File: finmodule.v

package info (click to toggle)
ssreflect 2.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,536 kB
  • sloc: ml: 506; sh: 190; lisp: 39; makefile: 39
file content (591 lines) | stat: -rw-r--r-- 26,515 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path.
From mathcomp Require Import div choice fintype bigop ssralg finset fingroup.
From mathcomp Require Import morphism perm finalg action gproduct commutator.
From mathcomp Require Import cyclic.

(******************************************************************************)
(*  This file regroups constructions and results that are based on the most   *)
(* primitive version of representation theory -- viewing an abelian group as  *)
(* the additive group of a (finite) Z-module. This includes the Gaschutz      *)
(* splitting and transitivity theorem, from which we will later derive the    *)
(* Schur-Zassenhaus theorem and the elementary abelian special case of        *)
(* Maschke's theorem, the coprime abelian centraliser/commutator trivial      *)
(* intersection theorem, which is used to show that p-groups under coprime    *)
(* action factor into special groups, and the construction of the transfer    *)
(* homomorphism and its expansion relative to a cycle, from which we derive   *)
(* the Higman Focal Subgroup and the Burnside Normal Complement theorems.     *)
(*   The definitions and lemmas for the finite Z-module induced by an abelian *)
(* are packaged in an auxiliary FiniteModule submodule: they should not be    *)
(* needed much outside this file, which contains all the results that exploit *)
(* this construction.                                                         *)
(*   FiniteModule defines the Z[N(A)]-module associated with a finite abelian *)
(* abelian group A, given a proof (abelA : abelian A) :                       *)
(*  fmod_of abelA == the type of elements of the module (similar to but       *)
(*                   distinct from [subg A]).                                 *)
(*   fmod abelA x == the injection of x into fmod_of abelA if x \in A, else 0 *)
(*        fmval u == the projection of u : fmod_of abelA onto A               *)
(*         u ^@ x == the action of x \in 'N(A) on u : fmod_of abelA           *)
(* The transfer morphism is be constructed from a morphism f : H >-> rT, and  *)
(* a group G, along with the two assumptions sHG : H \subset G and            *)
(* abfH : abelian (f @* H):                                                   *)
(*  transfer sGH abfH == the function gT -> FiniteModule.fmod_of abfH that    *)
(*                   implements the transfer morphism induced by f on G.      *)
(* The Lemma transfer_indep states that the transfer morphism can be expanded *)
(* using any transversal of the partition HG := rcosets H G of G.             *)
(*   Further, for any g \in G, HG :* <[g]> is also a partition of G (Lemma    *)
(* rcosets_cycle_partition), and for any transversal X of HG :* <[g]> the     *)
(* function r mapping x : gT to rcosets (H :* x) <[g]> is (constructively) a  *)
(* bijection from X to the <[g]>-orbit partition of HG, and Lemma             *)
(* transfer_cycle_expansion gives a simplified expansion of the transfer      *)
(* morphism.                                                                  *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GroupScope GRing.Theory FinRing.Theory.
Local Open Scope ring_scope.

Module FiniteModule.

Reserved Notation "u ^@ x" (at level 31, left associativity).

Inductive fmod_of (gT : finGroupType) (A : {group gT}) (abelA : abelian A) :=
  Fmod x & x \in A.

Bind Scope ring_scope with fmod_of.

Section OneFinMod.

(* TODO: understand why FinGroup has to be changed to BaseFinGroup here. *)
Let f2sub (gT : finGroupType) (A : {group gT}) (abA : abelian A) :=
  fun u : fmod_of abA => let : Fmod x Ax := u in Subg Ax : BaseFinGroup.arg_sort _.
Local Coercion f2sub : fmod_of >-> BaseFinGroup.arg_sort.

Variables (gT : finGroupType) (A : {group gT}) (abelA : abelian A).
Local Notation fmodA := (fmod_of abelA).
Implicit Types (x y z : gT) (u v w : fmodA).

Let sub2f (s : [subg A]) := Fmod abelA (valP s).

Definition fmval u := val (f2sub u).
#[export]
HB.instance Definition _ := [isSub for fmval].
Local Notation valA := (val: fmodA -> gT) (only parsing).
#[export]
HB.instance Definition _ := [Finite of fmodA by <:].

Definition fmod x := sub2f (subg A x).

Definition actr u x := if x \in 'N(A) then fmod (fmval u ^ x) else u.

Definition fmod_opp u := sub2f u^-1.
Definition fmod_add u v := sub2f (u * v).

Fact fmod_add0r : left_id (sub2f 1) fmod_add.
Proof. by move=> u; apply: val_inj; apply: mul1g. Qed.

Fact fmod_addrA : associative fmod_add.
Proof. by move=> u v w; apply: val_inj; apply: mulgA. Qed.

Fact fmod_addNr : left_inverse (sub2f 1) fmod_opp fmod_add.
Proof. by move=> u; apply: val_inj; apply: mulVg. Qed.

Fact fmod_addrC : commutative fmod_add.
Proof. by case=> x Ax [y Ay]; apply: val_inj; apply: (centsP abelA). Qed.

#[export]
HB.instance Definition _ :=
  GRing.isZmodule.Build fmodA fmod_addrA fmod_addrC fmod_add0r fmod_addNr.
(* TODO: Should isZmodule and the like be exported from ssralg *)
#[export]
HB.instance Definition _ := [finGroupMixin of fmodA for +%R].

Lemma fmodP u : val u \in A. Proof. exact: valP. Qed.
Lemma fmod_inj : injective fmval. Proof. exact: val_inj. Qed.
Lemma congr_fmod u v : u = v -> fmval u = fmval v.
Proof. exact: congr1. Qed.

Lemma fmvalA : {morph valA : x y / x + y >-> (x * y)%g}. Proof. by []. Qed.
Lemma fmvalN : {morph valA : x / - x >-> x^-1%g}. Proof. by []. Qed.
Lemma fmval0 : valA 0 = 1%g. Proof. by []. Qed.
Canonical fmval_morphism := @Morphism _ _ setT fmval (in2W fmvalA).

Definition fmval_sum := big_morph fmval fmvalA fmval0.

Lemma fmvalZ n : {morph valA : x / x *+ n >-> (x ^+ n)%g}.
Proof. by move=> u; rewrite /= morphX ?inE. Qed.

Lemma fmodKcond x : val (fmod x) = if x \in A then x else 1%g.
Proof. by rewrite /= /fmval /= val_insubd. Qed.
Lemma fmodK : {in A, cancel fmod val}. Proof. exact: subgK. Qed.
Lemma fmvalK : cancel val fmod.
Proof. by case=> x Ax; apply: val_inj; rewrite /fmod /= sgvalK. Qed.
Lemma fmod1 : fmod 1 = 0. Proof. by rewrite -fmval0 fmvalK. Qed.
Lemma fmodM : {in A &, {morph fmod : x y / (x * y)%g >-> x + y}}.
Proof. by move=> x y Ax Ay /=; apply: val_inj; rewrite /fmod morphM. Qed.
Canonical fmod_morphism := Morphism fmodM.
Lemma fmodX n : {in A, {morph fmod : x / (x ^+ n)%g >-> x *+ n}}.
Proof. exact: morphX. Qed.
Lemma fmodV : {morph fmod : x / x^-1%g >-> - x}.
Proof.
move=> x; apply: val_inj; rewrite fmvalN !fmodKcond groupV.
by case: (x \in A); rewrite ?invg1.
Qed.

Lemma injm_fmod : 'injm fmod.
Proof.
by apply/injmP=> x y Ax Ay []; move/val_inj; apply: (injmP (injm_subg A)).
Qed.

Notation "u ^@ x" := (actr u x) : ring_scope.

Lemma fmvalJcond u x :
  val (u ^@ x) = if x \in 'N(A) then val u ^ x else val u.
Proof. by case: ifP => Nx; rewrite /actr Nx ?fmodK // memJ_norm ?fmodP. Qed.

Lemma fmvalJ u x : x \in 'N(A) -> val (u ^@ x) = val u ^ x.
Proof. by move=> Nx; rewrite fmvalJcond Nx. Qed.

Lemma fmodJ x y : y \in 'N(A) -> fmod (x ^ y) = fmod x ^@ y.
Proof.
move=> Ny; apply: val_inj; rewrite fmvalJ ?fmodKcond ?memJ_norm //.
by case: ifP => // _; rewrite conj1g.
Qed.

Fact actr_is_action : is_action 'N(A) actr.
Proof.
split=> [a u v eq_uv_a | u a b Na Nb].
  case Na: (a \in 'N(A)); last by rewrite /actr Na in eq_uv_a.
  by apply: val_inj; apply: (conjg_inj a); rewrite -!fmvalJ ?eq_uv_a.
by apply: val_inj; rewrite !fmvalJ ?groupM ?conjgM.
Qed.

Canonical actr_action := Action actr_is_action.
Notation "''M'" := actr_action (at level 8) : action_scope.

Lemma act0r x : 0 ^@ x = 0.
Proof. by rewrite /actr conj1g morph1 if_same. Qed.

Lemma actAr x : {morph actr^~ x : u v / u + v}.
Proof.
by move=> u v; apply: val_inj; rewrite !(fmvalA, fmvalJcond) conjMg; case: ifP.
Qed.

Definition actr_sum x := big_morph _ (actAr x) (act0r x).

Lemma actNr x : {morph actr^~ x : u / - u}.
Proof. by move=> u; apply: (addrI (u ^@ x)); rewrite -actAr !subrr act0r. Qed.

Lemma actZr x n : {morph actr^~ x : u / u *+ n}.
Proof.
by move=> u; elim: n => [|n IHn]; rewrite ?act0r // !mulrS actAr IHn.
Qed.

Fact actr_is_groupAction : is_groupAction setT 'M.
Proof.
move=> a Na /[1!inE]; apply/andP; split; first by apply/subsetP=> u _ /[1!inE].
by apply/morphicP=> u v _ _; rewrite !permE /= actAr.
Qed.

Canonical actr_groupAction := GroupAction actr_is_groupAction.
Notation "''M'" := actr_groupAction (at level 8) : groupAction_scope.

Lemma actr1 u : u ^@ 1 = u.
Proof. exact: act1. Qed.

Lemma actrM : {in 'N(A) &, forall x y u, u ^@ (x * y) = u ^@ x ^@ y}.
Proof.
by move=> x y Nx Ny /= u; apply: val_inj; rewrite !fmvalJ ?conjgM ?groupM.
Qed.

Lemma actrK x : cancel (actr^~ x) (actr^~ x^-1%g).
Proof.
move=> u; apply: val_inj; rewrite !fmvalJcond groupV.
by case: ifP => -> //; rewrite conjgK.
Qed.

Lemma actrKV x : cancel (actr^~ x^-1%g) (actr^~ x).
Proof. by move=> u; rewrite /= -{2}(invgK x) actrK. Qed.

End OneFinMod.

Bind Scope ring_scope with fmod_of.
Prenex Implicits fmval fmod actr.
Notation "u ^@ x" := (actr u x) : ring_scope.
Notation "''M'" := actr_action (at level 8) : action_scope.
Notation "''M'" := actr_groupAction : groupAction_scope.

Module Exports.
HB.reexport FiniteModule.
End Exports.

End FiniteModule.

HB.export FiniteModule.Exports.

Arguments FiniteModule.fmodK {gT A} abelA [x] Ax.
Arguments FiniteModule.fmvalK {gT A abelA} x.
Arguments FiniteModule.actrK {gT A abelA} x.
Arguments FiniteModule.actrKV {gT A abelA} x.

(* Still allow ring notations, but give priority to groups now. *)
Import FiniteModule GroupScope.

Section Gaschutz.

Variables (gT : finGroupType) (G H P : {group gT}).
Implicit Types K L : {group gT}.

Hypotheses (nsHG : H <| G) (sHP : H \subset P) (sPG : P \subset G).
Hypotheses (abelH : abelian H) (coHiPG : coprime #|H| #|G : P|).

Let sHG := normal_sub nsHG.
Let nHG := subsetP (normal_norm nsHG).

Let m := (expg_invn H #|G : P|).

Implicit Types a b : fmod_of abelH.
Local Notation fmod := (fmod abelH).

Theorem Gaschutz_split : [splits G, over H] = [splits P, over H].
Proof.
apply/splitsP/splitsP=> [[K /complP[tiHK eqHK]] | [Q /complP[tiHQ eqHQ]]].
  exists (K :&: P)%G; rewrite inE setICA (setIidPl sHP) setIC tiHK eqxx.
  by rewrite group_modl // eqHK (sameP eqP setIidPr).
have sQP: Q \subset P by rewrite -eqHQ mulG_subr.
pose rP x := repr (P :* x); pose pP x := x * (rP x)^-1.
have PpP x: pP x \in P by rewrite -mem_rcoset rcoset_repr rcoset_refl.
have rPmul x y: x \in P -> rP (x * y) = rP y.
  by move=> Px; rewrite /rP rcosetM rcoset_id.
pose pQ x := remgr H Q x; pose rH x := pQ (pP x) * rP x.
have pQhq: {in H & Q, forall h q, pQ (h * q) = q} by apply: remgrMid.
have pQmul: {in P &, {morph pQ : x y / x * y}}.
  by apply: remgrM; [apply/complP | apply: normalS (nsHG)].
have HrH x: rH x \in H :* x.
  by rewrite rcoset_sym mem_rcoset invMg mulgA mem_divgr // eqHQ PpP.
have GrH x: x \in G -> rH x \in G.
  move=> Gx; case/rcosetP: (HrH x) => y Hy ->.
  by rewrite groupM // (subsetP sHG).
have rH_Pmul x y: x \in P -> rH (x * y) = pQ x * rH y.
  by move=> Px; rewrite /rH mulgA -pQmul; first by rewrite /pP rPmul ?mulgA.
have rH_Hmul h y: h \in H -> rH (h * y) = rH y.
  by move=> Hh; rewrite rH_Pmul ?(subsetP sHP) // -(mulg1 h) pQhq ?mul1g.
pose mu x y := fmod ((rH x * rH y)^-1 * rH (x * y)).
pose nu y := (\sum_(Px in rcosets P G) mu (repr Px) y)%R.
have rHmul: {in G &, forall x y, rH (x * y) = rH x * rH y * val (mu x y)}.
  move=> x y Gx Gy; rewrite /= fmodK ?mulKVg // -mem_lcoset lcoset_sym.
  rewrite -norm_rlcoset; last by rewrite nHG ?GrH ?groupM.
  by rewrite (rcoset_eqP (HrH _)) -rcoset_mul ?nHG ?GrH // mem_mulg.
have actrH a x: x \in G -> (a ^@ rH x = a ^@ x)%R.
  move=> Gx; apply: val_inj; rewrite /= !fmvalJ ?nHG ?GrH //.
  case/rcosetP: (HrH x) => b /(fmodK abelH) <- ->; rewrite conjgM.
  by congr (_ ^ _); rewrite conjgE -fmvalN -!fmvalA (addrC a) addKr.
have mu_Pmul x y z: x \in P -> mu (x * y) z = mu y z.
  move=> Px; congr fmod; rewrite -mulgA !(rH_Pmul x) ?rPmul //.
  by rewrite -mulgA invMg -mulgA mulKg.
have mu_Hmul x y z: x \in G -> y \in H -> mu x (y * z) = mu x z.
  move=> Gx Hy; congr fmod; rewrite (mulgA x) (conjgCV x) -mulgA 2?rH_Hmul //.
  by rewrite -mem_conjg (normP _) ?nHG.
have{mu_Hmul} nu_Hmul y z: y \in H -> nu (y * z) = nu z.
  move=> Hy; apply: eq_bigr => _ /rcosetsP[x Gx ->]; apply: mu_Hmul y z _ Hy.
  by rewrite -(groupMl _ (subsetP sPG _ (PpP x))) mulgKV.
have cocycle_mu: {in G & &, forall x y z,
  mu (x * y)%g z + mu x y ^@ z = mu y z + mu x (y * z)%g}%R.
- move=> x y z Gx Gy Gz; apply: val_inj.
  apply: (mulgI (rH x * rH y * rH z)).
  rewrite -(actrH _ _ Gz) addrC fmvalA fmvalJ ?nHG ?GrH //.
  rewrite mulgA -(mulgA _ (rH z)) -conjgC mulgA -!rHmul ?groupM //.
  by rewrite mulgA -mulgA -2!(mulgA (rH x)) -!rHmul ?groupM.
move: mu => mu in rHmul mu_Pmul cocycle_mu nu nu_Hmul.
have{cocycle_mu} cocycle_nu: {in G &, forall y z,
  nu z + nu y ^@ z = mu y z *+ #|G : P| + nu (y * z)%g}%R.
- move=> y z Gy Gz; rewrite /= (actr_sum z) /=.
  have ->: (nu z = \sum_(Px in rcosets P G) mu (repr Px * y)%g z)%R.
    rewrite /nu (reindex_acts _ (actsRs_rcosets P G) Gy) /=.
    apply: eq_bigr => _ /rcosetsP[x Gx /= ->].
    rewrite rcosetE -rcosetM.
    case: repr_rcosetP=> p1 Pp1; case: repr_rcosetP=> p2 Pp2.
    by rewrite -mulgA [x * y]lock !mu_Pmul.
  rewrite -sumr_const -!big_split /=; apply: eq_bigr => _ /rcosetsP[x Gx ->].
  rewrite -cocycle_mu //; case: repr_rcosetP => p1 Pp1.
  by rewrite groupMr // (subsetP sPG).
move: nu => nu in nu_Hmul cocycle_nu.
pose f x := rH x * val (nu x *+ m)%R.
have{cocycle_nu} fM: {in G &, {morph f : x y / x * y}}.
  move=> x y Gx Gy; rewrite /f ?rHmul // -3!mulgA; congr (_ * _).
  rewrite (mulgA _ (rH y)) (conjgC _ (rH y)) -mulgA; congr (_ * _).
  rewrite -fmvalJ ?actrH ?nHG ?GrH // -!fmvalA actZr -mulrnDl.
  rewrite -(addrC (nu y)) cocycle_nu // mulrnDl !fmvalA; congr (_ * _).
  by rewrite !fmvalZ expgK ?fmodP.
exists (Morphism fM @* G)%G; apply/complP; split.
  apply/trivgP/subsetP=> x /setIP[Hx /morphimP[y _ Gy eq_x]].
  apply/set1P; move: Hx; rewrite {x}eq_x /= groupMr ?subgP //.
  rewrite -{1}(mulgKV y (rH y)) groupMl -?mem_rcoset // => Hy.
  by rewrite -(mulg1 y) /f nu_Hmul // rH_Hmul //; apply: (morph1 (Morphism fM)).
apply/setP=> x; apply/mulsgP/idP=> [[h y Hh fy ->{x}] | Gx].
  rewrite groupMl; last exact: (subsetP sHG).
  case/morphimP: fy => z _ Gz ->{h Hh y}.
  by rewrite /= /f groupMl ?GrH // (subsetP sHG) ?fmodP.
exists (x * (f x)^-1) (f x); last first; first by rewrite mulgKV.
  by apply/morphimP; exists x.
rewrite -groupV invMg invgK -mulgA (conjgC (val _)) mulgA.
by rewrite groupMl -(mem_rcoset, mem_conjg) // (normP _) ?nHG ?fmodP.
Qed.

Theorem Gaschutz_transitive : {in [complements to H in G] &,
  forall K L,  K :&: P = L :&: P -> exists2 x, x \in H & L :=: K :^ x}.
Proof.
move=> K L /=; set Q := K :&: P => /complP[tiHK eqHK] cpHL QeqLP.
have [trHL eqHL] := complP cpHL.
pose nu x := fmod (divgr H L x^-1).
have sKG: {subset K <= G} by apply/subsetP; rewrite -eqHK mulG_subr.
have sLG: {subset L <= G} by apply/subsetP; rewrite -eqHL mulG_subr.
have val_nu x: x \in G -> val (nu x) = divgr H L x^-1.
  by move=> Gx; rewrite fmodK // mem_divgr // eqHL groupV.
have nu_cocycle: {in G &, forall x y, nu (x * y)%g = nu x ^@ y + nu y}%R.
  move=> x y Gx Gy; apply: val_inj; rewrite fmvalA fmvalJ ?nHG //.
  rewrite !val_nu ?groupM // /divgr conjgE !mulgA mulgK.
  by rewrite !(invMg, remgrM cpHL) ?groupV ?mulgA.
have nuL x: x \in L -> nu x = 0%R.
  move=> Lx; apply: val_inj; rewrite val_nu ?sLG //.
  by rewrite /divgr remgr_id ?groupV ?mulgV.
exists (fmval ((\sum_(X in rcosets Q K) nu (repr X)) *+ m)).
  exact: fmodP.
apply/eqP; rewrite eq_sym eqEcard; apply/andP; split; last first.
  by rewrite cardJg -(leq_pmul2l (cardG_gt0 H)) -!TI_cardMg // eqHL eqHK.
apply/subsetP=> _ /imsetP[x Kx ->]; rewrite conjgE mulgA (conjgC _ x).
have Gx: x \in G by rewrite sKG.
rewrite conjVg -mulgA -fmvalJ ?nHG // -fmvalN -fmvalA (_ : _ + _ = nu x)%R.
  by rewrite val_nu // mulKVg groupV mem_remgr // eqHL groupV.
rewrite actZr -!mulNrn -mulrnDl actr_sum.
rewrite addrC (reindex_acts _ (actsRs_rcosets _ K) Kx) -sumrB /= -/Q.
rewrite (eq_bigr (fun _ => nu x)) => [|_ /imsetP[y Ky ->]]; last first.
  rewrite !rcosetE -rcosetM QeqLP.
  case: repr_rcosetP => z /setIP[Lz _]; case: repr_rcosetP => t /setIP[Lt _].
  rewrite !nu_cocycle ?groupM ?(sKG y) // ?sLG //.
  by rewrite (nuL z) ?(nuL t) // !act0r !add0r addrC addKr.
apply: val_inj; rewrite sumr_const !fmvalZ.
rewrite -{2}(expgK coHiPG (fmodP (nu x))); congr (_ ^+ _ ^+ _).
rewrite -[#|_|]divgS ?subsetIl // -(divnMl (cardG_gt0 H)).
rewrite -!TI_cardMg //; last by rewrite setIA setIAC (setIidPl sHP).
by rewrite group_modl // eqHK (setIidPr sPG) divgS.
Qed.

End Gaschutz.

(* This is the TI part of B & G, Proposition 1.6(d).                          *)
(* We go with B & G rather than Aschbacher and will derive 1.6(e) from (d),   *)
(* rather than the converse, because the derivation of 24.6 from 24.3 in      *)
(* Aschbacher requires a separate reduction to p-groups to yield 1.6(d),      *)
(* making it altogether longer than the direct Gaschutz-style proof.          *)
(* This Lemma is used in maximal.v for the proof of Aschbacher 24.7.          *)
Lemma coprime_abel_cent_TI (gT : finGroupType) (A G : {group gT}) :
  A \subset 'N(G) -> coprime #|G| #|A| -> abelian G -> 'C_[~: G, A](A) = 1.
Proof.
move=> nGA coGA abG; pose f x := val (\sum_(a in A) fmod abG x ^@ a)%R.
have fM: {in G &, {morph f : x y / x * y}}.
  move=> x y Gx Gy /=; rewrite -fmvalA -big_split /=; congr (fmval _).
  by apply: eq_bigr => a Aa; rewrite fmodM // actAr.
have nfA x a: a \in A -> f (x ^ a) = f x.
  move=> Aa; rewrite {2}/f (reindex_inj (mulgI a)) /=; congr (fmval _).
  apply: eq_big => [b | b Ab]; first by rewrite groupMl.
  by rewrite -!fmodJ ?groupM ?(subsetP nGA) // conjgM.
have kerR: [~: G, A] \subset 'ker (Morphism fM).
  rewrite gen_subG; apply/subsetP=> xa; case/imset2P=> x a Gx Aa -> {xa}.
  have Gxa: x ^ a \in G by rewrite memJ_norm ?(subsetP nGA).
  rewrite commgEl; apply/kerP; rewrite (groupM, morphM) ?(groupV, morphV) //=.
  by rewrite nfA ?mulVg.
apply/trivgP; apply/subsetP=> x /setIP[Rx cAx]; apply/set1P.
have Gx: x \in G by apply: subsetP Rx; rewrite commg_subl.
rewrite -(expgK coGA Gx) (_ : x ^+ _ = 1) ?expg1n //.
rewrite -(fmodK abG Gx) -fmvalZ -(mker (subsetP kerR x Rx)); congr fmval.
rewrite -GRing.sumr_const; apply: eq_bigr => a Aa.
by rewrite -fmodJ ?(subsetP nGA) // /conjg (centP cAx) // mulKg.
Qed.

Section Transfer.

Variables (gT aT : finGroupType) (G H : {group gT}).
Variable alpha : {morphism H >-> aT}.

Hypotheses (sHG : H \subset G) (abelA : abelian (alpha @* H)).

Local Notation HG := (rcosets (gval H) (gval G)).

Fact transfer_morph_subproof : H \subset alpha @*^-1 (alpha @* H).
Proof. by rewrite -sub_morphim_pre. Qed.

Let fmalpha := restrm transfer_morph_subproof (fmod abelA \o alpha).

Let V (rX : {set gT} -> gT) g :=
  \sum_(Hx in rcosets H G) fmalpha (rX Hx * g * (rX (Hx :* g))^-1).

Definition transfer g := V repr g.

(* This is Aschbacher (37.2). *)
Lemma transferM : {in G &, {morph transfer : x y / (x * y)%g >-> x + y}}.
Proof.
move=> s t Gs Gt /=.
rewrite [transfer t](reindex_acts 'Rs _ Gs) ?actsRs_rcosets //= -big_split /=.
apply: eq_bigr => _ /rcosetsP[x Gx ->]; rewrite !rcosetE -!rcosetM.
rewrite -zmodMgE -morphM -?mem_rcoset; first by rewrite !mulgA mulgKV rcosetM.
  by rewrite rcoset_repr rcosetM mem_rcoset mulgK mem_repr_rcoset.
by rewrite rcoset_repr (rcosetM _ _ t) mem_rcoset mulgK mem_repr_rcoset.
Qed.

Canonical transfer_morphism := Morphism transferM.

(* This is Aschbacher (37.1). *)
Lemma transfer_indep X (rX := transversal_repr 1 X) :
  is_transversal X HG G -> {in G, transfer =1 V rX}.
Proof.
move=> trX g Gg; have mem_rX := repr_mem_pblock trX 1; rewrite -/rX in mem_rX.
apply: (addrI (\sum_(Hx in HG) fmalpha (repr Hx * (rX Hx)^-1))).
rewrite {1}(reindex_acts 'Rs _ Gg) ?actsRs_rcosets // -!big_split /=.
apply: eq_bigr => _ /rcosetsP[x Gx ->]; rewrite !rcosetE -!rcosetM.
case: repr_rcosetP => h1 Hh1; case: repr_rcosetP => h2 Hh2.
have: H :* (x * g) \in rcosets H G by rewrite -rcosetE imset_f ?groupM.
have: H :* x \in rcosets H G by rewrite -rcosetE imset_f.
case/mem_rX/rcosetP=> h3 Hh3 -> /mem_rX/rcosetP[h4 Hh4 ->].
rewrite -!(mulgA h1) -!(mulgA h2) -!(mulgA h3) !(mulKVg, invMg).
by rewrite addrC -!zmodMgE -!morphM ?groupM ?groupV // -!mulgA !mulKg.
Qed.

Section FactorTransfer.

Variable g : gT.
Hypothesis Gg : g \in G.

Let sgG : <[g]> \subset G. Proof. by rewrite cycle_subG. Qed.
Let H_g_rcosets x : {set {set gT}} := rcosets (H :* x) <[g]>.
Let n_ x := #|<[g]> : H :* x|.

Lemma mulg_exp_card_rcosets x : x * (g ^+ n_ x) \in H :* x.
Proof.
rewrite /n_ /indexg -orbitRs -porbit_actperm ?inE //.
rewrite -{2}(iter_porbit (actperm 'Rs g) (H :* x)) -permX -morphX ?inE //.
by rewrite actpermE //= rcosetE -rcosetM rcoset_refl.
Qed.

Let HGg : {set {set {set gT}}} := orbit 'Rs <[g]> @: HG.

Let partHG : partition HG G := rcosets_partition sHG.
Let actsgHG : [acts <[g]>, on HG | 'Rs].
Proof. exact: subset_trans sgG (actsRs_rcosets H G). Qed.
Let partHGg : partition HGg HG := orbit_partition actsgHG.

Let injHGg : {in HGg &, injective cover}.
Proof. by have [] := partition_partition partHG partHGg. Qed.

Let defHGg : HG :* <[g]> = cover @: HGg.
Proof.
rewrite -imset_comp [_ :* _]imset2_set1r; apply: eq_imset => Hx /=.
by rewrite cover_imset -curry_imset2r.
Qed.

Lemma rcosets_cycle_partition : partition (HG :* <[g]>) G.
Proof. by rewrite defHGg; have [] := partition_partition partHG partHGg. Qed.

Variable X : {set gT}.
Hypothesis trX : is_transversal X (HG :* <[g]>) G.

Let sXG : {subset X <= G}. Proof. exact/subsetP/(transversal_sub trX). Qed.

Lemma rcosets_cycle_transversal : H_g_rcosets @: X = HGg.
Proof.
have sHXgHGg x: x \in X -> H_g_rcosets x \in HGg.
  by move/sXG=> Gx; apply: imset_f; rewrite -rcosetE imset_f.
apply/setP=> Hxg; apply/imsetP/idP=> [[x /sHXgHGg HGgHxg -> //] | HGgHxg].
have [_ /rcosetsP[z Gz ->] ->] := imsetP HGgHxg.
pose Hzg := H :* z * <[g]>; pose x := transversal_repr 1 X Hzg.
have HGgHzg: Hzg \in HG :* <[g]>.
  by rewrite mem_mulg ?set11 // -rcosetE imset_f.
have Hzg_x: x \in Hzg by rewrite (repr_mem_pblock trX).
exists x; first by rewrite (repr_mem_transversal trX).
case/mulsgP: Hzg_x => y u /rcoset_eqP <- /(orbit_act 'Rs) <- -> /=.
by rewrite rcosetE -rcosetM.
Qed.

Local Notation defHgX := rcosets_cycle_transversal.

Let injHg: {in X &, injective H_g_rcosets}.
Proof.
apply/imset_injP; rewrite defHgX (card_transversal trX) defHGg.
by rewrite (card_in_imset injHGg).
Qed.

Lemma sum_index_rcosets_cycle : (\sum_(x in X) n_ x)%N = #|G : H|.
Proof. by rewrite [#|G : H|](card_partition partHGg) -defHgX big_imset. Qed.

Lemma transfer_cycle_expansion :
   transfer g = \sum_(x in X) fmalpha ((g ^+ n_ x) ^ (x^-1)).
Proof.
pose Y := \bigcup_(x in X) [set x * g ^+ i | i : 'I_(n_ x)].
pose rY := transversal_repr 1 Y.
pose pcyc x := porbit (actperm 'Rs g) (H :* x).
pose traj x := traject (actperm 'Rs g) (H :* x) #|pcyc x|.
have Hgr_eq x: H_g_rcosets x = pcyc x.
  by rewrite /H_g_rcosets -orbitRs -porbit_actperm ?inE.
have pcyc_eq x: pcyc x =i traj x by apply: porbit_traject.
have uniq_traj x: uniq (traj x) by apply: uniq_traject_porbit.
have n_eq x: n_ x = #|pcyc x| by rewrite -Hgr_eq.
have size_traj x: size (traj x) = n_ x by rewrite n_eq size_traject.
have nth_traj x j: j < n_ x -> nth (H :* x) (traj x) j = H :* (x * g ^+ j).
  move=> lt_j_x; rewrite nth_traject -?n_eq //.
  by rewrite -permX -morphX ?inE // actpermE //= rcosetE rcosetM.
have sYG: Y \subset G.
  apply/bigcupsP=> x Xx; apply/subsetP=> _ /imsetP[i _ ->].
  by rewrite groupM ?groupX // sXG.
have trY: is_transversal Y HG G.
  apply/and3P; split=> //; apply/forall_inP=> Hy.
  have /and3P[/eqP <- _ _] := partHGg; rewrite -defHgX cover_imset.
  case/bigcupP=> x Xx; rewrite Hgr_eq pcyc_eq => /trajectP[i].
  rewrite -n_eq -permX -morphX ?in_setT // actpermE /= rcosetE -rcosetM => lti.
  set y := x * _ => ->{Hy}; pose oi := Ordinal lti.
  have Yy: y \in Y by apply/bigcupP; exists x => //; apply/imsetP; exists oi.
  apply/cards1P; exists y; apply/esym/eqP.
  rewrite eqEsubset sub1set inE Yy rcoset_refl.
  apply/subsetP=> _ /setIP[/bigcupP[x' Xx' /imsetP[j _ ->]] Hy_x'gj].
  have eq_xx': x = x'.
    apply: (pblock_inj trX) => //; have /andP[/and3P[_ tiX _] _] := trX.
    have HGgHyg: H :* y * <[g]> \in HG :* <[g]>.
      by rewrite mem_mulg ?set11 // -rcosetE imset_f ?(subsetP sYG).
    rewrite !(def_pblock tiX HGgHyg) //.
      by rewrite -[x'](mulgK (g ^+ j)) mem_mulg // groupV mem_cycle.
    by rewrite -[x](mulgK (g ^+ i)) mem_mulg ?rcoset_refl // groupV mem_cycle.
  apply/set1P; rewrite /y eq_xx'; congr (_ * _ ^+ _) => //; apply/eqP.
  rewrite -(@nth_uniq _ (H :* x) (traj x)) ?size_traj // ?eq_xx' //.
  by rewrite !nth_traj ?(rcoset_eqP Hy_x'gj) // -eq_xx'.
have rYE x i : x \in X -> i < n_ x -> rY (H :* x :* g ^+ i) = x * g ^+ i.
  move=> Xx lt_i_x; rewrite -rcosetM; apply: (canLR_in (pblockK trY 1)).
    by apply/bigcupP; exists x => //; apply/imsetP; exists (Ordinal lt_i_x).
  apply/esym/def_pblock; last exact: rcoset_refl; first by case/and3P: partHG.
  by rewrite -rcosetE imset_f ?groupM ?groupX // sXG.
rewrite (transfer_indep trY Gg) /V -/rY (set_partition_big _ partHGg) /=.
rewrite -defHgX big_imset /=; last first.
  apply/imset_injP; rewrite defHgX (card_transversal trX) defHGg.
  by rewrite (card_in_imset injHGg).
apply eq_bigr=> x Xx; rewrite Hgr_eq (eq_bigl _ _ (pcyc_eq x)) -big_uniq //=.
have n_gt0: 0 < n_ x by rewrite indexg_gt0.
rewrite /traj -n_eq; case def_n: (n_ x) (n_gt0) => // [n] _.
rewrite conjgE invgK -{1}[H :* x]rcoset1 -{1}(expg0 g).
elim: {1 3}n 0%N (addn0 n) => [|m IHm] i def_i /=.
  rewrite big_seq1 {i}[i]def_i rYE // ?def_n //.
  rewrite -(mulgA _ _ g) -rcosetM -expgSr -[(H :* x) :* _]rcosetE.
  rewrite -actpermE morphX ?inE // permX // -{2}def_n n_eq iter_porbit mulgA.
  by rewrite -[H :* x]rcoset1 (rYE _ 0) ?mulg1.
rewrite big_cons rYE //; last by rewrite def_n -def_i ltnS leq_addl.
rewrite permE /= rcosetE -rcosetM -(mulgA _ _ g) -expgSr.
rewrite addSnnS in def_i; rewrite IHm //.
rewrite rYE //; last by rewrite def_n -def_i ltnS leq_addl.
by rewrite mulgV [fmalpha 1]morph1 add0r.
Qed.

End FactorTransfer.

End Transfer.