1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div.
From mathcomp Require Import choice fintype finfun bigop fingroup perm order.
From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly.
(*****************************************************************************)
(* In this file, we prove diagonalization theorems. For this purpose, we *)
(* define conjugation, similarity and diagonalizability. *)
(* *)
(* conjmx V f := V *m f *m pinvmx V *)
(* == the conjugation of f by V, i.e. "the" matrix of f *)
(* in the basis of row vectors of V. *)
(* Although this makes sense only when f stabilizes V, *)
(* the definition can be stated more generally. *)
(* similar_to P A C == where P is a base change matrix, A is a matrix, *)
(* and C is a class of matrices, *)
(* this states that conjmx P A is in C, *)
(* which means A is similar to a matrix in C. *)
(* *)
(* From the latter, we derive serveral related notions: *)
(* similar P A B := similar_to P A (pred1 B) *)
(* == A is similar to B, with base change matrix P *)
(* similar_in D A B == A is similar to B, *)
(* with a base change matrix in D *)
(* similar_in_to D A C == A is similar to a matrix in the class C, *)
(* with a base change matrix in D *)
(* all_similar_to D As C == all the matrices in the sequence As are similar *)
(* to some matrix in the class C, *)
(* with a base change matrix in D. *)
(* *)
(* We also specialize the class C, to diagonalizability: *)
(* similar_diag P A := (similar_to P A is_diag_mx). *)
(* diagonalizable_in D A := (similar_in_to D A is_diag_mx). *)
(* diagonalizable A := (diagonalizable_in unitmx A). *)
(* codiagonalizable_in D As := (all_similar_to D As is_diag_mx). *)
(* codiagonalizable As := (codiagonalizable_in unitmx As). *)
(* *)
(* The main results of this file are: *)
(* diagonalizablePeigen: *)
(* a matrix is diagonalizable iff there is a sequence *)
(* of scalars r, such that the sum of the associated *)
(* eigenspaces is full. *)
(* diagonalizableP: *)
(* a matrix is diagonalizable iff its minimal polynomial *)
(* divides a split polynomial with simple roots. *)
(* codiagonalizableP: *)
(* a sequence of matrices are diagonalizable in the same basis *)
(* iff they are all diagonalizable and commute pairwize. *)
(* *)
(* We also specialize the class C, to trigonalizablility: *)
(* similar_trig P A := (similar_to P A is_trig_mx). *)
(* trigonalizable_in D A := (similar_in_to D A is_trig_mx). *)
(* trigonalizable A := (trigonalizable_in unitmx A). *)
(* cotrigonalizable_in D As := (all_similar_to D As is_trig_mx). *)
(* cotrigonalizable As := (cotrigonalizable_in unitmx As). *)
(* The theory of trigonalization is however not developed in this file. *)
(*****************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory.
Import Monoid.Theory.
Local Open Scope ring_scope.
Section ConjMx.
Context {F : fieldType}.
Definition conjmx (m n : nat)
(V : 'M_(m, n)) (f : 'M[F]_n) : 'M_m := V *m f *m pinvmx V.
Notation restrictmx V := (conjmx (row_base V)).
Lemma stablemx_comp (m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) :
stablemx W f -> stablemx V (conjmx W f) -> stablemx (V *m W) f.
Proof. by move=> Wf /(submxMr W); rewrite -mulmxA mulmxKpV// mulmxA. Qed.
Lemma stablemx_restrict m n (A : 'M[F]_n) (V : 'M_n) (W : 'M_(m, \rank V)):
stablemx V A -> stablemx W (restrictmx V A) = stablemx (W *m row_base V) A.
Proof.
move=> A_stabV; rewrite mulmxA -[in RHS]mulmxA.
rewrite -(submxMfree _ W (row_base_free V)) mulmxKpV //.
by rewrite mulmx_sub ?stablemx_row_base.
Qed.
Lemma conjmxM (m n : nat) (V : 'M[F]_(m, n)) :
{in [pred f | stablemx V f] &, {morph conjmx V : f g / f *m g}}.
Proof.
move=> f g; rewrite !inE => Vf Vg /=.
by rewrite /conjmx 2!mulmxA mulmxA mulmxKpV ?stablemx_row_base.
Qed.
Lemma conjMmx (m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) :
row_free (V *m W) -> stablemx W f -> stablemx V (conjmx W f) ->
conjmx (V *m W) f = conjmx V (conjmx W f).
Proof.
move=> rfVW Wf VWf; apply: (row_free_inj rfVW); rewrite mulmxKpV ?stablemx_comp//.
by rewrite mulmxA mulmxKpV// -[RHS]mulmxA mulmxKpV ?mulmxA.
Qed.
Lemma conjuMmx (m n : nat) (V : 'M[F]_m) (W : 'M_(m, n)) (f : 'M_n) :
V \in unitmx -> row_free W -> stablemx W f ->
conjmx (V *m W) f = conjmx V (conjmx W f).
Proof.
move=> Vu rfW Wf; rewrite conjMmx ?stablemx_unit//.
by rewrite /row_free mxrankMfree// -/(row_free V) row_free_unit.
Qed.
Lemma conjMumx (m n : nat) (V : 'M[F]_(m, n)) (W f : 'M_n) :
W \in unitmx -> row_free V -> stablemx V (conjmx W f) ->
conjmx (V *m W) f = conjmx V (conjmx W f).
Proof.
move=> Wu rfW Wf; rewrite conjMmx ?stablemx_unit//.
by rewrite /row_free mxrankMfree ?row_free_unit.
Qed.
Lemma conjuMumx (n : nat) (V W f : 'M[F]_n) :
V \in unitmx -> W \in unitmx ->
conjmx (V *m W) f = conjmx V (conjmx W f).
Proof. by move=> Vu Wu; rewrite conjuMmx ?stablemx_unit ?row_free_unit. Qed.
Lemma conjmx_scalar (m n : nat) (V : 'M[F]_(m, n)) (a : F) :
row_free V -> conjmx V a%:M = a%:M.
Proof. by move=> rfV; rewrite /conjmx scalar_mxC mulmxKp. Qed.
Lemma conj0mx (m n : nat) f : conjmx (0 : 'M[F]_(m, n)) f = 0.
Proof. by rewrite /conjmx !mul0mx. Qed.
Lemma conjmx0 (m n : nat) (V : 'M[F]_(m, n)) : conjmx V 0 = 0.
Proof. by rewrite /conjmx mulmx0 mul0mx. Qed.
Lemma conjumx (n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx ->
conjmx V f = V *m f *m invmx V.
Proof. by move=> uV; rewrite /conjmx pinvmxE. Qed.
Lemma conj1mx (n : nat) (f : 'M[F]_n) : conjmx 1%:M f = f.
Proof. by rewrite conjumx ?unitmx1// invmx1 mulmx1 mul1mx. Qed.
Lemma conjVmx (n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx ->
conjmx (invmx V) f = invmx V *m f *m V.
Proof. by move=> Vunit; rewrite conjumx ?invmxK ?unitmx_inv. Qed.
Lemma conjmxK (n : nat) (V f : 'M[F]_n) :
V \in unitmx -> conjmx (invmx V) (conjmx V f) = f.
Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulVmx ?conj1mx. Qed.
Lemma conjmxVK (n : nat) (V f : 'M[F]_n) :
V \in unitmx -> conjmx V (conjmx (invmx V) f) = f.
Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulmxV ?conj1mx. Qed.
Lemma horner_mx_conj m n p (B : 'M[F]_(n.+1, m.+1)) (f : 'M_m.+1) :
row_free B -> stablemx B f ->
horner_mx (conjmx B f) p = conjmx B (horner_mx f p).
Proof.
move=> B_free B_stab; rewrite/conjmx; elim/poly_ind: p => [|p c].
by rewrite !rmorph0 mulmx0 mul0mx.
rewrite !(rmorphD, rmorphM)/= !(horner_mx_X, horner_mx_C) => ->.
rewrite [_ * _]mulmxA [_ *m (B *m _)]mulmxA mulmxKpV ?horner_mx_stable//.
apply: (row_free_inj B_free); rewrite [_ *m B]mulmxDl.
pose stablemxE := (stablemxD, stablemxM, stablemxC, horner_mx_stable).
by rewrite !mulmxKpV -?[B *m _ *m _]mulmxA ?stablemxE// mulmxDr -scalar_mxC.
Qed.
Lemma horner_mx_uconj n p (B : 'M[F]_(n.+1)) (f : 'M_n.+1) :
B \is a GRing.unit ->
horner_mx (B *m f *m invmx B) p = B *m horner_mx f p *m invmx B.
Proof.
move=> B_unit; rewrite -!conjumx//.
by rewrite horner_mx_conj ?row_free_unit ?stablemx_unit.
Qed.
Lemma horner_mx_uconjC n p (B : 'M[F]_(n.+1)) (f : 'M_n.+1) :
B \is a GRing.unit ->
horner_mx (invmx B *m f *m B) p = invmx B *m horner_mx f p *m B.
Proof.
move=> B_unit; rewrite -[X in _ *m X](invmxK B).
by rewrite horner_mx_uconj ?invmxK ?unitmx_inv.
Qed.
Lemma mxminpoly_conj m n (V : 'M[F]_(m.+1, n.+1)) (f : 'M_n.+1) :
row_free V -> stablemx V f -> mxminpoly (conjmx V f) %| mxminpoly f.
Proof.
by move=> *; rewrite mxminpoly_min// horner_mx_conj// mx_root_minpoly conjmx0.
Qed.
Lemma mxminpoly_uconj n (V : 'M[F]_(n.+1)) (f : 'M_n.+1) :
V \in unitmx -> mxminpoly (conjmx V f) = mxminpoly f.
Proof.
have simp := (row_free_unit, stablemx_unit, unitmx_inv, unitmx1).
move=> Vu; apply/eqP; rewrite -eqp_monic ?mxminpoly_monic// /eqp.
apply/andP; split; first by rewrite mxminpoly_conj ?simp.
by rewrite -[f in X in X %| _](conjmxK _ Vu) mxminpoly_conj ?simp.
Qed.
Section fixed_stablemx_space.
Variables (m n : nat).
Implicit Types (V : 'M[F]_(m, n)) (f : 'M[F]_n).
Implicit Types (a : F) (p : {poly F}).
Section Sub.
Variable (k : nat).
Implicit Types (W : 'M[F]_(k, m)).
Lemma sub_kermxpoly_conjmx V f p W : stablemx V f -> row_free V ->
(W <= kermxpoly (conjmx V f) p)%MS = (W *m V <= kermxpoly f p)%MS.
Proof.
move: n m => [|n'] [|m']// in V f W *; rewrite ?thinmx0// => fV rfV.
- by rewrite /row_free mxrank0 in rfV.
- by rewrite mul0mx !sub0mx.
- apply/sub_kermxP/sub_kermxP; rewrite horner_mx_conj//; last first.
by move=> /(congr1 (mulmxr (pinvmx V)))/=; rewrite mul0mx !mulmxA.
move=> /(congr1 (mulmxr V))/=; rewrite ![W *m _]mulmxA ?mul0mx mulmxKpV//.
by rewrite -mulmxA mulmx_sub// horner_mx_stable//.
Qed.
Lemma sub_eigenspace_conjmx V f a W : stablemx V f -> row_free V ->
(W <= eigenspace (conjmx V f) a)%MS = (W *m V <= eigenspace f a)%MS.
Proof. by move=> fV rfV; rewrite !eigenspace_poly sub_kermxpoly_conjmx. Qed.
End Sub.
Lemma eigenpoly_conjmx V f : stablemx V f -> row_free V ->
{subset eigenpoly (conjmx V f) <= eigenpoly f}.
Proof.
move=> fV rfV a /eigenpolyP [x]; rewrite sub_kermxpoly_conjmx//.
move=> xV_le_fa x_neq0; apply/eigenpolyP.
by exists (x *m V); rewrite ?mulmx_free_eq0.
Qed.
Lemma eigenvalue_conjmx V f : stablemx V f -> row_free V ->
{subset eigenvalue (conjmx V f) <= eigenvalue f}.
Proof.
by move=> fV rfV a; rewrite ![_ \in _]eigenvalue_poly; apply: eigenpoly_conjmx.
Qed.
Lemma conjmx_eigenvalue a V f : (V <= eigenspace f a)%MS -> row_free V ->
conjmx V f = a%:M.
Proof.
by move=> /eigenspaceP Vfa rfV; rewrite /conjmx Vfa -mul_scalar_mx mulmxKp.
Qed.
End fixed_stablemx_space.
End ConjMx.
Notation restrictmx V := (conjmx (row_base V)).
Definition similar_to {F : fieldType} {m n} (P : 'M_(m, n)) A
(C : {pred 'M[F]_m}) := C (conjmx P A).
Notation similar P A B := (similar_to P A (PredOfSimpl.coerce (pred1 B))).
Notation similar_in D A B := (exists2 P, P \in D & similar P A B).
Notation similar_in_to D A C := (exists2 P, P \in D & similar_to P A C).
Notation all_similar_to D As C := (exists2 P, P \in D & all [pred A | similar_to P A C] As).
Notation similar_diag P A := (similar_to P A is_diag_mx).
Notation diagonalizable_in D A := (similar_in_to D A is_diag_mx).
Notation diagonalizable A := (diagonalizable_in unitmx A).
Notation codiagonalizable_in D As := (all_similar_to D As is_diag_mx).
Notation codiagonalizable As := (codiagonalizable_in unitmx As).
Notation similar_trig P A := (similar_to P A is_trig_mx).
Notation trigonalizable_in D A := (similar_in_to D A is_trig_mx).
Notation trigonalizable A := (trigonalizable_in unitmx A).
Notation cotrigonalizable_in D As := (all_similar_to D As is_trig_mx).
Notation cotrigonalizable As := (cotrigonalizable_in unitmx As).
Section Similarity.
Context {F : fieldType}.
Lemma similarPp m n {P : 'M[F]_(m, n)} {A B} :
stablemx P A -> similar P A B -> P *m A = B *m P.
Proof. by move=> stablemxPA /eqP <-; rewrite mulmxKpV. Qed.
Lemma similarW m n {P : 'M[F]_(m, n)} {A B} : row_free P ->
P *m A = B *m P -> similar P A B.
Proof. by rewrite /similar_to/= /conjmx => fP ->; rewrite mulmxKp. Qed.
Section Similar.
Context {n : nat}.
Implicit Types (f g p : 'M[F]_n) (fs : seq 'M[F]_n) (d : 'rV[F]_n).
Lemma similarP {p f g} : p \in unitmx ->
reflect (p *m f = g *m p) (similar p f g).
Proof.
move=> p_unit; apply: (iffP idP); first exact/similarPp/stablemx_unit.
by apply: similarW; rewrite row_free_unit.
Qed.
Lemma similarRL {p f g} : p \in unitmx ->
reflect (g = p *m f *m invmx p) (similar p f g).
Proof. by move=> ?; apply: (iffP eqP); rewrite conjumx. Qed.
Lemma similarLR {p f g} : p \in unitmx ->
reflect (f = conjmx (invmx p) g) (similar p f g).
Proof.
by move=> pu; rewrite conjVmx//; apply: (iffP (similarRL pu)) => ->;
rewrite !mulmxA ?(mulmxK, mulmxKV, mulVmx, mulmxV, mul1mx, mulmx1).
Qed.
End Similar.
Lemma similar_mxminpoly {n} {p f g : 'M[F]_n.+1} : p \in unitmx ->
similar p f g -> mxminpoly f = mxminpoly g.
Proof. by move=> pu /eqP<-; rewrite mxminpoly_uconj. Qed.
Lemma similar_diag_row_base m n (P : 'M[F]_(m, n)) (A : 'M_n) :
similar_diag (row_base P) A = is_diag_mx (restrictmx P A).
Proof. by []. Qed.
Lemma similar_diagPp m n (P : 'M[F]_(m, n)) A :
reflect (forall i j : 'I__, i != j :> nat -> conjmx P A i j = 0)
(similar_diag P A).
Proof. exact: @is_diag_mxP. Qed.
Lemma similar_diagP n (P : 'M[F]_n) A : P \in unitmx ->
reflect (forall i j : 'I__, i != j :> nat -> (P *m A *m invmx P) i j = 0)
(similar_diag P A).
Proof. by move=> Pu; rewrite -conjumx//; exact: is_diag_mxP. Qed.
Lemma similar_diagPex {m} {n} {P : 'M[F]_(m, n)} {A} :
reflect (exists D, similar P A (diag_mx D)) (similar_diag P A).
Proof. by apply: (iffP (diag_mxP _)) => -[D]/eqP; exists D. Qed.
Lemma similar_diagLR n {P : 'M[F]_n} {A} : P \in unitmx ->
reflect (exists D, A = conjmx (invmx P) (diag_mx D)) (similar_diag P A).
Proof.
by move=> Punit; apply: (iffP similar_diagPex) => -[D /(similarLR Punit)]; exists D.
Qed.
Lemma similar_diag_mxminpoly {n} {p f : 'M[F]_n.+1}
(rs := undup [seq conjmx p f i i | i <- enum 'I_n.+1]) :
p \in unitmx -> similar_diag p f ->
mxminpoly f = \prod_(r <- rs) ('X - r%:P).
Proof.
rewrite /rs => pu /(similar_diagLR pu)[d {f rs}->].
rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag.
by rewrite [in RHS](@eq_map _ _ _ (d 0))// => i; rewrite conjmxVK// mxE eqxx.
Qed.
End Similarity.
Lemma similar_diag_sum (F : fieldType) (m n : nat) (p_ : 'I_n -> nat)
(V_ : forall i, 'M[F]_(p_ i, m)) (f : 'M[F]_m) :
mxdirect (\sum_i <<V_ i>>) ->
(forall i, stablemx (V_ i) f) ->
(forall i, row_free (V_ i)) ->
similar_diag (\mxcol_i V_ i) f = [forall i, similar_diag (V_ i) f].
Proof.
move=> Vd Vf rfV; have aVf : stablemx (\mxcol_i V_ i) f.
rewrite (eqmx_stable _ (eqmx_col _)) stablemx_sums//.
by move=> i; rewrite (eqmx_stable _ (genmxE _)).
apply/similar_diagPex/'forall_similar_diagPex => /=
[[D /(similarPp aVf) +] i|/(_ _)/sigW Dof].
rewrite mxcol_mul -[D]submxrowK diag_mxrow mul_mxdiag_mxcol.
move=> /eq_mxcolP/(_ i); set D0 := (submxrow _ _) => VMeq.
by exists D0; apply/similarW.
exists (\mxrow_i tag (Dof i)); apply/similarW.
rewrite -row_leq_rank eqmx_col (mxdirectP Vd)/=.
by under [X in (_ <= X)%N]eq_bigr do rewrite genmxE (eqP (rfV _)).
rewrite mxcol_mul diag_mxrow mul_mxdiag_mxcol; apply: eq_mxcol => i.
by case: Dof => /= k /(similarPp); rewrite Vf => /(_ isT) ->.
Qed.
Section Diag.
Variable (F : fieldType).
Lemma codiagonalizable1 n (A : 'M[F]_n) :
codiagonalizable [:: A] <-> diagonalizable A.
Proof. by split=> -[P Punit PA]; exists P; move: PA; rewrite //= andbT. Qed.
Lemma codiagonalizablePfull n (As : seq 'M[F]_n) :
codiagonalizable As <-> exists m,
exists2 P : 'M_(m, n), row_full P & all [pred A | similar_diag P A] As.
Proof.
split => [[P Punit SPA]|[m [P Pfull SPA]]].
by exists n => //; exists P; rewrite ?row_full_unit.
have Qfull := fullrowsub_unit Pfull.
exists (rowsub (fullrankfun Pfull) P) => //; apply/allP => A AAs/=.
have /allP /(_ _ AAs)/= /similar_diagPex[d /similarPp] := SPA.
rewrite submx_full// => /(_ isT) PA_eq.
apply/similar_diagPex; exists (colsub (fullrankfun Pfull) d).
apply/similarP => //; apply/row_matrixP => i.
rewrite !row_mul row_diag_mx -scalemxAl -rowE !row_rowsub !mxE.
have /(congr1 (row (fullrankfun Pfull i))) := PA_eq.
by rewrite !row_mul row_diag_mx -scalemxAl -rowE => ->.
Qed.
Lemma codiagonalizable_on m n (V_ : 'I_n -> 'M[F]_m) (As : seq 'M[F]_m) :
(\sum_i V_ i :=: 1%:M)%MS -> mxdirect (\sum_i V_ i) ->
(forall i, all (fun A => stablemx (V_ i) A) As) ->
(forall i, codiagonalizable (map (restrictmx (V_ i)) As)) -> codiagonalizable As.
Proof.
move=> V1 Vdirect /(_ _)/allP AV /(_ _) /sig2W/= Pof.
pose P_ i := tag (Pof i).
have P_unit i : P_ i \in unitmx by rewrite /P_; case: {+}Pof.
have P_diag i A : A \in As -> similar_diag (P_ i *m row_base (V_ i)) A.
move=> AAs; rewrite /P_; case: {+}Pof => /= P Punit.
rewrite all_map => /allP/(_ A AAs); rewrite /similar_to/=.
by rewrite conjuMmx ?row_base_free ?stablemx_row_base ?AV.
pose P := \mxcol_i (P_ i *m row_base (V_ i)).
have P_full i : row_full (P_ i) by rewrite row_full_unit.
have PrV i : (P_ i *m row_base (V_ i) :=: V_ i)%MS.
exact/(eqmx_trans _ (eq_row_base _))/eqmxMfull.
apply/codiagonalizablePfull; eexists _; last exists P; rewrite /=.
- rewrite -sub1mx eqmx_col.
by under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1.
apply/allP => A AAs /=; rewrite similar_diag_sum.
- by apply/forallP => i; apply: P_diag.
- rewrite mxdirectE/=.
under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1.
by under eq_bigr do rewrite genmxE PrV; rewrite -(mxdirectP Vdirect)//= V1.
- by move=> i; rewrite (eqmx_stable _ (PrV _)) ?AV.
- by move=> i; rewrite /row_free eqmxMfull ?eq_row_base ?row_full_unit.
Qed.
Lemma diagonalizable_diag {n} (d : 'rV[F]_n) : diagonalizable (diag_mx d).
Proof.
by exists 1%:M; rewrite ?unitmx1// /similar_to conj1mx diag_mx_is_diag.
Qed.
Hint Resolve diagonalizable_diag : core.
Lemma diagonalizable_scalar {n} (a : F) : diagonalizable (a%:M : 'M_n).
Proof. by rewrite -diag_const_mx. Qed.
Hint Resolve diagonalizable_scalar : core.
Lemma diagonalizable0 {n} : diagonalizable (0 : 'M[F]_n).
Proof.
by rewrite (_ : 0 = 0%:M)//; apply/matrixP => i j; rewrite !mxE// mul0rn.
Qed.
Hint Resolve diagonalizable0 : core.
Lemma diagonalizablePeigen {n} {f : 'M[F]_n} :
diagonalizable f <->
exists2 rs, uniq rs & (\sum_(r <- rs) eigenspace f r :=: 1%:M)%MS.
Proof.
split=> [df|[rs urs rsP]].
suff [rs rsP] : exists rs, (\sum_(r <- rs) eigenspace f r :=: 1%:M)%MS.
exists (undup rs); rewrite ?undup_uniq//; apply: eqmx_trans rsP.
elim: rs => //= r rs IHrs; rewrite big_cons.
case: ifPn => in_rs; rewrite ?big_cons; last exact: adds_eqmx.
apply/(eqmx_trans IHrs)/eqmx_sym/addsmx_idPr.
have rrs : (index r rs < size rs)%N by rewrite index_mem.
rewrite (big_nth 0) big_mkord (sumsmx_sup (Ordinal rrs)) ?nth_index//.
move: df => [P Punit /(similar_diagLR Punit)[d ->]].
exists [seq d 0 i | i <- enum 'I_n]; rewrite big_image/=.
apply: (@eqmx_trans _ _ _ _ _ _ P); apply/eqmxP;
rewrite ?sub1mx ?submx1 ?row_full_unit//.
rewrite submx_full ?row_full_unit//=.
apply/row_subP => i; rewrite rowE (sumsmx_sup i)//.
apply/eigenspaceP; rewrite conjVmx// !mulmxA mulmxK//.
by rewrite -rowE row_diag_mx scalemxAl.
have mxdirect_eigenspaces : mxdirect (\sum_(i < size rs) eigenspace f rs`_i).
apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj.
by apply: uniqP rsij; rewrite ?inE.
rewrite (big_nth 0) big_mkord in rsP; apply/codiagonalizable1.
apply/(codiagonalizable_on _ mxdirect_eigenspaces) => // i/=.
case: n => [|n] in f {mxdirect_eigenspaces} rsP *.
by rewrite thinmx0 sub0mx.
by rewrite comm_mx_stable_eigenspace.
apply/codiagonalizable1.
by rewrite (@conjmx_eigenvalue _ _ _ rs`_i) ?eq_row_base ?row_base_free.
Qed.
Lemma diagonalizableP n' (n := n'.+1) (f : 'M[F]_n) :
diagonalizable f <->
exists2 rs, uniq rs & mxminpoly f %| \prod_(x <- rs) ('X - x%:P).
Proof.
split=> [[P Punit /similar_diagPex[d /(similarLR Punit)->]]|].
rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag.
by eexists; [|by []]; rewrite undup_uniq.
move=> [rs rsU rsP]; apply: diagonalizablePeigen.2.
exists rs => //.
rewrite (big_nth 0) big_mkord (eq_bigr _ (fun _ _ => eigenspace_poly _ _)).
apply: (eqmx_trans (eqmx_sym (kermxpoly_prod _ _)) (kermxpoly_min _)).
by move=> i j _ _; rewrite coprimep_XsubC root_XsubC nth_uniq.
by rewrite (big_nth 0) big_mkord in rsP.
Qed.
Lemma diagonalizable_conj_diag m n (V : 'M[F]_(m, n)) (d : 'rV[F]_n) :
stablemx V (diag_mx d) -> row_free V -> diagonalizable (conjmx V (diag_mx d)).
Proof.
(move: m n => [|m] [|n] in V d *; rewrite ?thinmx0; [by []|by []| |]) => Vd rdV.
- by rewrite /row_free mxrank0 in rdV.
- apply/diagonalizableP; pose u := undup [seq d 0 i | i <- enum 'I_n.+1].
exists u; first by rewrite undup_uniq.
by rewrite (dvdp_trans (mxminpoly_conj rdV _))// mxminpoly_diag.
Qed.
Lemma codiagonalizableP n (fs : seq 'M[F]_n) :
{in fs &, forall f g, comm_mx f g} /\ (forall f, f \in fs -> diagonalizable f)
<-> codiagonalizable fs.
Proof.
split => [cdfs|[P Punit /allP/= fsD]]/=; last first.
split; last by exists P; rewrite // fsD.
move=> f g ffs gfs; move=> /(_ _ _)/similar_diagPex/sigW in fsD.
have [[df /similarLR->//] [dg /similarLR->//]] := (fsD _ ffs, fsD _ gfs).
by rewrite /comm_mx -!conjmxM 1?diag_mxC// inE stablemx_unit ?unitmx_inv.
move: cdfs => [/(rwP (all_comm_mxP _)).1 cdfs1 cdfs2].
have [k] := ubnP (size fs); elim: k => [|k IHk]//= in n fs cdfs1 cdfs2 *.
case: fs cdfs1 cdfs2 => [|f fs]//=; first by exists 1%:M; rewrite ?unitmx1.
rewrite ltnS all_comm_mx_cons => /andP[/allP/(_ _ _)/eqP ffsC fsC dffs] fsk.
have /diagonalizablePeigen [rs urs rs1] := dffs _ (mem_head _ _).
rewrite (big_nth 0) big_mkord in rs1.
have efg (i : 'I_(size rs)) g : g \in f :: fs -> stablemx (eigenspace f rs`_i) g.
case: n => [|n'] in g f fs ffsC fsC {dffs rs1 fsk} * => g_ffs.
by rewrite thinmx0 sub0mx.
rewrite comm_mx_stable_eigenspace//.
by move: g_ffs; rewrite !inE => /predU1P [->//|/ffsC].
apply/(@codiagonalizable_on _ _ _ (_ :: _) rs1) => [|i|i /=].
- apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj.
by apply: uniqP rsij; rewrite ?inE.
- by apply/allP => g g_ffs; rewrite efg.
rewrite (@conjmx_eigenvalue _ _ _ rs`_i) ?eq_row_base ?row_base_free//.
set gs := map _ _; suff [P Punit /= Pgs] : codiagonalizable gs.
exists P; rewrite /= ?Pgs ?andbT// /similar_to.
by rewrite conjmx_scalar ?mx_scalar_is_diag// row_free_unit.
apply: IHk; rewrite ?size_map/= ?ltnS//.
apply/all_comm_mxP => _ _ /mapP[/= g gfs ->] /mapP[/= h hfs ->].
rewrite -!conjmxM ?inE ?stablemx_row_base ?efg ?inE ?gfs ?hfs ?orbT//.
by rewrite (all_comm_mxP _ fsC).
move=> _ /mapP[/= g gfs ->].
have: stablemx (row_base (eigenspace f rs`_i)) g.
by rewrite stablemx_row_base efg// inE gfs orbT.
have := dffs g; rewrite inE gfs orbT => /(_ isT) [P Punit].
move=> /similar_diagPex[D /(similarLR Punit)->] sePD.
have rfeP : row_free (row_base (eigenspace f rs`_i) *m invmx P).
by rewrite /row_free mxrankMfree ?row_free_unit ?unitmx_inv// eq_row_base.
rewrite -conjMumx ?unitmx_inv ?row_base_free//.
apply/diagonalizable_conj_diag => //.
by rewrite stablemx_comp// stablemx_unit ?unitmx_inv.
Qed.
End Diag.
|