'M[R]_(m, n)).
Lemma rstab_subg : rstab rH U = H :&: rstab rG U.
Proof. by apply/setP=> x; rewrite !inE andbA -in_setI (setIidPl sHG). Qed.
End Stabiliser.
Lemma rker_subg : rker rH = H :&: rker rG. Proof. exact: rstab_subg. Qed.
Lemma subg_mx_faithful : mx_faithful rG -> mx_faithful rH.
Proof. by apply: subset_trans; rewrite rker_subg subsetIr. Qed.
End SubGroup.
Section SameGroup.
Hypothesis eqGH : G :==: H.
Lemma eqg_repr_proof : H \subset G. Proof. by rewrite (eqP eqGH). Qed.
Definition eqg_repr := subg_repr eqg_repr_proof.
Local Notation rH := eqg_repr.
Lemma rcent_eqg U : rcent rH U = rcent rG U.
Proof. by rewrite rcent_subg -(eqP eqGH) (setIidPr _) ?rcent_sub. Qed.
Section Stabiliser.
Variables (m : nat) (U : 'M[R]_(m, n)).
Lemma rstab_eqg : rstab rH U = rstab rG U.
Proof. by rewrite rstab_subg -(eqP eqGH) (setIidPr _) ?rstab_sub. Qed.
End Stabiliser.
Lemma rker_eqg : rker rH = rker rG. Proof. exact: rstab_eqg. Qed.
Lemma eqg_mx_faithful : mx_faithful rH = mx_faithful rG.
Proof. by rewrite /mx_faithful rker_eqg. Qed.
End SameGroup.
End ChangeGroup.
Section Morphpre.
Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
Variables (G : {group rT}) (n : nat) (rG : mx_representation G n).
Lemma morphpre_mx_repr : mx_repr (f @*^-1 G) (rG \o f).
Proof.
split=> [|x y]; first by rewrite /= morph1 repr_mx1.
case/morphpreP=> Dx Gfx; case/morphpreP=> Dy Gfy.
by rewrite /= morphM ?repr_mxM.
Qed.
Canonical morphpre_repr := MxRepresentation morphpre_mx_repr.
Local Notation rGf := morphpre_repr.
Section Stabiliser.
Variables (m : nat) (U : 'M[R]_(m, n)).
Lemma rstab_morphpre : rstab rGf U = f @*^-1 (rstab rG U).
Proof. by apply/setP=> x; rewrite !inE andbA. Qed.
End Stabiliser.
Lemma rker_morphpre : rker rGf = f @*^-1 (rker rG).
Proof. exact: rstab_morphpre. Qed.
End Morphpre.
Section Morphim.
Variables (aT rT : finGroupType) (G D : {group aT}) (f : {morphism D >-> rT}).
Variables (n : nat) (rGf : mx_representation (f @* G) n).
Definition morphim_mx of G \subset D := fun x => rGf (f x).
Hypothesis sGD : G \subset D.
Lemma morphim_mxE x : morphim_mx sGD x = rGf (f x). Proof. by []. Qed.
Let sG_f'fG : G \subset f @*^-1 (f @* G).
Proof. by rewrite -sub_morphim_pre. Qed.
Lemma morphim_mx_repr : mx_repr G (morphim_mx sGD).
Proof. exact: subg_mx_repr (morphpre_repr f rGf) sG_f'fG. Qed.
Canonical morphim_repr := MxRepresentation morphim_mx_repr.
Local Notation rG := morphim_repr.
Section Stabiliser.
Variables (m : nat) (U : 'M[R]_(m, n)).
Lemma rstab_morphim : rstab rG U = G :&: f @*^-1 rstab rGf U.
Proof. by rewrite -rstab_morphpre -(rstab_subg _ sG_f'fG). Qed.
End Stabiliser.
Lemma rker_morphim : rker rG = G :&: f @*^-1 (rker rGf).
Proof. exact: rstab_morphim. Qed.
End Morphim.
Section Conjugate.
Variables (gT : finGroupType) (G : {group gT}) (n : nat).
Variables (rG : mx_representation G n) (B : 'M[R]_n).
Definition rconj_mx of B \in unitmx := fun x => B *m rG x *m invmx B.
Hypothesis uB : B \in unitmx.
Lemma rconj_mx_repr : mx_repr G (rconj_mx uB).
Proof.
split=> [|x y Gx Gy]; rewrite /rconj_mx ?repr_mx1 ?mulmx1 ?mulmxV ?repr_mxM //.
by rewrite !mulmxA mulmxKV.
Qed.
Canonical rconj_repr := MxRepresentation rconj_mx_repr.
Local Notation rGB := rconj_repr.
Lemma rconj_mxE x : rGB x = B *m rG x *m invmx B.
Proof. by []. Qed.
Lemma rconj_mxJ m (W : 'M_(m, n)) x : W *m rGB x *m B = W *m B *m rG x.
Proof. by rewrite !mulmxA mulmxKV. Qed.
Lemma rcent_conj A : rcent rGB A = rcent rG (invmx B *m A *m B).
Proof.
apply/setP=> x; rewrite !inE /= rconj_mxE !mulmxA.
rewrite (can2_eq (mulmxKV uB) (mulmxK uB)) -!mulmxA.
by rewrite -(can2_eq (mulKVmx uB) (mulKmx uB)).
Qed.
Lemma rstab_conj m (U : 'M_(m, n)) : rstab rGB U = rstab rG (U *m B).
Proof.
apply/setP=> x; rewrite !inE /= rconj_mxE !mulmxA.
by rewrite (can2_eq (mulmxKV uB) (mulmxK uB)).
Qed.
Lemma rker_conj : rker rGB = rker rG.
Proof.
apply/setP=> x; rewrite !inE /= mulmxA (can2_eq (mulmxKV uB) (mulmxK uB)).
by rewrite mul1mx -scalar_mxC (inj_eq (can_inj (mulKmx uB))) mul1mx.
Qed.
Lemma conj_mx_faithful : mx_faithful rGB = mx_faithful rG.
Proof. by rewrite /mx_faithful rker_conj. Qed.
End Conjugate.
Section Quotient.
Variables (gT : finGroupType) (G : {group gT}) (n : nat).
Variable rG : mx_representation G n.
Definition quo_mx (H : {set gT}) of H \subset rker rG & G \subset 'N(H) :=
fun Hx : coset_of H => rG (repr Hx).
Section SubQuotient.
Variable H : {group gT}.
Hypotheses (krH : H \subset rker rG) (nHG : G \subset 'N(H)).
Let nHGs := subsetP nHG.
Lemma quo_mx_coset x : x \in G -> quo_mx krH nHG (coset H x) = rG x.
Proof.
move=> Gx; rewrite /quo_mx val_coset ?nHGs //; case: repr_rcosetP => z Hz.
by case/rkerP: (subsetP krH z Hz) => Gz rz1; rewrite repr_mxM // rz1 mul1mx.
Qed.
Lemma quo_mx_repr : mx_repr (G / H)%g (quo_mx krH nHG).
Proof.
split=> [|Hx Hy]; first by rewrite /quo_mx repr_coset1 repr_mx1.
case/morphimP=> x Nx Gx ->{Hx}; case/morphimP=> y Ny Gy ->{Hy}.
by rewrite -morphM // !quo_mx_coset ?groupM ?repr_mxM.
Qed.
Canonical quo_repr := MxRepresentation quo_mx_repr.
Local Notation rGH := quo_repr.
Lemma quo_repr_coset x : x \in G -> rGH (coset H x) = rG x.
Proof. exact: quo_mx_coset. Qed.
Lemma rcent_quo A : rcent rGH A = (rcent rG A / H)%g.
Proof.
apply/setP=> Hx /[!inE]; apply/andP/idP=> [[]|]; case/morphimP=> x Nx Gx ->{Hx}.
by rewrite quo_repr_coset // => cAx; rewrite mem_morphim // inE Gx.
by case/setIdP: Gx => Gx cAx; rewrite quo_repr_coset ?mem_morphim.
Qed.
Lemma rstab_quo m (U : 'M_(m, n)) : rstab rGH U = (rstab rG U / H)%g.
Proof.
apply/setP=> Hx /[!inE]; apply/andP/idP=> [[]|]; case/morphimP=> x Nx Gx ->{Hx}.
by rewrite quo_repr_coset // => nUx; rewrite mem_morphim // inE Gx.
by case/setIdP: Gx => Gx nUx; rewrite quo_repr_coset ?mem_morphim.
Qed.
Lemma rker_quo : rker rGH = (rker rG / H)%g.
Proof. exact: rstab_quo. Qed.
End SubQuotient.
Definition kquo_mx := quo_mx (subxx (rker rG)) (rker_norm rG).
Lemma kquo_mxE : kquo_mx = quo_mx (subxx (rker rG)) (rker_norm rG).
Proof. by []. Qed.
Canonical kquo_repr := @MxRepresentation _ _ _ kquo_mx (quo_mx_repr _ _).
Lemma kquo_repr_coset x :
x \in G -> kquo_repr (coset (rker rG) x) = rG x.
Proof. exact: quo_repr_coset. Qed.
Lemma kquo_mx_faithful : mx_faithful kquo_repr.
Proof. by rewrite /mx_faithful rker_quo trivg_quotient. Qed.
End Quotient.
Section Regular.
Variables (gT : finGroupType) (G : {group gT}).
Definition gcard := #|G|. (* hides the projections to set *)
Local Notation nG := gcard.
Definition gring_index (x : gT) := enum_rank_in (group1 G) x.
Lemma gring_valK : cancel enum_val gring_index.
Proof. exact: enum_valK_in. Qed.
Lemma gring_indexK : {in G, cancel gring_index enum_val}.
Proof. exact: enum_rankK_in. Qed.
Definition regular_mx x : 'M[R]_nG :=
\matrix_i delta_mx 0 (gring_index (enum_val i * x)).
Lemma regular_mx_repr : mx_repr G regular_mx.
Proof.
split=> [|x y Gx Gy]; apply/row_matrixP=> i; rewrite !rowK.
by rewrite mulg1 row1 gring_valK.
by rewrite row_mul rowK -rowE rowK mulgA gring_indexK // groupM ?enum_valP.
Qed.
Canonical regular_repr := MxRepresentation regular_mx_repr.
Local Notation aG := regular_repr.
Definition group_ring := enveloping_algebra_mx aG.
Local Notation R_G := group_ring.
Definition gring_row : 'M[R]_nG -> 'rV_nG := row (gring_index 1).
HB.instance Definition _ := GRing.Linear.on gring_row.
Lemma gring_row_mul A B : gring_row (A *m B) = gring_row A *m B.
Proof. exact: row_mul. Qed.
Definition gring_proj x := row (gring_index x) \o trmx \o gring_row.
HB.instance Definition _ x := GRing.Linear.on (gring_proj x).
Lemma gring_projE : {in G &, forall x y, gring_proj x (aG y) = (x == y)%:R}.
Proof.
move=> x y Gx Gy; rewrite /gring_proj /= /gring_row rowK gring_indexK //=.
rewrite mul1g trmx_delta rowE mul_delta_mx_cond [delta_mx 0 0]mx11_scalar !mxE.
by rewrite /= -(inj_eq (can_inj gring_valK)) !gring_indexK.
Qed.
Lemma regular_mx_faithful : mx_faithful aG.
Proof.
apply/subsetP=> x /setIdP[Gx].
rewrite mul1mx inE => /eqP/(congr1 (gring_proj 1%g)).
rewrite -(repr_mx1 aG) !gring_projE ?group1 // eqxx eq_sym.
by case: (x == _) => // /eqP; rewrite eq_sym oner_eq0.
Qed.
Section GringMx.
Variables (n : nat) (rG : mx_representation G n).
Definition gring_mx := vec_mx \o mulmxr (enveloping_algebra_mx rG).
HB.instance Definition _ := GRing.Linear.on gring_mx.
Lemma gring_mxJ a x :
x \in G -> gring_mx (a *m aG x) = gring_mx a *m rG x.
Proof.
move=> Gx; rewrite /gring_mx /= ![a *m _]mulmx_sum_row.
rewrite !(mulmx_suml, linear_sum); apply: eq_bigr => i _.
rewrite linearZ -!scalemxAl linearZ /=; congr (_ *: _) => {a}.
rewrite !rowK /= !mxvecK -rowE rowK mxvecK.
by rewrite gring_indexK ?groupM ?repr_mxM ?enum_valP.
Qed.
End GringMx.
Lemma gring_mxK : cancel (gring_mx aG) gring_row.
Proof.
move=> a; rewrite /gring_mx /= mulmx_sum_row !linear_sum /= [RHS]row_sum_delta.
apply: eq_bigr => i _; rewrite 2!linearZ /= /gring_row !(rowK, mxvecK).
by rewrite gring_indexK // mul1g gring_valK.
Qed.
Section GringOp.
Variables (n : nat) (rG : mx_representation G n).
Definition gring_op := gring_mx rG \o gring_row.
HB.instance Definition _ := GRing.Linear.on gring_op.
Lemma gring_opE a : gring_op a = gring_mx rG (gring_row a).
Proof. by []. Qed.
Lemma gring_opG x : x \in G -> gring_op (aG x) = rG x.
Proof.
move=> Gx; rewrite gring_opE /gring_row rowK gring_indexK // mul1g.
by rewrite /gring_mx /= -rowE rowK mxvecK gring_indexK.
Qed.
Lemma gring_op1 : gring_op 1%:M = 1%:M.
Proof. by rewrite -(repr_mx1 aG) gring_opG ?repr_mx1. Qed.
Lemma gring_opJ A b :
gring_op (A *m gring_mx aG b) = gring_op A *m gring_mx rG b.
Proof.
rewrite /gring_mx /= ![b *m _]mulmx_sum_row !linear_sum.
apply: eq_bigr => i _; rewrite !linearZ /= !rowK !mxvecK.
by rewrite gring_opE gring_row_mul gring_mxJ ?enum_valP.
Qed.
Lemma gring_op_mx b : gring_op (gring_mx aG b) = gring_mx rG b.
Proof. by rewrite -[_ b]mul1mx gring_opJ gring_op1 mul1mx. Qed.
Lemma gring_mxA a b :
gring_mx rG (a *m gring_mx aG b) = gring_mx rG a *m gring_mx rG b.
Proof.
by rewrite -(gring_op_mx a) -gring_opJ gring_opE gring_row_mul gring_mxK.
Qed.
End GringOp.
End Regular.
End RingRepr.
Arguments mx_representation R {gT} G%g n%N.
Arguments mx_repr {R gT} G%g {n%N} r.
Arguments group_ring R {gT} G%g.
Arguments regular_repr R {gT} G%g.
Arguments centgmxP {R gT G n rG f}.
Arguments rkerP {R gT G n rG x}.
Arguments repr_mxK {R gT G%G n%N} rG {m%N} [x%g] Gx.
Arguments repr_mxKV {R gT G%G n%N} rG {m%N} [x%g] Gx.
Arguments gring_valK {gT G%G} i%R : rename.
Arguments gring_indexK {gT G%G} x%g.
Arguments gring_mxK {R gT G%G} v%R : rename.
Section ChangeOfRing.
Variables (aR rR : comUnitRingType) (f : {rmorphism aR -> rR}).
Local Notation "A ^f" := (map_mx (GRing.RMorphism.sort f) A) : ring_scope.
Variables (gT : finGroupType) (G : {group gT}).
Lemma map_regular_mx x : (regular_mx aR G x)^f = regular_mx rR G x.
Proof. by apply/matrixP=> i j; rewrite !mxE rmorph_nat. Qed.
Lemma map_gring_row (A : 'M_#|G|) : (gring_row A)^f = gring_row A^f.
Proof. by rewrite map_row. Qed.
Lemma map_gring_proj x (A : 'M_#|G|) : (gring_proj x A)^f = gring_proj x A^f.
Proof. by rewrite map_row -map_trmx map_gring_row. Qed.
Section OneRepresentation.
Variables (n : nat) (rG : mx_representation aR G n).
Definition map_repr_mx (f0 : aR -> rR) rG0 (g : gT) : 'M_n := map_mx f0 (rG0 g).
Lemma map_mx_repr : mx_repr G (map_repr_mx f rG).
Proof.
split=> [|x y Gx Gy]; first by rewrite /map_repr_mx repr_mx1 map_mx1.
by rewrite -map_mxM -repr_mxM.
Qed.
Canonical map_repr := MxRepresentation map_mx_repr.
Local Notation rGf := map_repr.
Lemma map_reprE x : rGf x = (rG x)^f. Proof. by []. Qed.
Lemma map_reprJ m (A : 'M_(m, n)) x : (A *m rG x)^f = A^f *m rGf x.
Proof. exact: map_mxM. Qed.
Lemma map_enveloping_algebra_mx :
(enveloping_algebra_mx rG)^f = enveloping_algebra_mx rGf.
Proof. by apply/row_matrixP=> i; rewrite -map_row !rowK map_mxvec. Qed.
Lemma map_gring_mx a : (gring_mx rG a)^f = gring_mx rGf a^f.
Proof. by rewrite map_vec_mx map_mxM map_enveloping_algebra_mx. Qed.
Lemma map_gring_op A : (gring_op rG A)^f = gring_op rGf A^f.
Proof. by rewrite map_gring_mx map_gring_row. Qed.
End OneRepresentation.
Lemma map_regular_repr : map_repr (regular_repr aR G) =1 regular_repr rR G.
Proof. exact: map_regular_mx. Qed.
Lemma map_group_ring : (group_ring aR G)^f = group_ring rR G.
Proof.
rewrite map_enveloping_algebra_mx; apply/row_matrixP=> i.
by rewrite !rowK map_regular_repr.
Qed.
(* Stabilisers, etc, are only mapped properly for fields. *)
End ChangeOfRing.
Section FieldRepr.
Variable F : fieldType.
Section OneRepresentation.
Variable gT : finGroupType.
Variables (G : {group gT}) (n : nat) (rG : mx_representation F G n).
Arguments rG _%group_scope : extra scopes.
Local Notation E_G := (enveloping_algebra_mx rG).
Lemma repr_mx_free x : x \in G -> row_free (rG x).
Proof. by move=> Gx; rewrite row_free_unit repr_mx_unit. Qed.
Section Stabilisers.
Variables (m : nat) (U : 'M[F]_(m, n)).
Definition rstabs := [set x in G | U *m rG x <= U]%MS.
Lemma rstabs_sub : rstabs \subset G.
Proof. by apply/subsetP=> x /setIdP[]. Qed.
Lemma rstabs_group_set : group_set rstabs.
Proof.
apply/group_setP; rewrite inE group1 repr_mx1 mulmx1.
split=> //= x y /setIdP[Gx nUx] /setIdP[Gy]; rewrite inE repr_mxM ?groupM //.
by apply: submx_trans; rewrite mulmxA submxMr.
Qed.
Canonical rstabs_group := Group rstabs_group_set.
Lemma rstab_act x m1 (W : 'M_(m1, n)) :
x \in rstab rG U -> (W <= U)%MS -> W *m rG x = W.
Proof. by case/setIdP=> _ /eqP cUx /submxP[w ->]; rewrite -mulmxA cUx. Qed.
Lemma rstabs_act x m1 (W : 'M_(m1, n)) :
x \in rstabs -> (W <= U)%MS -> (W *m rG x <= U)%MS.
Proof.
by case/setIdP=> [_ nUx] sWU; apply: submx_trans nUx; apply: submxMr.
Qed.
Definition mxmodule := G \subset rstabs.
Lemma mxmoduleP : reflect {in G, forall x, U *m rG x <= U}%MS mxmodule.
Proof.
by apply: (iffP subsetP) => modU x Gx; have:= modU x Gx; rewrite !inE ?Gx.
Qed.
End Stabilisers.
Arguments mxmoduleP {m U}.
Lemma rstabS m1 m2 (U : 'M_(m1, n)) (V : 'M_(m2, n)) :
(U <= V)%MS -> rstab rG V \subset rstab rG U.
Proof.
case/submxP=> u ->; apply/subsetP=> x.
by rewrite !inE => /andP[-> /= /eqP cVx]; rewrite -mulmxA cVx.
Qed.
Lemma eqmx_rstab m1 m2 (U : 'M_(m1, n)) (V : 'M_(m2, n)) :
(U :=: V)%MS -> rstab rG U = rstab rG V.
Proof. by move=> eqUV; apply/eqP; rewrite eqEsubset !rstabS ?eqUV. Qed.
Lemma eqmx_rstabs m1 m2 (U : 'M_(m1, n)) (V : 'M_(m2, n)) :
(U :=: V)%MS -> rstabs U = rstabs V.
Proof. by move=> eqUV; apply/setP=> x; rewrite !inE eqUV (eqmxMr _ eqUV). Qed.
Lemma eqmx_module m1 m2 (U : 'M_(m1, n)) (V : 'M_(m2, n)) :
(U :=: V)%MS -> mxmodule U = mxmodule V.
Proof. by move=> eqUV; rewrite /mxmodule (eqmx_rstabs eqUV). Qed.
Lemma mxmodule0 m : mxmodule (0 : 'M_(m, n)).
Proof. by apply/mxmoduleP=> x _; rewrite mul0mx. Qed.
Lemma mxmodule1 : mxmodule 1%:M.
Proof. by apply/mxmoduleP=> x _; rewrite submx1. Qed.
Lemma mxmodule_trans m1 m2 (U : 'M_(m1, n)) (W : 'M_(m2, n)) x :
mxmodule U -> x \in G -> (W <= U -> W *m rG x <= U)%MS.
Proof.
by move=> modU Gx sWU; apply: submx_trans (mxmoduleP modU x Gx); apply: submxMr.
Qed.
Lemma mxmodule_eigenvector m (U : 'M_(m, n)) :
mxmodule U -> \rank U = 1 ->
{u : 'rV_n & {a | (U :=: u)%MS & {in G, forall x, u *m rG x = a x *: u}}}.
Proof.
move=> modU linU; set u := nz_row U; exists u.
have defU: (U :=: u)%MS.
apply/eqmxP; rewrite andbC -(geq_leqif (mxrank_leqif_eq _)) ?nz_row_sub //.
by rewrite linU lt0n mxrank_eq0 nz_row_eq0 -mxrank_eq0 linU.
pose a x := (u *m rG x *m pinvmx u) 0 0; exists a => // x Gx.
by rewrite -mul_scalar_mx -mx11_scalar mulmxKpV // -defU mxmodule_trans ?defU.
Qed.
Lemma addsmx_module m1 m2 U V :
@mxmodule m1 U -> @mxmodule m2 V -> mxmodule (U + V)%MS.
Proof.
move=> modU modV; apply/mxmoduleP=> x Gx.
by rewrite addsmxMr addsmxS ?(mxmoduleP _ x Gx).
Qed.
Lemma sumsmx_module I r (P : pred I) U :
(forall i, P i -> mxmodule (U i)) -> mxmodule (\sum_(i <- r | P i) U i)%MS.
Proof.
by move=> modU; elim/big_ind: _; [apply: mxmodule0 | apply: addsmx_module | ].
Qed.
Lemma capmx_module m1 m2 U V :
@mxmodule m1 U -> @mxmodule m2 V -> mxmodule (U :&: V)%MS.
Proof.
move=> modU modV; apply/mxmoduleP=> x Gx.
by rewrite sub_capmx !mxmodule_trans ?capmxSl ?capmxSr.
Qed.
Lemma bigcapmx_module I r (P : pred I) U :
(forall i, P i -> mxmodule (U i)) -> mxmodule (\bigcap_(i <- r | P i) U i)%MS.
Proof.
by move=> modU; elim/big_ind: _; [apply: mxmodule1 | apply: capmx_module | ].
Qed.
(* Sub- and factor representations induced by a (sub)module. *)
Section Submodule.
Variable U : 'M[F]_n.
Definition val_submod m : 'M_(m, \rank U) -> 'M_(m, n) := mulmxr (row_base U).
Definition in_submod m : 'M_(m, n) -> 'M_(m, \rank U) :=
mulmxr (invmx (row_ebase U) *m pid_mx (\rank U)).
HB.instance Definition _ m := GRing.Linear.on (@val_submod m).
HB.instance Definition _ m := GRing.Linear.on (@in_submod m).
Lemma val_submodE m W : @val_submod m W = W *m val_submod 1%:M.
Proof. by rewrite mulmxA mulmx1. Qed.
Lemma in_submodE m W : @in_submod m W = W *m in_submod 1%:M.
Proof. by rewrite mulmxA mulmx1. Qed.
Lemma val_submod1 : (val_submod 1%:M :=: U)%MS.
Proof. by rewrite /val_submod /= mul1mx; apply: eq_row_base. Qed.
Lemma val_submodP m W : (@val_submod m W <= U)%MS.
Proof. by rewrite mulmx_sub ?eq_row_base. Qed.
Lemma val_submodK m : cancel (@val_submod m) (@in_submod m).
Proof.
move=> W; rewrite /in_submod /= -!mulmxA mulKVmx ?row_ebase_unit //.
by rewrite pid_mx_id ?rank_leq_row // pid_mx_1 mulmx1.
Qed.
Lemma val_submod_inj m : injective (@val_submod m).
Proof. exact: can_inj (@val_submodK m). Qed.
Lemma val_submodS m1 m2 (V : 'M_(m1, \rank U)) (W : 'M_(m2, \rank U)) :
(val_submod V <= val_submod W)%MS = (V <= W)%MS.
Proof.
apply/idP/idP=> sVW; last exact: submxMr.
by rewrite -[V]val_submodK -[W]val_submodK submxMr.
Qed.
Lemma in_submodK m W : (W <= U)%MS -> val_submod (@in_submod m W) = W.
Proof.
case/submxP=> w ->; rewrite /val_submod /= -!mulmxA.
congr (_ *m _); rewrite -{1}[U]mulmx_ebase !mulmxA mulmxK ?row_ebase_unit //.
by rewrite -2!(mulmxA (col_ebase U)) !pid_mx_id ?rank_leq_row // mulmx_ebase.
Qed.
Lemma val_submod_eq0 m W : (@val_submod m W == 0) = (W == 0).
Proof. by rewrite -!submx0 -val_submodS linear0 !(submx0, eqmx0). Qed.
Lemma in_submod_eq0 m W : (@in_submod m W == 0) = (W <= U^C)%MS.
Proof.
apply/eqP/submxP=> [W_U0 | [w ->{W}]].
exists (W *m invmx (row_ebase U)).
rewrite mulmxA mulmxBr mulmx1 -(pid_mx_id _ _ _ (leqnn _)).
rewrite mulmxA -(mulmxA W) [W *m (_ *m _)]W_U0 mul0mx subr0.
by rewrite mulmxKV ?row_ebase_unit.
rewrite /in_submod /= -!mulmxA mulKVmx ?row_ebase_unit //.
by rewrite mul_copid_mx_pid ?rank_leq_row ?mulmx0.
Qed.
Lemma mxrank_in_submod m (W : 'M_(m, n)) :
(W <= U)%MS -> \rank (in_submod W) = \rank W.
Proof.
by move=> sWU; apply/eqP; rewrite eqn_leq -{3}(in_submodK sWU) !mxrankM_maxl.
Qed.
Definition val_factmod m : _ -> 'M_(m, n) :=
mulmxr (row_base (cokermx U) *m row_ebase U).
Definition in_factmod m : 'M_(m, n) -> _ := mulmxr (col_base (cokermx U)).
HB.instance Definition _ m := GRing.Linear.on (@val_factmod m).
HB.instance Definition _ m := GRing.Linear.on (@in_factmod m).
Lemma val_factmodE m W : @val_factmod m W = W *m val_factmod 1%:M.
Proof. by rewrite mulmxA mulmx1. Qed.
Lemma in_factmodE m W : @in_factmod m W = W *m in_factmod 1%:M.
Proof. by rewrite mulmxA mulmx1. Qed.
Lemma val_factmodP m W : (@val_factmod m W <= U^C)%MS.
Proof.
by rewrite mulmx_sub {m W}// (eqmxMr _ (eq_row_base _)) -mulmxA submxMl.
Qed.
Lemma val_factmodK m : cancel (@val_factmod m) (@in_factmod m).
Proof.
move=> W /=; rewrite /in_factmod /=; set Uc := cokermx U.
apply: (row_free_inj (row_base_free Uc)); rewrite -mulmxA mulmx_base.
rewrite /val_factmod /= 2!mulmxA -/Uc mulmxK ?row_ebase_unit //.
have /submxP[u ->]: (row_base Uc <= Uc)%MS by rewrite eq_row_base.
by rewrite -!mulmxA copid_mx_id ?rank_leq_row.
Qed.
Lemma val_factmod_inj m : injective (@val_factmod m).
Proof. exact: can_inj (@val_factmodK m). Qed.
Lemma val_factmodS m1 m2 (V : 'M_(m1, _)) (W : 'M_(m2, _)) :
(val_factmod V <= val_factmod W)%MS = (V <= W)%MS.
Proof.
apply/idP/idP=> sVW; last exact: submxMr.
by rewrite -[V]val_factmodK -[W]val_factmodK submxMr.
Qed.
Lemma val_factmod_eq0 m W : (@val_factmod m W == 0) = (W == 0).
Proof. by rewrite -!submx0 -val_factmodS linear0 !(submx0, eqmx0). Qed.
Lemma in_factmod_eq0 m (W : 'M_(m, n)) : (in_factmod W == 0) = (W <= U)%MS.
Proof.
rewrite submxE -!mxrank_eq0 -{2}[_ U]mulmx_base mulmxA.
by rewrite (mxrankMfree _ (row_base_free _)).
Qed.
Lemma in_factmodK m (W : 'M_(m, n)) :
(W <= U^C)%MS -> val_factmod (in_factmod W) = W.
Proof.
case/submxP=> w ->{W}; rewrite /val_factmod /= -2!mulmxA.
congr (_ *m _); rewrite (mulmxA (col_base _)) mulmx_base -2!mulmxA.
by rewrite mulKVmx ?row_ebase_unit // mulmxA copid_mx_id ?rank_leq_row.
Qed.
Lemma in_factmod_addsK m (W : 'M_(m, n)) :
(in_factmod (U + W)%MS :=: in_factmod W)%MS.
Proof.
apply: eqmx_trans (addsmxMr _ _ _) _.
by rewrite ((_ *m _ =P 0) _) ?in_factmod_eq0 //; apply: adds0mx.
Qed.
Lemma add_sub_fact_mod m (W : 'M_(m, n)) :
val_submod (in_submod W) + val_factmod (in_factmod W) = W.
Proof.
rewrite /val_submod /val_factmod /= -!mulmxA -mulmxDr.
rewrite addrC ) pid_mx_id // (mulmxA (col_ebase _)).
rewrite (mulmxA _ _ (row_ebase _)) mulmx_ebase.
rewrite (mulmxA (pid_mx _)) pid_mx_id // mulmxA -mulmxDl -mulmxDr.
by rewrite subrK mulmx1 mulmxA mulmxKV ?row_ebase_unit.
Qed.
Lemma proj_factmodS m (W : 'M_(m, n)) :
(val_factmod (in_factmod W) <= U + W)%MS.
Proof.
by rewrite -{2}[W]add_sub_fact_mod addsmx_addKl ?val_submodP ?addsmxSr.
Qed.
Lemma in_factmodsK m (W : 'M_(m, n)) :
(U <= W)%MS -> (U + val_factmod (in_factmod W) :=: W)%MS.
Proof.
move/addsmx_idPr; apply: eqmx_trans (eqmx_sym _).
by rewrite -{1}[W]add_sub_fact_mod; apply: addsmx_addKl; apply: val_submodP.
Qed.
Lemma mxrank_in_factmod m (W : 'M_(m, n)) :
(\rank (in_factmod W) + \rank U)%N = \rank (U + W).
Proof.
rewrite -in_factmod_addsK in_factmodE; set fU := in_factmod 1%:M.
suffices <-: ((U + W) :&: kermx fU :=: U)%MS by rewrite mxrank_mul_ker.
apply: eqmx_trans (capmx_idPr (addsmxSl U W)).
apply: cap_eqmx => //; apply/eqmxP/rV_eqP => u.
by rewrite (sameP sub_kermxP eqP) -in_factmodE in_factmod_eq0.
Qed.
Definition submod_mx of mxmodule U :=
fun x => in_submod (val_submod 1%:M *m rG x).
Definition factmod_mx of mxmodule U :=
fun x => in_factmod (val_factmod 1%:M *m rG x).
Hypothesis Umod : mxmodule U.
Lemma in_submodJ m (W : 'M_(m, n)) x :
(W <= U)%MS -> in_submod (W *m rG x) = in_submod W *m submod_mx Umod x.
Proof.
move=> sWU; rewrite mulmxA; congr (in_submod _).
by rewrite mulmxA -val_submodE in_submodK.
Qed.
Lemma val_submodJ m (W : 'M_(m, \rank U)) x :
x \in G -> val_submod (W *m submod_mx Umod x) = val_submod W *m rG x.
Proof.
move=> Gx; rewrite 2!(mulmxA W) -val_submodE in_submodK //.
by rewrite mxmodule_trans ?val_submodP.
Qed.
Lemma submod_mx_repr : mx_repr G (submod_mx Umod).
Proof.
rewrite /submod_mx; split=> [|x y Gx Gy /=].
by rewrite repr_mx1 mulmx1 val_submodK.
rewrite -in_submodJ; first by rewrite repr_mxM ?mulmxA.
by rewrite mxmodule_trans ?val_submodP.
Qed.
Canonical submod_repr := MxRepresentation submod_mx_repr.
Lemma in_factmodJ m (W : 'M_(m, n)) x :
x \in G -> in_factmod (W *m rG x) = in_factmod W *m factmod_mx Umod x.
Proof.
move=> Gx; rewrite -{1}[W]add_sub_fact_mod mulmxDl linearD /=.
apply: (canLR (subrK _)); apply: etrans (_ : 0 = _).
apply/eqP; rewrite in_factmod_eq0 (submx_trans _ (mxmoduleP Umod x Gx)) //.
by rewrite submxMr ?val_submodP.
by rewrite /in_factmod /val_factmod /= !mulmxA mulmx1 ?subrr.
Qed.
Lemma val_factmodJ m (W : 'M_(m, \rank (cokermx U))) x :
x \in G ->
val_factmod (W *m factmod_mx Umod x) =
val_factmod (in_factmod (val_factmod W *m rG x)).
Proof. by move=> Gx; rewrite -{1}[W]val_factmodK -in_factmodJ. Qed.
Lemma factmod_mx_repr : mx_repr G (factmod_mx Umod).
Proof.
split=> [|x y Gx Gy /=].
by rewrite /factmod_mx repr_mx1 mulmx1 val_factmodK.
by rewrite -in_factmodJ // -mulmxA -repr_mxM.
Qed.
Canonical factmod_repr := MxRepresentation factmod_mx_repr.
(* For character theory. *)
Lemma mxtrace_sub_fact_mod x :
\tr (submod_repr x) + \tr (factmod_repr x) = \tr (rG x).
Proof.
rewrite -[submod_repr x]mulmxA mxtrace_mulC -val_submodE addrC.
rewrite -[factmod_repr x]mulmxA mxtrace_mulC -val_factmodE addrC.
by rewrite -mxtraceD add_sub_fact_mod.
Qed.
End Submodule.
(* Properties of enveloping algebra as a subspace of 'rV_(n ^ 2). *)
Lemma envelop_mx_id x : x \in G -> (rG x \in E_G)%MS.
Proof.
by move=> Gx; rewrite (eq_row_sub (enum_rank_in Gx x)) // rowK enum_rankK_in.
Qed.
Lemma envelop_mx1 : (1%:M \in E_G)%MS.
Proof. by rewrite -(repr_mx1 rG) envelop_mx_id. Qed.
Lemma envelop_mxP A :
reflect (exists a, A = \sum_(x in G) a x *: rG x) (A \in E_G)%MS.
Proof.
have G_1 := group1 G; have bijG := enum_val_bij_in G_1.
set h := enum_val in bijG; have Gh: h _ \in G by apply: enum_valP.
apply: (iffP submxP) => [[u defA] | [a ->]].
exists (fun x => u 0 (enum_rank_in G_1 x)); apply: (can_inj mxvecK).
rewrite defA mulmx_sum_row linear_sum (reindex h) //=.
by apply: eq_big => [i | i _]; rewrite ?Gh // rowK linearZ enum_valK_in.
exists (\row_i a (h i)); rewrite mulmx_sum_row linear_sum (reindex h) //=.
by apply: eq_big => [i | i _]; rewrite ?Gh // mxE rowK linearZ.
Qed.
Lemma envelop_mxM A B : (A \in E_G -> B \in E_G -> A *m B \in E_G)%MS.
Proof.
move=> {A B} /envelop_mxP[a ->] /envelop_mxP[b ->].
rewrite mulmx_suml !linear_sum summx_sub //= => x Gx.
rewrite !linear_sum summx_sub //= => y Gy.
rewrite -scalemxAl 3!linearZ !scalemx_sub//= -repr_mxM //.
by rewrite envelop_mx_id ?groupM.
Qed.
Lemma mxmodule_envelop m1 m2 (U : 'M_(m1, n)) (W : 'M_(m2, n)) A :
(mxmodule U -> mxvec A <= E_G -> W <= U -> W *m A <= U)%MS.
Proof.
move=> modU /envelop_mxP[a ->] sWU; rewrite linear_sum summx_sub //= => x Gx.
by rewrite -scalemxAr scalemx_sub ?mxmodule_trans.
Qed.
(* Module homomorphisms; any square matrix f defines a module homomorphism *)
(* over some domain, namely, dom_hom_mx f. *)
Definition dom_hom_mx f : 'M_n :=
kermx (lin1_mx (mxvec \o mulmx (cent_mx_fun E_G f) \o lin_mul_row)).
Lemma hom_mxP m f (W : 'M_(m, n)) :
reflect (forall x, x \in G -> W *m rG x *m f = W *m f *m rG x)
(W <= dom_hom_mx f)%MS.
Proof.
apply: (iffP row_subP) => [cGf x Gx | cGf i].
apply/row_matrixP=> i; apply/eqP; rewrite -subr_eq0 -!mulmxA -!linearB /=.
have:= sub_kermxP (cGf i); rewrite mul_rV_lin1 /=.
move/(canRL mxvecK)/row_matrixP/(_ (enum_rank_in Gx x))/eqP; rewrite !linear0.
by rewrite !row_mul rowK mul_vec_lin /= mul_vec_lin_row enum_rankK_in.
apply/sub_kermxP; rewrite mul_rV_lin1 /=; apply: (canLR vec_mxK).
apply/row_matrixP=> j; rewrite !row_mul rowK mul_vec_lin /= mul_vec_lin_row.
by rewrite -!row_mul mulmxBr !mulmxA cGf ?enum_valP // subrr !linear0.
Qed.
Arguments hom_mxP {m f W}.
Lemma hom_envelop_mxC m f (W : 'M_(m, n)) A :
(W <= dom_hom_mx f -> A \in E_G -> W *m A *m f = W *m f *m A)%MS.
Proof.
move/hom_mxP=> cWfG /envelop_mxP[a ->]; rewrite !linear_sum mulmx_suml.
by apply: eq_bigr => x Gx /=; rewrite -2!scalemxAr -scalemxAl cWfG.
Qed.
Lemma dom_hom_invmx f :
f \in unitmx -> (dom_hom_mx (invmx f) :=: dom_hom_mx f *m f)%MS.
Proof.
move=> injf; set U := dom_hom_mx _; apply/eqmxP.
rewrite -{1}[U](mulmxKV injf) submxMr; apply/hom_mxP=> x Gx.
by rewrite -[_ *m rG x](hom_mxP _) ?mulmxK.
by rewrite -[_ *m rG x](hom_mxP _) ?mulmxKV.
Qed.
Lemma dom_hom_mx_module f : mxmodule (dom_hom_mx f).
Proof.
apply/mxmoduleP=> x Gx; apply/hom_mxP=> y Gy.
rewrite -[_ *m rG y]mulmxA -repr_mxM // 2?(hom_mxP _) ?groupM //.
by rewrite repr_mxM ?mulmxA.
Qed.
Lemma hom_mxmodule m (U : 'M_(m, n)) f :
(U <= dom_hom_mx f)%MS -> mxmodule U -> mxmodule (U *m f).
Proof.
move/hom_mxP=> cGfU modU; apply/mxmoduleP=> x Gx.
by rewrite -cGfU // submxMr // (mxmoduleP modU).
Qed.
Lemma kermx_hom_module m (U : 'M_(m, n)) f :
(U <= dom_hom_mx f)%MS -> mxmodule U -> mxmodule (U :&: kermx f)%MS.
Proof.
move=> homUf modU; apply/mxmoduleP=> x Gx.
rewrite sub_capmx mxmodule_trans ?capmxSl //=.
apply/sub_kermxP; rewrite (hom_mxP _) ?(submx_trans (capmxSl _ _)) //.
by rewrite (sub_kermxP (capmxSr _ _)) mul0mx.
Qed.
Lemma scalar_mx_hom a m (U : 'M_(m, n)) : (U <= dom_hom_mx a%:M)%MS.
Proof. by apply/hom_mxP=> x Gx; rewrite -!mulmxA scalar_mxC. Qed.
Lemma proj_mx_hom (U V : 'M_n) :
(U :&: V = 0)%MS -> mxmodule U -> mxmodule V ->
(U + V <= dom_hom_mx (proj_mx U V))%MS.
Proof.
move=> dxUV modU modV; apply/hom_mxP=> x Gx.
rewrite -{1}(add_proj_mx dxUV (submx_refl _)) !mulmxDl addrC.
rewrite {1}[_ *m _]proj_mx_0 ?add0r //; last first.
by rewrite mxmodule_trans ?proj_mx_sub.
by rewrite [_ *m _](proj_mx_id dxUV) // mxmodule_trans ?proj_mx_sub.
Qed.
(* The subspace fixed by a subgroup H of G; it is a module if H <| G. *)
(* The definition below is extensionally equivalent to the straightforward *)
(* \bigcap_(x in H) kermx (rG x - 1%:M) *)
(* but it avoids the dependency on the choice function; this allows it to *)
(* commute with ring morphisms. *)
Definition rfix_mx (H : {set gT}) :=
let commrH := \matrix_(i < #|H|) mxvec (rG (enum_val i) - 1%:M) in
kermx (lin1_mx (mxvec \o mulmx commrH \o lin_mul_row)).
Lemma rfix_mxP m (W : 'M_(m, n)) (H : {set gT}) :
reflect (forall x, x \in H -> W *m rG x = W) (W <= rfix_mx H)%MS.
Proof.
rewrite /rfix_mx; set C := \matrix_i _.
apply: (iffP row_subP) => [cHW x Hx | cHW j].
apply/row_matrixP=> j; apply/eqP; rewrite -subr_eq0 row_mul.
move/sub_kermxP: {cHW}(cHW j); rewrite mul_rV_lin1 /=; move/(canRL mxvecK).
move/row_matrixP/(_ (enum_rank_in Hx x)); rewrite row_mul rowK !linear0.
by rewrite enum_rankK_in // mul_vec_lin_row mulmxBr mulmx1 => ->.
apply/sub_kermxP; rewrite mul_rV_lin1 /=; apply: (canLR vec_mxK).
apply/row_matrixP=> i; rewrite row_mul rowK mul_vec_lin_row -row_mul.
by rewrite mulmxBr mulmx1 cHW ?enum_valP // subrr !linear0.
Qed.
Arguments rfix_mxP {m W}.
Lemma rfix_mx_id (H : {set gT}) x : x \in H -> rfix_mx H *m rG x = rfix_mx H.
Proof. exact/rfix_mxP. Qed.
Lemma rfix_mxS (H K : {set gT}) : H \subset K -> (rfix_mx K <= rfix_mx H)%MS.
Proof.
by move=> sHK; apply/rfix_mxP=> x Hx; apply: rfix_mxP (subsetP sHK x Hx).
Qed.
Lemma rfix_mx_conjsg (H : {set gT}) x :
x \in G -> H \subset G -> (rfix_mx (H :^ x) :=: rfix_mx H *m rG x)%MS.
Proof.
move=> Gx sHG; pose rf y := rfix_mx (H :^ y).
suffices{x Gx} IH: {in G &, forall y z, rf y *m rG z <= rf (y * z)%g}%MS.
apply/eqmxP; rewrite -/(rf x) -[H]conjsg1 -/(rf 1%g).
rewrite -{4}[x] mul1g -{1}[rf x](repr_mxKV rG Gx) -{1}(mulgV x).
by rewrite submxMr IH ?groupV.
move=> x y Gx Gy; apply/rfix_mxP=> zxy; rewrite actM => /imsetP[zx Hzx ->].
have Gzx: zx \in G by apply: subsetP Hzx; rewrite conj_subG.
rewrite -mulmxA -repr_mxM ?groupM ?groupV // -conjgC repr_mxM // mulmxA.
by rewrite rfix_mx_id.
Qed.
Lemma norm_sub_rstabs_rfix_mx (H : {set gT}) :
H \subset G -> 'N_G(H) \subset rstabs (rfix_mx H).
Proof.
move=> sHG; apply/subsetP=> x /setIP[Gx nHx]; rewrite inE Gx.
apply/rfix_mxP=> y Hy; have Gy := subsetP sHG y Hy.
have Hyx: (y ^ x^-1)%g \in H by rewrite memJ_norm ?groupV.
rewrite -mulmxA -repr_mxM // conjgCV repr_mxM ?(subsetP sHG _ Hyx) // mulmxA.
by rewrite (rfix_mx_id Hyx).
Qed.
Lemma normal_rfix_mx_module H : H <| G -> mxmodule (rfix_mx H).
Proof.
case/andP=> sHG nHG.
by rewrite /mxmodule -{1}(setIidPl nHG) norm_sub_rstabs_rfix_mx.
Qed.
Lemma rfix_mx_module : mxmodule (rfix_mx G).
Proof. exact: normal_rfix_mx_module. Qed.
Lemma rfix_mx_rstabC (H : {set gT}) m (U : 'M[F]_(m, n)) :
H \subset G -> (H \subset rstab rG U) = (U <= rfix_mx H)%MS.
Proof.
move=> sHG; apply/subsetP/rfix_mxP=> cHU x Hx.
by rewrite (rstab_act (cHU x Hx)).
by rewrite !inE (subsetP sHG) //= cHU.
Qed.
(* The cyclic module generated by a single vector. *)
Definition cyclic_mx u := <<E_G *m lin_mul_row u>>%MS.
Lemma cyclic_mxP u v :
reflect (exists2 A, A \in E_G & v = u *m A)%MS (v <= cyclic_mx u)%MS.
Proof.
rewrite genmxE; apply: (iffP submxP) => [[a] | [A /submxP[a defA]]] -> {v}.
exists (vec_mx (a *m E_G)); last by rewrite mulmxA mul_rV_lin1.
by rewrite vec_mxK submxMl.
by exists a; rewrite mulmxA mul_rV_lin1 /= -defA mxvecK.
Qed.
Arguments cyclic_mxP {u v}.
Lemma cyclic_mx_id u : (u <= cyclic_mx u)%MS.
Proof. by apply/cyclic_mxP; exists 1%:M; rewrite ?mulmx1 ?envelop_mx1. Qed.
Lemma cyclic_mx_eq0 u : (cyclic_mx u == 0) = (u == 0).
Proof.
rewrite -!submx0; apply/idP/idP.
by apply: submx_trans; apply: cyclic_mx_id.
move/submx0null->; rewrite genmxE; apply/row_subP=> i.
by rewrite row_mul mul_rV_lin1 /= mul0mx ?sub0mx.
Qed.
Lemma cyclic_mx_module u : mxmodule (cyclic_mx u).
Proof.
apply/mxmoduleP=> x Gx; apply/row_subP=> i; rewrite row_mul.
have [A E_A ->{i}] := @cyclic_mxP u _ (row_sub i _); rewrite -mulmxA.
by apply/cyclic_mxP; exists (A *m rG x); rewrite ?envelop_mxM ?envelop_mx_id.
Qed.
Lemma cyclic_mx_sub m u (W : 'M_(m, n)) :
mxmodule W -> (u <= W)%MS -> (cyclic_mx u <= W)%MS.
Proof.
move=> modU Wu; rewrite genmxE; apply/row_subP=> i.
by rewrite row_mul mul_rV_lin1 /= mxmodule_envelop // vec_mxK row_sub.
Qed.
Lemma hom_cyclic_mx u f :
(u <= dom_hom_mx f)%MS -> (cyclic_mx u *m f :=: cyclic_mx (u *m f))%MS.
Proof.
move=> domf_u; apply/eqmxP; rewrite !(eqmxMr _ (genmxE _)).
apply/genmxP; rewrite genmx_id; congr <<_>>%MS; apply/row_matrixP=> i.
by rewrite !row_mul !mul_rV_lin1 /= hom_envelop_mxC // vec_mxK row_sub.
Qed.
(* The annihilator of a single vector. *)
Definition annihilator_mx u := (E_G :&: kermx (lin_mul_row u))%MS.
Lemma annihilator_mxP u A :
reflect (A \in E_G /\ u *m A = 0)%MS (A \in annihilator_mx u)%MS.
Proof.
rewrite sub_capmx; apply: (iffP andP) => [[-> /sub_kermxP]|[-> uA0]].
by rewrite mul_rV_lin1 /= mxvecK.
by split=> //; apply/sub_kermxP; rewrite mul_rV_lin1 /= mxvecK.
Qed.
(* The subspace of homomorphic images of a row vector. *)
Definition row_hom_mx u :=
(\bigcap_j kermx (vec_mx (row j (annihilator_mx u))))%MS.
Lemma row_hom_mxP u v :
reflect (exists2 f, u <= dom_hom_mx f & u *m f = v)%MS (v <= row_hom_mx u)%MS.
Proof.
apply: (iffP sub_bigcapmxP) => [iso_uv | [f hom_uf <-] i _].
have{iso_uv} uv0 A: (A \in E_G)%MS /\ u *m A = 0 -> v *m A = 0.
move/annihilator_mxP=> /submxP[a defA].
rewrite -[A]mxvecK {A}defA [a *m _]mulmx_sum_row !linear_sum big1 // => i _.
by rewrite !linearZ /= (sub_kermxP _) ?scaler0 ?iso_uv.
pose U := E_G *m lin_mul_row u; pose V := E_G *m lin_mul_row v.
pose f := pinvmx U *m V.
have hom_uv_f x: x \in G -> u *m rG x *m f = v *m rG x.
move=> Gx; apply/eqP; rewrite 2!mulmxA mul_rV_lin1 -subr_eq0 -mulmxBr.
rewrite uv0 // 2!linearB /= vec_mxK; split.
by rewrite addmx_sub ?submxMl // eqmx_opp envelop_mx_id.
have Uux: (u *m rG x <= U)%MS.
by rewrite -(genmxE U) mxmodule_trans ?cyclic_mx_id ?cyclic_mx_module.
by rewrite -{2}(mulmxKpV Uux) [_ *m U]mulmxA mul_rV_lin1 subrr.
have def_uf: u *m f = v.
by rewrite -[u]mulmx1 -[v]mulmx1 -(repr_mx1 rG) hom_uv_f.
by exists f => //; apply/hom_mxP=> x Gx; rewrite def_uf hom_uv_f.
apply/sub_kermxP; set A := vec_mx _.
have: (A \in annihilator_mx u)%MS by rewrite vec_mxK row_sub.
by case/annihilator_mxP => E_A uA0; rewrite -hom_envelop_mxC // uA0 mul0mx.
Qed.
(* Sub-, isomorphic, simple, semisimple and completely reducible modules. *)
(* All these predicates are intuitionistic (since, e.g., testing simplicity *)
(* requires a splitting algorithm fo r the mas field). They are all *)
(* specialized to square matrices, to avoid spurious height parameters. *)
(* Module isomorphism is an intentional property in general, but it can be *)
(* decided when one of the two modules is known to be simple. *)
Variant mx_iso (U V : 'M_n) : Prop :=
MxIso f of f \in unitmx & (U <= dom_hom_mx f)%MS & (U *m f :=: V)%MS.
Lemma eqmx_iso U V : (U :=: V)%MS -> mx_iso U V.
Proof.
by move=> eqUV; exists 1%:M; rewrite ?unitmx1 ?scalar_mx_hom ?mulmx1.
Qed.
Lemma mx_iso_refl U : mx_iso U U.
Proof. exact: eqmx_iso. Qed.
Lemma mx_iso_sym U V : mx_iso U V -> mx_iso V U.
Proof.
case=> f injf homUf defV; exists (invmx f); first by rewrite unitmx_inv.
by rewrite dom_hom_invmx // -defV submxMr.
by rewrite -[U](mulmxK injf); apply: eqmxMr (eqmx_sym _).
Qed.
Lemma mx_iso_trans U V W : mx_iso U V -> mx_iso V W -> mx_iso U W.
Proof.
case=> f injf homUf defV [g injg homVg defW].
exists (f *m g); first by rewrite unitmx_mul injf.
by apply/hom_mxP=> x Gx; rewrite !mulmxA 2?(hom_mxP _) ?defV.
by rewrite mulmxA; apply: eqmx_trans (eqmxMr g defV) defW.
Qed.
Lemma mxrank_iso U V : mx_iso U V -> \rank U = \rank V.
Proof. by case=> f injf _ <-; rewrite mxrankMfree ?row_free_unit. Qed.
Lemma mx_iso_module U V : mx_iso U V -> mxmodule U -> mxmodule V.
Proof.
by case=> f _ homUf defV; rewrite -(eqmx_module defV); apply: hom_mxmodule.
Qed.
(* Simple modules (we reserve the term "irreducible" for representations). *)
Definition mxsimple (V : 'M_n) :=
[/\ mxmodule V, V != 0 &
forall U : 'M_n, mxmodule U -> (U <= V)%MS -> U != 0 -> (V <= U)%MS].
Definition mxnonsimple (U : 'M_n) :=
exists V : 'M_n, [&& mxmodule V, (V <= U)%MS, V != 0 & \rank V < \rank U].
Lemma mxsimpleP U :
[/\ mxmodule U, U != 0 & ~ mxnonsimple U] <-> mxsimple U.
Proof.
do [split => [] [modU nzU simU]; split] => // [V modV sVU nzV | [V]].
apply/idPn; rewrite -(ltn_leqif (mxrank_leqif_sup sVU)) => ltVU.
by case: simU; exists V; apply/and4P.
by case/and4P=> modV sVU nzV; apply/negP; rewrite -leqNgt mxrankS ?simU.
Qed.
Lemma mxsimple_module U : mxsimple U -> mxmodule U.
Proof. by case. Qed.
Lemma mxsimple_exists m (U : 'M_(m, n)) :
mxmodule U -> U != 0 -> classically (exists2 V, mxsimple V & V <= U)%MS.
Proof.
move=> modU nzU [] // simU; move: {2}_.+1 (ltnSn (\rank U)) => r leUr.
elim: r => // r IHr in m U leUr modU nzU simU.
have genU := genmxE U; apply: (simU); exists <<U>>%MS; last by rewrite genU.
apply/mxsimpleP; split; rewrite ?(eqmx_eq0 genU) ?(eqmx_module genU) //.
case=> V; rewrite !genU=> /and4P[modV sVU nzV ltVU]; case: notF.
apply: IHr nzV _ => // [|[W simW sWV]]; first exact: leq_trans ltVU _.
by apply: simU; exists W => //; apply: submx_trans sWV sVU.
Qed.
Lemma mx_iso_simple U V : mx_iso U V -> mxsimple U -> mxsimple V.
Proof.
move=> isoUV [modU nzU simU]; have [f injf homUf defV] := isoUV.
split=> [||W modW sWV nzW]; first by rewrite (mx_iso_module isoUV).
by rewrite -(eqmx_eq0 defV) -(mul0mx n f) (can_eq (mulmxK injf)).
rewrite -defV -[W](mulmxKV injf) submxMr //; set W' := W *m _.
have sW'U: (W' <= U)%MS by rewrite -[U](mulmxK injf) submxMr ?defV.
rewrite (simU W') //; last by rewrite -(can_eq (mulmxK injf)) mul0mx mulmxKV.
rewrite hom_mxmodule ?dom_hom_invmx // -[W](mulmxKV injf) submxMr //.
exact: submx_trans sW'U homUf.
Qed.
Lemma mxsimple_cyclic u U :
mxsimple U -> u != 0 -> (u <= U)%MS -> (U :=: cyclic_mx u)%MS.
Proof.
case=> [modU _ simU] nz_u Uu; apply/eqmxP; set uG := cyclic_mx u.
have s_uG_U: (uG <= U)%MS by rewrite cyclic_mx_sub.
by rewrite simU ?cyclic_mx_eq0 ?submx_refl // cyclic_mx_module.
Qed.
(* The surjective part of Schur's lemma. *)
Lemma mx_Schur_onto m (U : 'M_(m, n)) V f :
mxmodule U -> mxsimple V -> (U <= dom_hom_mx f)%MS ->
(U *m f <= V)%MS -> U *m f != 0 -> (U *m f :=: V)%MS.
Proof.
move=> modU [modV _ simV] homUf sUfV nzUf.
apply/eqmxP; rewrite sUfV -(genmxE (U *m f)).
rewrite simV ?(eqmx_eq0 (genmxE _)) ?genmxE //.
by rewrite (eqmx_module (genmxE _)) hom_mxmodule.
Qed.
(* The injective part of Schur's lemma. *)
Lemma mx_Schur_inj U f :
mxsimple U -> (U <= dom_hom_mx f)%MS -> U *m f != 0 -> (U :&: kermx f)%MS = 0.
Proof.
case=> [modU _ simU] homUf nzUf; apply/eqP; apply: contraR nzUf => nz_ker.
rewrite (sameP eqP sub_kermxP) (sameP capmx_idPl eqmxP) simU ?capmxSl //.
exact: kermx_hom_module.
Qed.
(* The injectve part of Schur's lemma, stated as isomorphism with the image. *)
Lemma mx_Schur_inj_iso U f :
mxsimple U -> (U <= dom_hom_mx f)%MS -> U *m f != 0 -> mx_iso U (U *m f).
Proof.
move=> simU homUf nzUf; have [modU _ _] := simU.
have eqUfU: \rank (U *m f) = \rank U by apply/mxrank_injP; rewrite mx_Schur_inj.
have{eqUfU} [g invg defUf] := complete_unitmx eqUfU.
suffices homUg: (U <= dom_hom_mx g)%MS by exists g; rewrite ?defUf.
apply/hom_mxP=> x Gx; have [ux defUx] := submxP (mxmoduleP modU x Gx).
by rewrite -defUf -(hom_mxP homUf) // defUx -!(mulmxA ux) defUf.
Qed.
(* The isomorphism part of Schur's lemma. *)
Lemma mx_Schur_iso U V f :
mxsimple U -> mxsimple V -> (U <= dom_hom_mx f)%MS ->
(U *m f <= V)%MS -> U *m f != 0 -> mx_iso U V.
Proof.
move=> simU simV homUf sUfV nzUf; have [modU _ _] := simU.
have [g invg homUg defUg] := mx_Schur_inj_iso simU homUf nzUf.
exists g => //; apply: mx_Schur_onto; rewrite ?defUg //.
by rewrite -!submx0 defUg in nzUf *.
Qed.
(* A boolean test for module isomorphism that is only valid for simple *)
(* modules; this is the only case that matters in practice. *)
Lemma nz_row_mxsimple U : mxsimple U -> nz_row U != 0.
Proof. by case=> _ nzU _; rewrite nz_row_eq0. Qed.
Definition mxsimple_iso (U V : 'M_n) :=
[&& mxmodule V, (V :&: row_hom_mx (nz_row U))%MS != 0 & \rank V <= \rank U].
Lemma mxsimple_isoP U V :
mxsimple U -> reflect (mx_iso U V) (mxsimple_iso U V).
Proof.
move=> simU; pose u := nz_row U.
have [Uu nz_u]: (u <= U)%MS /\ u != 0 by rewrite nz_row_sub nz_row_mxsimple.
apply: (iffP and3P) => [[modV] | isoUV]; last first.
split; last by rewrite (mxrank_iso isoUV).
by case: (mx_iso_simple isoUV simU).
have [f injf homUf defV] := isoUV; apply/rowV0Pn; exists (u *m f).
rewrite sub_capmx -defV submxMr //.
by apply/row_hom_mxP; exists f; first apply: (submx_trans Uu).
by rewrite -(mul0mx _ f) (can_eq (mulmxK injf)) nz_u.
case/rowV0Pn=> v; rewrite sub_capmx => /andP[Vv].
case/row_hom_mxP => f homMf def_v nz_v eqrUV.
pose uG := cyclic_mx u; pose vG := cyclic_mx v.
have def_vG: (uG *m f :=: vG)%MS by rewrite /vG -def_v; apply: hom_cyclic_mx.
have defU: (U :=: uG)%MS by apply: mxsimple_cyclic.
have mod_uG: mxmodule uG by rewrite cyclic_mx_module.
have homUf: (U <= dom_hom_mx f)%MS.
by rewrite defU cyclic_mx_sub ?dom_hom_mx_module.
have isoUf: mx_iso U (U *m f).
apply: mx_Schur_inj_iso => //; apply: contra nz_v; rewrite -!submx0.
by rewrite (eqmxMr f defU) def_vG; apply: submx_trans (cyclic_mx_id v).
apply: mx_iso_trans (isoUf) (eqmx_iso _); apply/eqmxP.
have sUfV: (U *m f <= V)%MS by rewrite (eqmxMr f defU) def_vG cyclic_mx_sub.
by rewrite -mxrank_leqif_eq ?eqn_leq 1?mxrankS // -(mxrank_iso isoUf).
Qed.
Lemma mxsimple_iso_simple U V :
mxsimple_iso U V -> mxsimple U -> mxsimple V.
Proof.
by move=> isoUV simU; apply: mx_iso_simple (simU); apply/mxsimple_isoP.
Qed.
(* For us, "semisimple" means "sum of simple modules"; this is classically, *)
(* but not intuitionistically, equivalent to the "completely reducible" *)
(* alternate characterization. *)
Implicit Type I : finType.
Variant mxsemisimple (V : 'M_n) :=
MxSemisimple I U (W := (\sum_(i : I) U i)%MS) of
forall i, mxsimple (U i) & (W :=: V)%MS & mxdirect W.
(* This is a slight generalization of Aschbacher 12.5 for finite sets. *)
Lemma sum_mxsimple_direct_compl m I W (U : 'M_(m, n)) :
let V := (\sum_(i : I) W i)%MS in
(forall i : I, mxsimple (W i)) -> mxmodule U -> (U <= V)%MS ->
{J : {set I} | let S := U + \sum_(i in J) W i in S :=: V /\ mxdirect S}%MS.
Proof.
move=> V simW modU sUV; pose V_ (J : {set I}) := (\sum_(i in J) W i)%MS.
pose dxU (J : {set I}) := mxdirect (U + V_ J).
have [J maxJ]: {J | maxset dxU J}; last case/maxsetP: maxJ => dxUVJ maxJ.
apply: ex_maxset; exists set0.
by rewrite /dxU mxdirectE /V_ /= !big_set0 addn0 addsmx0 /=.
have modWJ: mxmodule (V_ J) by apply: sumsmx_module => i _; case: (simW i).
exists J; split=> //; apply/eqmxP; rewrite addsmx_sub sUV; apply/andP; split.
by apply/sumsmx_subP=> i Ji; rewrite (sumsmx_sup i).
rewrite -/(V_ J); apply/sumsmx_subP=> i _.
case Ji: (i \in J).
by apply: submx_trans (addsmxSr _ _); apply: (sumsmx_sup i).
have [modWi nzWi simWi] := simW i.
rewrite (sameP capmx_idPl eqmxP) simWi ?capmxSl ?capmx_module ?addsmx_module //.
apply: contraFT (Ji); rewrite negbK => dxWiUVJ.
rewrite -(maxJ (i |: J)) ?setU11 ?subsetUr // /dxU.
rewrite mxdirectE /= !big_setU1 ?Ji //=.
rewrite addnCA addsmxA (addsmxC U) -addsmxA -mxdirectE /=.
by rewrite mxdirect_addsE /= mxdirect_trivial -/(dxU _) dxUVJ.
Qed.
Lemma sum_mxsimple_direct_sub I W (V : 'M_n) :
(forall i : I, mxsimple (W i)) -> (\sum_i W i :=: V)%MS ->
{J : {set I} | let S := \sum_(i in J) W i in S :=: V /\ mxdirect S}%MS.
Proof.
move=> simW defV.
have [|J [defS dxS]] := sum_mxsimple_direct_compl simW (mxmodule0 n).
exact: sub0mx.
exists J; split; last by rewrite mxdirectE /= adds0mx mxrank0 in dxS.
by apply: eqmx_trans defV; rewrite adds0mx_id in defS.
Qed.
Lemma mxsemisimple0 : mxsemisimple 0.
Proof.
exists 'I_0 (fun _ => 0); [by case | by rewrite big_ord0 | ].
by rewrite mxdirectE /= !big_ord0 mxrank0.
Qed.
Lemma intro_mxsemisimple (I : Type) r (P : pred I) W V :
(\sum_(i <- r | P i) W i :=: V)%MS ->
(forall i, P i -> W i != 0 -> mxsimple (W i)) ->
mxsemisimple V.
Proof.
move=> defV simW; pose W_0 := [pred i | W i == 0].
have [-> | nzV] := eqVneq V 0; first exact: mxsemisimple0.
case def_r: r => [| i0 r'] => [|{r' def_r}].
by rewrite -mxrank_eq0 -defV def_r big_nil mxrank0 in nzV.
move: defV; rewrite (bigID W_0) /= addsmxC -big_filter !(big_nth i0) !big_mkord.
rewrite addsmxC big1 ?adds0mx_id => [|i /andP[_ /eqP] //].
set tI := 'I_(_); set r_ := nth _ _ => defV.
have{simW} simWr (i : tI) : mxsimple (W (r_ i)).
case: i => m /=; set Pr := fun i => _ => lt_m_r /=.
suffices: (Pr (r_ m)) by case/andP; apply: simW.
apply: all_nthP m lt_m_r; apply/all_filterP.
by rewrite -filter_predI; apply: eq_filter => i; rewrite /= andbb.
have [J []] := sum_mxsimple_direct_sub simWr defV.
case: (set_0Vmem J) => [-> V0 | [j0 Jj0]].
by rewrite -mxrank_eq0 -V0 big_set0 mxrank0 in nzV.
pose K := {j | j \in J}; pose k0 : K := Sub j0 Jj0.
have bij_KJ: {on J, bijective (sval : K -> _)}.
by exists (insubd k0) => [k _ | j Jj]; rewrite ?valKd ?insubdK.
have J_K (k : K) : sval k \in J by apply: valP k.
rewrite mxdirectE /= !(reindex _ bij_KJ) !(eq_bigl _ _ J_K) -mxdirectE /= -/tI.
exact: MxSemisimple.
Qed.
Lemma mxsimple_semisimple U : mxsimple U -> mxsemisimple U.
Proof.
move=> simU; apply: (intro_mxsemisimple (_ : \sum_(i < 1) U :=: U))%MS => //.
by rewrite big_ord1.
Qed.
Lemma addsmx_semisimple U V :
mxsemisimple U -> mxsemisimple V -> mxsemisimple (U + V)%MS.
Proof.
case=> [I W /= simW defU _] [J T /= simT defV _].
have defUV: (\sum_ij sum_rect (fun _ => 'M_n) W T ij :=: U + V)%MS.
by rewrite big_sumType /=; apply: adds_eqmx.
by apply: intro_mxsemisimple defUV _; case=> /=.
Qed.
Lemma sumsmx_semisimple (I : finType) (P : pred I) V :
(forall i, P i -> mxsemisimple (V i)) -> mxsemisimple (\sum_(i | P i) V i)%MS.
Proof.
move=> ssimV; elim/big_ind: _ => //; first exact: mxsemisimple0.
exact: addsmx_semisimple.
Qed.
Lemma eqmx_semisimple U V : (U :=: V)%MS -> mxsemisimple U -> mxsemisimple V.
Proof.
by move=> eqUV [I W S simW defU dxS]; exists I W => //; apply: eqmx_trans eqUV.
Qed.
Lemma hom_mxsemisimple (V f : 'M_n) :
mxsemisimple V -> (V <= dom_hom_mx f)%MS -> mxsemisimple (V *m f).
Proof.
case=> I W /= simW defV _; rewrite -defV => /sumsmx_subP homWf.
have{defV} defVf: (\sum_i W i *m f :=: V *m f)%MS.
by apply: eqmx_trans (eqmx_sym _) (eqmxMr f defV); apply: sumsmxMr.
apply: (intro_mxsemisimple defVf) => i _ nzWf.
by apply: mx_iso_simple (simW i); apply: mx_Schur_inj_iso; rewrite ?homWf.
Qed.
Lemma mxsemisimple_module U : mxsemisimple U -> mxmodule U.
Proof.
case=> I W /= simW defU _.
by rewrite -(eqmx_module defU) sumsmx_module // => i _; case: (simW i).
Qed.
(* Completely reducible modules, and Maeschke's Theorem. *)
Variant mxsplits (V U : 'M_n) :=
MxSplits (W : 'M_n) of mxmodule W & (U + W :=: V)%MS & mxdirect (U + W).
Definition mx_completely_reducible V :=
forall U, mxmodule U -> (U <= V)%MS -> mxsplits V U.
Lemma mx_reducibleS U V :
mxmodule U -> (U <= V)%MS ->
mx_completely_reducible V -> mx_completely_reducible U.
Proof.
move=> modU sUV redV U1 modU1 sU1U.
have [W modW defV dxU1W] := redV U1 modU1 (submx_trans sU1U sUV).
exists (W :&: U)%MS; first exact: capmx_module.
by apply/eqmxP; rewrite !matrix_modl // capmxSr sub_capmx defV sUV /=.
by apply/mxdirect_addsP; rewrite capmxA (mxdirect_addsP dxU1W) cap0mx.
Qed.
Lemma mx_Maschke : [char F]^'.-group G -> mx_completely_reducible 1%:M.
Proof.
rewrite /pgroup charf'_nat; set nG := _%:R => nzG U => /mxmoduleP Umod _.
pose phi := nG^-1 *: (\sum_(x in G) rG x^-1 *m pinvmx U *m U *m rG x).
have phiG x: x \in G -> phi *m rG x = rG x *m phi.
move=> Gx; rewrite -scalemxAl -scalemxAr; congr (_ *: _).
rewrite {2}(reindex_acts 'R _ Gx) ?astabsR //= mulmx_suml mulmx_sumr.
apply: eq_bigr => y Gy; rewrite !mulmxA -repr_mxM ?groupV ?groupM //.
by rewrite invMg mulKVg repr_mxM ?mulmxA.
have Uphi: U *m phi = U.
rewrite -scalemxAr mulmx_sumr (eq_bigr (fun _ => U)) => [|x Gx].
by rewrite sumr_const -scaler_nat !scalerA mulVf ?scale1r.
by rewrite 3!mulmxA mulmxKpV ?repr_mxKV ?Umod ?groupV.
have tiUker: (U :&: kermx phi = 0)%MS.
apply/eqP/rowV0P=> v; rewrite sub_capmx => /andP[/submxP[u ->] /sub_kermxP].
by rewrite -mulmxA Uphi.
exists (kermx phi); last exact/mxdirect_addsP.
apply/mxmoduleP=> x Gx; apply/sub_kermxP.
by rewrite -mulmxA -phiG // mulmxA mulmx_ker mul0mx.
apply/eqmxP; rewrite submx1 sub1mx.
rewrite /row_full mxrank_disjoint_sum //= mxrank_ker.
suffices ->: (U :=: phi)%MS by rewrite subnKC ?rank_leq_row.
apply/eqmxP; rewrite -{1}Uphi submxMl scalemx_sub //.
by rewrite summx_sub // => x Gx; rewrite -mulmxA mulmx_sub ?Umod.
Qed.
Lemma mxsemisimple_reducible V : mxsemisimple V -> mx_completely_reducible V.
Proof.
case=> [I W /= simW defV _] U modU sUV; rewrite -defV in sUV.
have [J [defV' dxV]] := sum_mxsimple_direct_compl simW modU sUV.
exists (\sum_(i in J) W i)%MS.
- by apply: sumsmx_module => i _; case: (simW i).
- exact: eqmx_trans defV' defV.
by rewrite mxdirect_addsE (sameP eqP mxdirect_addsP) /= in dxV; case/and3P: dxV.
Qed.
Lemma mx_reducible_semisimple V :
mxmodule V -> mx_completely_reducible V -> classically (mxsemisimple V).
Proof.
move=> modV redV [] // nssimV; have [r leVr] := ubnP (\rank V).
elim: r => // r IHr in V leVr modV redV nssimV.
have [V0 | nzV] := eqVneq V 0.
by rewrite nssimV ?V0 //; apply: mxsemisimple0.
apply: (mxsimple_exists modV nzV) => [[U simU sUV]]; have [modU nzU _] := simU.
have [W modW defUW dxUW] := redV U modU sUV.
have sWV: (W <= V)%MS by rewrite -defUW addsmxSr.
apply: IHr (mx_reducibleS modW sWV redV) _ => // [|ssimW].
rewrite ltnS -defUW (mxdirectP dxUW) /= in leVr; apply: leq_trans leVr.
by rewrite -add1n leq_add2r lt0n mxrank_eq0.
apply: nssimV (eqmx_semisimple defUW (addsmx_semisimple _ ssimW)).
exact: mxsimple_semisimple.
Qed.
Lemma mxsemisimpleS U V :
mxmodule U -> (U <= V)%MS -> mxsemisimple V -> mxsemisimple U.
Proof.
move=> modU sUV ssimV.
have [W modW defUW dxUW]:= mxsemisimple_reducible ssimV modU sUV.
move/mxdirect_addsP: dxUW => dxUW.
have defU : (V *m proj_mx U W :=: U)%MS.
by apply/eqmxP; rewrite proj_mx_sub -{1}[U](proj_mx_id dxUW) ?submxMr.
apply: eqmx_semisimple defU _; apply: hom_mxsemisimple ssimV _.
by rewrite -defUW proj_mx_hom.
Qed.
Lemma hom_mxsemisimple_iso I P U W f :
let V := (\sum_(i : I | P i) W i)%MS in
mxsimple U -> (forall i, P i -> W i != 0 -> mxsimple (W i)) ->
(V <= dom_hom_mx f)%MS -> (U <= V *m f)%MS ->
{i | P i & mx_iso (W i) U}.
Proof.
move=> V simU simW homVf sUVf; have [modU nzU _] := simU.
have ssimVf: mxsemisimple (V *m f).
exact: hom_mxsemisimple (intro_mxsemisimple (eqmx_refl V) simW) homVf.
have [U' modU' defVf] := mxsemisimple_reducible ssimVf modU sUVf.
move/mxdirect_addsP=> dxUU'; pose p := f *m proj_mx U U'.
case: (pickP (fun i => P i && (W i *m p != 0))) => [i /andP[Pi nzWip] | no_i].
have sWiV: (W i <= V)%MS by rewrite (sumsmx_sup i).
have sWipU: (W i *m p <= U)%MS by rewrite mulmxA proj_mx_sub.
exists i => //; apply: (mx_Schur_iso (simW i Pi _) simU _ sWipU nzWip).
by apply: contraNneq nzWip => ->; rewrite mul0mx.
apply: (submx_trans sWiV); apply/hom_mxP=> x Gx.
by rewrite mulmxA [_ *m p]mulmxA 2?(hom_mxP _) -?defVf ?proj_mx_hom.
case/negP: nzU; rewrite -submx0 -[U](proj_mx_id dxUU') //.
rewrite (submx_trans (submxMr _ sUVf)) // -mulmxA -/p sumsmxMr.
by apply/sumsmx_subP=> i Pi; move/negbT: (no_i i); rewrite Pi negbK submx0.
Qed.
(* The component associated to a given irreducible module. *)
Section Components.
Fact component_mx_key : unit. Proof. by []. Qed.
Definition component_mx_expr (U : 'M[F]_n) :=
(\sum_i cyclic_mx (row i (row_hom_mx (nz_row U))))%MS.
Definition component_mx := locked_with component_mx_key component_mx_expr.
Canonical component_mx_unfoldable := [unlockable fun component_mx].
Variable U : 'M[F]_n.
Hypothesis simU : mxsimple U.
Let u := nz_row U.
Let iso_u := row_hom_mx u.
Let nz_u : u != 0 := nz_row_mxsimple simU.
Let Uu : (u <= U)%MS := nz_row_sub U.
Let defU : (U :=: cyclic_mx u)%MS := mxsimple_cyclic simU nz_u Uu.
Local Notation compU := (component_mx U).
Lemma component_mx_module : mxmodule compU.
Proof.
by rewrite unlock sumsmx_module // => i; rewrite cyclic_mx_module.
Qed.
Lemma genmx_component : <<compU>>%MS = compU.
Proof.
by rewrite [in compU]unlock genmx_sums; apply: eq_bigr => i; rewrite genmx_id.
Qed.
Lemma component_mx_def : {I : finType & {W : I -> 'M_n |
forall i, mx_iso U (W i) & compU = \sum_i W i}}%MS.
Proof.
pose r i := row i iso_u; pose r_nz i := r i != 0; pose I := {i | r_nz i}.
exists I; exists (fun i => cyclic_mx (r (sval i))) => [i|].
apply/mxsimple_isoP=> //; apply/and3P.
split; first by rewrite cyclic_mx_module.
apply/rowV0Pn; exists (r (sval i)); last exact: (svalP i).
by rewrite sub_capmx cyclic_mx_id row_sub.
have [f hom_u_f <-] := @row_hom_mxP u (r (sval i)) (row_sub _ _).
by rewrite defU -hom_cyclic_mx ?mxrankM_maxl.
rewrite -(eq_bigr _ (fun _ _ => genmx_id _)) -genmx_sums -genmx_component.
rewrite [in compU]unlock; apply/genmxP/andP; split; last first.
by apply/sumsmx_subP => i _; rewrite (sumsmx_sup (sval i)).
apply/sumsmx_subP => i _.
case i0: (r_nz i); first by rewrite (sumsmx_sup (Sub i i0)).
by move/negbFE: i0; rewrite -cyclic_mx_eq0 => /eqP->; apply: sub0mx.
Qed.
Lemma component_mx_semisimple : mxsemisimple compU.
Proof.
have [I [W isoUW ->]] := component_mx_def.
apply: intro_mxsemisimple (eqmx_refl _) _ => i _ _.
exact: mx_iso_simple (isoUW i) simU.
Qed.
Lemma mx_iso_component V : mx_iso U V -> (V <= compU)%MS.
Proof.
move=> isoUV; have [f injf homUf defV] := isoUV.
have simV := mx_iso_simple isoUV simU.
have hom_u_f := submx_trans Uu homUf.
have ->: (V :=: cyclic_mx (u *m f))%MS.
apply: eqmx_trans (hom_cyclic_mx hom_u_f).
exact: eqmx_trans (eqmx_sym defV) (eqmxMr _ defU).
have iso_uf: (u *m f <= iso_u)%MS by apply/row_hom_mxP; exists f.
rewrite genmxE; apply/row_subP=> j; rewrite row_mul mul_rV_lin1 /=.
set a := vec_mx _; apply: submx_trans (submxMr _ iso_uf) _.
apply/row_subP=> i; rewrite row_mul [in compU]unlock (sumsmx_sup i) //.
by apply/cyclic_mxP; exists a; rewrite // vec_mxK row_sub.
Qed.
Lemma component_mx_id : (U <= compU)%MS.
Proof. exact: mx_iso_component (mx_iso_refl U). Qed.
Lemma hom_component_mx_iso f V :
mxsimple V -> (compU <= dom_hom_mx f)%MS -> (V <= compU *m f)%MS ->
mx_iso U V.
Proof.
have [I [W isoUW ->]] := component_mx_def => simV homWf sVWf.
have [i _ _|i _ ] := hom_mxsemisimple_iso simV _ homWf sVWf.
exact: mx_iso_simple (simU).
exact: mx_iso_trans.
Qed.
Lemma component_mx_iso V : mxsimple V -> (V <= compU)%MS -> mx_iso U V.
Proof.
move=> simV; rewrite -[compU]mulmx1.
exact: hom_component_mx_iso (scalar_mx_hom _ _).
Qed.
Lemma hom_component_mx f :
(compU <= dom_hom_mx f)%MS -> (compU *m f <= compU)%MS.
Proof.
move=> hom_f.
have [I W /= simW defW _] := hom_mxsemisimple component_mx_semisimple hom_f.
rewrite -defW; apply/sumsmx_subP=> i _; apply: mx_iso_component.
by apply: hom_component_mx_iso hom_f _ => //; rewrite -defW (sumsmx_sup i).
Qed.
End Components.
Lemma component_mx_isoP U V :
mxsimple U -> mxsimple V ->
reflect (mx_iso U V) (component_mx U == component_mx V).
Proof.
move=> simU simV; apply: (iffP eqP) => isoUV.
by apply: component_mx_iso; rewrite ?isoUV ?component_mx_id.
rewrite -(genmx_component U) -(genmx_component V); apply/genmxP.
wlog suffices: U V simU simV isoUV / (component_mx U <= component_mx V)%MS.
by move=> IH; rewrite !IH //; apply: mx_iso_sym.
have [I [W isoWU ->]] := component_mx_def simU.
apply/sumsmx_subP => i _; apply: mx_iso_component => //.
exact: mx_iso_trans (mx_iso_sym isoUV) (isoWU i).
Qed.
Lemma component_mx_disjoint U V :
mxsimple U -> mxsimple V -> component_mx U != component_mx V ->
(component_mx U :&: component_mx V = 0)%MS.
Proof.
move=> simU simV neUV; apply: contraNeq neUV => ntUV.
apply: (mxsimple_exists _ ntUV) => [|[W simW]].
by rewrite capmx_module ?component_mx_module.
rewrite sub_capmx => /andP[sWU sWV]; apply/component_mx_isoP=> //.
by apply: mx_iso_trans (_ : mx_iso U W) (mx_iso_sym _); apply: component_mx_iso.
Qed.
Section Socle.
Record socleType := EnumSocle {
socle_base_enum : seq 'M[F]_n;
_ : forall M, M \in socle_base_enum -> mxsimple M;
_ : forall M, mxsimple M -> has (mxsimple_iso M) socle_base_enum
}.
Lemma socle_exists : classically socleType.
Proof.
pose V : 'M[F]_n := 0; have: mxsemisimple V by apply: mxsemisimple0.
have: n - \rank V < n.+1 by rewrite mxrank0 subn0.
elim: _.+1 V => // n' IHn' V; rewrite ltnS => le_nV_n' ssimV.
case=> // maxV; apply: (maxV); have [I /= U simU defV _] := ssimV.
exists (codom U) => [M | M simM]; first by case/mapP=> i _ ->.
suffices sMV: (M <= V)%MS.
rewrite -defV -(mulmx1 (\sum_i _)%MS) in sMV.
have [//| i _] := hom_mxsemisimple_iso simM _ (scalar_mx_hom _ _) sMV.
move/mx_iso_sym=> isoM; apply/hasP.
by exists (U i); [apply: codom_f | apply/mxsimple_isoP].
have ssimMV := addsmx_semisimple (mxsimple_semisimple simM) ssimV.
apply: contraLR isT => nsMV; apply: IHn' ssimMV _ maxV.
apply: leq_trans le_nV_n'; rewrite ltn_sub2l //.
rewrite ltn_neqAle rank_leq_row andbT -[_ == _]sub1mx.
by apply: contra nsMV; apply: submx_trans; apply: submx1.
rewrite (ltn_leqif (mxrank_leqif_sup _)) ?addsmxSr //.
by rewrite addsmx_sub submx_refl andbT.
Qed.
Section SocleDef.
Variable sG0 : socleType.
Definition socle_enum := map component_mx (socle_base_enum sG0).
Lemma component_socle M : mxsimple M -> component_mx M \in socle_enum.
Proof.
rewrite /socle_enum; case: sG0 => e0 /= sim_e mem_e simM.
have /hasP[M' e0M' isoMM'] := mem_e M simM; apply/mapP; exists M' => //.
by apply/eqP/component_mx_isoP; [|apply: sim_e | apply/mxsimple_isoP].
Qed.
Inductive socle_sort : predArgType := PackSocle W of W \in socle_enum.
Local Notation sG := socle_sort.
Local Notation e0 := (socle_base_enum sG0).
Definition socle_base W := let: PackSocle W _ := W in e0`_(index W socle_enum).
Coercion socle_val W : 'M[F]_n := component_mx (socle_base W).
Definition socle_mult (W : sG) := (\rank W %/ \rank (socle_base W))%N.
Lemma socle_simple W : mxsimple (socle_base W).
Proof.
case: W => M /=; rewrite /= /socle_enum /=; case: sG0 => e sim_e _ /= e_M.
by apply: sim_e; rewrite mem_nth // -(size_map component_mx) index_mem.
Qed.
Definition socle_module (W : sG) := mxsimple_module (socle_simple W).
Definition socle_repr W := submod_repr (socle_module W).
Lemma nz_socle (W : sG) : W != 0 :> 'M_n.
Proof.
have simW := socle_simple W; have [_ nzW _] := simW; apply: contra nzW.
by rewrite -!submx0; apply: submx_trans (component_mx_id simW).
Qed.
Lemma socle_mem (W : sG) : (W : 'M_n) \in socle_enum.
Proof. exact: component_socle (socle_simple _). Qed.
Lemma PackSocleK W e0W : @PackSocle W e0W = W :> 'M_n.
Proof.
rewrite /socle_val /= in e0W *; rewrite -(nth_map _ 0) ?nth_index //.
by rewrite -(size_map component_mx) index_mem.
Qed.
HB.instance Definition _ := isSub.Build _ _ sG socle_sort_rect PackSocleK.
HB.instance Definition _ := [Choice of sG by <:].
Lemma socleP (W W' : sG) : reflect (W = W') (W == W')%MS.
Proof. by rewrite (sameP genmxP eqP) !{1}genmx_component; apply: (W =P _). Qed.
Fact socle_can_subproof :
cancel (fun W => SeqSub (socle_mem W)) (fun s => PackSocle (valP s)).
Proof. by move=> W /=; apply: val_inj; rewrite /= PackSocleK. Qed.
HB.instance Definition _ := isCountable.Build sG
(pcan_pickleK (can_pcan socle_can_subproof)).
HB.instance Definition _ := isFinite.Build sG
(pcan_enumP (can_pcan socle_can_subproof)).
End SocleDef.
Coercion socle_sort : socleType >-> predArgType.
Variable sG : socleType.
Section SubSocle.
Variable P : pred sG.
Notation S := (\sum_(W : sG | P W) socle_val W)%MS.
Lemma subSocle_module : mxmodule S.
Proof. by rewrite sumsmx_module // => W _; apply: component_mx_module. Qed.
Lemma subSocle_semisimple : mxsemisimple S.
Proof.
apply: sumsmx_semisimple => W _; apply: component_mx_semisimple.
exact: socle_simple.
Qed.
Local Notation ssimS := subSocle_semisimple.
Lemma subSocle_iso M :
mxsimple M -> (M <= S)%MS -> {W : sG | P W & mx_iso (socle_base W) M}.
Proof.
move=> simM sMS; have [modM nzM _] := simM.
have [V /= modV defMV] := mxsemisimple_reducible ssimS modM sMS.
move/mxdirect_addsP=> dxMV; pose p := proj_mx M V; pose Sp (W : sG) := W *m p.
case: (pickP [pred i | P i & Sp i != 0]) => [/= W | Sp0]; last first.
case/negP: nzM; rewrite -submx0 -[M](proj_mx_id dxMV) //.
rewrite (submx_trans (submxMr _ sMS)) // sumsmxMr big1 // => W P_W.
by apply/eqP; move/negbT: (Sp0 W); rewrite /= P_W negbK.
rewrite {}/Sp /= => /andP[P_W nzSp]; exists W => //.
have homWp: (W <= dom_hom_mx p)%MS.
apply: submx_trans (proj_mx_hom dxMV modM modV).
by rewrite defMV (sumsmx_sup W).
have simWP := socle_simple W; apply: hom_component_mx_iso (homWp) _ => //.
by rewrite (mx_Schur_onto _ simM) ?proj_mx_sub ?component_mx_module.
Qed.
Lemma capmx_subSocle m (M : 'M_(m, n)) :
mxmodule M -> (M :&: S :=: \sum_(W : sG | P W) (M :&: W))%MS.
Proof.
move=> modM; apply/eqmxP/andP; split; last first.
by apply/sumsmx_subP=> W P_W; rewrite capmxS // (sumsmx_sup W).
have modMS: mxmodule (M :&: S)%MS by rewrite capmx_module ?subSocle_module.
have [J /= U simU defMS _] := mxsemisimpleS modMS (capmxSr M S) ssimS.
rewrite -defMS; apply/sumsmx_subP=> j _.
have [sUjV sUjS]: (U j <= M /\ U j <= S)%MS.
by apply/andP; rewrite -sub_capmx -defMS (sumsmx_sup j).
have [W P_W isoWU] := subSocle_iso (simU j) sUjS.
rewrite (sumsmx_sup W) // sub_capmx sUjV mx_iso_component //.
exact: socle_simple.
Qed.
End SubSocle.
Lemma subSocle_direct P : mxdirect (\sum_(W : sG | P W) W).
Proof.
apply/mxdirect_sumsP=> W _; apply/eqP.
rewrite -submx0 capmx_subSocle ?component_mx_module //.
apply/sumsmx_subP=> W' /andP[_ neWW'].
by rewrite capmxC component_mx_disjoint //; apply: socle_simple.
Qed.
Definition Socle := (\sum_(W : sG) W)%MS.
Lemma simple_Socle M : mxsimple M -> (M <= Socle)%MS.
Proof.
move=> simM; have socM := component_socle sG simM.
by rewrite (sumsmx_sup (PackSocle socM)) // PackSocleK component_mx_id.
Qed.
Lemma semisimple_Socle U : mxsemisimple U -> (U <= Socle)%MS.
Proof.
by case=> I M /= simM <- _; apply/sumsmx_subP=> i _; apply: simple_Socle.
Qed.
Lemma reducible_Socle U :
mxmodule U -> mx_completely_reducible U -> (U <= Socle)%MS.
Proof.
move=> modU redU; apply: (mx_reducible_semisimple modU redU).
exact: semisimple_Socle.
Qed.
Lemma genmx_Socle : <<Socle>>%MS = Socle.
Proof. by rewrite genmx_sums; apply: eq_bigr => W; rewrite genmx_component. Qed.
Lemma reducible_Socle1 : mx_completely_reducible 1%:M -> Socle = 1%:M.
Proof.
move=> redG; rewrite -genmx1 -genmx_Socle; apply/genmxP.
by rewrite submx1 reducible_Socle ?mxmodule1.
Qed.
Lemma Socle_module : mxmodule Socle. Proof. exact: subSocle_module. Qed.
Lemma Socle_semisimple : mxsemisimple Socle.
Proof. exact: subSocle_semisimple. Qed.
Lemma Socle_direct : mxdirect Socle. Proof. exact: subSocle_direct. Qed.
Lemma Socle_iso M : mxsimple M -> {W : sG | mx_iso (socle_base W) M}.
Proof.
by move=> simM; case/subSocle_iso: (simple_Socle simM) => // W _; exists W.
Qed.
End Socle.
(* Centralizer subgroup and central homomorphisms. *)
Section CentHom.
Variable f : 'M[F]_n.
Lemma row_full_dom_hom : row_full (dom_hom_mx f) = centgmx rG f.
Proof.
by rewrite -sub1mx; apply/hom_mxP/centgmxP=> cfG x /cfG; rewrite !mul1mx.
Qed.
Lemma memmx_cent_envelop : (f \in 'C(E_G))%MS = centgmx rG f.
Proof.
apply/cent_rowP/centgmxP=> [cfG x Gx | cfG i].
by have:= cfG (enum_rank_in Gx x); rewrite rowK mxvecK enum_rankK_in.
by rewrite rowK mxvecK /= cfG ?enum_valP.
Qed.
Lemma kermx_centg_module : centgmx rG f -> mxmodule (kermx f).
Proof.
move/centgmxP=> cGf; apply/mxmoduleP=> x Gx; apply/sub_kermxP.
by rewrite -mulmxA -cGf // mulmxA mulmx_ker mul0mx.
Qed.
Lemma centgmx_hom m (U : 'M_(m, n)) : centgmx rG f -> (U <= dom_hom_mx f)%MS.
Proof. by rewrite -row_full_dom_hom -sub1mx; apply: submx_trans (submx1 _). Qed.
End CentHom.
(* (Globally) irreducible, and absolutely irreducible representations. Note *)
(* that unlike "reducible", "absolutely irreducible" can easily be decided. *)
Definition mx_irreducible := mxsimple 1%:M.
Lemma mx_irrP :
mx_irreducible <-> n > 0 /\ (forall U, @mxmodule n U -> U != 0 -> row_full U).
Proof.
rewrite /mx_irreducible /mxsimple mxmodule1 -mxrank_eq0 mxrank1 -lt0n.
do [split=> [[_ -> irrG] | [-> irrG]]; split=> // U] => [modU | modU _] nzU.
by rewrite -sub1mx (irrG U) ?submx1.
by rewrite sub1mx irrG.
Qed.
(* Schur's lemma for endomorphisms. *)
Lemma mx_Schur :
mx_irreducible -> forall f, centgmx rG f -> f != 0 -> f \in unitmx.
Proof.
move/mx_Schur_onto=> irrG f.
rewrite -row_full_dom_hom -!row_full_unit -!sub1mx => cGf nz.
by rewrite -[f]mul1mx irrG ?submx1 ?mxmodule1 ?mul1mx.
Qed.
Definition mx_absolutely_irreducible := (n > 0) && row_full E_G.
Lemma mx_abs_irrP :
reflect (n > 0 /\ exists a_, forall A, A = \sum_(x in G) a_ x A *: rG x)
mx_absolutely_irreducible.
Proof.
have G_1 := group1 G; have bijG := enum_val_bij_in G_1.
set h := enum_val in bijG; have Gh : h _ \in G by apply: enum_valP.
rewrite /mx_absolutely_irreducible; case: (n > 0); last by right; case.
apply: (iffP row_fullP) => [[E' E'G] | [_ [a_ a_G]]].
split=> //; exists (fun x B => (mxvec B *m E') 0 (enum_rank_in G_1 x)) => B.
apply: (can_inj mxvecK); rewrite -{1}[mxvec B]mulmx1 -{}E'G mulmxA.
move: {B E'}(_ *m E') => u; apply/rowP=> j.
rewrite linear_sum (reindex h) //= mxE summxE.
by apply: eq_big => [k| k _]; rewrite ?Gh // enum_valK_in linearZ !mxE.
exists (\matrix_(j, i) a_ (h i) (vec_mx (row j 1%:M))).
apply/row_matrixP=> i; rewrite -[row i 1%:M]vec_mxK {}[vec_mx _]a_G.
apply/rowP=> j; rewrite linear_sum (reindex h) //= 2!mxE summxE.
by apply: eq_big => [k| k _]; [rewrite Gh | rewrite linearZ !mxE].
Qed.
Lemma mx_abs_irr_cent_scalar :
mx_absolutely_irreducible -> forall A, centgmx rG A -> is_scalar_mx A.
Proof.
case/mx_abs_irrP=> n_gt0 [a_ a_G] A /centgmxP cGA.
have{cGA a_G} cMA B: A *m B = B *m A.
rewrite {}[B]a_G mulmx_suml mulmx_sumr.
by apply: eq_bigr => x Gx; rewrite -scalemxAl -scalemxAr cGA.
pose i0 := Ordinal n_gt0; apply/is_scalar_mxP; exists (A i0 i0).
apply/matrixP=> i j; move/matrixP/(_ i0 j): (esym (cMA (delta_mx i0 i))).
rewrite -[A *m _]trmxK trmx_mul trmx_delta -!(@mul_delta_mx _ n 1 n 0) -!mulmxA.
by rewrite -!rowE !mxE !big_ord1 !mxE !eqxx !mulr_natl /= andbT eq_sym.
Qed.
Lemma mx_abs_irrW : mx_absolutely_irreducible -> mx_irreducible.
Proof.
case/mx_abs_irrP=> n_gt0 [a_ a_G]; apply/mx_irrP; split=> // U Umod.
case/rowV0Pn=> u Uu; rewrite -mxrank_eq0 -lt0n row_leq_rank -sub1mx.
case/submxP: Uu => v ->{u} /row_freeP[u' vK]; apply/row_subP=> i.
rewrite rowE scalar_mxC -{}vK -2![_ *m _]mulmxA; move: {u' i}(u' *m _) => A.
rewrite mulmx_sub {v}// [A]a_G linear_sum summx_sub //= => x Gx.
by rewrite -scalemxAr scalemx_sub // (mxmoduleP Umod).
Qed.
Lemma linear_mx_abs_irr : n = 1 -> mx_absolutely_irreducible.
Proof.
move=> n1; rewrite /mx_absolutely_irreducible /row_full eqn_leq rank_leq_col.
rewrite {1 2 3}n1 /= lt0n mxrank_eq0; apply: contraTneq envelop_mx1 => ->.
by rewrite eqmx0 submx0 mxvec_eq0 -mxrank_eq0 mxrank1 n1.
Qed.
Lemma abelian_abs_irr : abelian G -> mx_absolutely_irreducible = (n == 1).
Proof.
move=> cGG; apply/idP/eqP=> [absG|]; last exact: linear_mx_abs_irr.
have [n_gt0 _] := andP absG.
pose M := <<delta_mx 0 (Ordinal n_gt0) : 'rV[F]_n>>%MS.
have rM: \rank M = 1 by rewrite genmxE mxrank_delta.
suffices defM: (M == 1%:M)%MS by rewrite (eqmxP defM) mxrank1 in rM.
case: (mx_abs_irrW absG) => _ _ ->; rewrite ?submx1 -?mxrank_eq0 ?rM //.
apply/mxmoduleP=> x Gx; suffices: is_scalar_mx (rG x).
by case/is_scalar_mxP=> a ->; rewrite mul_mx_scalar scalemx_sub.
apply: (mx_abs_irr_cent_scalar absG).
by apply/centgmxP=> y Gy; rewrite -!repr_mxM // (centsP cGG).
Qed.
End OneRepresentation.
Arguments mxmoduleP {gT G n rG m U}.
Arguments envelop_mxP {gT G n rG A}.
Arguments hom_mxP {gT G n rG m f W}.
Arguments rfix_mxP {gT G n rG m W}.
Arguments cyclic_mxP {gT G n rG u v}.
Arguments annihilator_mxP {gT G n rG u A}.
Arguments row_hom_mxP {gT G n rG u v}.
Arguments mxsimple_isoP {gT G n rG U V}.
Arguments socleP {gT G n rG sG0 W W'}.
Arguments mx_abs_irrP {gT G n rG}.
Arguments val_submod {n U m} W.
Arguments in_submod {n} U {m} W.
Arguments val_submodK {n U m} W : rename.
Arguments in_submodK {n U m} [W] sWU.
Arguments val_submod_inj {n U m} [W1 W2] : rename.
Arguments val_factmod {n U m} W.
Arguments in_factmod {n} U {m} W.
Arguments val_factmodK {n U m} W : rename.
Arguments in_factmodK {n} U {m} [W] sWU.
Arguments val_factmod_inj {n U m} [W1 W2] : rename.
Section Proper.
Variables (gT : finGroupType) (G : {group gT}) (n' : nat).
Local Notation n := n'.+1.
Variable rG : mx_representation F G n.
Lemma envelop_mx_ring : mxring (enveloping_algebra_mx rG).
Proof.
apply/andP; split; first by apply/mulsmx_subP; apply: envelop_mxM.
apply/mxring_idP; exists 1%:M; split=> *; rewrite ?mulmx1 ?mul1mx //.
by rewrite -mxrank_eq0 mxrank1.
exact: envelop_mx1.
Qed.
End Proper.
Section JacobsonDensity.
Variables (gT : finGroupType) (G : {group gT}) (n : nat).
Variable rG : mx_representation F G n.
Hypothesis irrG : mx_irreducible rG.
Local Notation E_G := (enveloping_algebra_mx rG).
Local Notation Hom_G := 'C(E_G)%MS.
Lemma mx_Jacobson_density : ('C(Hom_G) <= E_G)%MS.
Proof.
apply/row_subP=> iB; rewrite -[row iB _]vec_mxK; move defB: (vec_mx _) => B.
have{defB} cBcE: (B \in 'C(Hom_G))%MS by rewrite -defB vec_mxK row_sub.
have rGnP: mx_repr G (fun x => lin_mx (mulmxr (rG x)) : 'A_n).
split=> [|x y Gx Gy]; apply/row_matrixP=> i.
by rewrite !rowE mul_rV_lin repr_mx1 /= !mulmx1 vec_mxK.
by rewrite !rowE mulmxA !mul_rV_lin repr_mxM //= mxvecK mulmxA.
move def_rGn: (MxRepresentation rGnP) => rGn.
pose E_Gn := enveloping_algebra_mx rGn.
pose e1 : 'rV[F]_(n ^ 2) := mxvec 1%:M; pose U := cyclic_mx rGn e1.
have U_e1: (e1 <= U)%MS by rewrite cyclic_mx_id.
have modU: mxmodule rGn U by rewrite cyclic_mx_module.
pose Bn : 'M_(n ^ 2) := lin_mx (mulmxr B).
suffices U_e1Bn: (e1 *m Bn <= U)%MS.
rewrite mul_vec_lin /= mul1mx in U_e1Bn; apply: submx_trans U_e1Bn _.
rewrite genmxE; apply/row_subP=> i; rewrite row_mul rowK mul_vec_lin_row.
by rewrite -def_rGn mul_vec_lin /= mul1mx (eq_row_sub i) ?rowK.
have{cBcE} cBncEn A: centgmx rGn A -> A *m Bn = Bn *m A.
rewrite -def_rGn => cAG; apply/row_matrixP; case/mxvec_indexP=> j k /=.
rewrite !rowE !mulmxA -mxvec_delta -(mul_delta_mx (0 : 'I_1)).
rewrite mul_rV_lin mul_vec_lin /= -mulmxA; apply: (canLR vec_mxK).
apply/row_matrixP=> i; set dj0 := delta_mx j 0.
have /= defAij :=
mul_rV_lin1 (row i \o vec_mx \o mulmxr A \o mxvec \o mulmx dj0).
rewrite -defAij row_mul -defAij -!mulmxA (cent_mxP cBcE) {k}//.
rewrite memmx_cent_envelop; apply/centgmxP=> x Gx; apply/row_matrixP=> k.
rewrite !row_mul !rowE !{}defAij /= -row_mul mulmxA mul_delta_mx.
congr (row i _); rewrite -(mul_vec_lin (mulmxr (rG x))) -mulmxA.
by rewrite -(centgmxP cAG) // mulmxA mx_rV_lin.
suffices redGn: mx_completely_reducible rGn 1%:M.
have [V modV defUV] := redGn _ modU (submx1 _); move/mxdirect_addsP=> dxUV.
rewrite -(proj_mx_id dxUV U_e1) -mulmxA {}cBncEn 1?mulmxA ?proj_mx_sub //.
by rewrite -row_full_dom_hom -sub1mx -defUV proj_mx_hom.
pose W i : 'M[F]_(n ^ 2) := <<lin1_mx (mxvec \o mulmx (delta_mx i 0))>>%MS.
have defW: (\sum_i W i :=: 1%:M)%MS.
apply/eqmxP; rewrite submx1; apply/row_subP; case/mxvec_indexP=> i j.
rewrite row1 -mxvec_delta (sumsmx_sup i) // genmxE; apply/submxP.
by exists (delta_mx 0 j); rewrite mul_rV_lin1 /= mul_delta_mx.
apply: mxsemisimple_reducible; apply: (intro_mxsemisimple defW) => i _ nzWi.
split=> // [|Vi modVi sViWi nzVi].
apply/mxmoduleP=> x Gx; rewrite genmxE (eqmxMr _ (genmxE _)) -def_rGn.
apply/row_subP=> j; rewrite rowE mulmxA !mul_rV_lin1 /= mxvecK -mulmxA.
by apply/submxP; move: (_ *m rG x) => v; exists v; rewrite mul_rV_lin1.
do [rewrite !genmxE; set f := lin1_mx _] in sViWi *.
have f_free: row_free f.
apply/row_freeP; exists (lin1_mx (row i \o vec_mx)); apply/row_matrixP=> j.
by rewrite row1 rowE mulmxA !mul_rV_lin1 /= mxvecK rowE !mul_delta_mx.
pose V := <<Vi *m pinvmx f>>%MS; have Vidf := mulmxKpV sViWi.
suffices: (1%:M <= V)%MS by rewrite genmxE -(submxMfree _ _ f_free) mul1mx Vidf.
case: irrG => _ _ ->; rewrite ?submx1 //; last first.
by rewrite -mxrank_eq0 genmxE -(mxrankMfree _ f_free) Vidf mxrank_eq0.
apply/mxmoduleP=> x Gx; rewrite genmxE (eqmxMr _ (genmxE _)).
rewrite -(submxMfree _ _ f_free) Vidf.
apply: submx_trans (mxmoduleP modVi x Gx); rewrite -{2}Vidf.
apply/row_subP=> j; apply: (eq_row_sub j); rewrite row_mul -def_rGn.
by rewrite !(row_mul _ _ f) !mul_rV_lin1 /= mxvecK !row_mul !mulmxA.
Qed.
Lemma cent_mx_scalar_abs_irr : \rank Hom_G <= 1 -> mx_absolutely_irreducible rG.
Proof.
rewrite leqNgt => /(has_non_scalar_mxP (scalar_mx_cent _ _)) scal_cE.
apply/andP; split; first by case/mx_irrP: irrG.
rewrite -sub1mx; apply: submx_trans mx_Jacobson_density.
apply/memmx_subP=> B _; apply/cent_mxP=> A cGA.
case scalA: (is_scalar_mx A); last by case: scal_cE; exists A; rewrite ?scalA.
by case/is_scalar_mxP: scalA => a ->; rewrite scalar_mxC.
Qed.
End JacobsonDensity.
Section ChangeGroup.
Variables (gT : finGroupType) (G H : {group gT}) (n : nat).
Variables (rG : mx_representation F G n).
Section SubGroup.
Hypothesis sHG : H \subset G.
Local Notation rH := (subg_repr rG sHG).
Lemma rfix_subg : rfix_mx rH = rfix_mx rG. Proof. by []. Qed.
Section Stabilisers.
Variables (m : nat) (U : 'M[F]_(m, n)).
Lemma rstabs_subg : rstabs rH U = H :&: rstabs rG U.
Proof. by apply/setP=> x; rewrite !inE andbA -in_setI (setIidPl sHG). Qed.
Lemma mxmodule_subg : mxmodule rG U -> mxmodule rH U.
Proof. by rewrite /mxmodule rstabs_subg subsetI subxx; apply: subset_trans. Qed.
End Stabilisers.
Lemma mxsimple_subg M : mxmodule rG M -> mxsimple rH M -> mxsimple rG M.
Proof.
by move=> modM [_ nzM minM]; split=> // U /mxmodule_subg; apply: minM.
Qed.
Lemma subg_mx_irr : mx_irreducible rH -> mx_irreducible rG.
Proof. by apply: mxsimple_subg; apply: mxmodule1. Qed.
Lemma subg_mx_abs_irr :
mx_absolutely_irreducible rH -> mx_absolutely_irreducible rG.
Proof.
rewrite /mx_absolutely_irreducible -!sub1mx => /andP[-> /submx_trans-> //].
apply/row_subP=> i; rewrite rowK /= envelop_mx_id //.
by rewrite (subsetP sHG) ?enum_valP.
Qed.
End SubGroup.
Section SameGroup.
Hypothesis eqGH : G :==: H.
Local Notation rH := (eqg_repr rG eqGH).
Lemma rfix_eqg : rfix_mx rH = rfix_mx rG. Proof. by []. Qed.
Section Stabilisers.
Variables (m : nat) (U : 'M[F]_(m, n)).
Lemma rstabs_eqg : rstabs rH U = rstabs rG U.
Proof. by rewrite rstabs_subg -(eqP eqGH) (setIidPr _) ?rstabs_sub. Qed.
Lemma mxmodule_eqg : mxmodule rH U = mxmodule rG U.
Proof. by rewrite /mxmodule rstabs_eqg -(eqP eqGH). Qed.
End Stabilisers.
Lemma mxsimple_eqg M : mxsimple rH M <-> mxsimple rG M.
Proof.
rewrite /mxsimple mxmodule_eqg.
split=> [] [-> -> minM]; split=> // U modU;
by apply: minM; rewrite mxmodule_eqg in modU *.
Qed.
Lemma eqg_mx_irr : mx_irreducible rH <-> mx_irreducible rG.
Proof. exact: mxsimple_eqg. Qed.
Lemma eqg_mx_abs_irr :
mx_absolutely_irreducible rH = mx_absolutely_irreducible rG.
Proof.
by congr (_ && (_ == _)); rewrite /enveloping_algebra_mx /= -(eqP eqGH).
Qed.
End SameGroup.
End ChangeGroup.
Section Morphpre.
Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
Variables (G : {group rT}) (n : nat) (rG : mx_representation F G n).
Local Notation rGf := (morphpre_repr f rG).
Section Stabilisers.
Variables (m : nat) (U : 'M[F]_(m, n)).
Lemma rstabs_morphpre : rstabs rGf U = f @*^-1 (rstabs rG U).
Proof. by apply/setP=> x; rewrite !inE andbA. Qed.
Lemma mxmodule_morphpre : G \subset f @* D -> mxmodule rGf U = mxmodule rG U.
Proof. by move=> sGf; rewrite /mxmodule rstabs_morphpre morphpreSK. Qed.
End Stabilisers.
Lemma rfix_morphpre (H : {set aT}) :
H \subset D -> (rfix_mx rGf H :=: rfix_mx rG (f @* H))%MS.
Proof.
move=> sHD; apply/eqmxP/andP; split.
by apply/rfix_mxP=> _ /morphimP[x _ Hx ->]; rewrite rfix_mx_id.
by apply/rfix_mxP=> x Hx; rewrite rfix_mx_id ?mem_morphim ?(subsetP sHD).
Qed.
Lemma morphpre_mx_irr :
G \subset f @* D -> (mx_irreducible rGf <-> mx_irreducible rG).
Proof.
move/mxmodule_morphpre=> modG; split=> /mx_irrP[n_gt0 irrG];
by apply/mx_irrP; split=> // U modU; apply: irrG; rewrite modG in modU *.
Qed.
Lemma morphpre_mx_abs_irr :
G \subset f @* D ->
mx_absolutely_irreducible rGf = mx_absolutely_irreducible rG.
Proof.
move=> sGfD; congr (_ && (_ == _)); apply/eqP; rewrite mxrank_leqif_sup //.
apply/row_subP=> i; rewrite rowK.
case/morphimP: (subsetP sGfD _ (enum_valP i)) => x Dx _ def_i.
by rewrite def_i (envelop_mx_id rGf) // !inE Dx -def_i enum_valP.
apply/row_subP=> i; rewrite rowK (envelop_mx_id rG) //.
by case/morphpreP: (enum_valP i).
Qed.
End Morphpre.
Section Morphim.
Variables (aT rT : finGroupType) (G D : {group aT}) (f : {morphism D >-> rT}).
Variables (n : nat) (rGf : mx_representation F (f @* G) n).
Hypothesis sGD : G \subset D.
Let sG_f'fG : G \subset f @*^-1 (f @* G).
Proof. by rewrite -sub_morphim_pre. Qed.
Local Notation rG := (morphim_repr rGf sGD).
Section Stabilisers.
Variables (m : nat) (U : 'M[F]_(m, n)).
Lemma rstabs_morphim : rstabs rG U = G :&: f @*^-1 rstabs rGf U.
Proof. by rewrite -rstabs_morphpre -(rstabs_subg _ sG_f'fG). Qed.
Lemma mxmodule_morphim : mxmodule rG U = mxmodule rGf U.
Proof. by rewrite /mxmodule rstabs_morphim subsetI subxx -sub_morphim_pre. Qed.
End Stabilisers.
Lemma rfix_morphim (H : {set aT}) :
H \subset D -> (rfix_mx rG H :=: rfix_mx rGf (f @* H))%MS.
Proof. exact: rfix_morphpre. Qed.
Lemma mxsimple_morphim M : mxsimple rG M <-> mxsimple rGf M.
Proof.
rewrite /mxsimple mxmodule_morphim.
split=> [] [-> -> minM]; split=> // U modU;
by apply: minM; rewrite mxmodule_morphim in modU *.
Qed.
Lemma morphim_mx_irr : (mx_irreducible rG <-> mx_irreducible rGf).
Proof. exact: mxsimple_morphim. Qed.
Lemma morphim_mx_abs_irr :
mx_absolutely_irreducible rG = mx_absolutely_irreducible rGf.
Proof.
have fG_onto: f @* G \subset restrm sGD f @* G.
by rewrite morphim_restrm setIid.
rewrite -(morphpre_mx_abs_irr _ fG_onto); congr (_ && (_ == _)).
by rewrite /enveloping_algebra_mx /= morphpre_restrm (setIidPl _).
Qed.
End Morphim.
Section Submodule.
Variables (gT : finGroupType) (G : {group gT}) (n : nat).
Variables (rG : mx_representation F G n) (U : 'M[F]_n) (Umod : mxmodule rG U).
Local Notation rU := (submod_repr Umod).
Local Notation rU' := (factmod_repr Umod).
Lemma rfix_submod (H : {set gT}) :
H \subset G -> (rfix_mx rU H :=: in_submod U (U :&: rfix_mx rG H))%MS.
Proof.
move=> sHG; apply/eqmxP/andP; split; last first.
apply/rfix_mxP=> x Hx; rewrite -in_submodJ ?capmxSl //.
by rewrite (rfix_mxP H _) ?capmxSr.
rewrite -val_submodS in_submodK ?capmxSl // sub_capmx val_submodP //=.
apply/rfix_mxP=> x Hx.
by rewrite -(val_submodJ Umod) ?(subsetP sHG) ?rfix_mx_id.
Qed.
Lemma rfix_factmod (H : {set gT}) :
H \subset G -> (in_factmod U (rfix_mx rG H) <= rfix_mx rU' H)%MS.
Proof.
move=> sHG; apply/rfix_mxP=> x Hx.
by rewrite -(in_factmodJ Umod) ?(subsetP sHG) ?rfix_mx_id.
Qed.
Lemma rstab_submod m (W : 'M_(m, \rank U)) :
rstab rU W = rstab rG (val_submod W).
Proof.
apply/setP=> x /[!inE]; apply: andb_id2l => Gx.
by rewrite -(inj_eq val_submod_inj) val_submodJ.
Qed.
Lemma rstabs_submod m (W : 'M_(m, \rank U)) :
rstabs rU W = rstabs rG (val_submod W).
Proof.
apply/setP=> x /[!inE]; apply: andb_id2l => Gx.
by rewrite -val_submodS val_submodJ.
Qed.
Lemma val_submod_module m (W : 'M_(m, \rank U)) :
mxmodule rG (val_submod W) = mxmodule rU W.
Proof. by rewrite /mxmodule rstabs_submod. Qed.
Lemma in_submod_module m (V : 'M_(m, n)) :
(V <= U)%MS -> mxmodule rU (in_submod U V) = mxmodule rG V.
Proof. by move=> sVU; rewrite -val_submod_module in_submodK. Qed.
Lemma rstab_factmod m (W : 'M_(m, n)) :
rstab rG W \subset rstab rU' (in_factmod U W).
Proof.
by apply/subsetP=> x /setIdP[Gx /eqP cUW]; rewrite inE Gx -in_factmodJ //= cUW.
Qed.
Lemma rstabs_factmod m (W : 'M_(m, \rank (cokermx U))) :
rstabs rU' W = rstabs rG (U + val_factmod W)%MS.
Proof.
apply/setP=> x /[!inE]; apply: andb_id2l => Gx.
rewrite addsmxMr addsmx_sub (submx_trans (mxmoduleP Umod x Gx)) ?addsmxSl //.
rewrite -val_factmodS val_factmodJ //= val_factmodS; apply/idP/idP=> nWx.
rewrite (submx_trans (addsmxSr U _)) // -(in_factmodsK (addsmxSl U _)) //.
by rewrite addsmxS // val_factmodS in_factmod_addsK.
rewrite in_factmodE (submx_trans (submxMr _ nWx)) // -in_factmodE.
by rewrite in_factmod_addsK val_factmodK.
Qed.
Lemma val_factmod_module m (W : 'M_(m, \rank (cokermx U))) :
mxmodule rG (U + val_factmod W)%MS = mxmodule rU' W.
Proof. by rewrite /mxmodule rstabs_factmod. Qed.
Lemma in_factmod_module m (V : 'M_(m, n)) :
mxmodule rU' (in_factmod U V) = mxmodule rG (U + V)%MS.
Proof.
rewrite -(eqmx_module _ (in_factmodsK (addsmxSl U V))).
by rewrite val_factmod_module (eqmx_module _ (in_factmod_addsK _ _)).
Qed.
Lemma rker_submod : rker rU = rstab rG U.
Proof. by rewrite /rker rstab_submod; apply: eqmx_rstab (val_submod1 U). Qed.
Lemma rstab_norm : G \subset 'N(rstab rG U).
Proof. by rewrite -rker_submod rker_norm. Qed.
Lemma rstab_normal : rstab rG U <| G.
Proof. by rewrite -rker_submod rker_normal. Qed.
Lemma submod_mx_faithful : mx_faithful rU -> mx_faithful rG.
Proof. by apply: subset_trans; rewrite rker_submod rstabS ?submx1. Qed.
Lemma rker_factmod : rker rG \subset rker rU'.
Proof.
apply/subsetP=> x /rkerP[Gx cVx].
by rewrite inE Gx /= /factmod_mx cVx mul1mx mulmx1 val_factmodK.
Qed.
Lemma factmod_mx_faithful : mx_faithful rU' -> mx_faithful rG.
Proof. exact: subset_trans rker_factmod. Qed.
Lemma submod_mx_irr : mx_irreducible rU <-> mxsimple rG U.
Proof.
split=> [] [_ nzU simU].
rewrite -mxrank_eq0 mxrank1 mxrank_eq0 in nzU; split=> // V modV sVU nzV.
rewrite -(in_submodK sVU) -val_submod1 val_submodS.
rewrite -(genmxE (in_submod U V)) simU ?genmxE ?submx1 //=.
by rewrite (eqmx_module _ (genmxE _)) in_submod_module.
by rewrite -submx0 genmxE -val_submodS in_submodK // linear0 eqmx0 submx0.
apply/mx_irrP; rewrite lt0n mxrank_eq0; split=> // V modV.
rewrite -(inj_eq val_submod_inj) linear0 -(eqmx_eq0 (genmxE _)) => nzV.
rewrite -sub1mx -val_submodS val_submod1 -(genmxE (val_submod V)).
rewrite simU ?genmxE ?val_submodP //=.
by rewrite (eqmx_module _ (genmxE _)) val_submod_module.
Qed.
End Submodule.
Section Conjugate.
Variables (gT : finGroupType) (G : {group gT}) (n : nat).
Variables (rG : mx_representation F G n) (B : 'M[F]_n).
Hypothesis uB : B \in unitmx.
Local Notation rGB := (rconj_repr rG uB).
Lemma rfix_conj (H : {set gT}) :
(rfix_mx rGB H :=: B *m rfix_mx rG H *m invmx B)%MS.
Proof.
apply/eqmxP/andP; split.
rewrite -mulmxA (eqmxMfull (_ *m _)) ?row_full_unit //.
rewrite -[rfix_mx rGB H](mulmxK uB) submxMr //; apply/rfix_mxP=> x Hx.
apply: (canRL (mulmxKV uB)); rewrite -(rconj_mxJ _ uB) mulmxK //.
by rewrite rfix_mx_id.
apply/rfix_mxP=> x Gx; rewrite -3!mulmxA; congr (_ *m _).
by rewrite !mulmxA mulmxKV // rfix_mx_id.
Qed.
Lemma rstabs_conj m (U : 'M_(m, n)) : rstabs rGB U = rstabs rG (U *m B).
Proof.
apply/setP=> x; rewrite !inE rconj_mxE !mulmxA.
by rewrite -{2}[U](mulmxK uB) submxMfree // row_free_unit unitmx_inv.
Qed.
Lemma mxmodule_conj m (U : 'M_(m, n)) : mxmodule rGB U = mxmodule rG (U *m B).
Proof. by rewrite /mxmodule rstabs_conj. Qed.
Lemma conj_mx_irr : mx_irreducible rGB <-> mx_irreducible rG.
Proof.
have Bfree: row_free B by rewrite row_free_unit.
split => /mx_irrP[n_gt0 irrG]; apply/mx_irrP; split=> // U.
rewrite -[U](mulmxKV uB) -mxmodule_conj -mxrank_eq0 /row_full mxrankMfree //.
by rewrite mxrank_eq0; apply: irrG.
rewrite -mxrank_eq0 /row_full -(mxrankMfree _ Bfree) mxmodule_conj mxrank_eq0.
exact: irrG.
Qed.
End Conjugate.
Section Quotient.
Variables (gT : finGroupType) (G : {group gT}) (n : nat).
Variables (rG : mx_representation F G n) (H : {group gT}).
Hypotheses (krH : H \subset rker rG) (nHG : G \subset 'N(H)).
Let nHGs := subsetP nHG.
Local Notation rGH := (quo_repr krH nHG).
Local Notation E_ r := (enveloping_algebra_mx r).
Lemma quo_mx_quotient : (E_ rGH :=: E_ rG)%MS.
Proof.
apply/eqmxP/andP; split; apply/row_subP=> i.
rewrite rowK; case/morphimP: (enum_valP i) => x _ Gx ->{i}.
rewrite quo_repr_coset // (eq_row_sub (enum_rank_in Gx x)) // rowK.
by rewrite enum_rankK_in.
rewrite rowK -(quo_mx_coset krH nHG) ?enum_valP //; set Hx := coset H _.
have GHx: Hx \in (G / H)%g by rewrite mem_quotient ?enum_valP.
by rewrite (eq_row_sub (enum_rank_in GHx Hx)) // rowK enum_rankK_in.
Qed.
Lemma rfix_quo (K : {group gT}) :
K \subset G -> (rfix_mx rGH (K / H)%g :=: rfix_mx rG K)%MS.
Proof.
move=> sKG; apply/eqmxP/andP; (split; apply/rfix_mxP) => [x Kx | Hx].
have Gx := subsetP sKG x Kx; rewrite -(quo_mx_coset krH nHG) // rfix_mx_id //.
by rewrite mem_morphim ?(subsetP nHG).
case/morphimP=> x _ Kx ->; have Gx := subsetP sKG x Kx.
by rewrite quo_repr_coset ?rfix_mx_id.
Qed.
Lemma rstabs_quo m (U : 'M_(m, n)) : rstabs rGH U = (rstabs rG U / H)%g.
Proof.
apply/setP=> Hx /[!inE]; apply/andP/idP=> [[]|] /morphimP[x Nx Gx ->{Hx}].
by rewrite quo_repr_coset // => nUx; rewrite mem_morphim // inE Gx.
by case/setIdP: Gx => Gx nUx; rewrite quo_repr_coset ?mem_morphim.
Qed.
Lemma mxmodule_quo m (U : 'M_(m, n)) : mxmodule rGH U = mxmodule rG U.
Proof.
rewrite /mxmodule rstabs_quo quotientSGK // ?(subset_trans krH) //.
by apply/subsetP=> x /[!inE]/andP[-> /[1!mul1mx]/eqP->/=]; rewrite mulmx1.
Qed.
Lemma quo_mx_irr : mx_irreducible rGH <-> mx_irreducible rG.
Proof.
split; case/mx_irrP=> n_gt0 irrG; apply/mx_irrP; split=> // U modU;
by apply: irrG; rewrite mxmodule_quo in modU *.
Qed.
End Quotient.
Section SplittingField.
Implicit Type gT : finGroupType.
Definition group_splitting_field gT (G : {group gT}) :=
forall n (rG : mx_representation F G n),
mx_irreducible rG -> mx_absolutely_irreducible rG.
Definition group_closure_field gT :=
forall G : {group gT}, group_splitting_field G.
Lemma quotient_splitting_field gT (G : {group gT}) (H : {set gT}) :
G \subset 'N(H) -> group_splitting_field G -> group_splitting_field (G / H).
Proof.
move=> nHG splitG n rGH irrGH.
by rewrite -(morphim_mx_abs_irr _ nHG) splitG //; apply/morphim_mx_irr.
Qed.
Lemma coset_splitting_field gT (H : {set gT}) :
group_closure_field gT -> group_closure_field (coset_of H).
Proof.
move=> split_gT Gbar; have ->: Gbar = (coset H @*^-1 Gbar / H)%G.
by apply: val_inj; rewrite /= /quotient morphpreK ?sub_im_coset.
by apply: quotient_splitting_field; [apply: subsetIl | apply: split_gT].
Qed.
End SplittingField.
Section Abelian.
Variables (gT : finGroupType) (G : {group gT}).
Lemma mx_faithful_irr_center_cyclic n (rG : mx_representation F G n) :
mx_faithful rG -> mx_irreducible rG -> cyclic 'Z(G).
Proof.
case: n rG => [|n] rG injG irrG; first by case/mx_irrP: irrG.
move/trivgP: injG => KrG1; pose rZ := subg_repr rG (center_sub _).
apply: (div_ring_mul_group_cyclic (repr_mx1 rZ)) (repr_mxM rZ) _ _; last first.
exact: center_abelian.
move=> x; rewrite -[[set _]]KrG1 !inE mul1mx -subr_eq0 andbC; set U := _ - _.
do 2![case/andP]=> Gx cGx; rewrite Gx /=; apply: (mx_Schur irrG).
apply/centgmxP=> y Gy; rewrite mulmxBl mulmxBr mulmx1 mul1mx.
by rewrite -!repr_mxM // (centP cGx).
Qed.
Lemma mx_faithful_irr_abelian_cyclic n (rG : mx_representation F G n) :
mx_faithful rG -> mx_irreducible rG -> abelian G -> cyclic G.
Proof.
move=> injG irrG cGG; rewrite -(setIidPl cGG).
exact: mx_faithful_irr_center_cyclic injG irrG.
Qed.
Hypothesis splitG : group_splitting_field G.
Lemma mx_irr_abelian_linear n (rG : mx_representation F G n) :
mx_irreducible rG -> abelian G -> n = 1.
Proof.
by move=> irrG cGG; apply/eqP; rewrite -(abelian_abs_irr rG) ?splitG.
Qed.
Lemma mxsimple_abelian_linear n (rG : mx_representation F G n) M :
abelian G -> mxsimple rG M -> \rank M = 1.
Proof.
move=> cGG simM; have [modM _ _] := simM.
by move/(submod_mx_irr modM)/mx_irr_abelian_linear: simM => ->.
Qed.
Lemma linear_mxsimple n (rG : mx_representation F G n) (M : 'M_n) :
mxmodule rG M -> \rank M = 1 -> mxsimple rG M.
Proof.
move=> modM rM1; apply/(submod_mx_irr modM).
by apply: mx_abs_irrW; rewrite linear_mx_abs_irr.
Qed.
End Abelian.
Section AbelianQuotient.
Variables (gT : finGroupType) (G : {group gT}).
Variables (n : nat) (rG : mx_representation F G n).
Lemma center_kquo_cyclic : mx_irreducible rG -> cyclic 'Z(G / rker rG)%g.
Proof.
move=> irrG; apply: mx_faithful_irr_center_cyclic (kquo_mx_faithful rG) _.
exact/quo_mx_irr.
Qed.
Lemma der1_sub_rker :
group_splitting_field G -> mx_irreducible rG ->
(G^`(1) \subset rker rG)%g = (n == 1)%N.
Proof.
move=> splitG irrG; apply/idP/idP; last by move/eqP; apply: rker_linear.
move/sub_der1_abelian; move/(abelian_abs_irr (kquo_repr rG))=> <-.
by apply: (quotient_splitting_field (rker_norm _) splitG); apply/quo_mx_irr.
Qed.
End AbelianQuotient.
Section Similarity.
Variables (gT : finGroupType) (G : {group gT}).
Local Notation reprG := (mx_representation F G).
Variant mx_rsim n1 (rG1 : reprG n1) n2 (rG2 : reprG n2) : Prop :=
MxReprSim B of n1 = n2 & row_free B
& forall x, x \in G -> rG1 x *m B = B *m rG2 x.
Lemma mxrank_rsim n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
mx_rsim rG1 rG2 -> n1 = n2.
Proof. by case. Qed.
Lemma mx_rsim_refl n (rG : reprG n) : mx_rsim rG rG.
Proof.
exists 1%:M => // [|x _]; first by rewrite row_free_unit unitmx1.
by rewrite mulmx1 mul1mx.
Qed.
Lemma mx_rsim_sym n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
mx_rsim rG1 rG2 -> mx_rsim rG2 rG1.
Proof.
case=> B def_n1; rewrite def_n1 in rG1 B *.
rewrite row_free_unit => injB homB; exists (invmx B) => // [|x Gx].
by rewrite row_free_unit unitmx_inv.
by apply: canRL (mulKmx injB) _; rewrite mulmxA -homB ?mulmxK.
Qed.
Lemma mx_rsim_trans n1 n2 n3
(rG1 : reprG n1) (rG2 : reprG n2) (rG3 : reprG n3) :
mx_rsim rG1 rG2 -> mx_rsim rG2 rG3 -> mx_rsim rG1 rG3.
Proof.
case=> [B1 defn1 freeB1 homB1] [B2 defn2 freeB2 homB2].
exists (B1 *m B2); rewrite /row_free ?mxrankMfree 1?defn1 // => x Gx.
by rewrite mulmxA homB1 // -!mulmxA homB2.
Qed.
Lemma mx_rsim_def n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
mx_rsim rG1 rG2 ->
exists B, exists2 B', B' *m B = 1%:M &
forall x, x \in G -> rG1 x = B *m rG2 x *m B'.
Proof.
case=> B def_n1; rewrite def_n1 in rG1 B *; rewrite row_free_unit => injB homB.
by exists B, (invmx B) => [|x Gx]; rewrite ?mulVmx // -homB // mulmxK.
Qed.
Lemma mx_rsim_iso n (rG : reprG n) (U V : 'M_n)
(modU : mxmodule rG U) (modV : mxmodule rG V) :
mx_rsim (submod_repr modU) (submod_repr modV) <-> mx_iso rG U V.
Proof.
split=> [[B eqrUV injB homB] | [f injf homf defV]].
have: \rank (U *m val_submod (in_submod U 1%:M *m B)) = \rank U.
do 2!rewrite mulmxA mxrankMfree ?row_base_free //.
by rewrite -(eqmxMr _ (val_submod1 U)) -in_submodE val_submodK mxrank1.
case/complete_unitmx => f injf defUf; exists f => //.
apply/hom_mxP=> x Gx; rewrite -defUf -2!mulmxA -(val_submodJ modV) //.
rewrite -(mulmxA _ B) -homB // val_submodE 3!(mulmxA U) (mulmxA _ _ B).
rewrite -in_submodE -in_submodJ //.
have [u ->] := submxP (mxmoduleP modU x Gx).
by rewrite in_submodE -mulmxA -defUf !mulmxA !mulmx1.
apply/eqmxP; rewrite -mxrank_leqif_eq.
by rewrite mxrankMfree ?eqrUV ?row_free_unit.
by rewrite -defUf mulmxA val_submodP.
have eqrUV: \rank U = \rank V by rewrite -defV mxrankMfree ?row_free_unit.
exists (in_submod V (val_submod 1%:M *m f)) => // [|x Gx].
rewrite /row_free {6}eqrUV -[_ == _]sub1mx -val_submodS.
rewrite in_submodK; last by rewrite -defV submxMr ?val_submodP.
by rewrite val_submod1 -defV submxMr ?val_submod1.
rewrite -in_submodJ; last by rewrite -defV submxMr ?val_submodP.
rewrite -(hom_mxP (submx_trans (val_submodP _) homf)) //.
by rewrite -(val_submodJ modU) // mul1mx 2!(mulmxA ((submod_repr _) x)) -val_submodE.
Qed.
Lemma mx_rsim_irr n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
mx_rsim rG1 rG2 -> mx_irreducible rG1 -> mx_irreducible rG2.
Proof.
case/mx_rsim_sym=> f def_n2; rewrite {n2}def_n2 in f rG2 * => injf homf.
case/mx_irrP=> n1_gt0 minG; apply/mx_irrP; split=> // U modU nzU.
rewrite /row_full -(mxrankMfree _ injf) -genmxE.
apply: minG; last by rewrite -mxrank_eq0 genmxE mxrankMfree // mxrank_eq0.
rewrite (eqmx_module _ (genmxE _)); apply/mxmoduleP=> x Gx.
by rewrite -mulmxA -homf // mulmxA submxMr // (mxmoduleP modU).
Qed.
Lemma mx_rsim_abs_irr n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
mx_rsim rG1 rG2 ->
mx_absolutely_irreducible rG1 = mx_absolutely_irreducible rG2.
Proof.
case=> f def_n2; rewrite -{n2}def_n2 in f rG2 *.
rewrite row_free_unit => injf homf; congr (_ && (_ == _)).
pose Eg (g : 'M[F]_n1) := lin_mx (mulmxr (invmx g) \o mulmx g).
have free_Ef: row_free (Eg f).
apply/row_freeP; exists (Eg (invmx f)); apply/row_matrixP=> i.
rewrite rowE row1 mulmxA mul_rV_lin mx_rV_lin /=.
by rewrite invmxK !{1}mulmxA mulmxKV // -mulmxA mulKmx // vec_mxK.
symmetry; rewrite -(mxrankMfree _ free_Ef); congr (\rank _).
apply/row_matrixP=> i; rewrite row_mul !rowK mul_vec_lin /=.
by rewrite -homf ?enum_valP // mulmxK.
Qed.
Lemma rker_mx_rsim n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
mx_rsim rG1 rG2 -> rker rG1 = rker rG2.
Proof.
case=> f def_n2; rewrite -{n2}def_n2 in f rG2 *.
rewrite row_free_unit => injf homf.
apply/setP=> x; rewrite !inE !mul1mx; apply: andb_id2l => Gx.
by rewrite -(can_eq (mulmxK injf)) homf // -scalar_mxC (can_eq (mulKmx injf)).
Qed.
Lemma mx_rsim_faithful n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
mx_rsim rG1 rG2 -> mx_faithful rG1 = mx_faithful rG2.
Proof. by move=> simG12; rewrite /mx_faithful (rker_mx_rsim simG12). Qed.
Lemma mx_rsim_factmod n (rG : reprG n) U V
(modU : mxmodule rG U) (modV : mxmodule rG V) :
(U + V :=: 1%:M)%MS -> mxdirect (U + V) ->
mx_rsim (factmod_repr modV) (submod_repr modU).
Proof.
move=> addUV dxUV.
have eqUV: \rank U = \rank (cokermx V).
by rewrite mxrank_coker -{3}(mxrank1 F n) -addUV (mxdirectP dxUV) addnK.
have{} dxUV: (U :&: V = 0)%MS by apply/mxdirect_addsP.
exists (in_submod U (val_factmod 1%:M *m proj_mx U V)) => // [|x Gx].
rewrite /row_free -{6}eqUV -[_ == _]sub1mx -val_submodS val_submod1.
rewrite in_submodK ?proj_mx_sub // -{1}[U](proj_mx_id dxUV) //.
rewrite -{1}(add_sub_fact_mod V U) mulmxDl proj_mx_0 ?val_submodP // add0r.
by rewrite submxMr // val_factmodS submx1.
rewrite -in_submodJ ?proj_mx_sub // -(hom_mxP _) //; last first.
by apply: submx_trans (submx1 _) _; rewrite -addUV proj_mx_hom.
rewrite mulmxA; congr (_ *m _); rewrite mulmxA -val_factmodE; apply/eqP.
rewrite eq_sym -subr_eq0 -mulmxBl proj_mx_0 //.
by rewrite -[_ *m rG x](add_sub_fact_mod V) addrK val_submodP.
Qed.
Lemma mxtrace_rsim n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) :
mx_rsim rG1 rG2 -> {in G, forall x, \tr (rG1 x) = \tr (rG2 x)}.
Proof.
case/mx_rsim_def=> B [B' B'B def_rG1] x Gx.
by rewrite def_rG1 // mxtrace_mulC mulmxA B'B mul1mx.
Qed.
Lemma mx_rsim_scalar n1 n2 (rG1 : reprG n1) (rG2 : reprG n2) x c :
x \in G -> mx_rsim rG1 rG2 -> rG1 x = c%:M -> rG2 x = c%:M.
Proof.
move=> Gx /mx_rsim_sym[B _ Bfree rG2_B] rG1x.
by apply: (row_free_inj Bfree); rewrite rG2_B // rG1x scalar_mxC.
Qed.
End Similarity.
Section Socle.
Variables (gT : finGroupType) (G : {group gT}).
Variables (n : nat) (rG : mx_representation F G n) (sG : socleType rG).
Lemma socle_irr (W : sG) : mx_irreducible (socle_repr W).
Proof. by apply/submod_mx_irr; apply: socle_simple. Qed.
Lemma socle_rsimP (W1 W2 : sG) :
reflect (mx_rsim (socle_repr W1) (socle_repr W2)) (W1 == W2).
Proof.
have [simW1 simW2] := (socle_simple W1, socle_simple W2).
by apply: (iffP (component_mx_isoP simW1 simW2)); move/mx_rsim_iso; apply.
Qed.
Local Notation mG U := (mxmodule rG U).
Local Notation sr modV := (submod_repr modV).
Lemma mx_rsim_in_submod U V (modU : mG U) (modV : mG V) :
let U' := <<in_submod V U>>%MS in
(U <= V)%MS ->
exists modU' : mxmodule (sr modV) U', mx_rsim (sr modU) (sr modU').
Proof.
move=> U' sUV; have modU': mxmodule (sr modV) U'.
by rewrite (eqmx_module _ (genmxE _)) in_submod_module.
have rankU': \rank U = \rank U' by rewrite genmxE mxrank_in_submod.
pose v1 := val_submod 1%:M; pose U1 := v1 _ U.
have sU1V: (U1 <= V)%MS by rewrite val_submod1.
have sU1U': (in_submod V U1 <= U')%MS by rewrite genmxE submxMr ?val_submod1.
exists modU', (in_submod U' (in_submod V U1)) => // [|x Gx].
apply/row_freeP; exists (v1 _ _ *m v1 _ _ *m in_submod U 1%:M).
rewrite mulmxA [X in X *m _]mulmxA -in_submodE.
by rewrite -!val_submodE !in_submodK ?val_submodK.
rewrite -!in_submodJ // -(val_submodJ modU) // mul1mx.
by rewrite 2!{1}in_submodE mulmxA (mulmxA _ U1) -val_submodE -!in_submodE.
Qed.
Lemma rsim_submod1 U (modU : mG U) : (U :=: 1%:M)%MS -> mx_rsim (sr modU) rG.
Proof.
move=> U1; exists (val_submod 1%:M) => [||x Gx]; first by rewrite U1 mxrank1.
by rewrite /row_free val_submod1.
by rewrite -(val_submodJ modU) // mul1mx -val_submodE.
Qed.
Lemma mxtrace_submod1 U (modU : mG U) :
(U :=: 1%:M)%MS -> {in G, forall x, \tr (sr modU x) = \tr (rG x)}.
Proof. by move=> defU; apply: mxtrace_rsim (rsim_submod1 modU defU). Qed.
Lemma mxtrace_dadd_mod U V W (modU : mG U) (modV : mG V) (modW : mG W) :
(U + V :=: W)%MS -> mxdirect (U + V) ->
{in G, forall x, \tr (sr modU x) + \tr (sr modV x) = \tr (sr modW x)}.
Proof.
move=> defW dxW x Gx; have [sUW sVW]: (U <= W)%MS /\ (V <= W)%MS.
by apply/andP; rewrite -addsmx_sub defW.
pose U' := <<in_submod W U>>%MS; pose V' := <<in_submod W V>>%MS.
have addUV': (U' + V' :=: 1%:M)%MS.
apply/eqmxP; rewrite submx1 /= (adds_eqmx (genmxE _) (genmxE _)).
by rewrite -addsmxMr -val_submodS val_submod1 in_submodK ?defW.
have dxUV': mxdirect (U' + V').
apply/eqnP; rewrite /= addUV' mxrank1 !genmxE !mxrank_in_submod //.
by rewrite -(mxdirectP dxW) /= defW.
have [modU' simU] := mx_rsim_in_submod modU modW sUW.
have [modV' simV] := mx_rsim_in_submod modV modW sVW.
rewrite (mxtrace_rsim simU) // (mxtrace_rsim simV) //.
rewrite -(mxtrace_sub_fact_mod modV') addrC; congr (_ + _).
by rewrite (mxtrace_rsim (mx_rsim_factmod modU' modV' addUV' dxUV')).
Qed.
Lemma mxtrace_dsum_mod (I : finType) (P : pred I) U W
(modU : forall i, mG (U i)) (modW : mG W) :
let S := (\sum_(i | P i) U i)%MS in (S :=: W)%MS -> mxdirect S ->
{in G, forall x, \sum_(i | P i) \tr (sr (modU i) x) = \tr (sr modW x)}.
Proof.
move=> /= sumS dxS x Gx; have [m lePm] := ubnP #|P|.
elim: m => // m IHm in P lePm W modW sumS dxS *.
have [j /= Pj | P0] := pickP P; last first.
case: sumS (_ x); rewrite !big_pred0 // mxrank0 => <- _ rWx.
by rewrite [rWx]flatmx0 linear0.
rewrite ltnS (cardD1x Pj) in lePm.
rewrite mxdirectE /= !(bigD1 j Pj) -mxdirectE mxdirect_addsE /= in dxS sumS *.
have [_ dxW' dxW] := and3P dxS; rewrite (sameP eqP mxdirect_addsP) in dxW.
rewrite (IHm _ _ _ (sumsmx_module _ (fun i _ => modU i)) (eqmx_refl _)) //.
exact: mxtrace_dadd_mod.
Qed.
Lemma mxtrace_component U (simU : mxsimple rG U) :
let V := component_mx rG U in
let modV := component_mx_module rG U in let modU := mxsimple_module simU in
{in G, forall x, \tr (sr modV x) = \tr (sr modU x) *+ (\rank V %/ \rank U)}.
Proof.
move=> V modV modU x Gx.
have [I W S simW defV dxV] := component_mx_semisimple simU.
rewrite -(mxtrace_dsum_mod (fun i => mxsimple_module (simW i)) modV defV) //.
have rankU_gt0: \rank U > 0 by rewrite lt0n mxrank_eq0; case simU.
have isoW i: mx_iso rG U (W i).
by apply: component_mx_iso; rewrite ?simU // -defV (sumsmx_sup i).
have ->: (\rank V %/ \rank U)%N = #|I|.
symmetry; rewrite -(mulnK #|I| rankU_gt0); congr (_ %/ _)%N.
rewrite -defV (mxdirectP dxV) /= -sum_nat_const.
by apply: eq_bigr => i _; apply: mxrank_iso.
rewrite -sumr_const; apply: eq_bigr => i _; symmetry.
by apply: mxtrace_rsim Gx; apply/mx_rsim_iso; apply: isoW.
Qed.
Lemma mxtrace_Socle : let modS := Socle_module sG in
{in G, forall x,
\tr (sr modS x) = \sum_(W : sG) \tr (socle_repr W x) *+ socle_mult W}.
Proof.
move=> /= x Gx /=; pose modW (W : sG) := component_mx_module rG (socle_base W).
rewrite -(mxtrace_dsum_mod modW _ (eqmx_refl _) (Socle_direct sG)) //.
by apply: eq_bigr => W _; rewrite (mxtrace_component (socle_simple W)).
Qed.
End Socle.
Section Clifford.
Variables (gT : finGroupType) (G H : {group gT}).
Hypothesis nsHG : H <| G.
Variables (n : nat) (rG : mx_representation F G n).
Let sHG := normal_sub nsHG.
Let nHG := normal_norm nsHG.
Let rH := subg_repr rG sHG.
Lemma Clifford_simple M x : mxsimple rH M -> x \in G -> mxsimple rH (M *m rG x).
Proof.
have modmG m U y: y \in G -> (mxmodule rH) m U -> mxmodule rH (U *m rG y).
move=> Gy modU; apply/mxmoduleP=> h Hh; have Gh := subsetP sHG h Hh.
rewrite -mulmxA -repr_mxM // conjgCV repr_mxM ?groupJ ?groupV // mulmxA.
by rewrite submxMr ?(mxmoduleP modU) // -mem_conjg (normsP nHG).
have nzmG m y (U : 'M_(m, n)): y \in G -> (U *m rG y == 0) = (U == 0).
by move=> Gy; rewrite -{1}(mul0mx m (rG y)) (can_eq (repr_mxK rG Gy)).
case=> [modM nzM simM] Gx; have Gx' := groupVr Gx.
split=> [||U modU sUMx nzU]; rewrite ?modmG ?nzmG //.
rewrite -(repr_mxKV rG Gx U) submxMr //.
by rewrite (simM (U *m _)) ?modmG ?nzmG // -(repr_mxK rG Gx M) submxMr.
Qed.
Lemma Clifford_hom x m (U : 'M_(m, n)) :
x \in 'C_G(H) -> (U <= dom_hom_mx rH (rG x))%MS.
Proof.
case/setIP=> Gx cHx; apply/rV_subP=> v _{U}.
apply/hom_mxP=> h Hh; have Gh := subsetP sHG h Hh.
by rewrite -!mulmxA /= -!repr_mxM // (centP cHx).
Qed.
Lemma Clifford_iso x U : x \in 'C_G(H) -> mx_iso rH U (U *m rG x).
Proof.
move=> cHx; have [Gx _] := setIP cHx.
by exists (rG x); rewrite ?repr_mx_unit ?Clifford_hom.
Qed.
Lemma Clifford_iso2 x U V :
mx_iso rH U V -> x \in G -> mx_iso rH (U *m rG x) (V *m rG x).
Proof.
case=> [f injf homUf defV] Gx; have Gx' := groupVr Gx.
pose fx := rG (x^-1)%g *m f *m rG x; exists fx; last 1 first.
- by rewrite !mulmxA repr_mxK //; apply: eqmxMr.
- by rewrite !unitmx_mul andbC !repr_mx_unit.
apply/hom_mxP=> h Hh; have Gh := subsetP sHG h Hh.
rewrite -(mulmxA U) -repr_mxM // conjgCV repr_mxM ?groupJ // !mulmxA.
rewrite !repr_mxK // (hom_mxP homUf) -?mem_conjg ?(normsP nHG) //=.
by rewrite !repr_mxM ?invgK ?groupM // !mulmxA repr_mxKV.
Qed.
Lemma Clifford_componentJ M x :
mxsimple rH M -> x \in G ->
(component_mx rH (M *m rG x) :=: component_mx rH M *m rG x)%MS.
Proof.
set simH := mxsimple rH; set cH := component_mx rH.
have actG: {in G, forall y M, simH M -> cH M *m rG y <= cH (M *m rG y)}%MS.
move=> {M} y Gy /= M simM; have [I [U isoU def_cHM]] := component_mx_def simM.
rewrite /cH def_cHM sumsmxMr; apply/sumsmx_subP=> i _.
by apply: mx_iso_component; [apply: Clifford_simple | apply: Clifford_iso2].
move=> simM Gx; apply/eqmxP; rewrite actG // -/cH.
rewrite -{1}[cH _](repr_mxKV rG Gx) submxMr // -{2}[M](repr_mxK rG Gx).
by rewrite actG ?groupV //; apply: Clifford_simple.
Qed.
Hypothesis irrG : mx_irreducible rG.
Lemma Clifford_basis M : mxsimple rH M ->
{X : {set gT} | X \subset G &
let S := \sum_(x in X) M *m rG x in S :=: 1%:M /\ mxdirect S}%MS.
Proof.
move=> simM. have simMG (g : [subg G]) : mxsimple rH (M *m rG (val g)).
by case: g => x Gx; apply: Clifford_simple.
have [|XG [defX1 dxX1]] := sum_mxsimple_direct_sub simMG (_ : _ :=: 1%:M)%MS.
apply/eqmxP; case irrG => _ _ ->; rewrite ?submx1 //; last first.
rewrite -submx0; apply/sumsmx_subP; move/(_ 1%g (erefl _)); apply: negP.
by rewrite submx0 repr_mx1 mulmx1; case simM.
apply/mxmoduleP=> x Gx; rewrite sumsmxMr; apply/sumsmx_subP=> [[y Gy]] /= _.
by rewrite (sumsmx_sup (subg G (y * x)))// subgK ?groupM// -mulmxA repr_mxM.
exists (val @: XG); first by apply/subsetP=> ?; case/imsetP=> [[x Gx]] _ ->.
have bij_val: {on val @: XG, bijective (@sgval _ G)}.
exists (subg G) => [g _ | x]; first exact: sgvalK.
by case/imsetP=> [[x' Gx]] _ ->; rewrite subgK.
have defXG g: (val g \in val @: XG) = (g \in XG).
by apply/imsetP/idP=> [[h XGh] | XGg]; [move/val_inj-> | exists g].
by rewrite /= mxdirectE /= !(reindex _ bij_val) !(eq_bigl _ _ defXG).
Qed.
Variable sH : socleType rH.
Definition Clifford_act (W : sH) x :=
let Gx := subgP (subg G x) in
PackSocle (component_socle sH (Clifford_simple (socle_simple W) Gx)).
Let valWact W x : (Clifford_act W x :=: W *m rG (sgval (subg G x)))%MS.
Proof.
rewrite PackSocleK; apply: Clifford_componentJ (subgP _).
exact: socle_simple.
Qed.
Fact Clifford_is_action : is_action G Clifford_act.
Proof.
split=> [x W W' eqWW' | W x y Gx Gy].
pose Gx := subgP (subg G x); apply/socleP; apply/eqmxP.
rewrite -(repr_mxK rG Gx W) -(repr_mxK rG Gx W'); apply: eqmxMr.
apply: eqmx_trans (eqmx_sym _) (valWact _ _).
by rewrite -eqWW'; apply: valWact.
apply/socleP; rewrite !{1}valWact 2!{1}(eqmxMr _ (valWact _ _)).
by rewrite !subgK ?groupM ?repr_mxM ?mulmxA ?andbb.
Qed.
Definition Clifford_action := Action Clifford_is_action.
Local Notation "'Cl" := Clifford_action (at level 8) : action_scope.
Lemma val_Clifford_act W x : x \in G -> ('Cl%act W x :=: W *m rG x)%MS.
Proof. by move=> Gx; apply: eqmx_trans (valWact _ _) _; rewrite subgK. Qed.
Lemma Clifford_atrans : [transitive G, on [set: sH] | 'Cl].
Proof.
have [_ nz1 _] := irrG.
apply: mxsimple_exists (mxmodule1 rH) nz1 _ _ => [[M simM _]].
pose W1 := PackSocle (component_socle sH simM).
have [X sXG [def1 _]] := Clifford_basis simM; move/subsetP: sXG => sXG.
apply/imsetP; exists W1; first by rewrite inE.
symmetry; apply/setP=> W /[1!inE]; have simW := socle_simple W.
have:= submx1 (socle_base W); rewrite -def1 -[(\sum_(x in X) _)%MS]mulmx1.
case/(hom_mxsemisimple_iso simW) => [x Xx _ | | x Xx isoMxW].
- by apply: Clifford_simple; rewrite ?sXG.
- exact: scalar_mx_hom.
have Gx := sXG x Xx; apply/imsetP; exists x => //; apply/socleP/eqmxP/eqmx_sym.
apply: eqmx_trans (val_Clifford_act _ Gx) _; rewrite PackSocleK.
apply: eqmx_trans (eqmx_sym (Clifford_componentJ simM Gx)) _.
apply/eqmxP; rewrite (sameP genmxP eqP) !{1}genmx_component.
by apply/component_mx_isoP=> //; apply: Clifford_simple.
Qed.
Lemma Clifford_Socle1 : Socle sH = 1%:M.
Proof.
case/imsetP: Clifford_atrans => W _ _; have simW := socle_simple W.
have [X sXG [def1 _]] := Clifford_basis simW.
rewrite reducible_Socle1 //; apply: mxsemisimple_reducible.
apply: intro_mxsemisimple def1 _ => x /(subsetP sXG) Gx _.
exact: Clifford_simple.
Qed.
Lemma Clifford_rank_components (W : sH) : (#|sH| * \rank W)%N = n.
Proof.
rewrite -{9}(mxrank1 F n) -Clifford_Socle1.
rewrite (mxdirectP (Socle_direct sH)) /= -sum_nat_const.
apply: eq_bigr => W1 _; have [W0 _ W0G] := imsetP Clifford_atrans.
have{} W0G W': W' \in orbit 'Cl G W0 by rewrite -W0G inE.
have [/orbitP[x Gx <-] /orbitP[y Gy <-]] := (W0G W, W0G W1).
by rewrite !{1}val_Clifford_act // !mxrankMfree // !repr_mx_free.
Qed.
Theorem Clifford_component_basis M : mxsimple rH M ->
{t : nat & {x_ : sH -> 'I_t -> gT |
forall W, let sW := (\sum_j M *m rG (x_ W j))%MS in
[/\ forall j, x_ W j \in G, (sW :=: W)%MS & mxdirect sW]}}.
Proof.
move=> simM; pose t := (n %/ #|sH| %/ \rank M)%N; exists t.
have [X /subsetP sXG [defX1 dxX1]] := Clifford_basis simM.
pose sMv (W : sH) x := (M *m rG x <= W)%MS; pose Xv := [pred x in X | sMv _ x].
have sXvG W: {subset Xv W <= G} by move=> x /andP[/sXG].
have defW W: (\sum_(x in Xv W) M *m rG x :=: W)%MS.
apply/eqmxP; rewrite -(geq_leqif (mxrank_leqif_eq _)); last first.
by apply/sumsmx_subP=> x /andP[].
rewrite -(leq_add2r (\sum_(W' | W' != W) \rank W')) -((bigD1 W) predT) //=.
rewrite -(mxdirectP (Socle_direct sH)) /= -/(Socle _) Clifford_Socle1 -defX1.
apply: leq_trans (mxrankS _) (mxrank_sum_leqif _).1 => /=.
rewrite (bigID (sMv W))%MS addsmxS //=.
apply/sumsmx_subP=> x /andP[Xx notW_Mx]; have Gx := sXG x Xx.
have simMx := Clifford_simple simM Gx.
pose Wx := PackSocle (component_socle sH simMx).
have sMxWx: (M *m rG x <= Wx)%MS by rewrite PackSocleK component_mx_id.
by rewrite (sumsmx_sup Wx) //; apply: contra notW_Mx => /eqP <-.
have dxXv W: mxdirect (\sum_(x in Xv W) M *m rG x).
move: dxX1; rewrite !mxdirectE /= !(bigID (sMv W) [in X]) /=.
by rewrite -mxdirectE mxdirect_addsE /= => /andP[].
have def_t W: #|Xv W| = t.
rewrite /t -{1}(Clifford_rank_components W) mulKn 1?(cardD1 W) //.
rewrite -defW (mxdirectP (dxXv W)) /= (eq_bigr (fun _ => \rank M)) => [|x].
rewrite sum_nat_const mulnK //; last by rewrite lt0n mxrank_eq0; case simM.
by move/sXvG=> Gx; rewrite mxrankMfree // row_free_unit repr_mx_unit.
exists (fun W i => enum_val (cast_ord (esym (def_t W)) i)) => W.
case: {def_t}t / (def_t W) => sW.
case: (pickP (Xv W)) => [x0 XvWx0 | XvW0]; last first.
by case/negP: (nz_socle W); rewrite -submx0 -defW big_pred0.
have{x0 XvWx0} reXv := reindex _ (enum_val_bij_in XvWx0).
have def_sW: (sW :=: W)%MS.
apply: eqmx_trans (defW W); apply/eqmxP; apply/genmxP; congr <<_>>%MS.
rewrite reXv /=; apply: eq_big => [j | j _]; first by have:= enum_valP j.
by rewrite cast_ord_id.
split=> // [j|]; first by rewrite (sXvG W) ?enum_valP.
apply/mxdirectP; rewrite def_sW -(defW W) /= (mxdirectP (dxXv W)) /= reXv /=.
by apply: eq_big => [j | j _]; [move: (enum_valP j) | rewrite cast_ord_id].
Qed.
Lemma Clifford_astab : H <*> 'C_G(H) \subset 'C([set: sH] | 'Cl).
Proof.
rewrite join_subG !subsetI sHG subsetIl /=; apply/andP; split.
apply/subsetP=> h Hh /[1!inE]; have Gh := subsetP sHG h Hh.
apply/subsetP=> W _; have simW := socle_simple W; have [modW _ _] := simW.
have simWh: mxsimple rH (socle_base W *m rG h) by apply: Clifford_simple.
rewrite inE -val_eqE /= PackSocleK eq_sym.
apply/component_mx_isoP; rewrite ?subgK //; apply: component_mx_iso => //.
by apply: submx_trans (component_mx_id simW); move/mxmoduleP: modW => ->.
apply/subsetP=> z cHz /[1!inE]; have [Gz _] := setIP cHz.
apply/subsetP=> W _; have simW := socle_simple W; have [modW _ _] := simW.
have simWz: mxsimple rH (socle_base W *m rG z) by apply: Clifford_simple.
rewrite inE -val_eqE /= PackSocleK eq_sym.
by apply/component_mx_isoP; rewrite ?subgK //; apply: Clifford_iso.
Qed.
Lemma Clifford_astab1 (W : sH) : 'C[W | 'Cl] = rstabs rG W.
Proof.
apply/setP=> x /[!inE]; apply: andb_id2l => Gx.
rewrite sub1set inE (sameP eqP socleP) !val_Clifford_act //.
rewrite andb_idr // => sWxW; rewrite -mxrank_leqif_sup //.
by rewrite mxrankMfree ?repr_mx_free.
Qed.
Lemma Clifford_rstabs_simple (W : sH) :
mxsimple (subg_repr rG (rstabs_sub rG W)) W.
Proof.
split => [||U modU sUW nzU]; last 2 [exact: nz_socle].
by rewrite /mxmodule rstabs_subg setIid.
have modUH: mxmodule rH U.
apply/mxmoduleP=> h Hh; rewrite (mxmoduleP modU) //.
rewrite /= -Clifford_astab1 !(inE, sub1set) (subsetP sHG) //.
rewrite (astab_act (subsetP Clifford_astab h _)) ?inE //=.
by rewrite mem_gen // inE Hh.
apply: (mxsimple_exists modUH nzU) => [[M simM sMU]].
have [t [x_ /(_ W)[Gx_ defW _]]] := Clifford_component_basis simM.
rewrite -defW; apply/sumsmx_subP=> j _; set x := x_ W j.
have{Gx_} Gx: x \in G by rewrite Gx_.
apply: submx_trans (submxMr _ sMU) _; apply: (mxmoduleP modU).
rewrite inE -val_Clifford_act Gx //; set Wx := 'Cl%act W x.
case: (eqVneq Wx W) (simM) => [-> //=|] neWxW [_ /negP[]]; rewrite -submx0.
rewrite (canF_eq (actKin 'Cl Gx)) in neWxW.
rewrite -(component_mx_disjoint _ _ neWxW); try exact: socle_simple.
rewrite sub_capmx {1}(submx_trans sMU sUW) val_Clifford_act ?groupV //.
by rewrite -(eqmxMr _ defW) sumsmxMr (sumsmx_sup j) ?repr_mxK.
Qed.
End Clifford.
Section JordanHolder.
Variables (gT : finGroupType) (G : {group gT}).
Variables (n : nat) (rG : mx_representation F G n).
Local Notation modG := ((mxmodule rG) n).
Lemma section_module (U V : 'M_n) (modU : modG U) (modV : modG V) :
mxmodule (factmod_repr modU) <<in_factmod U V>>%MS.
Proof.
by rewrite (eqmx_module _ (genmxE _)) in_factmod_module addsmx_module.
Qed.
Definition section_repr U V (modU : modG U) (modV : modG V) :=
submod_repr (section_module modU modV).
Lemma mx_factmod_sub U modU :
mx_rsim (@section_repr U _ modU (mxmodule1 rG)) (factmod_repr modU).
Proof.
exists (val_submod 1%:M) => [||x Gx].
- apply: (@addIn (\rank U)); rewrite genmxE mxrank_in_factmod mxrank_coker.
by rewrite (addsmx_idPr (submx1 U)) mxrank1 subnK ?rank_leq_row.
- by rewrite /row_free val_submod1.
by rewrite -[_ x]mul1mx -val_submodE val_submodJ.
Qed.
Definition max_submod (U V : 'M_n) :=
(U < V)%MS /\ (forall W, ~ [/\ modG W, U < W & W < V])%MS.
Lemma max_submodP U V (modU : modG U) (modV : modG V) :
(U <= V)%MS -> (max_submod U V <-> mx_irreducible (section_repr modU modV)).
Proof.
move=> sUV; split=> [[ltUV maxU] | ].
apply/mx_irrP; split=> [|WU modWU nzWU].
by rewrite genmxE lt0n mxrank_eq0 in_factmod_eq0; case/andP: ltUV.
rewrite -sub1mx -val_submodS val_submod1 genmxE.
pose W := (U + val_factmod (val_submod WU))%MS.
suffices sVW: (V <= W)%MS.
rewrite {2}in_factmodE (submx_trans (submxMr _ sVW)) //.
rewrite addsmxMr -!in_factmodE val_factmodK.
by rewrite ((in_factmod U U =P 0) _) ?adds0mx ?in_factmod_eq0.
move/and3P: {maxU}(maxU W); apply: contraR; rewrite /ltmx addsmxSl => -> /=.
move: modWU; rewrite /mxmodule rstabs_submod rstabs_factmod => -> /=.
rewrite addsmx_sub submx_refl -in_factmod_eq0 val_factmodK.
move: nzWU; rewrite -[_ == 0](inj_eq val_submod_inj) linear0 => ->.
rewrite -(in_factmodsK sUV) addsmxS // val_factmodS.
by rewrite -(genmxE (in_factmod U V)) val_submodP.
case/mx_irrP; rewrite lt0n {1}genmxE mxrank_eq0 in_factmod_eq0 => ltUV maxV.
split=> // [|W [modW /andP[sUW ltUW] /andP[sWV /negP[]]]]; first exact/andP.
rewrite -(in_factmodsK sUV) -(in_factmodsK sUW) addsmxS // val_factmodS.
rewrite -genmxE -val_submod1; set VU := <<_>>%MS.
have sW_VU: (in_factmod U W <= VU)%MS.
by rewrite genmxE -val_factmodS !submxMr.
rewrite -(in_submodK sW_VU) val_submodS -(genmxE (in_submod _ _)).
rewrite sub1mx maxV //.
rewrite (eqmx_module _ (genmxE _)) in_submod_module ?genmxE ?submxMr //.
by rewrite in_factmod_module addsmx_module.
rewrite -submx0 [(_ <= 0)%MS]genmxE -val_submodS linear0 in_submodK //.
by rewrite eqmx0 submx0 in_factmod_eq0.
Qed.
Lemma max_submod_eqmx U1 U2 V1 V2 :
(U1 :=: U2)%MS -> (V1 :=: V2)%MS -> max_submod U1 V1 -> max_submod U2 V2.
Proof.
move=> eqU12 eqV12 [ltUV1 maxU1].
by split=> [|W]; rewrite -(lt_eqmx eqU12) -(lt_eqmx eqV12).
Qed.
Definition mx_subseries := all modG.
Definition mx_composition_series V :=
mx_subseries V /\ (forall i, i < size V -> max_submod (0 :: V)`_i V`_i).
Local Notation mx_series := mx_composition_series.
Fact mx_subseries_module V i : mx_subseries V -> mxmodule rG V`_i.
Proof.
move=> modV; have [|leVi] := ltnP i (size V); first exact: all_nthP.
by rewrite nth_default ?mxmodule0.
Qed.
Fact mx_subseries_module' V i : mx_subseries V -> mxmodule rG (0 :: V)`_i.
Proof. by move=> modV; rewrite mx_subseries_module //= mxmodule0. Qed.
Definition subseries_repr V i (modV : all modG V) :=
section_repr (mx_subseries_module' i modV) (mx_subseries_module i modV).
Definition series_repr V i (compV : mx_composition_series V) :=
subseries_repr i (proj1 compV).
Lemma mx_series_lt V : mx_composition_series V -> path ltmx 0 V.
Proof. by case=> _ compV; apply/(pathP 0)=> i /compV[]. Qed.
Lemma max_size_mx_series (V : seq 'M[F]_n) :
path ltmx 0 V -> size V <= \rank (last 0 V).
Proof.
rewrite -[size V]addn0 -(mxrank0 F n n); elim: V 0 => //= V1 V IHV V0.
rewrite ltmxErank -andbA => /and3P[_ ltV01 ltV].
by apply: leq_trans (IHV _ ltV); rewrite addSnnS leq_add2l.
Qed.
Lemma mx_series_repr_irr V i (compV : mx_composition_series V) :
i < size V -> mx_irreducible (series_repr i compV).
Proof.
case: compV => modV compV /compV maxVi; apply/max_submodP => //.
by apply: ltmxW; case: maxVi.
Qed.
Lemma mx_series_rcons U V :
mx_series (rcons U V) <-> [/\ mx_series U, modG V & max_submod (last 0 U) V].
Proof.
rewrite /mx_series /mx_subseries all_rcons size_rcons -rcons_cons.
split=> [ [/andP[modU modV] maxU] | [[modU maxU] modV maxV]].
split=> //; last first.
by have:= maxU _ (leqnn _); rewrite !nth_rcons leqnn ltnn eqxx -last_nth.
by split=> // i ltiU; have:= maxU i (ltnW ltiU); rewrite !nth_rcons leqW ltiU.
rewrite modV; split=> // i; rewrite !nth_rcons ltnS leq_eqVlt.
case: eqP => [-> _ | /= _ ltiU]; first by rewrite ltnn ?eqxx -last_nth.
by rewrite ltiU; apply: maxU.
Qed.
Theorem mx_Schreier U :
mx_subseries U -> path ltmx 0 U ->
classically (exists V, [/\ mx_series V, last 0 V :=: 1%:M & subseq U V])%MS.
Proof.
move: U => U0; set U := {1 2}U0; have: subseq U0 U := subseq_refl U.
pose n' := n.+1; have: n < size U + n' by rewrite leq_addl.
elim: n' U => [|n' IH_U] U ltUn' sU0U modU incU [] // noV.
rewrite addn0 ltnNge in ltUn'; case/negP: ltUn'.
by rewrite (leq_trans (max_size_mx_series incU)) ?rank_leq_row.
apply: (noV); exists U; split => //; first split=> // i lt_iU; last first.
apply/eqmxP; apply: contraT => neU1.
apply: {IH_U}(IH_U (rcons U 1%:M)) noV.
- by rewrite size_rcons addSnnS.
- by rewrite (subseq_trans sU0U) ?subseq_rcons.
- by rewrite /mx_subseries all_rcons mxmodule1.
by rewrite rcons_path ltmxEneq neU1 submx1 !andbT.
set U'i := _`_i; set Ui := _`_i; have defU := cat_take_drop i U.
have defU'i: U'i = last 0 (take i U).
rewrite (last_nth 0) /U'i -{1}defU -cat_cons nth_cat /=.
by rewrite size_take lt_iU leqnn.
move: incU; rewrite -defU cat_path (drop_nth 0) //= -/Ui -defU'i.
set U' := take i U; set U'' := drop _ U; case/and3P=> incU' ltUi incU''.
split=> // W [modW ltUW ltWV]; case: notF.
apply: {IH_U}(IH_U (U' ++ W :: Ui :: U'')) noV; last 2 first.
- by rewrite /mx_subseries -drop_nth // all_cat /= modW -all_cat defU.
- by rewrite cat_path /= -defU'i; apply/and4P.
- by rewrite -drop_nth // size_cat /= addnS -size_cat defU addSnnS.
by rewrite (subseq_trans sU0U) // -defU cat_subseq // -drop_nth ?subseq_cons.
Qed.
Lemma mx_second_rsim U V (modU : modG U) (modV : modG V) :
let modI := capmx_module modU modV in let modA := addsmx_module modU modV in
mx_rsim (section_repr modI modU) (section_repr modV modA).
Proof.
move=> modI modA; set nI := {1}(\rank _).
have sIU := capmxSl U V; have sVA := addsmxSr U V.
pose valI := val_factmod (val_submod (1%:M : 'M_nI)).
have UvalI: (valI <= U)%MS.
rewrite -(addsmx_idPr sIU) (submx_trans _ (proj_factmodS _ _)) //.
by rewrite submxMr // val_submod1 genmxE.
exists (valI *m in_factmod _ 1%:M *m in_submod _ 1%:M) => [||x Gx].
- apply: (@addIn (\rank (U :&: V) + \rank V)%N); rewrite genmxE addnA addnCA.
rewrite /nI genmxE !{1}mxrank_in_factmod 2?(addsmx_idPr _) //.
by rewrite -mxrank_sum_cap addnC.
- rewrite -kermx_eq0; apply/rowV0P=> u; rewrite (sameP sub_kermxP eqP).
rewrite mulmxA -in_submodE mulmxA -in_factmodE -(inj_eq val_submod_inj).
rewrite linear0 in_submodK ?in_factmod_eq0 => [Vvu|]; last first.
by rewrite genmxE addsmxC in_factmod_addsK submxMr // mulmx_sub.
apply: val_submod_inj; apply/eqP; rewrite linear0 -[val_submod u]val_factmodK.
rewrite val_submodE val_factmodE -mulmxA -val_factmodE -/valI.
by rewrite in_factmod_eq0 sub_capmx mulmx_sub.
symmetry; rewrite -{1}in_submodE -{1}in_submodJ; last first.
by rewrite genmxE addsmxC in_factmod_addsK -in_factmodE submxMr.
rewrite -{1}in_factmodE -{1}in_factmodJ // mulmxA in_submodE; congr (_ *m _).
apply/eqP; rewrite mulmxA -in_factmodE -subr_eq0 -linearB in_factmod_eq0.
apply: submx_trans (capmxSr U V); rewrite -in_factmod_eq0 linearB /=.
rewrite subr_eq0 {1}(in_factmodJ modI) // val_factmodK eq_sym.
rewrite /valI val_factmodE mulmxA -val_factmodE val_factmodK.
by rewrite -[submod_mx _ _]mul1mx -val_submodE val_submodJ.
Qed.
Lemma section_eqmx_add U1 U2 V1 V2 modU1 modU2 modV1 modV2 :
(U1 :=: U2)%MS -> (U1 + V1 :=: U2 + V2)%MS ->
mx_rsim (@section_repr U1 V1 modU1 modV1) (@section_repr U2 V2 modU2 modV2).
Proof.
move=> eqU12 eqV12; set n1 := {1}(\rank _).
pose v1 := val_factmod (val_submod (1%:M : 'M_n1)).
have sv12: (v1 <= U2 + V2)%MS.
rewrite -eqV12 (submx_trans _ (proj_factmodS _ _)) //.
by rewrite submxMr // val_submod1 genmxE.
exists (v1 *m in_factmod _ 1%:M *m in_submod _ 1%:M) => [||x Gx].
- apply: (@addIn (\rank U1)); rewrite {2}eqU12 /n1 !{1}genmxE.
by rewrite !{1}mxrank_in_factmod eqV12.
- rewrite -kermx_eq0; apply/rowV0P=> u; rewrite (sameP sub_kermxP eqP) mulmxA.
rewrite -in_submodE mulmxA -in_factmodE -(inj_eq val_submod_inj) linear0.
rewrite in_submodK ?in_factmod_eq0 -?eqU12 => [U1uv1|]; last first.
by rewrite genmxE -(in_factmod_addsK U2 V2) submxMr // mulmx_sub.
apply: val_submod_inj; apply/eqP; rewrite linear0 -[val_submod _]val_factmodK.
by rewrite in_factmod_eq0 val_factmodE val_submodE -mulmxA -val_factmodE.
symmetry; rewrite -{1}in_submodE -{1}in_factmodE -{1}in_submodJ; last first.
by rewrite genmxE -(in_factmod_addsK U2 V2) submxMr.
rewrite -{1}in_factmodJ // mulmxA in_submodE; congr (_ *m _); apply/eqP.
rewrite mulmxA -in_factmodE -subr_eq0 -linearB in_factmod_eq0 -eqU12.
rewrite -in_factmod_eq0 linearB /= subr_eq0 {1}(in_factmodJ modU1) //.
rewrite val_factmodK /v1 val_factmodE eq_sym mulmxA -val_factmodE val_factmodK.
by rewrite -[_ *m _]mul1mx mulmxA -val_submodE val_submodJ.
Qed.
Lemma section_eqmx U1 U2 V1 V2 modU1 modU2 modV1 modV2
(eqU : (U1 :=: U2)%MS) (eqV : (V1 :=: V2)%MS) :
mx_rsim (@section_repr U1 V1 modU1 modV1) (@section_repr U2 V2 modU2 modV2).
Proof. by apply: section_eqmx_add => //; apply: adds_eqmx. Qed.
Lemma mx_butterfly U V W modU modV modW :
~~ (U == V)%MS -> max_submod U W -> max_submod V W ->
let modUV := capmx_module modU modV in
max_submod (U :&: V)%MS U
/\ mx_rsim (@section_repr V W modV modW) (@section_repr _ U modUV modU).
Proof.
move=> neUV maxU maxV modUV; have{neUV maxU} defW: (U + V :=: W)%MS.
wlog{neUV modUV} ltUV: U V modU modV maxU maxV / ~~ (V <= U)%MS.
by case/nandP: neUV => ?; first rewrite addsmxC; apply.
apply/eqmxP/idPn=> neUVW; case: maxU => ltUW; case/(_ (U + V)%MS).
rewrite addsmx_module // ltmxE ltmxEneq neUVW addsmxSl !addsmx_sub.
by have [ltVW _] := maxV; rewrite submx_refl andbT ltUV !ltmxW.
have sUV_U := capmxSl U V; have sVW: (V <= W)%MS by rewrite -defW addsmxSr.
set goal := mx_rsim _ _; suffices{maxV} simUV: goal.
split=> //; apply/(max_submodP modUV modU sUV_U).
by apply: mx_rsim_irr simUV _; apply/max_submodP.
apply: {goal}mx_rsim_sym.
by apply: mx_rsim_trans (mx_second_rsim modU modV) _; apply: section_eqmx.
Qed.
Lemma mx_JordanHolder_exists U V :
mx_composition_series U -> modG V -> max_submod V (last 0 U) ->
{W : seq 'M_n | mx_composition_series W & last 0 W = V}.
Proof.
elim/last_ind: U V => [|U Um IHU] V compU modV; first by case; rewrite ltmx0.
rewrite last_rcons => maxV; case/mx_series_rcons: compU => compU modUm maxUm.
case eqUV: (last 0 U == V)%MS.
case/lastP: U eqUV compU {maxUm IHU} => [|U' Um'].
by rewrite andbC; move/eqmx0P->; exists [::].
rewrite last_rcons; move/eqmxP=> eqU'V; case/mx_series_rcons=> compU _ maxUm'.
exists (rcons U' V); last by rewrite last_rcons.
by apply/mx_series_rcons; split => //; apply: max_submod_eqmx maxUm'.
set Um' := last 0 U in maxUm eqUV; have [modU _] := compU.
have modUm': modG Um' by rewrite /Um' (last_nth 0) mx_subseries_module'.
have [|||W compW lastW] := IHU (V :&: Um')%MS; rewrite ?capmx_module //.
by case: (mx_butterfly modUm' modV modUm); rewrite ?eqUV // {1}capmxC.
exists (rcons W V); last by rewrite last_rcons.
apply/mx_series_rcons; split; rewrite // lastW.
by case: (mx_butterfly modV modUm' modUm); rewrite // andbC eqUV.
Qed.
Let rsim_rcons U V compU compUV i : i < size U ->
mx_rsim (@series_repr U i compU) (@series_repr (rcons U V) i compUV).
Proof.
by move=> ltiU; apply: section_eqmx; rewrite -?rcons_cons nth_rcons ?leqW ?ltiU.
Qed.
Let last_mod U (compU : mx_series U) : modG (last 0 U).
Proof.
by case: compU => modU _; rewrite (last_nth 0) (mx_subseries_module' _ modU).
Qed.
Let rsim_last U V modUm modV compUV :
mx_rsim (@section_repr (last 0 U) V modUm modV)
(@series_repr (rcons U V) (size U) compUV).
Proof.
apply: section_eqmx; last by rewrite nth_rcons ltnn eqxx.
by rewrite -rcons_cons nth_rcons leqnn -last_nth.
Qed.
Local Notation rsimT := mx_rsim_trans.
Local Notation rsimC := mx_rsim_sym.
Lemma mx_JordanHolder U V compU compV :
let m := size U in (last 0 U :=: last 0 V)%MS ->
m = size V /\ (exists p : 'S_m, forall i : 'I_m,
mx_rsim (@series_repr U i compU) (@series_repr V (p i) compV)).
Proof.
move Dr: {-}(size U) => r; move/eqP in Dr.
elim: r U V Dr compU compV => /= [|r IHr] U V.
move/nilP->; case/lastP: V => [|V Vm] /= ? compVm; rewrite ?last_rcons => Vm0.
by split=> //; exists 1%g; case.
by case/mx_series_rcons: (compVm) => _ _ []; rewrite -(lt_eqmx Vm0) ltmx0.
case/lastP: U => // [U Um]; rewrite size_rcons eqSS => szUr compUm.
case/mx_series_rcons: (compUm); set Um' := last 0 U => compU modUm maxUm.
case/lastP: V => [|V Vm] compVm; rewrite ?last_rcons ?size_rcons /= => eqUVm.
by case/mx_series_rcons: (compUm) => _ _ []; rewrite (lt_eqmx eqUVm) ltmx0.
case/mx_series_rcons: (compVm); set Vm' := last 0 V => compV modVm maxVm.
have [modUm' modVm']: modG Um' * modG Vm' := (last_mod compU, last_mod compV).
pose i_m := @ord_max (size U).
have [eqUVm' | neqUVm'] := altP (@eqmxP _ _ _ _ Um' Vm').
have [szV [p sim_p]] := IHr U V szUr compU compV eqUVm'.
split; first by rewrite szV.
exists (lift_perm i_m i_m p) => i; case: (unliftP i_m i) => [j|] ->{i}.
apply: rsimT (rsimC _) (rsimT (sim_p j) _).
by rewrite lift_max; apply: rsim_rcons.
by rewrite lift_perm_lift lift_max; apply: rsim_rcons; rewrite -szV.
have simUVm := section_eqmx modUm' modVm' modUm modVm eqUVm' eqUVm.
apply: rsimT (rsimC _) (rsimT simUVm _); first exact: rsim_last.
by rewrite lift_perm_id /= szV; apply: rsim_last.
have maxVUm: max_submod Vm' Um by apply: max_submod_eqmx (eqmx_sym _) maxVm.
have:= mx_butterfly modUm' modVm' modUm neqUVm' maxUm maxVUm.
move: (capmx_module _ _); set Wm := (Um' :&: Vm')%MS => modWm [maxWUm simWVm].
have:= mx_butterfly modVm' modUm' modUm _ maxVUm maxUm.
move: (capmx_module _ _); rewrite andbC capmxC -/Wm => modWmV [// | maxWVm].
rewrite {modWmV}(bool_irrelevance modWmV modWm) => simWUm.
have [W compW lastW] := mx_JordanHolder_exists compU modWm maxWUm.
have compWU: mx_series (rcons W Um') by apply/mx_series_rcons; rewrite lastW.
have compWV: mx_series (rcons W Vm') by apply/mx_series_rcons; rewrite lastW.
have [|szW [pU pUW]] := IHr U _ szUr compU compWU; first by rewrite last_rcons.
rewrite size_rcons in szW; have ltWU: size W < size U by rewrite -szW.
have{IHr} := IHr _ V _ compWV compV; rewrite last_rcons size_rcons -szW.
case=> {r szUr}// szV [pV pWV]; split; first by rewrite szV.
pose j_m := Ordinal ltWU; pose i_m' := lift i_m j_m.
exists (lift_perm i_m i_m pU * tperm i_m i_m' * lift_perm i_m i_m pV)%g => i.
rewrite !permM; case: (unliftP i_m i) => [j {simWUm}|] ->{i}; last first.
rewrite lift_perm_id tpermL lift_perm_lift lift_max {simWVm}.
apply: rsimT (rsimT (pWV j_m) _); last by apply: rsim_rcons; rewrite -szV.
apply: rsimT (rsimC _) {simWUm}(rsimT simWUm _); first exact: rsim_last.
by rewrite -lastW in modWm *; apply: rsim_last.
apply: rsimT (rsimC _) {pUW}(rsimT (pUW j) _).
by rewrite lift_max; apply: rsim_rcons.
rewrite lift_perm_lift; case: (unliftP j_m (pU j)) => [k|] ->{j pU}.
rewrite tpermD ?(inj_eq lift_inj) ?neq_lift //.
rewrite lift_perm_lift !lift_max; set j := lift j_m k.
have ltjW: j < size W by have:= ltn_ord k; rewrite -(lift_max k) /= {1 3}szW.
apply: rsimT (rsimT (pWV j) _); last by apply: rsim_rcons; rewrite -szV.
by apply: rsimT (rsimC _) (rsim_rcons compW _ _); first apply: rsim_rcons.
apply: rsimT {simWVm}(rsimC (rsimT simWVm _)) _.
by rewrite -lastW in modWm *; apply: rsim_last.
rewrite tpermR lift_perm_id /= szV.
by apply: rsimT (rsim_last modVm' modVm _); apply: section_eqmx.
Qed.
Lemma mx_JordanHolder_max U (m := size U) V compU modV :
(last 0 U :=: 1%:M)%MS -> mx_irreducible (@factmod_repr _ G n rG V modV) ->
exists i : 'I_m, mx_rsim (factmod_repr modV) (@series_repr U i compU).
Proof.
rewrite {}/m; set Um := last 0 U => Um1 irrV.
have modUm: modG Um := last_mod compU; have simV := rsimC (mx_factmod_sub modV).
have maxV: max_submod V Um.
move/max_submodP: (mx_rsim_irr simV irrV) => /(_ (submx1 _)).
by apply: max_submod_eqmx; last apply: eqmx_sym.
have [W compW lastW] := mx_JordanHolder_exists compU modV maxV.
have compWU: mx_series (rcons W Um) by apply/mx_series_rcons; rewrite lastW.
have:= mx_JordanHolder compU compWU; rewrite last_rcons size_rcons.
case=> // szW [p pUW]; have ltWU: size W < size U by rewrite szW.
pose i := Ordinal ltWU; exists ((p^-1)%g i).
apply: rsimT simV (rsimT _ (rsimC (pUW _))); rewrite permKV.
apply: rsimT (rsimC _) (rsim_last (last_mod compW) modUm _).
by apply: section_eqmx; rewrite ?lastW.
Qed.
End JordanHolder.
Bind Scope irrType_scope with socle_sort.
Section Regular.
Variables (gT : finGroupType) (G : {group gT}).
Local Notation nG := #|pred_of_set (gval G)|.
Local Notation aG := (regular_repr F G).
Local Notation R_G := (group_ring F G).
Lemma gring_free : row_free R_G.
Proof.
apply/row_freeP; exists (lin1_mx (row (gring_index G 1) \o vec_mx)).
apply/row_matrixP=> i; rewrite row_mul rowK mul_rV_lin1 /= mxvecK rowK row1.
by rewrite gring_indexK // mul1g gring_valK.
Qed.
Lemma gring_op_id A : (A \in R_G)%MS -> gring_op aG A = A.
Proof.
case/envelop_mxP=> a ->{A}; rewrite linear_sum.
by apply: eq_bigr => x Gx; rewrite linearZ /= gring_opG.
Qed.
Lemma gring_rowK A : (A \in R_G)%MS -> gring_mx aG (gring_row A) = A.
Proof. exact: gring_op_id. Qed.
Lemma mem_gring_mx m a (M : 'M_(m, nG)) :
(gring_mx aG a \in M *m R_G)%MS = (a <= M)%MS.
Proof. by rewrite vec_mxK submxMfree ?gring_free. Qed.
Lemma mem_sub_gring m A (M : 'M_(m, nG)) :
(A \in M *m R_G)%MS = (A \in R_G)%MS && (gring_row A <= M)%MS.
Proof.
rewrite -(andb_idl (memmx_subP (submxMl _ _) A)); apply: andb_id2l => R_A.
by rewrite -mem_gring_mx gring_rowK.
Qed.
Section GringMx.
Variables (n : nat) (rG : mx_representation F G n).
Lemma gring_mxP a : (gring_mx rG a \in enveloping_algebra_mx rG)%MS.
Proof. by rewrite vec_mxK submxMl. Qed.
Lemma gring_opM A B :
(B \in R_G)%MS -> gring_op rG (A *m B) = gring_op rG A *m gring_op rG B.
Proof. by move=> R_B; rewrite -gring_opJ gring_rowK. Qed.
Hypothesis irrG : mx_irreducible rG.
Lemma rsim_regular_factmod :
{U : 'M_nG & {modU : mxmodule aG U & mx_rsim rG (factmod_repr modU)}}.
Proof.
pose v : 'rV[F]_n := nz_row 1%:M.
pose fU := lin1_mx (mulmx v \o gring_mx rG); pose U := kermx fU.
have modU: mxmodule aG U.
apply/mxmoduleP => x Gx; apply/sub_kermxP/row_matrixP=> i.
rewrite 2!row_mul row0; move: (row i U) (sub_kermxP (row_sub i U)) => u.
by rewrite !mul_rV_lin1 /= gring_mxJ // mulmxA => ->; rewrite mul0mx.
have def_n: \rank (cokermx U) = n.
apply/eqP; rewrite mxrank_coker mxrank_ker subKn ?rank_leq_row // -genmxE.
rewrite -[_ == _]sub1mx; have [_ _ ->] := irrG; rewrite ?submx1 //.
rewrite (eqmx_module _ (genmxE _)); apply/mxmoduleP=> x Gx.
apply/row_subP=> i; apply: eq_row_sub (gring_index G (enum_val i * x)) _.
rewrite !rowE mulmxA !mul_rV_lin1 /= -mulmxA -gring_mxJ //.
by rewrite -rowE rowK.
rewrite (eqmx_eq0 (genmxE _)); apply/rowV0Pn.
exists v; last exact: (nz_row_mxsimple irrG).
apply/submxP; exists (gring_row (aG 1%g)); rewrite mul_rV_lin1 /=.
by rewrite -gring_opE gring_opG // repr_mx1 mulmx1.
exists U; exists modU; apply: mx_rsim_sym.
exists (val_factmod 1%:M *m fU) => // [|x Gx].
rewrite /row_free eqn_leq rank_leq_row /= -subn_eq0 -mxrank_ker mxrank_eq0.
apply/rowV0P=> u /sub_kermxP; rewrite mulmxA => /sub_kermxP.
by rewrite -/U -in_factmod_eq0 mulmxA mulmx1 val_factmodK => /eqP.
rewrite mulmxA -val_factmodE (canRL (addKr _) (add_sub_fact_mod U _)).
rewrite mulmxDl mulNmx (sub_kermxP (val_submodP _)) oppr0 add0r.
apply/row_matrixP=> i; move: (val_factmod _) => zz.
by rewrite !row_mul !mul_rV_lin1 /= gring_mxJ // mulmxA.
Qed.
Lemma rsim_regular_series U (compU : mx_composition_series aG U) :
(last 0 U :=: 1%:M)%MS ->
exists i : 'I_(size U), mx_rsim rG (series_repr i compU).
Proof.
move=> lastU; have [V [modV simGV]] := rsim_regular_factmod.
have irrV := mx_rsim_irr simGV irrG.
have [i simVU] := mx_JordanHolder_max compU lastU irrV.
by exists i; apply: mx_rsim_trans simGV simVU.
Qed.
Hypothesis F'G : [char F]^'.-group G.
Lemma rsim_regular_submod :
{U : 'M_nG & {modU : mxmodule aG U & mx_rsim rG (submod_repr modU)}}.
Proof.
have [V [modV eqG'V]] := rsim_regular_factmod.
have [U modU defVU dxVU] := mx_Maschke F'G modV (submx1 V).
exists U; exists modU; apply: mx_rsim_trans eqG'V _.
by apply: mx_rsim_factmod; rewrite ?mxdirectE /= addsmxC // addnC.
Qed.
End GringMx.
Definition gset_mx (A : {set gT}) := \sum_(x in A) aG x.
Local Notation tG := #|pred_of_set (classes (gval G))|.
Definition classg_base := \matrix_(k < tG) mxvec (gset_mx (enum_val k)).
Let groupCl : {in G, forall x, {subset x ^: G <= G}}.
Proof. by move=> x Gx; apply: subsetP; apply: class_subG. Qed.
Lemma classg_base_free : row_free classg_base.
Proof.
rewrite -kermx_eq0; apply/rowV0P=> v /sub_kermxP; rewrite mulmx_sum_row => v0.
apply/rowP=> k /[1!mxE].
have [x Gx def_k] := imsetP (enum_valP k).
transitivity (@gring_proj F _ G x (vec_mx 0) 0 0); last first.
by rewrite !linear0 !mxE.
rewrite -{}v0 !linear_sum (bigD1 k) //= 2!linearZ /= rowK mxvecK def_k.
rewrite linear_sum (bigD1 x) ?class_refl //= gring_projE // eqxx.
rewrite !big1 ?addr0 ?mxE ?mulr1 // => [k' | y /andP[xGy ne_yx]]; first 1 last.
by rewrite gring_projE ?(groupCl Gx xGy) // eq_sym (negPf ne_yx).
rewrite rowK 2!linearZ /= mxvecK -(inj_eq enum_val_inj) def_k eq_sym.
have [z Gz ->] := imsetP (enum_valP k').
move/eqP=> not_Gxz; rewrite linear_sum big1 ?scaler0 //= => y zGy.
rewrite gring_projE ?(groupCl Gz zGy) //.
by case: eqP zGy => // <- /class_eqP.
Qed.
Lemma classg_base_center : (classg_base :=: 'Z(R_G))%MS.
Proof.
apply/eqmxP/andP; split.
apply/row_subP=> k; rewrite rowK /gset_mx sub_capmx {1}linear_sum.
have [x Gx ->{k}] := imsetP (enum_valP k); have sxGG := groupCl Gx.
rewrite summx_sub => [|y xGy]; last by rewrite envelop_mx_id ?sxGG.
rewrite memmx_cent_envelop; apply/centgmxP=> y Gy.
rewrite {2}(reindex_acts 'J _ Gy) ?astabsJ ?class_norm //=.
rewrite mulmx_suml mulmx_sumr; apply: eq_bigr => z; move/sxGG=> Gz.
by rewrite -!repr_mxM ?groupJ -?conjgC.
apply/memmx_subP=> A; rewrite sub_capmx memmx_cent_envelop.
case/andP=> /envelop_mxP[a ->{A}] cGa.
rewrite (partition_big_imset (class^~ G)) -/(classes G) /=.
rewrite linear_sum summx_sub //= => xG GxG; have [x Gx def_xG] := imsetP GxG.
apply: submx_trans (scalemx_sub (a x) (submx_refl _)).
rewrite (eq_row_sub (enum_rank_in GxG xG)) // linearZ /= rowK enum_rankK_in //.
rewrite !linear_sum {xG GxG}def_xG; apply: eq_big => [y | xy] /=.
apply/idP/andP=> [| [_ xGy]]; last by rewrite -(eqP xGy) class_refl.
by case/imsetP=> z Gz ->; rewrite groupJ // classGidl.
case/imsetP=> y Gy ->{xy}; rewrite linearZ; congr (_ *: _).
move/(canRL (repr_mxK aG Gy)): (centgmxP cGa y Gy); have Gy' := groupVr Gy.
move/(congr1 (gring_proj x)); rewrite -mulmxA mulmx_suml !linear_sum.
rewrite (bigD1 x Gx) big1 => [|z /andP[Gz]]; rewrite linearZ /=; last first.
by rewrite eq_sym gring_projE // => /negPf->; rewrite scaler0.
rewrite gring_projE // eqxx scalemx1 (bigD1 (x ^ y)%g) ?groupJ //=.
rewrite big1 => [|z /andP[Gz]]; rewrite -scalemxAl 2!linearZ /=.
rewrite !addr0 -!repr_mxM ?groupM // mulgA mulKVg mulgK => /rowP/(_ 0).
by rewrite gring_projE // eqxx scalemx1 !mxE.
rewrite eq_sym -(can_eq (conjgKV y)) conjgK conjgE invgK.
by rewrite -!repr_mxM ?gring_projE ?groupM // => /negPf->; rewrite scaler0.
Qed.
Lemma regular_module_ideal m (M : 'M_(m, nG)) :
mxmodule aG M = right_mx_ideal R_G (M *m R_G).
Proof.
apply/idP/idP=> modM.
apply/mulsmx_subP=> A B; rewrite !mem_sub_gring => /andP[R_A M_A] R_B.
by rewrite envelop_mxM // gring_row_mul (mxmodule_envelop modM).
apply/mxmoduleP=> x Gx; apply/row_subP=> i; rewrite row_mul -mem_gring_mx.
rewrite gring_mxJ // (mulsmx_subP modM) ?envelop_mx_id //.
by rewrite mem_gring_mx row_sub.
Qed.
Definition irrType := socleType aG.
Identity Coercion type_of_irrType : irrType >-> socleType.
Variable sG : irrType.
Definition irr_degree (i : sG) := \rank (socle_base i).
Local Notation "'n_ i" := (irr_degree i) : group_ring_scope.
Local Open Scope group_ring_scope.
Lemma irr_degreeE i : 'n_i = \rank (socle_base i). Proof. by []. Qed.
Lemma irr_degree_gt0 i : 'n_i > 0.
Proof. by rewrite lt0n mxrank_eq0; case: (socle_simple i). Qed.
Definition irr_repr i : mx_representation F G 'n_i := socle_repr i.
Lemma irr_reprE i x : irr_repr i x = submod_mx (socle_module i) x.
Proof. by []. Qed.
Lemma rfix_regular : (rfix_mx aG G :=: gring_row (gset_mx G))%MS.
Proof.
apply/eqmxP/andP; split; last first.
apply/rfix_mxP => x Gx; rewrite -gring_row_mul; congr gring_row.
rewrite {2}/gset_mx (reindex_astabs 'R x) ?astabsR //= mulmx_suml.
by apply: eq_bigr => y Gy; rewrite repr_mxM.
apply/rV_subP=> v /rfix_mxP cGv.
have /envelop_mxP[a def_v]: (gring_mx aG v \in R_G)%MS.
by rewrite vec_mxK submxMl.
suffices ->: v = a 1%g *: gring_row (gset_mx G) by rewrite scalemx_sub.
rewrite -linearZ scaler_sumr -[v]gring_mxK def_v; congr (gring_row _).
apply: eq_bigr => x Gx; congr (_ *: _).
move/rowP/(_ 0): (congr1 (gring_proj x \o gring_mx aG) (cGv x Gx)).
rewrite /= gring_mxJ // def_v mulmx_suml !linear_sum (bigD1 1%g) //=.
rewrite repr_mx1 -scalemxAl mul1mx linearZ /= gring_projE // eqxx scalemx1.
rewrite big1 ?addr0 ?mxE /= => [ | y /andP[Gy nt_y]]; last first.
rewrite -scalemxAl linearZ -repr_mxM //= gring_projE ?groupM //.
by rewrite eq_sym eq_mulgV1 mulgK (negPf nt_y) scaler0.
rewrite (bigD1 x) //= linearZ /= gring_projE // eqxx scalemx1.
rewrite big1 ?addr0 ?mxE // => y /andP[Gy ne_yx].
by rewrite linearZ /= gring_projE // eq_sym (negPf ne_yx) scaler0.
Qed.
Lemma principal_comp_subproof : mxsimple aG (rfix_mx aG G).
Proof.
apply: linear_mxsimple; first exact: rfix_mx_module.
apply/eqP; rewrite rfix_regular eqn_leq rank_leq_row lt0n mxrank_eq0.
apply/eqP => /(congr1 (gring_proj 1 \o gring_mx aG)); apply/eqP.
rewrite /= -[gring_mx _ _]/(gring_op _ _) !linear0 !linear_sum (bigD1 1%g) //=.
rewrite gring_opG ?gring_projE // eqxx big1 ?addr0 ?oner_eq0 // => x.
by case/andP=> Gx nt_x; rewrite gring_opG // gring_projE // eq_sym (negPf nt_x).
Qed.
Fact principal_comp_key : unit. Proof. by []. Qed.
Definition principal_comp_def :=
PackSocle (component_socle sG principal_comp_subproof).
Definition principal_comp := locked_with principal_comp_key principal_comp_def.
Local Notation "1" := principal_comp : irrType_scope.
Lemma irr1_rfix : (1%irr :=: rfix_mx aG G)%MS.
Proof.
rewrite [1%irr]unlock PackSocleK; apply/eqmxP.
rewrite (component_mx_id principal_comp_subproof) andbT.
have [I [W isoW ->]] := component_mx_def principal_comp_subproof.
apply/sumsmx_subP=> i _; have [f _ hom_f <-]:= isoW i.
(* FIX ME : this takes time *)
by apply/rfix_mxP=> x Gx; rewrite -(hom_mxP hom_f) // (rfix_mxP G _).
Qed.
Lemma rank_irr1 : \rank 1%irr = 1.
Proof.
apply/eqP; rewrite eqn_leq lt0n mxrank_eq0 nz_socle andbT.
by rewrite irr1_rfix rfix_regular rank_leq_row.
Qed.
Lemma degree_irr1 : 'n_1 = 1.
Proof.
apply/eqP; rewrite eqn_leq irr_degree_gt0 -rank_irr1.
by rewrite mxrankS ?component_mx_id //; apply: socle_simple.
Qed.
Definition Wedderburn_subring (i : sG) := <<i *m R_G>>%MS.
Local Notation "''R_' i" := (Wedderburn_subring i) : group_ring_scope.
Let sums_R : (\sum_i 'R_i :=: Socle sG *m R_G)%MS.
Proof.
apply/eqmxP; set R_S := (_ <= _)%MS.
have sRS: R_S by apply/sumsmx_subP=> i; rewrite genmxE submxMr ?(sumsmx_sup i).
rewrite sRS -(mulmxKpV sRS) mulmxA submxMr //; apply/sumsmx_subP=> i _.
rewrite -(submxMfree _ _ gring_free) -(mulmxA _ _ R_G) mulmxKpV //.
by rewrite (sumsmx_sup i) ?genmxE.
Qed.
Lemma Wedderburn_ideal i : mx_ideal R_G 'R_i.
Proof.
apply/andP; split; last first.
rewrite /right_mx_ideal genmxE (muls_eqmx (genmxE _) (eqmx_refl _)).
by rewrite -[(_ <= _)%MS]regular_module_ideal component_mx_module.
apply/mulsmx_subP=> A B R_A; rewrite !genmxE !mem_sub_gring => /andP[R_B SiB].
rewrite envelop_mxM {R_A}// gring_row_mul -{R_B}(gring_rowK R_B).
pose f := mulmx (gring_row A) \o gring_mx aG.
rewrite -[_ *m _](mul_rV_lin1 f).
suffices: (i *m lin1_mx f <= i)%MS by apply: submx_trans; rewrite submxMr.
apply: hom_component_mx; first exact: socle_simple.
apply/rV_subP=> v _; apply/hom_mxP=> x Gx.
by rewrite !mul_rV_lin1 /f /= gring_mxJ ?mulmxA.
Qed.
Lemma Wedderburn_direct : mxdirect (\sum_i 'R_i)%MS.
Proof.
apply/mxdirectP; rewrite /= sums_R mxrankMfree ?gring_free //.
rewrite (mxdirectP (Socle_direct sG)); apply: eq_bigr=> i _ /=.
by rewrite genmxE mxrankMfree ?gring_free.
Qed.
Lemma Wedderburn_disjoint i j : i != j -> ('R_i :&: 'R_j)%MS = 0.
Proof.
move=> ne_ij; apply/eqP; rewrite -submx0 capmxC.
by rewrite -(mxdirect_sumsP Wedderburn_direct j) // capmxS // (sumsmx_sup i).
Qed.
Lemma Wedderburn_annihilate i j : i != j -> ('R_i * 'R_j)%MS = 0.
Proof.
move=> ne_ij; apply/eqP; rewrite -submx0 -(Wedderburn_disjoint ne_ij).
rewrite sub_capmx; apply/andP; split.
case/andP: (Wedderburn_ideal i) => _; apply: submx_trans.
by rewrite mulsmxS // genmxE submxMl.
case/andP: (Wedderburn_ideal j) => idlRj _; apply: submx_trans idlRj.
by rewrite mulsmxS // genmxE submxMl.
Qed.
Lemma Wedderburn_mulmx0 i j A B :
i != j -> (A \in 'R_i)%MS -> (B \in 'R_j)%MS -> A *m B = 0.
Proof.
move=> ne_ij RiA RjB; apply: memmx0.
by rewrite -(Wedderburn_annihilate ne_ij) mem_mulsmx.
Qed.
Hypothesis F'G : [char F]^'.-group G.
Lemma irr_mx_sum : (\sum_(i : sG) i = 1%:M)%MS.
Proof. by apply: reducible_Socle1; apply: mx_Maschke. Qed.
Lemma Wedderburn_sum : (\sum_i 'R_i :=: R_G)%MS.
Proof. by apply: eqmx_trans sums_R _; rewrite /Socle irr_mx_sum mul1mx. Qed.
Definition Wedderburn_id i :=
vec_mx (mxvec 1%:M *m proj_mx 'R_i (\sum_(j | j != i) 'R_j)%MS).
Local Notation "''e_' i" := (Wedderburn_id i) : group_ring_scope.
Lemma Wedderburn_sum_id : \sum_i 'e_i = 1%:M.
Proof.
rewrite -linear_sum; apply: canLR mxvecK _.
have: (1%:M \in R_G)%MS := envelop_mx1 aG.
rewrite -Wedderburn_sum; case/(sub_dsumsmx Wedderburn_direct) => e Re -> _.
apply: eq_bigr => i _; have dxR := mxdirect_sumsP Wedderburn_direct i (erefl _).
rewrite (bigD1 i) // mulmxDl proj_mx_id ?Re // proj_mx_0 ?addr0 //=.
by rewrite summx_sub // => j ne_ji; rewrite (sumsmx_sup j) ?Re.
Qed.
Lemma Wedderburn_id_mem i : ('e_i \in 'R_i)%MS.
Proof. by rewrite vec_mxK proj_mx_sub. Qed.
Lemma Wedderburn_is_id i : mxring_id 'R_i 'e_i.
Proof.
have ideRi A: (A \in 'R_i)%MS -> 'e_i *m A = A.
move=> RiA; rewrite -{2}[A]mul1mx -Wedderburn_sum_id mulmx_suml.
rewrite (bigD1 i) //= big1 ?addr0 // => j ne_ji.
by rewrite (Wedderburn_mulmx0 ne_ji) ?Wedderburn_id_mem.
split=> // [||A RiA]; first 2 [exact: Wedderburn_id_mem].
apply: contraNneq (nz_socle i) => e0.
apply/rowV0P=> v; rewrite -mem_gring_mx -(genmxE (i *m _)) => /ideRi.
by rewrite e0 mul0mx => /(canLR gring_mxK); rewrite linear0.
rewrite -{2}[A]mulmx1 -Wedderburn_sum_id mulmx_sumr (bigD1 i) //=.
rewrite big1 ?addr0 // => j; rewrite eq_sym => ne_ij.
by rewrite (Wedderburn_mulmx0 ne_ij) ?Wedderburn_id_mem.
Qed.
Lemma Wedderburn_closed i : ('R_i * 'R_i = 'R_i)%MS.
Proof.
rewrite -{3}['R_i]genmx_id -/'R_i -genmx_muls; apply/genmxP.
have [idlRi idrRi] := andP (Wedderburn_ideal i).
apply/andP; split.
by apply: submx_trans idrRi; rewrite mulsmxS // genmxE submxMl.
have [_ Ri_e ideRi _] := Wedderburn_is_id i.
by apply/memmx_subP=> A RiA; rewrite -[A]ideRi ?mem_mulsmx.
Qed.
Lemma Wedderburn_is_ring i : mxring 'R_i.
Proof.
rewrite /mxring /left_mx_ideal Wedderburn_closed submx_refl.
by apply/mxring_idP; exists 'e_i; apply: Wedderburn_is_id.
Qed.
Lemma Wedderburn_min_ideal m i (E : 'A_(m, nG)) :
E != 0 -> (E <= 'R_i)%MS -> mx_ideal R_G E -> (E :=: 'R_i)%MS.
Proof.
move=> nzE sE_Ri /andP[idlE idrE]; apply/eqmxP; rewrite sE_Ri.
pose M := E *m pinvmx R_G; have defE: E = M *m R_G.
by rewrite mulmxKpV // (submx_trans sE_Ri) // genmxE submxMl.
have modM: mxmodule aG M by rewrite regular_module_ideal -defE.
have simSi := socle_simple i; set Si := socle_base i in simSi.
have [I [W isoW defW]]:= component_mx_def simSi.
rewrite /'R_i /socle_val /= defW genmxE defE submxMr //.
apply/sumsmx_subP=> j _.
have simW := mx_iso_simple (isoW j) simSi; have [modW _ minW] := simW.
have [{minW}dxWE | nzWE] := eqVneq (W j :&: M)%MS 0; last first.
by rewrite (sameP capmx_idPl eqmxP) minW ?capmxSl ?capmx_module.
have [_ Rei ideRi _] := Wedderburn_is_id i.
have:= nzE; rewrite -submx0 => /memmx_subP[A E_A].
rewrite -(ideRi _ (memmx_subP sE_Ri _ E_A)).
have:= E_A; rewrite defE mem_sub_gring => /andP[R_A M_A].
have:= Rei; rewrite genmxE mem_sub_gring => /andP[Re].
rewrite -{2}(gring_rowK Re) /socle_val defW => /sub_sumsmxP[e ->].
rewrite !(linear_sum, mulmx_suml) summx_sub //= => k _.
rewrite -(gring_rowK R_A) -gring_mxA -mulmxA gring_rowK //.
rewrite ((W k *m _ =P 0) _) ?linear0 ?sub0mx //.
have [f _ homWf defWk] := mx_iso_trans (mx_iso_sym (isoW j)) (isoW k).
rewrite -submx0 -{k defWk}(eqmxMr _ defWk) -(hom_envelop_mxC homWf) //.
rewrite -(mul0mx _ f) submxMr {f homWf}// -dxWE sub_capmx.
rewrite (mxmodule_envelop modW) //=; apply/row_subP=> k.
rewrite row_mul -mem_gring_mx -(gring_rowK R_A) gring_mxA gring_rowK //.
by rewrite -defE (memmx_subP idlE) // mem_mulsmx ?gring_mxP.
Qed.
Section IrrComponent.
(* The component of the socle of the regular module that is associated to an *)
(* irreducible representation. *)
Variables (n : nat) (rG : mx_representation F G n).
Local Notation E_G := (enveloping_algebra_mx rG).
Let not_rsim_op0 (iG j : sG) A :
mx_rsim rG (socle_repr iG) -> iG != j -> (A \in 'R_j)%MS ->
gring_op rG A = 0.
Proof.
case/mx_rsim_def=> f [f' _ hom_f] ne_iG_j RjA.
transitivity (f *m in_submod _ (val_submod 1%:M *m A) *m f').
have{RjA}: (A \in R_G)%MS by rewrite -Wedderburn_sum (sumsmx_sup j).
case/envelop_mxP=> a ->{A}; rewrite !(linear_sum, mulmx_suml).
by apply: eq_bigr => x Gx; rewrite 4!linearZ /= -scalemxAl -hom_f ?gring_opG.
rewrite (_ : _ *m A = 0) ?(linear0, mul0mx) //.
apply/row_matrixP=> i; rewrite row_mul row0 -[row _ _]gring_mxK -gring_row_mul.
rewrite (Wedderburn_mulmx0 ne_iG_j) ?linear0 // genmxE mem_gring_mx.
by rewrite (row_subP _) // val_submod1 component_mx_id //; apply: socle_simple.
Qed.
Definition irr_comp := odflt 1%irr [pick i | gring_op rG 'e_i != 0].
Local Notation iG := irr_comp.
Hypothesis irrG : mx_irreducible rG.
Lemma rsim_irr_comp : mx_rsim rG (irr_repr iG).
Proof.
have [M [modM rsimM]] := rsim_regular_submod irrG F'G.
have simM: mxsimple aG M.
case/mx_irrP: irrG => n_gt0 minG.
have [f def_n injf homf] := mx_rsim_sym rsimM.
apply/(submod_mx_irr modM)/mx_irrP.
split=> [|U modU nzU]; first by rewrite def_n.
rewrite /row_full -(mxrankMfree _ injf) -genmxE {4}def_n.
apply: minG; last by rewrite -mxrank_eq0 genmxE mxrankMfree // mxrank_eq0.
rewrite (eqmx_module _ (genmxE _)); apply/mxmoduleP=> x Gx.
by rewrite -mulmxA -homf // mulmxA submxMr // (mxmoduleP modU).
pose i := PackSocle (component_socle sG simM).
have{modM} rsimM: mx_rsim rG (socle_repr i).
apply: mx_rsim_trans rsimM (mx_rsim_sym _); apply/mx_rsim_iso.
apply: (component_mx_iso (socle_simple _)) => //.
by rewrite [component_mx _ _]PackSocleK component_mx_id.
have [<- // | ne_i_iG] := eqVneq i iG.
suffices {i M simM ne_i_iG rsimM}: gring_op rG 'e_iG != 0.
by rewrite (not_rsim_op0 rsimM ne_i_iG) ?Wedderburn_id_mem ?eqxx.
rewrite /iG; case: pickP => //= G0.
suffices: rG 1%g == 0.
by case/idPn; rewrite -mxrank_eq0 repr_mx1 mxrank1 -lt0n; case/mx_irrP: irrG.
rewrite -gring_opG // repr_mx1 -Wedderburn_sum_id linear_sum big1 // => j _.
by move/eqP: (G0 j).
Qed.
Lemma irr_comp'_op0 j A : j != iG -> (A \in 'R_j)%MS -> gring_op rG A = 0.
Proof. by rewrite eq_sym; apply: not_rsim_op0 rsim_irr_comp. Qed.
Lemma irr_comp_envelop : ('R_iG *m lin_mx (gring_op rG) :=: E_G)%MS.
Proof.
apply/eqmxP/andP; split; apply/row_subP=> i.
by rewrite row_mul mul_rV_lin gring_mxP.
rewrite rowK /= -gring_opG ?enum_valP // -mul_vec_lin -gring_opG ?enum_valP //.
rewrite vec_mxK /= -mulmxA mulmx_sub {i}//= -(eqmxMr _ Wedderburn_sum).
rewrite (bigD1 iG) //= addsmxMr addsmxC [_ *m _](sub_kermxP _) ?adds0mx //=.
apply/sumsmx_subP => j ne_j_iG; apply/memmx_subP=> A RjA; apply/sub_kermxP.
by rewrite mul_vec_lin /= (irr_comp'_op0 ne_j_iG RjA) linear0.
Qed.
Lemma ker_irr_comp_op : ('R_iG :&: kermx (lin_mx (gring_op rG)))%MS = 0.
Proof.
apply/eqP; rewrite -submx0; apply/memmx_subP=> A.
rewrite sub_capmx /= submx0 mxvec_eq0 => /andP[R_A].
rewrite (sameP sub_kermxP eqP) mul_vec_lin mxvec_eq0 /= => opA0.
have [_ Re ideR _] := Wedderburn_is_id iG; rewrite -[A]ideR {ideR}//.
move: Re; rewrite genmxE mem_sub_gring /socle_val => /andP[Re].
rewrite -{2}(gring_rowK Re) -submx0.
pose simMi := socle_simple iG; have [J [M isoM ->]] := component_mx_def simMi.
case/sub_sumsmxP=> e ->; rewrite linear_sum mulmx_suml summx_sub // => j _.
rewrite -(in_submodK (submxMl _ (M j))); move: (in_submod _ _) => v.
have modMj: mxmodule aG (M j) by apply: mx_iso_module (isoM j) _; case: simMi.
have rsimMj: mx_rsim rG (submod_repr modMj).
by apply: mx_rsim_trans rsim_irr_comp _; apply/mx_rsim_iso.
have [f [f' _ hom_f]] := mx_rsim_def (mx_rsim_sym rsimMj); rewrite submx0.
have <-: (gring_mx aG (val_submod (v *m (f *m gring_op rG A *m f')))) = 0.
by rewrite (eqP opA0) !(mul0mx, linear0).
have: (A \in R_G)%MS by rewrite -Wedderburn_sum (sumsmx_sup iG).
case/envelop_mxP=> a ->; rewrite !(linear_sum, mulmx_suml) /=; apply/eqP.
apply: eq_bigr=> x Gx; rewrite 3!linearZ -scalemxAl 3!linearZ /=.
by rewrite gring_opG // -hom_f // val_submodJ // gring_mxJ.
Qed.
Lemma regular_op_inj :
{in [pred A | (A \in 'R_iG)%MS] &, injective (gring_op rG)}.
Proof.
move=> A B RnA RnB /= eqAB; apply/eqP; rewrite -subr_eq0 -mxvec_eq0 -submx0.
rewrite -ker_irr_comp_op sub_capmx (sameP sub_kermxP eqP) mul_vec_lin.
by rewrite 2!linearB /= eqAB subrr linear0 addmx_sub ?eqmx_opp /=.
Qed.
Lemma rank_irr_comp : \rank 'R_iG = \rank E_G.
Proof.
by rewrite -irr_comp_envelop; apply/esym/mxrank_injP; rewrite ker_irr_comp_op.
Qed.
End IrrComponent.
Lemma irr_comp_rsim n1 n2 rG1 rG2 :
@mx_rsim _ G n1 rG1 n2 rG2 -> irr_comp rG1 = irr_comp rG2.
Proof.
case=> f eq_n12; rewrite -eq_n12 in rG2 f * => inj_f hom_f.
rewrite /irr_comp; apply/f_equal/eq_pick => i; rewrite -!mxrank_eq0.
(* [congr (odflt 1%irr _)] works but is very slow *)
rewrite -(mxrankMfree _ inj_f); symmetry; rewrite -(eqmxMfull _ inj_f).
have /envelop_mxP[e ->{i}]: ('e_i \in R_G)%MS.
by rewrite -Wedderburn_sum (sumsmx_sup i) ?Wedderburn_id_mem.
congr (\rank _ != _); rewrite !(mulmx_suml, linear_sum); apply: eq_bigr => x Gx.
by rewrite 3!linearZ -scalemxAl /= !gring_opG ?hom_f.
Qed.
Lemma irr_reprK i : irr_comp (irr_repr i) = i.
Proof.
apply/eqP; apply/component_mx_isoP; try exact: socle_simple.
by move/mx_rsim_iso: (rsim_irr_comp (socle_irr i)); apply: mx_iso_sym.
Qed.
Lemma irr_repr'_op0 i j A :
j != i -> (A \in 'R_j)%MS -> gring_op (irr_repr i) A = 0.
Proof.
by move=> neq_ij /irr_comp'_op0->; [|apply: socle_irr|rewrite irr_reprK].
Qed.
Lemma op_Wedderburn_id i : gring_op (irr_repr i) 'e_i = 1%:M.
Proof.
rewrite -(gring_op1 (irr_repr i)) -Wedderburn_sum_id.
rewrite linear_sum (bigD1 i) //= addrC big1 ?add0r // => j neq_ji.
exact: irr_repr'_op0 (Wedderburn_id_mem j).
Qed.
Lemma irr_comp_id (M : 'M_nG) (modM : mxmodule aG M) (iM : sG) :
mxsimple aG M -> (M <= iM)%MS -> irr_comp (submod_repr modM) = iM.
Proof.
move=> simM sMiM; rewrite -[iM]irr_reprK.
apply/esym/irr_comp_rsim/mx_rsim_iso/component_mx_iso => //.
exact: socle_simple.
Qed.
Lemma irr1_repr x : x \in G -> irr_repr 1 x = 1%:M.
Proof.
move=> Gx; suffices: x \in rker (irr_repr 1) by case/rkerP.
apply: subsetP x Gx; rewrite rker_submod rfix_mx_rstabC // -irr1_rfix.
by apply: component_mx_id; apply: socle_simple.
Qed.
Hypothesis splitG : group_splitting_field G.
Lemma rank_Wedderburn_subring i : \rank 'R_i = ('n_i ^ 2)%N.
Proof.
apply/eqP; rewrite -{1}[i]irr_reprK; have irrSi := socle_irr i.
by case/andP: (splitG irrSi) => _; rewrite rank_irr_comp.
Qed.
Lemma sum_irr_degree : (\sum_i 'n_i ^ 2 = nG)%N.
Proof.
apply: etrans (eqnP gring_free).
rewrite -Wedderburn_sum (mxdirectP Wedderburn_direct) /=.
by apply: eq_bigr => i _; rewrite rank_Wedderburn_subring.
Qed.
Lemma irr_mx_mult i : socle_mult i = 'n_i.
Proof.
rewrite /socle_mult -(mxrankMfree _ gring_free) -genmxE.
by rewrite rank_Wedderburn_subring mulKn ?irr_degree_gt0.
Qed.
Lemma mxtrace_regular :
{in G, forall x, \tr (aG x) = \sum_i \tr (socle_repr i x) *+ 'n_i}.
Proof.
move=> x Gx; have soc1: (Socle sG :=: 1%:M)%MS by rewrite -irr_mx_sum.
rewrite -(mxtrace_submod1 (Socle_module sG) soc1) // mxtrace_Socle //.
by apply: eq_bigr => i _; rewrite irr_mx_mult.
Qed.
Definition linear_irr := [set i | 'n_i == 1].
Lemma irr_degree_abelian : abelian G -> forall i, 'n_i = 1.
Proof. by move=> cGG i; apply: mxsimple_abelian_linear (socle_simple i). Qed.
Lemma linear_irr_comp i : 'n_i = 1 -> (i :=: socle_base i)%MS.
Proof.
move=> ni1; apply/eqmxP; rewrite andbC -mxrank_leqif_eq -/'n_i.
by rewrite -(mxrankMfree _ gring_free) -genmxE rank_Wedderburn_subring ni1.
exact: component_mx_id (socle_simple i).
Qed.
Lemma Wedderburn_subring_center i : ('Z('R_i) :=: mxvec 'e_i)%MS.
Proof.
have [nz_e Re ideR idRe] := Wedderburn_is_id i.
have Ze: (mxvec 'e_i <= 'Z('R_i))%MS.
rewrite sub_capmx [(_ <= _)%MS]Re.
by apply/cent_mxP=> A R_A; rewrite ideR // idRe.
pose irrG := socle_irr i; set rG := socle_repr i in irrG.
pose E_G := enveloping_algebra_mx rG; have absG := splitG irrG.
apply/eqmxP; rewrite andbC -(geq_leqif (mxrank_leqif_eq Ze)).
have ->: \rank (mxvec 'e_i) = (0 + 1)%N.
by apply/eqP; rewrite eqn_leq rank_leq_row lt0n mxrank_eq0 mxvec_eq0.
rewrite -(mxrank_mul_ker _ (lin_mx (gring_op rG))) addnC leq_add //.
rewrite leqn0 mxrank_eq0 -submx0 -(ker_irr_comp_op irrG) capmxS //.
by rewrite irr_reprK capmxSl.
apply: leq_trans (mxrankS _) (rank_leq_row (mxvec 1%:M)).
apply/memmx_subP=> Ar; case/submxP=> a ->{Ar}.
rewrite mulmxA mul_rV_lin /=; set A := vec_mx _.
rewrite memmx1 (mx_abs_irr_cent_scalar absG) // -memmx_cent_envelop.
apply/cent_mxP=> Br; rewrite -(irr_comp_envelop irrG) irr_reprK.
case/submxP=> b /(canRL mxvecK) ->{Br}; rewrite mulmxA mx_rV_lin /=.
set B := vec_mx _; have RiB: (B \in 'R_i)%MS by rewrite vec_mxK submxMl.
have sRiR: ('R_i <= R_G)%MS by rewrite -Wedderburn_sum (sumsmx_sup i).
have: (A \in 'Z('R_i))%MS by rewrite vec_mxK submxMl.
rewrite sub_capmx => /andP[RiA /cent_mxP cRiA].
by rewrite -!gring_opM ?(memmx_subP sRiR) 1?cRiA.
Qed.
Lemma Wedderburn_center :
('Z(R_G) :=: \matrix_(i < #|sG|) mxvec 'e_(enum_val i))%MS.
Proof.
have:= mxdirect_sums_center Wedderburn_sum Wedderburn_direct Wedderburn_ideal.
move/eqmx_trans; apply; apply/eqmxP/andP; split.
apply/sumsmx_subP=> i _; rewrite Wedderburn_subring_center.
by apply: (eq_row_sub (enum_rank i)); rewrite rowK enum_rankK.
apply/row_subP=> i; rewrite rowK -Wedderburn_subring_center.
by rewrite (sumsmx_sup (enum_val i)).
Qed.
Lemma card_irr : #|sG| = tG.
Proof.
rewrite -(eqnP classg_base_free) classg_base_center.
have:= mxdirect_sums_center Wedderburn_sum Wedderburn_direct Wedderburn_ideal.
move->; rewrite (mxdirectP _) /=; last first.
apply/mxdirect_sumsP=> i _; apply/eqP; rewrite -submx0.
rewrite -{2}(mxdirect_sumsP Wedderburn_direct i) // capmxS ?capmxSl //=.
by apply/sumsmx_subP=> j neji; rewrite (sumsmx_sup j) ?capmxSl.
rewrite -sum1_card; apply: eq_bigr => i _; apply/eqP.
rewrite Wedderburn_subring_center eqn_leq rank_leq_row lt0n mxrank_eq0.
by rewrite andbT mxvec_eq0; case: (Wedderburn_is_id i).
Qed.
Section CenterMode.
Variable i : sG.
Let i0 := Ordinal (irr_degree_gt0 i).
Definition irr_mode x := irr_repr i x i0 i0.
Lemma irr_mode1 : irr_mode 1 = 1.
Proof. by rewrite /irr_mode repr_mx1 mxE eqxx. Qed.
Lemma irr_center_scalar : {in 'Z(G), forall x, irr_repr i x = (irr_mode x)%:M}.
Proof.
rewrite /irr_mode => x /setIP[Gx cGx].
suffices [a ->]: exists a, irr_repr i x = a%:M by rewrite mxE eqxx.
apply/is_scalar_mxP; apply: (mx_abs_irr_cent_scalar (splitG (socle_irr i))).
by apply/centgmxP=> y Gy; rewrite -!{1}repr_mxM 1?(centP cGx).
Qed.
Lemma irr_modeM : {in 'Z(G) &, {morph irr_mode : x y / (x * y)%g >-> x * y}}.
Proof.
move=> x y Zx Zy; rewrite {1}/irr_mode repr_mxM ?(subsetP (center_sub G)) //.
by rewrite !irr_center_scalar // -scalar_mxM mxE eqxx.
Qed.
Lemma irr_modeX n : {in 'Z(G), {morph irr_mode : x / (x ^+ n)%g >-> x ^+ n}}.
Proof.
elim: n => [|n IHn] x Zx; first exact: irr_mode1.
by rewrite expgS irr_modeM ?groupX // exprS IHn.
Qed.
Lemma irr_mode_unit : {in 'Z(G), forall x, irr_mode x \is a GRing.unit}.
Proof.
move=> x Zx /=; have:= unitr1 F.
by rewrite -irr_mode1 -(mulVg x) irr_modeM ?groupV // unitrM; case/andP=> _.
Qed.
Lemma irr_mode_neq0 : {in 'Z(G), forall x, irr_mode x != 0}.
Proof. by move=> x /irr_mode_unit; rewrite unitfE. Qed.
Lemma irr_modeV : {in 'Z(G), {morph irr_mode : x / (x^-1)%g >-> x^-1}}.
Proof.
move=> x Zx /=; rewrite -[_^-1]mul1r; apply: canRL (mulrK (irr_mode_unit Zx)) _.
by rewrite -irr_modeM ?groupV // mulVg irr_mode1.
Qed.
End CenterMode.
Lemma irr1_mode x : x \in G -> irr_mode 1 x = 1.
Proof. by move=> Gx; rewrite /irr_mode irr1_repr ?mxE. Qed.
End Regular.
Local Notation "[ 1 sG ]" := (principal_comp sG) : irrType_scope.
Section LinearIrr.
Variables (gT : finGroupType) (G : {group gT}).
Lemma card_linear_irr (sG : irrType G) :
[char F]^'.-group G -> group_splitting_field G ->
#|linear_irr sG| = #|G : G^`(1)|%g.
Proof.
move=> F'G splitG; apply/eqP.
wlog sGq: / irrType (G / G^`(1))%G by apply: socle_exists.
have [_ nG'G] := andP (der_normal 1 G); apply/eqP; rewrite -card_quotient //.
have cGqGq: abelian (G / G^`(1))%g by apply: sub_der1_abelian.
have F'Gq: [char F]^'.-group (G / G^`(1))%g by apply: morphim_pgroup.
have splitGq: group_splitting_field (G / G^`(1))%G.
exact: quotient_splitting_field.
rewrite -(sum_irr_degree sGq) // -sum1_card.
pose rG (j : sGq) := morphim_repr (socle_repr j) nG'G.
have irrG j: mx_irreducible (rG j) by apply/morphim_mx_irr; apply: socle_irr.
rewrite (reindex (fun j => irr_comp sG (rG j))) /=.
apply: eq_big => [j | j _]; last by rewrite irr_degree_abelian.
have [_ lin_j _ _] := rsim_irr_comp sG F'G (irrG j).
by rewrite inE -lin_j -irr_degreeE irr_degree_abelian.
pose sGlin := {i | i \in linear_irr sG}.
have sG'k (i : sGlin) : G^`(1)%g \subset rker (irr_repr (val i)).
by case: i => i /= /[!inE] lin; rewrite rker_linear //=; apply/eqP.
pose h' u := irr_comp sGq (quo_repr (sG'k u) nG'G).
have irrGq u: mx_irreducible (quo_repr (sG'k u) nG'G).
by apply/quo_mx_irr; apply: socle_irr.
exists (fun i => oapp h' [1 sGq]%irr (insub i)) => [j | i] lin_i.
rewrite (insubT [in _] lin_i) /=; apply/esym/eqP/socle_rsimP.
apply: mx_rsim_trans (rsim_irr_comp sGq F'Gq (irrGq _)).
have [g lin_g inj_g hom_g] := rsim_irr_comp sG F'G (irrG j).
exists g => [||G'x]; last 1 [case/morphimP=> x _ Gx ->] || by [].
by rewrite quo_repr_coset ?hom_g.
rewrite (insubT (mem _) lin_i) /=; apply/esym/eqP/socle_rsimP.
set u := Sub i lin_i; apply: mx_rsim_trans (rsim_irr_comp sG F'G (irrG _)).
have [g lin_g inj_g hom_g] := rsim_irr_comp sGq F'Gq (irrGq u).
exists g => [||x Gx]; last 1 [have:= hom_g (coset _ x)] || by [].
by rewrite quo_repr_coset; first by apply; rewrite mem_quotient.
Qed.
Lemma primitive_root_splitting_abelian (z : F) :
#|G|.-primitive_root z -> abelian G -> group_splitting_field G.
Proof.
move=> ozG cGG [|n] rG irrG; first by case/mx_irrP: irrG.
case: (pickP [pred x in G | ~~ is_scalar_mx (rG x)]) => [x | scalG].
case/andP=> Gx nscal_rGx; have: horner_mx (rG x) ('X^#|G| - 1) == 0.
rewrite rmorphB rmorphXn /= horner_mx_C horner_mx_X.
rewrite -repr_mxX ?inE // ((_ ^+ _ =P 1)%g _) ?repr_mx1 ?subrr //.
by rewrite -order_dvdn order_dvdG.
case/idPn; rewrite -mxrank_eq0 -(factor_Xn_sub_1 ozG).
elim: #|G| => [|i IHi]; first by rewrite big_nil horner_mx_C mxrank1.
rewrite big_nat_recr => [|//]; rewrite rmorphM mxrankMfree {IHi}//=.
rewrite row_free_unit rmorphB /= horner_mx_X horner_mx_C.
rewrite (mx_Schur irrG) ?subr_eq0 //; last first.
by apply: contraNneq nscal_rGx => ->; apply: scalar_mx_is_scalar.
rewrite -memmx_cent_envelop linearB.
rewrite addmx_sub ?eqmx_opp ?scalar_mx_cent //= memmx_cent_envelop.
by apply/centgmxP=> j Zh_j; rewrite -!repr_mxM // (centsP cGG).
pose M := <<delta_mx 0 0 : 'rV[F]_n.+1>>%MS.
have linM: \rank M = 1 by rewrite genmxE mxrank_delta.
have modM: mxmodule rG M.
apply/mxmoduleP=> x Gx; move/idPn: (scalG x); rewrite /= Gx negbK.
by case/is_scalar_mxP=> ? ->; rewrite scalar_mxC submxMl.
apply: linear_mx_abs_irr; apply/eqP; rewrite eq_sym -linM.
by case/mx_irrP: irrG => _; apply; rewrite // -mxrank_eq0 linM.
Qed.
Lemma cycle_repr_structure x (sG : irrType G) :
G :=: <[x]> -> [char F]^'.-group G -> group_splitting_field G ->
exists2 w : F, #|G|.-primitive_root w &
exists iphi : 'I_#|G| -> sG,
[/\ bijective iphi,
#|sG| = #|G|,
forall i, irr_mode (iphi i) x = w ^+ i
& forall i, irr_repr (iphi i) x = (w ^+ i)%:M].
Proof.
move=> defG; rewrite {defG}(group_inj defG) -/#[x] in sG * => F'X splitF.
have Xx := cycle_id x; have cXX := cycle_abelian x.
have card_sG: #|sG| = #[x].
by rewrite card_irr //; apply/eqP; rewrite -card_classes_abelian.
have linX := irr_degree_abelian splitF cXX (_ : sG).
pose r (W : sG) := irr_mode W x.
have scalX W: irr_repr W x = (r W)%:M.
by apply: irr_center_scalar; rewrite ?(center_idP _).
have inj_r: injective r.
move=> V W eqVW; rewrite -(irr_reprK F'X V) -(irr_reprK F'X W).
move: (irr_repr V) (irr_repr W) (scalX V) (scalX W).
rewrite !linX {}eqVW => rV rW <- rWx; apply: irr_comp_rsim => //.
exists 1%:M; rewrite ?row_free_unit ?unitmx1 // => xk; case/cycleP=> k ->{xk}.
by rewrite mulmx1 mul1mx !repr_mxX // rWx.
have rx1 W: r W ^+ #[x] = 1.
by rewrite -irr_modeX ?(center_idP _) // expg_order irr_mode1.
have /hasP[w _ prim_w]: has #[x].-primitive_root (map r (enum sG)).
rewrite has_prim_root 1?map_inj_uniq ?enum_uniq //; first 1 last.
by rewrite size_map -cardE card_sG.
by apply/allP=> _ /mapP[W _ ->]; rewrite unity_rootE rx1.
have iphi'P := prim_rootP prim_w (rx1 _); pose iphi' := sval (iphi'P _).
have def_r W: r W = w ^+ iphi' W by apply: svalP (iphi'P W).
have inj_iphi': injective iphi'.
by move=> i j eq_ij; apply: inj_r; rewrite !def_r eq_ij.
have iphiP: codom iphi' =i 'I_#[x].
by apply/subset_cardP; rewrite ?subset_predT // card_ord card_image.
pose iphi i := iinv (iphiP i); exists w => //; exists iphi.
have iphiK: cancel iphi iphi' by move=> i; apply: f_iinv.
have r_iphi i: r (iphi i) = w ^+ i by rewrite def_r iphiK.
split=> // [|i]; last by rewrite scalX r_iphi.
by exists iphi' => // W; rewrite /iphi iinv_f.
Qed.
Lemma splitting_cyclic_primitive_root :
cyclic G -> [char F]^'.-group G -> group_splitting_field G ->
classically {z : F | #|G|.-primitive_root z}.
Proof.
case/cyclicP=> x defG F'G splitF; case=> // IH.
wlog sG: / irrType G by apply: socle_exists.
have [w prim_w _] := cycle_repr_structure sG defG F'G splitF.
by apply: IH; exists w.
Qed.
End LinearIrr.
End FieldRepr.
Arguments rfix_mx {F gT G%g n%N} rG H%g.
Arguments gset_mx F {gT} G%g A%g.
Arguments classg_base F {gT} G%g _%g : extra scopes.
Arguments irrType F {gT} G%g.
Arguments mxmoduleP {F gT G n rG m U}.
Arguments envelop_mxP {F gT G n rG A}.
Arguments hom_mxP {F gT G n rG m f W}.
Arguments mx_Maschke [F gT G n] rG _ [U].
Arguments rfix_mxP {F gT G n rG m W}.
Arguments cyclic_mxP {F gT G n rG u v}.
Arguments annihilator_mxP {F gT G n rG u A}.
Arguments row_hom_mxP {F gT G n rG u v}.
Arguments mxsimple_isoP {F gT G n rG U V}.
Arguments socle_exists [F gT G n].
Arguments socleP {F gT G n rG sG0 W W'}.
Arguments mx_abs_irrP {F gT G n rG}.
Arguments socle_rsimP {F gT G n rG sG W1 W2}.
Arguments val_submod {F n U m} W.
Arguments in_submod {F n} U {m} W.
Arguments val_submodK {F n U m} W : rename.
Arguments in_submodK {F n U m} [W] sWU.
Arguments val_submod_inj {F n U m} [W1 W2] : rename.
Arguments val_factmod {F n U m} W.
Arguments in_factmod {F n} U {m} W.
Arguments val_factmodK {F n U m} W : rename.
Arguments in_factmodK {F n} U {m} [W] sWU.
Arguments val_factmod_inj {F n U m} [W1 W2] : rename.
Notation "'Cl" := (Clifford_action _) : action_scope.
Arguments gring_row {R gT G} A.
Arguments gring_rowK {F gT G} [A] RG_A.
Bind Scope irrType_scope with socle_sort.
Notation "[ 1 sG ]" := (principal_comp sG) : irrType_scope.
Arguments irr_degree {F gT G%G sG} i%irr.
Arguments irr_repr {F gT G%G sG} i%irr _%g : extra scopes.
Arguments irr_mode {F gT G%G sG} i%irr z%g : rename.
Notation "''n_' i" := (irr_degree i) : group_ring_scope.
Notation "''R_' i" := (Wedderburn_subring i) : group_ring_scope.
Notation "''e_' i" := (Wedderburn_id i) : group_ring_scope.
Section DecideRed.
Import MatrixFormula.
Local Notation term := GRing.term.
Local Notation True := GRing.True.
Local Notation And := GRing.And (only parsing).
Local Notation morphAnd f := ((big_morph f) true andb).
Local Notation eval := GRing.eval.
Local Notation holds := GRing.holds.
Local Notation qf_form := GRing.qf_form.
Local Notation qf_eval := GRing.qf_eval.
Section Definitions.
Variables (F : fieldType) (gT : finGroupType) (G : {group gT}) (n : nat).
Variable rG : mx_representation F G n.
Definition mxmodule_form (U : 'M[term F]_n) :=
\big[And/True]_(x in G) submx_form (mulmx_term U (mx_term (rG x))) U.
Lemma mxmodule_form_qf U : qf_form (mxmodule_form U).
Proof.
by rewrite (morphAnd (@qf_form _)) ?big1 //= => x _; rewrite submx_form_qf.
Qed.
Lemma eval_mxmodule U e :
qf_eval e (mxmodule_form U) = mxmodule rG (eval_mx e U).
Proof.
rewrite (morphAnd (qf_eval e)) //= big_andE /=.
apply/forallP/mxmoduleP=> Umod x; move/implyP: (Umod x);
by rewrite eval_submx eval_mulmx eval_mx_term.
Qed.
Definition mxnonsimple_form (U : 'M[term F]_n) :=
let V := vec_mx (row_var F (n * n) 0) in
let nzV := (~ mxrank_form 0 V)%T in
let properVU := (submx_form V U /\ ~ submx_form U V)%T in
(Exists_row_form (n * n) 0 (mxmodule_form V /\ nzV /\ properVU))%T.
End Definitions.
Variables (F : decFieldType) (gT : finGroupType) (G : {group gT}) (n : nat).
Variable rG : mx_representation F G n.
Definition mxnonsimple_sat U :=
GRing.sat (@row_env _ (n * n) [::]) (mxnonsimple_form rG (mx_term U)).
Lemma mxnonsimpleP U :
U != 0 -> reflect (mxnonsimple rG U) (mxnonsimple_sat U).
Proof.
rewrite /mxnonsimple_sat {1}/mxnonsimple_form; set Vt := vec_mx _ => /= nzU.
pose nsim V := [&& mxmodule rG V, (V <= U)%MS, V != 0 & \rank V < \rank U].
set nsimUt := (_ /\ _)%T; have: qf_form nsimUt.
by rewrite /= mxmodule_form_qf !mxrank_form_qf !submx_form_qf.
move/GRing.qf_evalP; set qev := @GRing.qf_eval _ => qevP.
have qev_nsim u: qev (row_env [:: u]) nsimUt = nsim n (vec_mx u).
rewrite /nsim -mxrank_eq0 /qev /= eval_mxmodule eval_mxrank.
rewrite !eval_submx eval_mx_term eval_vec_mx eval_row_var /=.
do 2!bool_congr; apply: andb_id2l => sUV.
by rewrite ltn_neqAle andbC !mxrank_leqif_sup.
have n2gt0: n ^ 2 > 0.
by move: nzU; rewrite muln_gt0 -mxrank_eq0 unlock; case: posnP (U) => // ->.
apply: (iffP satP) => [|[V nsimV]].
by case/Exists_rowP=> // v; move/qevP; rewrite qev_nsim; exists (vec_mx v).
apply/Exists_rowP=> //; exists (mxvec V); apply/qevP.
by rewrite qev_nsim mxvecK.
Qed.
Lemma dec_mxsimple_exists (U : 'M_n) :
mxmodule rG U -> U != 0 -> {V | mxsimple rG V & V <= U}%MS.
Proof.
have [m] := ubnP (\rank U); elim: m U => // m IHm U leUm modU nzU.
have [nsimU | simU] := mxnonsimpleP nzU; last first.
by exists U; first apply/mxsimpleP.
move: (xchooseP nsimU); move: (xchoose _) => W /and4P[modW sWU nzW ltWU].
case: (IHm W) => // [|V simV sVW]; first exact: leq_trans ltWU _.
by exists V; last apply: submx_trans sVW sWU.
Qed.
Lemma dec_mx_reducible_semisimple U :
mxmodule rG U -> mx_completely_reducible rG U -> mxsemisimple rG U.
Proof.
have [m] := ubnP (\rank U); elim: m U => // m IHm U leUm modU redU.
have [U0 | nzU] := eqVneq U 0.
have{} U0: (\sum_(i < 0) 0 :=: U)%MS by rewrite big_ord0 U0.
by apply: (intro_mxsemisimple U0); case.
have [V simV sVU] := dec_mxsimple_exists modU nzU; have [modV nzV _] := simV.
have [W modW defVW dxVW] := redU V modV sVU.
have [||I W_ /= simW defW _] := IHm W _ modW.
- rewrite ltnS in leUm; apply: leq_trans leUm.
by rewrite -defVW (mxdirectP dxVW) /= -add1n leq_add2r lt0n mxrank_eq0.
- by apply: mx_reducibleS redU; rewrite // -defVW addsmxSr.
suffices defU: (\sum_i oapp W_ V i :=: U)%MS.
by apply: (intro_mxsemisimple defU) => [] [|i] //=.
apply: eqmx_trans defVW; rewrite (bigD1 None) //=; apply/eqmxP.
have [i0 _ | I0] := pickP I.
by rewrite (reindex some) ?addsmxS ?defW //; exists (odflt i0) => //; case.
rewrite big_pred0 //; last by case=> // /I0.
by rewrite !addsmxS ?sub0mx // -defW big_pred0.
Qed.
Lemma DecSocleType : socleType rG.
Proof.
have [n0 | n_gt0] := posnP n.
by exists [::] => // M [_]; rewrite -mxrank_eq0 -leqn0 -n0 rank_leq_row.
have n2_gt0: n ^ 2 > 0 by rewrite muln_gt0 n_gt0.
pose span Ms := (\sum_(M <- Ms) component_mx rG M)%MS.
have: {in [::], forall M, mxsimple rG M} by [].
have [m] := ubnP (n - \rank (span [::])).
elim: m [::] => // m IHm Ms /ltnSE-Ms_ge_n simMs.
pose V := span Ms; pose Vt := mx_term V.
pose Ut i := vec_mx (row_var F (n * n) i); pose Zt := mx_term (0 : 'M[F]_n).
pose exU i f := Exists_row_form (n * n) i (~ submx_form (Ut i) Zt /\ f (Ut i)).
pose meetUVf U := exU 1 (fun W => submx_form W Vt /\ submx_form W U)%T.
pose mx_sat := GRing.sat (@row_env F (n * n) [::]).
have ev_sub0 := GRing.qf_evalP _ (submx_form_qf _ Zt).
have ev_mod := GRing.qf_evalP _ (mxmodule_form_qf rG _).
pose ev := (eval_mxmodule, eval_submx, eval_vec_mx, eval_row_var, eval_mx_term).
case haveU: (mx_sat (exU 0 (fun U => mxmodule_form rG U /\ ~ meetUVf _ U)%T)).
have [U modU]: {U : 'M_n | mxmodule rG U & (U != 0) && ((U :&: V)%MS == 0)}.
apply: sig2W; case/Exists_rowP: (satP haveU) => //= u [nzU [modU tiUV]].
exists (vec_mx u); first by move/ev_mod: modU; rewrite !ev.
set W := (_ :&: V)%MS; move/ev_sub0: nzU; rewrite !ev -!submx0 => -> /=.
apply/idPn=> nzW; case: tiUV; apply/Exists_rowP=> //; exists (mxvec W).
apply/GRing.qf_evalP; rewrite /= ?submx_form_qf // !ev mxvecK nzW /=.
by rewrite andbC -sub_capmx.
case/andP=> nzU tiUV; have [M simM sMU] := dec_mxsimple_exists modU nzU.
apply: (IHm (M :: Ms)) => [|M']; last first.
by case/predU1P=> [-> //|]; apply: simMs.
have [_ nzM _] := simM.
suffices ltVMV: \rank V < \rank (span (M :: Ms)).
rewrite (leq_trans _ Ms_ge_n) // ltn_sub2l ?(leq_trans ltVMV) //.
exact: rank_leq_row.
rewrite /span big_cons (ltn_leqif (mxrank_leqif_sup (addsmxSr _ _))).
apply: contra nzM; rewrite addsmx_sub -submx0 -(eqP tiUV) sub_capmx sMU.
by case/andP=> sMV _; rewrite (submx_trans _ sMV) ?component_mx_id.
exists Ms => // M simM; have [modM nzM minM] := simM.
have sMV: (M <= V)%MS.
apply: contraFT haveU => not_sMV; apply/satP/Exists_rowP=> //.
exists (mxvec M); split; first by apply/ev_sub0; rewrite !ev mxvecK submx0.
split; first by apply/ev_mod; rewrite !ev mxvecK.
apply/Exists_rowP=> // [[w]].
apply/GRing.qf_evalP; rewrite /= ?submx_form_qf // !ev /= mxvecK submx0.
rewrite -nz_row_eq0 -(cyclic_mx_eq0 rG); set W := cyclic_mx _ _.
apply: contra not_sMV => /and3P[nzW Vw Mw].
have{Vw Mw} [sWV sWM]: (W <= V /\ W <= M)%MS.
rewrite !cyclic_mx_sub ?(submx_trans (nz_row_sub _)) //.
by rewrite sumsmx_module // => M' _; apply: component_mx_module.
by rewrite (submx_trans _ sWV) // minM ?cyclic_mx_module.
wlog sG: / socleType rG by apply: socle_exists.
have sVS: (V <= \sum_(W : sG | has (fun Mi => Mi <= W) Ms) W)%MS.
rewrite [V](big_nth 0) big_mkord; apply/sumsmx_subP=> i _.
set Mi := Ms`_i; have MsMi: Mi \in Ms by apply: mem_nth.
have simMi := simMs _ MsMi; have S_Mi := component_socle sG simMi.
rewrite (sumsmx_sup (PackSocle S_Mi)) ?PackSocleK //.
by apply/hasP; exists Mi; rewrite ?component_mx_id.
have [W MsW isoWM] := subSocle_iso simM (submx_trans sMV sVS).
have [Mi MsMi sMiW] := hasP MsW; apply/hasP; exists Mi => //.
have [simMi simW] := (simMs _ MsMi, socle_simple W); apply/mxsimple_isoP=> //.
exact: mx_iso_trans (mx_iso_sym isoWM) (component_mx_iso simW simMi sMiW).
Qed.
End DecideRed.
Prenex Implicits mxmodule_form mxnonsimple_form mxnonsimple_sat.
(* Change of representation field (by tensoring) *)
Section ChangeOfField.
Variables (aF rF : fieldType) (f : {rmorphism aF -> rF}).
Local Notation "A ^f" := (map_mx (GRing.RMorphism.sort f) A) : ring_scope.
Variables (gT : finGroupType) (G : {group gT}).
Section OneRepresentation.
Variables (n : nat) (rG : mx_representation aF G n).
Local Notation rGf := (map_repr f rG).
Lemma map_rfix_mx H : (rfix_mx rG H)^f = rfix_mx rGf H.
Proof.
rewrite map_kermx //; congr (kermx _); apply: map_lin1_mx => //= v.
rewrite map_mxvec map_mxM; congr (mxvec (_ *m _)); last first.
by apply: map_lin1_mx => //= u; rewrite map_mxM map_vec_mx.
by apply/row_matrixP=> i; rewrite -map_row !rowK map_mxvec map_mxB map_mx1.
Qed.
Lemma rcent_map A : rcent rGf A^f = rcent rG A.
Proof.
by apply/setP=> x; rewrite !inE -!map_mxM inj_eq //; apply: map_mx_inj.
Qed.
Lemma rstab_map m (U : 'M_(m, n)) : rstab rGf U^f = rstab rG U.
Proof.
by apply/setP=> x; rewrite !inE -!map_mxM inj_eq //; apply: map_mx_inj.
Qed.
Lemma rstabs_map m (U : 'M_(m, n)) : rstabs rGf U^f = rstabs rG U.
Proof. by apply/setP=> x; rewrite !inE -!map_mxM ?map_submx. Qed.
Lemma centgmx_map A : centgmx rGf A^f = centgmx rG A.
Proof. by rewrite /centgmx rcent_map. Qed.
Lemma mxmodule_map m (U : 'M_(m, n)) : mxmodule rGf U^f = mxmodule rG U.
Proof. by rewrite /mxmodule rstabs_map. Qed.
Lemma mxsimple_map (U : 'M_n) : mxsimple rGf U^f -> mxsimple rG U.
Proof.
case; rewrite map_mx_eq0 // mxmodule_map // => modU nzU minU.
split=> // V modV sVU nzV; rewrite -(map_submx f).
by rewrite (minU V^f) //= ?mxmodule_map ?map_mx_eq0 // map_submx.
Qed.
Lemma mx_irr_map : mx_irreducible rGf -> mx_irreducible rG.
Proof. by move=> irrGf; apply: mxsimple_map; rewrite map_mx1. Qed.
Lemma rker_map : rker rGf = rker rG.
Proof. by rewrite /rker -rstab_map map_mx1. Qed.
Lemma map_mx_faithful : mx_faithful rGf = mx_faithful rG.
Proof. by rewrite /mx_faithful rker_map. Qed.
Lemma map_mx_abs_irr :
mx_absolutely_irreducible rGf = mx_absolutely_irreducible rG.
Proof.
by rewrite /mx_absolutely_irreducible -map_enveloping_algebra_mx row_full_map.
Qed.
End OneRepresentation.
Lemma mx_rsim_map n1 n2 rG1 rG2 :
@mx_rsim _ _ G n1 rG1 n2 rG2 -> mx_rsim (map_repr f rG1) (map_repr f rG2).
Proof.
case=> g eqn12 inj_g hom_g.
by exists g^f => // [|x Gx]; rewrite ?row_free_map // -!map_mxM ?hom_g.
Qed.
Lemma map_section_repr n (rG : mx_representation aF G n) rGf U V
(modU : mxmodule rG U) (modV : mxmodule rG V)
(modUf : mxmodule rGf U^f) (modVf : mxmodule rGf V^f) :
map_repr f rG =1 rGf ->
mx_rsim (map_repr f (section_repr modU modV)) (section_repr modUf modVf).
Proof.
move=> def_rGf; set VU := <<_>>%MS.
pose valUV := val_factmod (val_submod (1%:M : 'M[aF]_(\rank VU))).
have sUV_Uf: (valUV^f <= U^f + V^f)%MS.
rewrite -map_addsmx map_submx; apply: submx_trans (proj_factmodS _ _).
by rewrite val_factmodS val_submod1 genmxE.
exists (in_submod _ (in_factmod U^f valUV^f)) => [||x Gx].
- rewrite !genmxE -(mxrank_map f) map_mxM map_col_base.
by case: (\rank (cokermx U)) / (mxrank_map _ _); rewrite map_cokermx.
- rewrite -kermx_eq0 -submx0; apply/rV_subP=> u.
rewrite (sameP sub_kermxP eqP) submx0 -val_submod_eq0.
rewrite val_submodE -mulmxA -val_submodE in_submodK; last first.
by rewrite genmxE -(in_factmod_addsK _ V^f) submxMr.
rewrite in_factmodE mulmxA -in_factmodE in_factmod_eq0.
move/(submxMr (in_factmod U 1%:M *m in_submod VU 1%:M)^f).
rewrite -mulmxA -!map_mxM //; do 2!rewrite mulmxA -in_factmodE -in_submodE.
rewrite val_factmodK val_submodK map_mx1 mulmx1.
have ->: in_factmod U U = 0 by apply/eqP; rewrite in_factmod_eq0.
by rewrite linear0 map_mx0 eqmx0 submx0.
rewrite {1}in_submodE mulmxA -in_submodE -in_submodJ; last first.
by rewrite genmxE -(in_factmod_addsK _ V^f) submxMr.
congr (in_submod _ _); rewrite -in_factmodJ // in_factmodE mulmxA -in_factmodE.
apply/eqP; rewrite -subr_eq0 -def_rGf -!map_mxM -linearB in_factmod_eq0.
rewrite -map_mxB map_submx -in_factmod_eq0 linearB.
rewrite /= (in_factmodJ modU) // val_factmodK.
rewrite [valUV]val_factmodE mulmxA -val_factmodE val_factmodK.
rewrite -val_submodE in_submodK ?subrr //.
by rewrite mxmodule_trans ?section_module // val_submod1.
Qed.
Lemma map_regular_subseries U i (modU : mx_subseries (regular_repr aF G) U)
(modUf : mx_subseries (regular_repr rF G) [seq M^f | M <- U]) :
mx_rsim (map_repr f (subseries_repr i modU)) (subseries_repr i modUf).
Proof.
set mf := map _ in modUf *; rewrite /subseries_repr.
do 2!move: (mx_subseries_module' _ _) (mx_subseries_module _ _).
have mf_i V: nth 0^f (mf V) i = (V`_i)^f.
case: (ltnP i (size V)) => [ltiV | leVi]; first exact: nth_map.
by rewrite !nth_default ?size_map.
rewrite -(map_mx0 f) mf_i (mf_i (0 :: U)) => modUi'f modUif modUi' modUi.
by apply: map_section_repr; apply: map_regular_repr.
Qed.
Lemma extend_group_splitting_field :
group_splitting_field aF G -> group_splitting_field rF G.
Proof.
move=> splitG n rG irrG.
have modU0: all ((mxmodule (regular_repr aF G)) #|G|) [::] by [].
apply: (mx_Schreier modU0 _) => // [[U [compU lastU _]]]; have [modU _]:= compU.
pose Uf := map (map_mx f) U.
have{lastU} lastUf: (last 0 Uf :=: 1%:M)%MS.
by rewrite -(map_mx0 f) -(map_mx1 f) last_map; apply/map_eqmx.
have modUf: mx_subseries (regular_repr rF G) Uf.
rewrite /mx_subseries all_map; apply: etrans modU; apply: eq_all => Ui /=.
rewrite -mxmodule_map; apply: eq_subset_r => x.
by rewrite !inE map_regular_repr.
have absUf i: i < size U -> mx_absolutely_irreducible (subseries_repr i modUf).
move=> lt_i_U; rewrite -(mx_rsim_abs_irr (map_regular_subseries i modU _)).
rewrite map_mx_abs_irr; apply: splitG.
by apply: mx_rsim_irr (mx_series_repr_irr compU lt_i_U); apply: section_eqmx.
have compUf: mx_composition_series (regular_repr rF G) Uf.
split=> // i; rewrite size_map => ltiU.
move/max_submodP: (mx_abs_irrW (absUf i ltiU)); apply.
rewrite -{2}(map_mx0 f) -map_cons !(nth_map 0) ?leqW //.
by rewrite map_submx // ltmxW // (pathP _ (mx_series_lt compU)).
have [[i ltiU] simUi] := rsim_regular_series irrG compUf lastUf.
have{} simUi: mx_rsim rG (subseries_repr i modUf).
by apply: mx_rsim_trans simUi _; apply: section_eqmx.
by rewrite (mx_rsim_abs_irr simUi) absUf; rewrite size_map in ltiU.
Qed.
End ChangeOfField.
(* Construction of a splitting field FA of an irreducible representation, for *)
(* a matrix A in the centraliser of the representation. FA is the row-vector *)
(* space of the matrix algebra generated by A with basis 1, A, ..., A ^+ d.-1 *)
(* or, equivalently, the polynomials in {poly F} taken mod the (irreducible) *)
(* minimal polynomial pA of A (of degree d). *)
(* The details of the construction of FA are encapsulated in a submodule. *)
Module Import MatrixGenField.
(* The type definition must come before the main section so that the Bind *)
(* Scope directive applies to all lemmas and definition discharged at the *)
(* of the section. *)
Record gen_of {F : fieldType} {gT : finGroupType} {G : {group gT}} {n' : nat}
{rG : mx_representation F G n'.+1} {A : 'M[F]_n'.+1}
(irrG : mx_irreducible rG) (cGA : centgmx rG A) :=
Gen {rVval : 'rV[F]_(degree_mxminpoly A)}.
Local Arguments rVval {F gT G%G n'%N rG A%R irrG cGA} x%R : rename.
Bind Scope ring_scope with gen_of.
Section GenField.
Variables (F : fieldType) (gT : finGroupType) (G : {group gT}) (n' : nat).
Local Notation n := n'.+1.
Variables (rG : mx_representation F G n) (A : 'M[F]_n).
Local Notation d := (degree_mxminpoly A).
Local Notation Ad := (powers_mx A d).
Local Notation pA := (mxminpoly A).
Let d_gt0 := mxminpoly_nonconstant A.
Local Notation irr := mx_irreducible.
Hypotheses (irrG : irr rG) (cGA : centgmx rG A).
Notation FA := (gen_of irrG cGA).
Let inFA := Gen irrG cGA.
#[export, hnf] HB.instance Definition _ := [isNew for rVval : FA -> 'rV_d].
#[export] HB.instance Definition _ := [Choice of FA by <:].
Definition gen0 := inFA 0.
Definition genN (x : FA) := inFA (- val x).
Definition genD (x y : FA) := inFA (val x + val y).
Lemma gen_addA : associative genD.
Proof. by move=> x y z; apply: val_inj; rewrite /= addrA. Qed.
Lemma gen_addC : commutative genD.
Proof. by move=> x y; apply: val_inj; rewrite /= addrC. Qed.
Lemma gen_add0r : left_id gen0 genD.
Proof. by move=> x; apply: val_inj; rewrite /= add0r. Qed.
Lemma gen_addNr : left_inverse gen0 genN genD.
Proof. by move=> x; apply: val_inj; rewrite /= addNr. Qed.
#[export] HB.instance Definition _ := GRing.isZmodule.Build FA
gen_addA gen_addC gen_add0r gen_addNr.
Definition pval (x : FA) := rVpoly (val x).
Definition mxval (x : FA) := horner_mx A (pval x).
Definition gen (x : F) := inFA (poly_rV x%:P).
Lemma genK x : mxval (gen x) = x%:M.
Proof.
by rewrite /mxval [pval _]poly_rV_K ?horner_mx_C // size_polyC; case: (x != 0).
Qed.
Lemma mxval_inj : injective mxval.
Proof. exact: inj_comp horner_rVpoly_inj val_inj. Qed.
Lemma mxval0 : mxval 0 = 0.
Proof. by rewrite /mxval [pval _]raddf0 rmorph0. Qed.
Lemma mxvalN : {morph mxval : x / - x}.
Proof. by move=> x; rewrite /mxval [pval _](@raddfN 'rV[F]_d) rmorphN. Qed.
Lemma mxvalD : {morph mxval : x y / x + y}.
Proof. by move=> x y; rewrite /mxval [pval _]raddfD rmorphD. Qed.
Definition mxval_sum := big_morph mxval mxvalD mxval0.
Definition gen1 := inFA (poly_rV 1).
Definition genM x y := inFA (poly_rV (pval x * pval y %% pA)).
Definition genV x := inFA (poly_rV (mx_inv_horner A (mxval x)^-1)).
Lemma mxval_gen1 : mxval gen1 = 1%:M.
Proof. by rewrite /mxval [pval _]poly_rV_K ?size_poly1 // horner_mx_C. Qed.
Lemma mxval_genM : {morph mxval : x y / genM x y >-> x *m y}.
Proof.
move=> x y; rewrite /mxval [pval _]poly_rV_K ?size_mod_mxminpoly //.
by rewrite -horner_mxK mx_inv_hornerK ?horner_mx_mem // rmorphM.
Qed.
Lemma mxval_genV : {morph mxval : x / genV x >-> invmx x}.
Proof.
move=> x; rewrite /mxval [pval _]poly_rV_K ?size_poly ?mx_inv_hornerK //.
pose m B : 'M[F]_(n * n) := lin_mx (mulmxr B); set B := mxval x.
case uB: (B \is a GRing.unit); last by rewrite invr_out ?uB ?horner_mx_mem.
have defAd: Ad = Ad *m m B *m m B^-1.
apply/row_matrixP=> i.
by rewrite !row_mul mul_rV_lin /= mx_rV_lin /= mulmxK ?vec_mxK.
rewrite -[B^-1]mul1mx -(mul_vec_lin (mulmxr B^-1)) defAd submxMr //.
rewrite -mxval_gen1 (submx_trans (horner_mx_mem _ _)) // {1}defAd.
rewrite -(geq_leqif (mxrank_leqif_sup _)) ?mxrankM_maxl // -{}defAd.
apply/row_subP=> i; rewrite row_mul rowK mul_vec_lin /= -{2}[A]horner_mx_X.
by rewrite -rmorphXn mulmxE -rmorphM horner_mx_mem.
Qed.
Lemma gen_mulA : associative genM.
Proof. by move=> x y z; apply: mxval_inj; rewrite !mxval_genM mulmxA. Qed.
Lemma gen_mulC : commutative genM.
Proof. by move=> x y; rewrite /genM mulrC. Qed.
Lemma gen_mul1r : left_id gen1 genM.
Proof. by move=> x; apply: mxval_inj; rewrite mxval_genM mxval_gen1 mul1mx. Qed.
Lemma gen_mulDr : left_distributive genM +%R.
Proof.
by move=> x y z; apply: mxval_inj; rewrite !(mxvalD, mxval_genM) mulmxDl.
Qed.
Lemma gen_ntriv : gen1 != 0.
Proof. by rewrite -(inj_eq mxval_inj) mxval_gen1 mxval0 oner_eq0. Qed.
#[export] HB.instance Definition _ := GRing.Zmodule_isComRing.Build FA
gen_mulA gen_mulC gen_mul1r gen_mulDr gen_ntriv.
Lemma mxval1 : mxval 1 = 1%:M. Proof. exact: mxval_gen1. Qed.
Lemma mxvalM : {morph mxval : x y / x * y >-> x *m y}.
Proof. exact: mxval_genM. Qed.
Lemma mxval_sub : additive mxval.
Proof. by move=> x y; rewrite mxvalD mxvalN. Qed.
#[export] HB.instance Definition _ :=
GRing.isAdditive.Build FA 'M[F]_n mxval mxval_sub.
Lemma mxval_is_multiplicative : multiplicative mxval.
Proof. by split; [apply: mxvalM | apply: mxval1]. Qed.
#[export] HB.instance Definition _ :=
GRing.isMultiplicative.Build FA 'M[F]_n mxval mxval_is_multiplicative.
Lemma mxval_centg x : centgmx rG (mxval x).
Proof.
rewrite [mxval _]horner_rVpoly -memmx_cent_envelop vec_mxK {x}mulmx_sub //.
apply/row_subP=> k; rewrite rowK memmx_cent_envelop; apply/centgmxP => g Gg /=.
by rewrite !mulmxE commrX // /GRing.comm -mulmxE (centgmxP cGA).
Qed.
Lemma gen_mulVr x : x != 0 -> genV x * x = 1.
Proof.
rewrite -(inj_eq mxval_inj) mxval0.
move/(mx_Schur irrG (mxval_centg x)) => u_x.
by apply: mxval_inj; rewrite mxvalM mxval_genV mxval1 mulVmx.
Qed.
Lemma gen_invr0 : genV 0 = 0.
Proof. by apply: mxval_inj; rewrite mxval_genV !mxval0 -{2}invr0. Qed.
#[export] HB.instance Definition _ := GRing.ComRing_isField.Build FA
gen_mulVr gen_invr0.
Lemma mxvalV : {morph mxval : x / x^-1 >-> invmx x}.
Proof. exact: mxval_genV. Qed.
Lemma gen_is_additive : additive gen.
Proof. by move=> x y; apply: mxval_inj; rewrite genK !rmorphB /= !genK. Qed.
Lemma gen_is_multiplicative : multiplicative gen.
Proof. by split=> // x y; apply: mxval_inj; rewrite genK !rmorphM /= !genK. Qed.
#[export] HB.instance Definition _ := GRing.isAdditive.Build F FA gen
gen_is_additive.
#[export] HB.instance Definition _ := GRing.isMultiplicative.Build F FA gen
gen_is_multiplicative.
(* The generated field contains a root of the minimal polynomial (in some *)
(* cases we want to use the construction solely for that purpose). *)
Definition groot := inFA (poly_rV ('X %% pA)).
Lemma mxval_groot : mxval groot = A.
Proof.
rewrite /mxval [pval _]poly_rV_K ?size_mod_mxminpoly // -horner_mxK.
by rewrite mx_inv_hornerK ?horner_mx_mem // horner_mx_X.
Qed.
Lemma mxval_grootXn k : mxval (groot ^+ k) = A ^+ k.
Proof. by rewrite rmorphXn /= mxval_groot. Qed.
Lemma map_mxminpoly_groot : (map_poly gen pA).[groot] = 0.
Proof. (* The [_ groot] prevents divergence of simpl. *)
apply: mxval_inj; rewrite -horner_map [_ groot]/= mxval_groot mxval0.
rewrite -(mx_root_minpoly A); congr ((_ : {poly _}).[A]).
by apply/polyP=> i; rewrite 3!coef_map; apply: genK.
Qed.
(* Plugging the extension morphism gen into the ext_repr construction *)
(* yields a (reducible) tensored representation. *)
Lemma non_linear_gen_reducible : d > 1 -> mxnonsimple (map_repr gen rG) 1%:M.
Proof.
rewrite ltnNge mxminpoly_linear_is_scalar => Anscal.
pose Af := map_mx gen A; exists (kermx (Af - groot%:M)).
rewrite submx1 kermx_centg_module /=; last first.
apply/centgmxP=> z Gz; rewrite mulmxBl mulmxBr scalar_mxC.
by rewrite -!map_mxM 1?(centgmxP cGA).
rewrite andbC mxrank_ker -subn_gt0 mxrank1 subKn ?rank_leq_row // lt0n.
rewrite mxrank_eq0 subr_eq0; case: eqP => [defAf | _].
rewrite -(map_mx_is_scalar gen) -/Af in Anscal.
by case/is_scalar_mxP: Anscal; exists groot.
rewrite -mxrank_eq0 mxrank_ker subn_eq0 row_leq_rank.
apply/row_freeP=> [[XA' XAK]].
have pAf0: (mxminpoly Af).[groot] == 0.
by rewrite mxminpoly_map ?map_mxminpoly_groot.
have{pAf0} [q def_pAf]:= factor_theorem _ _ pAf0.
have q_nz: q != 0.
case: eqP (congr1 (fun p : {poly _} => size p) def_pAf) => // ->.
by rewrite size_mxminpoly mul0r size_poly0.
have qAf0: horner_mx Af q = 0.
rewrite -[_ q]mulr1 -[1]XAK mulrA -{2}(horner_mx_X Af) -(horner_mx_C Af).
by rewrite -rmorphB -rmorphM -def_pAf /= mx_root_minpoly mul0r.
have{qAf0} := dvdp_leq q_nz (mxminpoly_min qAf0); rewrite def_pAf.
by rewrite size_Mmonic ?monicXsubC // polyseqXsubC addn2 ltnn.
Qed.
(* An alternative to the above, used in the proof of the p-stability of *)
(* groups of odd order, is to reconsider the original vector space as a *)
(* vector space of dimension n / e over FA. This is applicable only if G is *)
(* the largest group represented on the original vector space (i.e., if we *)
(* are not studying a representation of G induced by one of a larger group, *)
(* as in B & G Theorem 2.6 for instance). We can't fully exploit one of the *)
(* benefits of this approach -- that the type domain for the vector space can *)
(* remain unchanged -- because we're restricting ourselves to row matrices; *)
(* we have to use explicit bijections to convert between the two views. *)
Definition subbase nA (B : 'rV_nA) : 'M_(nA * d, n) :=
\matrix_ik mxvec (\matrix_(i, k) (row (B 0 i) (A ^+ k))) 0 ik.
Lemma gen_dim_ex_proof : exists nA, [exists B : 'rV_nA, row_free (subbase B)].
Proof. by exists 0; apply/existsP; exists 0; rewrite /row_free unlock. Qed.
Lemma gen_dim_ub_proof nA :
[exists B : 'rV_nA, row_free (subbase B)] -> (nA <= n)%N.
Proof.
case/existsP=> B /eqnP def_nAd.
by rewrite (leq_trans _ (rank_leq_col (subbase B))) // def_nAd leq_pmulr.
Qed.
Definition gen_dim := ex_maxn gen_dim_ex_proof gen_dim_ub_proof.
Notation nA := gen_dim.
Definition gen_base : 'rV_nA := odflt 0 [pick B | row_free (subbase B)].
Definition base := subbase gen_base.
Lemma base_free : row_free base.
Proof.
rewrite /base /gen_base /nA; case: pickP => //; case: ex_maxnP => nA_max.
by case/existsP=> B Bfree _ no_free; rewrite no_free in Bfree.
Qed.
Lemma base_full : row_full base.
Proof.
rewrite /row_full (eqnP base_free) /nA; case: ex_maxnP => nA.
case/existsP=> /= B /eqnP Bfree nA_max; rewrite -Bfree eqn_leq rank_leq_col.
rewrite -{1}(mxrank1 F n) mxrankS //; apply/row_subP=> j; set u := row _ _.
move/implyP: {nA_max}(nA_max nA.+1); rewrite ltnn implybF.
apply: contraR => nBj; apply/existsP.
exists (row_mx (const_mx j : 'M_1) B); rewrite -row_leq_rank.
pose Bj := Ad *m lin1_mx (mulmx u \o vec_mx).
have rBj: \rank Bj = d.
apply/eqP; rewrite eqn_leq rank_leq_row -subn_eq0 -mxrank_ker mxrank_eq0 /=.
apply/rowV0P=> v /sub_kermxP; rewrite mulmxA mul_rV_lin1 /=.
rewrite -horner_rVpoly; pose x := inFA v; rewrite -/(mxval x).
have [[] // | nzx /(congr1 (mulmx^~ (mxval x^-1)))] := eqVneq x 0.
rewrite mul0mx /= -mulmxA -mxvalM divff // mxval1 mulmx1.
by move/rowP/(_ j)/eqP; rewrite !mxE !eqxx oner_eq0.
rewrite {1}mulSn -Bfree -{1}rBj {rBj} -mxrank_disjoint_sum.
rewrite mxrankS // addsmx_sub -[nA.+1]/(1 + nA)%N; apply/andP; split.
apply/row_subP=> k; rewrite row_mul mul_rV_lin1 /=.
apply: eq_row_sub (mxvec_index (lshift _ 0) k) _.
by rewrite !rowK mxvecK mxvecE mxE row_mxEl mxE -row_mul mul1mx.
apply/row_subP; case/mxvec_indexP=> i k.
apply: eq_row_sub (mxvec_index (rshift 1 i) k) _.
by rewrite !rowK !mxvecE 2!mxE row_mxEr.
apply/eqP/rowV0P=> v; rewrite sub_capmx => /andP[/submxP[w]].
set x := inFA w; rewrite {Bj}mulmxA mul_rV_lin1 /= -horner_rVpoly -/(mxval x).
have [-> | nzx ->] := eqVneq x 0; first by rewrite mxval0 mulmx0.
move/(submxMr (mxval x^-1)); rewrite -mulmxA -mxvalM divff {nzx}//.
rewrite mxval1 mulmx1 => Bx'j; rewrite (submx_trans Bx'j) in nBj => {Bx'j} //.
apply/row_subP; case/mxvec_indexP=> i k.
rewrite row_mul rowK mxvecE mxE rowE -mulmxA.
have ->: A ^+ k *m mxval x^-1 = mxval (groot ^+ k / x).
by rewrite mxvalM rmorphXn /= mxval_groot.
rewrite [mxval _]horner_rVpoly; move: {k u x}(val _) => u.
rewrite (mulmx_sum_row u) !linear_sum summx_sub //= => k _.
rewrite 2!linearZ scalemx_sub //= rowK mxvecK -rowE.
by apply: eq_row_sub (mxvec_index i k) _; rewrite rowK mxvecE mxE.
Qed.
Lemma gen_dim_factor : (nA * d)%N = n.
Proof. by rewrite -(eqnP base_free) (eqnP base_full). Qed.
Lemma gen_dim_gt0 : nA > 0.
Proof. by case: posnP gen_dim_factor => // ->. Qed.
Section Bijection.
Variable m : nat.
Definition in_gen (W : 'M[F]_(m, n)) : 'M[FA]_(m, nA) :=
\matrix_(i, j) inFA (row j (vec_mx (row i W *m pinvmx base))).
Definition val_gen (W : 'M[FA]_(m, nA)) : 'M[F]_(m, n) :=
\matrix_i (mxvec (\matrix_j val (W i j)) *m base).
Lemma in_genK : cancel in_gen val_gen.
Proof.
move=> W; apply/row_matrixP=> i; rewrite rowK; set w := row i W.
have b_w: (w <= base)%MS by rewrite submx_full ?base_full.
rewrite -{b_w}(mulmxKpV b_w); congr (_ *m _).
by apply/rowP; case/mxvec_indexP=> j k; rewrite mxvecE !mxE.
Qed.
Lemma val_genK : cancel val_gen in_gen.
Proof.
move=> W; apply/matrixP=> i j; apply: val_inj; rewrite mxE /= rowK.
case/row_freeP: base_free => B' BB'; rewrite -[_ *m _]mulmx1 -BB' mulmxA.
by rewrite mulmxKpV ?submxMl // -mulmxA BB' mulmx1 mxvecK rowK.
Qed.
Lemma in_gen0 : in_gen 0 = 0.
Proof. by apply/matrixP=> i j; rewrite !mxE !(mul0mx, linear0). Qed.
Lemma val_gen0 : val_gen 0 = 0.
Proof. by apply: (canLR in_genK); rewrite in_gen0. Qed.
Lemma in_genN : {morph in_gen : W / - W}.
Proof. by move=> W; apply/matrixP=> i j; rewrite !mxE 4!(mulNmx, linearN). Qed.
Lemma val_genN : {morph val_gen : W / - W}.
Proof. by move=> W; apply: (canLR in_genK); rewrite in_genN val_genK. Qed.
Lemma in_genD : {morph in_gen : U V / U + V}.
Proof.
by move=> U V; apply/matrixP=> i j; rewrite !mxE 4!(mulmxDl, linearD).
Qed.
Lemma val_genD : {morph val_gen : U V / U + V}.
Proof. by move=> U V; apply: (canLR in_genK); rewrite in_genD !val_genK. Qed.
Definition in_gen_sum := big_morph in_gen in_genD in_gen0.
Definition val_gen_sum := big_morph val_gen val_genD val_gen0.
Lemma in_genZ a : {morph in_gen : W / a *: W >-> gen a *: W}.
Proof.
move=> W; apply/matrixP=> i j; apply: mxval_inj.
rewrite !mxE mxvalM genK ![mxval _]horner_rVpoly /=.
by rewrite mul_scalar_mx !(I, scalemxAl, linearZ).
Qed.
End Bijection.
Prenex Implicits val_genK in_genK.
Lemma val_gen_rV (w : 'rV_nA) :
val_gen w = mxvec (\matrix_j val (w 0 j)) *m base.
Proof. by apply/rowP=> j /[1!mxE]. Qed.
Section Bijection2.
Variable m : nat.
Lemma val_gen_row W (i : 'I_m) : val_gen (row i W) = row i (val_gen W).
Proof.
rewrite val_gen_rV rowK; congr (mxvec _ *m _).
by apply/matrixP=> j k /[!mxE].
Qed.
Lemma in_gen_row W (i : 'I_m) : in_gen (row i W) = row i (in_gen W).
Proof. by apply: (canLR val_genK); rewrite val_gen_row in_genK. Qed.
Lemma row_gen_sum_mxval W (i : 'I_m) :
row i (val_gen W) = \sum_j row (gen_base 0 j) (mxval (W i j)).
Proof.
rewrite -val_gen_row [row i W]row_sum_delta val_gen_sum.
apply: eq_bigr => /= j _ /[1!mxE]; move: {W i}(W i j) => x.
have ->: x = \sum_k gen (val x 0 k) * inFA (delta_mx 0 k).
case: x => u; apply: mxval_inj; rewrite {1}[u]row_sum_delta.
rewrite mxval_sum [mxval _]horner_rVpoly mulmx_suml linear_sum /=.
apply: eq_bigr => k _; rewrite mxvalM genK [mxval _]horner_rVpoly /=.
by rewrite mul_scalar_mx -scalemxAl linearZ.
rewrite scaler_suml val_gen_sum mxval_sum linear_sum; apply: eq_bigr => k _.
rewrite mxvalM genK mul_scalar_mx linearZ [mxval _]horner_rVpoly /=.
rewrite -scalerA; apply: (canLR in_genK); rewrite in_genZ; congr (_ *: _).
apply: (canRL val_genK); transitivity (row (mxvec_index j k) base); last first.
by rewrite -rowE rowK mxvecE mxE rowK mxvecK.
rewrite rowE -mxvec_delta -[val_gen _](row_id 0) rowK /=; congr (mxvec _ *m _).
apply/row_matrixP=> j'; rewrite rowK !mxE mulr_natr rowE mul_delta_mx_cond.
by rewrite !mulrb (fun_if rVval).
Qed.
Lemma val_genZ x : {morph @val_gen m : W / x *: W >-> W *m mxval x}.
Proof.
move=> W; apply/row_matrixP=> i; rewrite row_mul !row_gen_sum_mxval.
by rewrite mulmx_suml; apply: eq_bigr => j _; rewrite mxE mulrC mxvalM row_mul.
Qed.
End Bijection2.
Lemma submx_in_gen m1 m2 (U : 'M_(m1, n)) (V : 'M_(m2, n)) :
(U <= V -> in_gen U <= in_gen V)%MS.
Proof.
move=> sUV; apply/row_subP=> i; rewrite -in_gen_row.
case/submxP: (row_subP sUV i) => u ->{i}.
rewrite mulmx_sum_row in_gen_sum summx_sub // => j _.
by rewrite in_genZ in_gen_row scalemx_sub ?row_sub.
Qed.
Lemma submx_in_gen_eq m1 m2 (U : 'M_(m1, n)) (V : 'M_(m2, n)) :
(V *m A <= V -> (in_gen U <= in_gen V) = (U <= V))%MS.
Proof.
move=> sVA_V; apply/idP/idP=> siUV; last exact: submx_in_gen.
apply/row_subP=> i; rewrite -[row i U]in_genK in_gen_row.
case/submxP: (row_subP siUV i) => u ->{i U siUV}.
rewrite mulmx_sum_row val_gen_sum summx_sub // => j _.
rewrite val_genZ val_gen_row in_genK rowE -mulmxA mulmx_sub //.
rewrite [mxval _]horner_poly mulmx_sumr summx_sub // => [[k _]] _ /=.
rewrite mulmxA mul_mx_scalar -scalemxAl scalemx_sub {u j}//.
elim: k => [|k IHk]; first by rewrite mulmx1.
by rewrite exprSr mulmxA (submx_trans (submxMr A IHk)).
Qed.
Definition gen_mx g := \matrix_i in_gen (row (gen_base 0 i) (rG g)).
Let val_genJmx m :
{in G, forall g, {morph @val_gen m : W / W *m gen_mx g >-> W *m rG g}}.
Proof.
move=> g Gg /= W; apply/row_matrixP=> i; rewrite -val_gen_row !row_mul.
rewrite mulmx_sum_row val_gen_sum row_gen_sum_mxval mulmx_suml.
apply: eq_bigr => /= j _; rewrite val_genZ rowK in_genK mxE -!row_mul.
by rewrite (centgmxP (mxval_centg _)).
Qed.
Lemma gen_mx_repr : mx_repr G gen_mx.
Proof.
split=> [|g h Gg Gh]; apply: (can_inj val_genK).
by rewrite -[gen_mx 1]mul1mx val_genJmx // repr_mx1 mulmx1.
rewrite {1}[val_gen]lock -[gen_mx g]mul1mx !val_genJmx // -mulmxA -repr_mxM //.
by rewrite -val_genJmx ?groupM ?mul1mx -?lock.
Qed.
Canonical gen_repr := MxRepresentation gen_mx_repr.
Local Notation rGA := gen_repr.
Lemma val_genJ m :
{in G, forall g, {morph @val_gen m : W / W *m rGA g >-> W *m rG g}}.
Proof. exact: val_genJmx. Qed.
Lemma in_genJ m :
{in G, forall g, {morph @in_gen m : v / v *m rG g >-> v *m rGA g}}.
Proof.
by move=> g Gg /= v; apply: (canLR val_genK); rewrite val_genJ ?in_genK.
Qed.
Lemma rfix_gen (H : {set gT}) :
H \subset G -> (rfix_mx rGA H :=: in_gen (rfix_mx rG H))%MS.
Proof.
move/subsetP=> sHG; apply/eqmxP/andP; split; last first.
by apply/rfix_mxP=> g Hg; rewrite -in_genJ ?sHG ?rfix_mx_id.
rewrite -[rfix_mx rGA H]val_genK; apply: submx_in_gen.
by apply/rfix_mxP=> g Hg; rewrite -val_genJ ?rfix_mx_id ?sHG.
Qed.
Definition rowval_gen m U :=
<<\matrix_ik
mxvec (\matrix_(i < m, k < d) (row i (val_gen U) *m A ^+ k)) 0 ik>>%MS.
Lemma submx_rowval_gen m1 m2 (U : 'M_(m1, n)) (V : 'M_(m2, nA)) :
(U <= rowval_gen V)%MS = (in_gen U <= V)%MS.
Proof.
rewrite genmxE; apply/idP/idP=> sUV.
apply: submx_trans (submx_in_gen sUV) _.
apply/row_subP; case/mxvec_indexP=> i k; rewrite -in_gen_row rowK mxvecE mxE.
rewrite -mxval_grootXn -val_gen_row -val_genZ val_genK scalemx_sub //.
exact: row_sub.
rewrite -[U]in_genK; case/submxP: sUV => u ->{U}.
apply/row_subP=> i0; rewrite -val_gen_row row_mul; move: {i0 u}(row _ u) => u.
rewrite mulmx_sum_row val_gen_sum summx_sub // => i _.
rewrite val_genZ [mxval _]horner_rVpoly [_ *m Ad]mulmx_sum_row.
rewrite !linear_sum summx_sub // => k _.
rewrite 2!linearZ scalemx_sub {u}//= rowK mxvecK val_gen_row.
by apply: (eq_row_sub (mxvec_index i k)); rewrite rowK mxvecE mxE.
Qed.
Lemma rowval_genK m (U : 'M_(m, nA)) : (in_gen (rowval_gen U) :=: U)%MS.
Proof.
apply/eqmxP; rewrite -submx_rowval_gen submx_refl /=.
by rewrite -{1}[U]val_genK submx_in_gen // submx_rowval_gen val_genK.
Qed.
Lemma rowval_gen_stable m (U : 'M_(m, nA)) :
(rowval_gen U *m A <= rowval_gen U)%MS.
Proof.
rewrite -[A]mxval_groot -{1}[_ U]in_genK -val_genZ.
by rewrite submx_rowval_gen val_genK scalemx_sub // rowval_genK.
Qed.
Lemma rstab_in_gen m (U : 'M_(m, n)) : rstab rGA (in_gen U) = rstab rG U.
Proof.
apply/setP=> x /[!inE]; case Gx: (x \in G) => //=.
by rewrite -in_genJ // (inj_eq (can_inj in_genK)).
Qed.
Lemma rstabs_in_gen m (U : 'M_(m, n)) :
rstabs rG U \subset rstabs rGA (in_gen U).
Proof.
by apply/subsetP=> x /[!inE] /andP[Gx nUx]; rewrite -in_genJ Gx // submx_in_gen.
Qed.
Lemma rstabs_rowval_gen m (U : 'M_(m, nA)) :
rstabs rG (rowval_gen U) = rstabs rGA U.
Proof.
apply/setP=> x /[!inE]; case Gx: (x \in G) => //=.
by rewrite submx_rowval_gen in_genJ // (eqmxMr _ (rowval_genK U)).
Qed.
Lemma mxmodule_rowval_gen m (U : 'M_(m, nA)) :
mxmodule rG (rowval_gen U) = mxmodule rGA U.
Proof. by rewrite /mxmodule rstabs_rowval_gen. Qed.
Lemma gen_mx_irr : mx_irreducible rGA.
Proof.
apply/mx_irrP; split=> [|U Umod nzU]; first exact: gen_dim_gt0.
rewrite -sub1mx -rowval_genK -submx_rowval_gen submx_full //.
case/mx_irrP: irrG => _; apply; first by rewrite mxmodule_rowval_gen.
rewrite -(inj_eq (can_inj in_genK)) in_gen0.
by rewrite -mxrank_eq0 rowval_genK mxrank_eq0.
Qed.
Lemma rker_gen : rker rGA = rker rG.
Proof.
apply/setP=> g; rewrite !inE !mul1mx; case Gg: (g \in G) => //=.
apply/eqP/eqP=> g1; apply/row_matrixP=> i.
by apply: (can_inj in_genK); rewrite rowE in_genJ //= g1 mulmx1 row1.
by apply: (can_inj val_genK); rewrite rowE val_genJ //= g1 mulmx1 row1.
Qed.
Lemma gen_mx_faithful : mx_faithful rGA = mx_faithful rG.
Proof. by rewrite /mx_faithful rker_gen. Qed.
End GenField.
Section DecideGenField.
Import MatrixFormula.
Variable F : decFieldType.
Local Notation False := GRing.False.
Local Notation True := GRing.True.
Local Notation Bool b := (GRing.Bool b%bool).
Local Notation term := (GRing.term F).
Local Notation form := (GRing.formula F).
Local Notation morphAnd f := ((big_morph f) true andb).
Variables (gT : finGroupType) (G : {group gT}) (n' : nat).
Local Notation n := n'.+1.
Variables (rG : mx_representation F G n) (A : 'M[F]_n).
Hypotheses (irrG : mx_irreducible rG) (cGA : centgmx rG A).
Local Notation FA := (gen_of irrG cGA).
Local Notation inFA := (Gen irrG cGA).
Local Notation d := (degree_mxminpoly A).
Let d_gt0 : d > 0 := mxminpoly_nonconstant A.
Local Notation Ad := (powers_mx A d).
Let mxT (u : 'rV_d) := vec_mx (mulmx_term u (mx_term Ad)).
Let eval_mxT e u : eval_mx e (mxT u) = mxval (inFA (eval_mx e u)).
Proof.
by rewrite eval_vec_mx eval_mulmx eval_mx_term [mxval _]horner_rVpoly.
Qed.
Let Ad'T := mx_term (pinvmx Ad).
Let mulT (u v : 'rV_d) := mulmx_term (mxvec (mulmx_term (mxT u) (mxT v))) Ad'T.
Lemma eval_mulT e u v :
eval_mx e (mulT u v) = val (inFA (eval_mx e u) * inFA (eval_mx e v)).
Proof.
rewrite !(eval_mulmx, eval_mxvec) !eval_mxT eval_mx_term.
by apply: (can_inj rVpolyK); rewrite -mxvalM [rVpoly _]horner_rVpolyK.
Qed.
Fixpoint gen_term t := match t with
| 'X_k => row_var _ d k
| x%:T => mx_term (val (x : FA))
| n1%:R => mx_term (val (n1%:R : FA))%R
| t1 + t2 => \row_i (gen_term t1 0%R i + gen_term t2 0%R i)
| - t1 => \row_i (- gen_term t1 0%R i)
| t1 *+ n1 => mulmx_term (mx_term n1%:R%:M)%R (gen_term t1)
| t1 * t2 => mulT (gen_term t1) (gen_term t2)
| t1^-1 => gen_term t1
| t1 ^+ n1 => iter n1 (mulT (gen_term t1)) (mx_term (val (1%R : FA)))
end%T.
Definition gen_env (e : seq FA) := row_env (map val e).
Lemma nth_map_rVval (e : seq FA) j : (map val e)`_j = val e`_j.
Proof.
case: (ltnP j (size e)) => [| leej]; first exact: (nth_map 0 0).
by rewrite !nth_default ?size_map.
Qed.
Lemma set_nth_map_rVval (e : seq FA) j v :
set_nth 0 (map val e) j v = map val (set_nth 0 e j (inFA v)).
Proof.
apply: (@eq_from_nth _ 0) => [|k _]; first by rewrite !(size_set_nth, size_map).
by rewrite !(nth_map_rVval, nth_set_nth) /= nth_map_rVval [rVval _]fun_if.
Qed.
Lemma eval_gen_term e t :
GRing.rterm t -> eval_mx (gen_env e) (gen_term t) = val (GRing.eval e t).
Proof.
elim: t => //=.
- by move=> k _; apply/rowP=> i; rewrite !mxE /= nth_row_env nth_map_rVval.
- by move=> x _; rewrite eval_mx_term.
- by move=> x _; rewrite eval_mx_term.
- by move=> t1 + t2 + /andP[rt1 rt2] => <-// <-//; apply/rowP => k /[!mxE].
- by move=> t1 + rt1 => <-//; apply/rowP=> k /[!mxE].
- move=> t1 IH1 n1 rt1; rewrite eval_mulmx eval_mx_term mul_scalar_mx.
by rewrite scaler_nat {}IH1 //; elim: n1 => //= n1 IHn1; rewrite !mulrS IHn1.
- by move=> t1 IH1 t2 IH2 /andP[rt1 rt2]; rewrite eval_mulT IH1 ?IH2.
move=> t1 + n1 => /[apply] IH1.
elim: n1 => [|n1 IHn1] /=; first by rewrite eval_mx_term.
by rewrite eval_mulT exprS IH1 IHn1.
Qed.
Fixpoint gen_form f := match f with
| Bool b => Bool b
| t1 == t2 => mxrank_form 0 (gen_term (t1 - t2))
| GRing.Unit t1 => mxrank_form 1 (gen_term t1)
| f1 /\ f2 => gen_form f1 /\ gen_form f2
| f1 \/ f2 => gen_form f1 \/ gen_form f2
| f1 ==> f2 => gen_form f1 ==> gen_form f2
| ~ f1 => ~ gen_form f1
| ('exists 'X_k, f1) => Exists_row_form d k (gen_form f1)
| ('forall 'X_k, f1) => ~ Exists_row_form d k (~ (gen_form f1))
end%T.
Lemma sat_gen_form e f : GRing.rformula f ->
reflect (GRing.holds e f) (GRing.sat (gen_env e) (gen_form f)).
Proof.
have ExP := Exists_rowP; have set_val := set_nth_map_rVval.
elim: f e => //.
- by move=> b e _; apply: (iffP satP).
- rewrite /gen_form => t1 t2 e rt_t; set t := (_ - _)%T.
have:= GRing.qf_evalP (gen_env e) (mxrank_form_qf 0 (gen_term t)).
rewrite eval_mxrank mxrank_eq0 eval_gen_term // => tP.
by rewrite (sameP satP tP) /= subr_eq0 val_eqE; apply: eqP.
- move=> f1 IH1 f2 IH2 s /= /andP[/(IH1 s)f1P /(IH2 s)f2P].
by apply: (iffP satP) => [[/satP/f1P ? /satP/f2P] | [/f1P/satP ? /f2P/satP]].
- move=> f1 IH1 f2 IH2 s /= /andP[/(IH1 s)f1P /(IH2 s)f2P].
by apply: (iffP satP) => /= [] [];
try move/satP; do [move/f1P | move/f2P]; try move/satP; auto.
- move=> f1 IH1 f2 IH2 s /= /andP[/(IH1 s)f1P /(IH2 s)f2P].
by apply: (iffP satP) => /= implP;
try move/satP; move/f1P; try move/satP; move/implP;
try move/satP; move/f2P; try move/satP.
- move=> f1 IH1 s /= /(IH1 s) f1P.
by apply: (iffP satP) => /= notP; try move/satP; move/f1P; try move/satP.
- move=> k f1 IHf1 s /IHf1 f1P; apply: (iffP satP) => /= [|[[v f1v]]].
by case/ExP=> // x /satP; rewrite set_val => /f1P; exists (inFA x).
by apply/ExP=> //; exists v; rewrite set_val; apply/satP/f1P.
move=> i f1 IHf1 s /IHf1 f1P; apply: (iffP satP) => /= allf1 => [[v]|].
apply/f1P; case: satP => // notf1x; case: allf1; apply/ExP=> //.
by exists v; rewrite set_val.
by case/ExP=> //= v []; apply/satP; rewrite set_val; apply/f1P.
Qed.
Definition gen_sat e f := GRing.sat (gen_env e) (gen_form (GRing.to_rform f)).
(* FIXME : why this MathCompCompatDecidableField *)
Lemma gen_satP :
GRing.MathCompCompatDecidableField.DecidableField.axiom gen_sat.
Proof.
move=> e f; have [tor rto] := GRing.to_rformP e f.
exact: (iffP (sat_gen_form e (GRing.to_rform_rformula f))).
Qed.
#[export] HB.instance Definition _ := GRing.Field_isDecField.Build FA gen_satP.
End DecideGenField.
Section FiniteGenField.
Variables (F : finFieldType) (gT : finGroupType) (G : {group gT}) (n' : nat).
Local Notation n := n'.+1.
Variables (rG : mx_representation F G n) (A : 'M[F]_n).
Hypotheses (irrG : mx_irreducible rG) (cGA : centgmx rG A).
Notation FA := (gen_of irrG cGA).
#[export] HB.instance Definition _ := [Finite of FA by <:].
#[export] HB.instance Definition _ := [finGroupMixin of FA for +%R].
Lemma card_gen : #|{:FA}| = (#|F| ^ degree_mxminpoly A)%N.
Proof. by rewrite card_sub card_mx mul1n. Qed.
End FiniteGenField.
End MatrixGenField.
Module MatrixGenFieldExports.
HB.reexport.
End MatrixGenFieldExports.
Export MatrixGenFieldExports.
Bind Scope ring_scope with gen_of.
Arguments rVval {F gT G%G n'%N rG A%R irrG cGA} x%R : rename.
Prenex Implicits gen_of Gen rVval pval mxval gen groot.
Arguments subbase {F n'} A {nA}.
Prenex Implicits gen_dim gen_base base val_gen gen_mx rowval_gen.
Arguments in_gen {F gT G n' rG A} irrG cGA {m} W.
Arguments in_genK {F gT G n' rG A} irrG cGA {m} W : rename.
Arguments val_genK {F gT G n' rG A irrG cGA m} W : rename.
Prenex Implicits gen_env gen_term gen_form gen_sat.
(* Classical splitting and closure field constructions provide convenient *)
(* packaging for the pointwise construction. *)
Section BuildSplittingField.
Implicit Type gT : finGroupType.
Implicit Type F : fieldType.
Lemma group_splitting_field_exists gT (G : {group gT}) F :
classically {Fs : fieldType & {rmorphism F -> Fs}
& group_splitting_field Fs G}.
Proof.
move: F => F0 [] // nosplit; pose nG := #|G|; pose aG F := regular_repr F G.
pose m := nG.+1; pose F := F0; pose U : seq 'M[F]_nG := [::].
suffices: size U + m <= nG by rewrite ltnn.
have: mx_subseries (aG F) U /\ path ltmx 0 U by [].
pose f : {rmorphism F0 -> F} := idfun.
elim: m F U f => [|m IHm] F U f [modU ltU].
by rewrite addn0 (leq_trans (max_size_mx_series ltU)) ?rank_leq_row.
rewrite addnS ltnNge -implybF; apply/implyP=> le_nG_Um; apply: nosplit.
exists F => //; case=> [|n] rG irrG; first by case/mx_irrP: irrG.
apply/idPn=> nabsG; pose cG := ('C(enveloping_algebra_mx rG))%MS.
have{nabsG} [A]: exists2 A, (A \in cG)%MS & ~~ is_scalar_mx A.
apply/has_non_scalar_mxP; rewrite ?scalar_mx_cent // ltnNge.
by apply: contra nabsG; apply: cent_mx_scalar_abs_irr.
rewrite {cG}memmx_cent_envelop -mxminpoly_linear_is_scalar -ltnNge => cGA.
move/(non_linear_gen_reducible irrG cGA).
(* FIXME: _ matches a generated constant *)
set F' := _ irrG cGA; set rG' := @map_repr _ F' _ _ _ _ rG.
move: F' (gen _ _ : {rmorphism F -> F'}) => F' f' in rG' * => irrG'.
pose U' := [seq map_mx f' Ui | Ui <- U].
have modU': mx_subseries (aG F') U'.
apply: etrans modU; rewrite /mx_subseries all_map; apply: eq_all => Ui.
rewrite -(mxmodule_map f'); apply: eq_subset_r => x.
by rewrite !inE map_regular_repr.
case: notF; apply: (mx_Schreier modU ltU) => [[V [compV lastV sUV]]].
have{lastV} [] := rsim_regular_series irrG compV lastV.
have{sUV} defV: V = U.
apply/eqP; rewrite eq_sym -(geq_leqif (size_subseq_leqif sUV)).
rewrite -(leq_add2r m); apply: leq_trans le_nG_Um.
by apply: IHm f _; rewrite (mx_series_lt compV); case: compV.
rewrite {V}defV in compV * => i rsimVi.
apply: (mx_Schreier modU') => [|[V' [compV' _ sUV']]].
rewrite {modU' compV modU i le_nG_Um rsimVi}/U' -(map_mx0 f').
by apply: etrans ltU; elim: U 0 => //= Ui U IHU Ui'; rewrite IHU map_ltmx.
have{sUV'} defV': V' = U'; last rewrite {V'}defV' in compV'.
apply/eqP; rewrite eq_sym -(geq_leqif (size_subseq_leqif sUV')) size_map.
rewrite -(leq_add2r m); apply: leq_trans le_nG_Um.
apply: IHm (f' \o f) _.
by rewrite (mx_series_lt compV'); case: compV'.
suffices{irrG'}: mx_irreducible rG' by case/mxsimpleP=> _ _ [].
have ltiU': i < size U' by rewrite size_map.
apply: mx_rsim_irr (mx_rsim_sym _ ) (mx_series_repr_irr compV' ltiU').
by apply: mx_rsim_trans (mx_rsim_map f' rsimVi) _; apply: map_regular_subseries.
Qed.
Lemma group_closure_field_exists gT F :
classically {Fs : fieldType & {rmorphism F -> Fs}
& group_closure_field Fs gT}.
Proof.
set n := #|{group gT}|.
suffices: classically {Fs : fieldType & {rmorphism F -> Fs}
& forall G : {group gT}, enum_rank G < n -> group_splitting_field Fs G}.
- apply: classic_bind => [[Fs f splitFs]] _ -> //.
by exists Fs => // G; apply: splitFs.
elim: (n) => [|i IHi]; first by move=> _ -> //; exists F => //; exists id.
apply: classic_bind IHi => [[F' f splitF']].
have [le_n_i _ -> // | lt_i_n] := leqP n i.
by exists F' => // G _; apply: splitF'; apply: leq_trans le_n_i.
have:= @group_splitting_field_exists _ (enum_val (Ordinal lt_i_n)) F'.
apply: classic_bind => [[Fs f' splitFs]] _ -> //.
exists Fs => [|G]; first exact: (f' \o f).
rewrite ltnS leq_eqVlt -{1}[i]/(val (Ordinal lt_i_n)) val_eqE.
case/predU1P=> [defG | ltGi]; first by rewrite -[G]enum_rankK defG.
by apply: (extend_group_splitting_field f'); apply: splitF'.
Qed.
Lemma group_closure_closed_field (F : closedFieldType) gT :
group_closure_field F gT.
Proof.
move=> G [|n] rG irrG; first by case/mx_irrP: irrG.
apply: cent_mx_scalar_abs_irr => //; rewrite leqNgt.
apply/(has_non_scalar_mxP (scalar_mx_cent _ _)) => [[A cGA nscalA]].
have [a]: exists a, eigenvalue A a.
pose P := mxminpoly A; pose d := degree_mxminpoly A.
have Pd1: P`_d = 1.
by rewrite -(eqP (mxminpoly_monic A)) /lead_coef size_mxminpoly.
have d_gt0: d > 0 := mxminpoly_nonconstant A.
have [a def_ad] := solve_monicpoly (nth 0 (- P)) d_gt0.
exists a; rewrite eigenvalue_root_min -/P /root -oppr_eq0 -hornerN.
rewrite horner_coef size_opp size_mxminpoly -/d big_ord_recr -def_ad.
by rewrite coefN Pd1 mulN1r /= subrr.
case/negP; rewrite kermx_eq0 row_free_unit (mx_Schur irrG) ?subr_eq0 //.
by rewrite -memmx_cent_envelop -raddfN linearD addmx_sub ?scalar_mx_cent.
by apply: contraNneq nscalA => ->; apply: scalar_mx_is_scalar.
Qed.
End BuildSplittingField.
|