File: binomial.v

package info (click to toggle)
ssreflect 2.5.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 7,120 kB
  • sloc: ml: 506; sh: 300; makefile: 42
file content (573 lines) | stat: -rw-r--r-- 24,868 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
From mathcomp Require Import div fintype tuple finfun bigop prime finset.

(******************************************************************************)
(* This files contains the definition of:                                     *)
(*   'C(n, m) == the binomial coefficient n choose m.                         *)
(*     n ^_ m == the falling (or lower) factorial of n with m terms, i.e.,    *)
(*               the product n * (n - 1) * ... * (n - m + 1).                 *)
(*               Note that n ^_ m = 0 if m > n, and 'C(n, m) = n ^_ m %/ m`!. *)
(*                                                                            *)
(* In additions to the properties of these functions, we prove a few seminal  *)
(* results such as bin2_sum, Wilson and expnDn; their proofs are good         *)
(* examples of how to manipulate expressions with bigops.                     *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

(** More properties of the factorial **)

Lemma fact_prod n : n`! = \prod_(1 <= i < n.+1) i.
Proof.
elim: n => [|n IHn] //; first by rewrite big_nil.
by apply/esym; rewrite factS IHn // !big_add1 big_nat_recr //= mulnC.
Qed.

Lemma fact_split n m : m <= n -> n`! = m`! * \prod_(m.+1 <= k < n.+1) k.
Proof. by move=> leq_mn; rewrite !fact_prod -big_cat_nat. Qed.

Lemma logn_fact p n : prime p -> logn p n`! = \sum_(1 <= k < n.+1) n %/ p ^ k.
Proof.
move=> p_prime; transitivity (\sum_(1 <= i < n.+1) logn p i).
  rewrite big_add1; elim: n => /= [|n IHn]; first by rewrite logn1 big_geq.
  by rewrite big_nat_recr // -IHn /= factS mulnC lognM ?fact_gt0.
transitivity (\sum_(1 <= i < n.+1) \sum_(1 <= k < n.+1) (p ^ k %| i)).
  apply: eq_big_nat => i /andP[i_gt0 le_i_n]; rewrite logn_count_dvd //.
  rewrite -!big_mkcond (big_nat_widen _ _ n.+1) 1?ltnW //; apply: eq_bigl => k.
  by apply: andb_idr => /dvdn_leq/(leq_trans (ltn_expl _ (prime_gt1 _)))->.
by rewrite exchange_big_nat; apply: eq_bigr => i _; rewrite divn_count_dvd.
Qed.

Theorem Wilson p : p > 1 -> prime p = (p %| ((p.-1)`!).+1).
Proof.
have dFact n: 0 < n -> (n.-1)`! = \prod_(0 <= i < n | i != 0) i.
  move=> n_gt0; rewrite -big_filter fact_prod; symmetry; apply: congr_big => //.
  rewrite /index_iota subn1 -[n]prednK //=; apply/all_filterP.
  by rewrite all_predC has_pred1 mem_iota.
move=> lt1p; have p_gt0 := ltnW lt1p.
apply/idP/idP=> [pr_p | dv_pF]; last first.
  apply/primeP; split=> // d dv_dp; have: d <= p by apply: dvdn_leq.
  rewrite orbC leq_eqVlt => /orP[-> // | ltdp].
  have:= dvdn_trans dv_dp dv_pF; rewrite dFact // big_mkord.
  rewrite (bigD1 (Ordinal ltdp)) /=; last by rewrite -lt0n (dvdn_gt0 p_gt0).
  by rewrite orbC -addn1 dvdn_addr ?dvdn_mulr // dvdn1 => ->.
pose Fp1 := Ordinal lt1p; pose Fp0 := Ordinal p_gt0.
have ltp1p: p.-1 < p by [rewrite prednK]; pose Fpn1 := Ordinal ltp1p.
case eqF1n1: (Fp1 == Fpn1); first by rewrite -{1}[p]prednK -1?((1 =P p.-1) _).
have toFpP m: m %% p < p by rewrite ltn_mod.
pose toFp := Ordinal (toFpP _); pose mFp (i j : 'I_p) := toFp (i * j).
have Fp_mod (i : 'I_p) : i %% p = i by apply: modn_small.
have mFpA: associative mFp.
  by move=> i j k; apply: val_inj; rewrite /= modnMml modnMmr mulnA.
have mFpC: commutative mFp by move=> i j; apply: val_inj; rewrite /= mulnC.
have mFp1: left_id Fp1 mFp by move=> i; apply: val_inj; rewrite /= mul1n.
have mFp1r: right_id Fp1 mFp by move=> i; apply: val_inj; rewrite /= muln1.
pose mFpcM := Monoid.isComLaw.Build 'I_p Fp1 mFp mFpA mFpC mFp1.
pose mFpCL : Monoid.com_law _ := HB.pack mFp mFpcM.
pose mFpM := Monoid.Law.sort mFpCL.
pose vFp (i : 'I_p) := toFp (egcdn i p).1.
have vFpV i: i != Fp0 -> mFp (vFp i) i = Fp1.
  rewrite -val_eqE /= -lt0n => i_gt0; apply: val_inj => /=.
  rewrite modnMml; case: egcdnP => //= _ km -> _; rewrite {km}modnMDl.
  suffices: coprime i p by move/eqnP->; rewrite modn_small.
  rewrite coprime_sym prime_coprime //; apply/negP=> /(dvdn_leq i_gt0).
  by rewrite leqNgt ltn_ord.
have vFp0 i: i != Fp0 -> vFp i != Fp0.
  by move/vFpV; apply/contra_eq_neq => ->; rewrite -val_eqE /= mul0n mod0n.
have vFpK: {in predC1 Fp0, involutive vFp}.
  move=> i n0i; rewrite /= -[vFp _]mFp1r -(vFpV _ n0i) mFpA.
  by rewrite vFpV (vFp0, mFp1).
have le_pmFp (i : 'I_p) m: i <= p + m.
  by apply: leq_trans (ltnW _) (leq_addr _ _).
have eqFp (i j : 'I_p): (i == j) = (p %| p + i - j).
  by rewrite -eqn_mod_dvd ?(modnDl, Fp_mod).
have vFpId i: (vFp i == i :> nat) = xpred2 Fp1 Fpn1 i.
  have [->{i} | ni0] := eqVneq i Fp0.
    by rewrite -!val_eqE /= egcd0n modn_small //= -(subnKC lt1p).
  rewrite 2![i == _]eqFp -Euclid_dvdM // -[_ - p.-1]subSS prednK //.
  have lt0i: 0 < i by rewrite lt0n.
  rewrite -addnS addKn -addnBA // mulnDl -{2}(addn1 i) -subn_sqr.
  rewrite addnBA ?leq_sqr // mulnS -addnA -mulnn -mulnDl.
  rewrite -(subnK (le_pmFp (vFp i) i)) mulnDl addnCA.
  rewrite -[1 ^ 2]/(Fp1 : nat) -addnBA // dvdn_addl.
    by rewrite Euclid_dvdM // -eqFp eq_sym orbC /dvdn Fp_mod eqn0Ngt lt0i.
  by rewrite -eqn_mod_dvd // Fp_mod modnDl -(vFpV _ ni0).
suffices [mod_fact]: toFp (p.-1)`! = Fpn1.
  by rewrite /dvdn -addn1 -modnDml mod_fact addn1 prednK // modnn.
rewrite dFact //; rewrite ((big_morph toFp) Fp1 mFpM) //; first last.
- by apply: val_inj; rewrite /= modn_small.
- by move=> i j; apply: val_inj; rewrite /= modnMm.
rewrite big_mkord (eq_bigr id) => [|i _]; last by apply: val_inj => /=.
pose ltv i := vFp i < i; rewrite (bigID ltv) -/mFpM [mFpM _ _]mFpC.
rewrite (bigD1 Fp1) -/mFpM; last by rewrite [ltv _]ltn_neqAle vFpId.
rewrite [mFpM _ _]mFp1 (bigD1 Fpn1) -?mFpA -/mFpM; last first.
  rewrite -lt0n -ltnS prednK // lt1p.
  by rewrite [ltv _]ltn_neqAle vFpId eqxx orbT eq_sym eqF1n1.
rewrite (reindex_onto vFp vFp) -/mFpM => [|i]; last by do 3!case/andP; auto.
rewrite (eq_bigl (xpredD1 ltv Fp0)) => [|i]; last first.
  rewrite andbC -!andbA -2!negb_or -vFpId orbC -leq_eqVlt -ltnNge.
  have [->|ni0] := eqVneq i; last by rewrite vFpK // eqxx vFp0.
  by case: eqP => // ->; rewrite !andbF.
rewrite -{2}[mFp]/mFpM -[mFpM _ _]big_split -/mFpM.
by rewrite big1 ?mFp1r //= => i /andP [/vFpV].
Qed.

(** The falling factorial *)

Fixpoint ffact_rec n m := if m is m'.+1 then n * ffact_rec n.-1 m' else 1.

Definition falling_factorial := ffact_rec.
Arguments falling_factorial : simpl never.

Notation "n ^_ m" := (falling_factorial n m)
  (at level 30, right associativity) : nat_scope.

Lemma ffactE : falling_factorial = ffact_rec. Proof. by []. Qed.

Lemma ffactn0 n : n ^_ 0 = 1. Proof. by []. Qed.

Lemma ffact0n m : 0 ^_ m = (m == 0). Proof. by case: m. Qed.

Lemma ffactnS n m : n ^_ m.+1 = n * n.-1 ^_ m. Proof. by []. Qed.

Lemma ffactSS n m : n.+1 ^_ m.+1 = n.+1 * n ^_ m. Proof. by []. Qed.

Lemma ffactn1 n : n ^_ 1 = n. Proof. exact: muln1. Qed.

Lemma ffactnSr n m : n ^_ m.+1 = n ^_ m * (n - m).
Proof.
elim: n m => [|n IHn] [|m] //=; first by rewrite ffactn1 mul1n.
by rewrite !ffactSS IHn mulnA.
Qed.

Lemma ffact_prod n m : n ^_ m = \prod_(i < m) (n - i).
Proof.
elim: m n => [n | m IH [|n] //]; first by rewrite ffactn0 big_ord0.
  by rewrite big_ord_recr /= sub0n muln0.
by rewrite ffactSS IH big_ord_recl subn0.
Qed.

Lemma ffact_gt0 n m : (0 < n ^_ m) = (m <= n).
Proof. by elim: n m => [|n IHn] [|m] //=; rewrite ffactSS muln_gt0 IHn. Qed.

Lemma ffact_small n m : n < m -> n ^_ m = 0.
Proof. by rewrite ltnNge -ffact_gt0; case: posnP. Qed.

Lemma ffactnn n : n ^_ n = n`!.
Proof. by elim: n => [|n IHn] //; rewrite ffactnS IHn. Qed.

Lemma ffact_fact n m : m <= n -> n ^_ m * (n - m)`! = n`!.
Proof.
by elim: n m => [|n IHn] [|m] //= le_m_n; rewrite ?mul1n // -mulnA IHn.
Qed.

Lemma ffact_factd n m : m <= n -> n ^_ m = n`! %/ (n - m)`!.
Proof. by move/ffact_fact <-; rewrite mulnK ?fact_gt0. Qed.

(** Binomial coefficients *)

Fixpoint binomial n m :=
  match n, m with
  | n'.+1, m'.+1 => binomial n' m + binomial n' m'
  | _, 0 => 1
  | 0, _.+1 => 0
  end.
Arguments binomial : simpl never.

Notation "''C' ( n , m )" := (binomial n m) : nat_scope.

Lemma binE n m : binomial n m =
  match n, m with
  | n'.+1, m'.+1 => binomial n' m + binomial n' m'
  | _, 0 => 1
  | 0, _.+1 => 0
  end.
Proof. by case: n. Qed.

Lemma bin0 n : 'C(n, 0) = 1. Proof. by case: n. Qed.

Lemma bin0n m : 'C(0, m) = (m == 0). Proof. by case: m. Qed.

Lemma binS n m : 'C(n.+1, m.+1) = 'C(n, m.+1) + 'C(n, m). Proof. by []. Qed.

Lemma bin1 n : 'C(n, 1) = n.
Proof. by elim: n => //= n IHn; rewrite binS bin0 IHn addn1. Qed.

Lemma bin_gt0 n m : (0 < 'C(n, m)) = (m <= n).
Proof.
by elim: n m => [|n IHn] [|m] //; rewrite addn_gt0 !IHn orbC ltn_neqAle andKb.
Qed.

Lemma leq_bin2l n1 n2 m : n1 <= n2 -> 'C(n1, m) <= 'C(n2, m).
Proof.
by elim: n1 n2 m  => [|n1 IHn] [|n2] [|n] le_n12 //; rewrite leq_add ?IHn.
Qed.

Lemma bin_small n m : n < m -> 'C(n, m) = 0.
Proof. by rewrite ltnNge -bin_gt0; case: posnP. Qed.

Lemma binn n : 'C(n, n) = 1.
Proof. by elim: n => [|n IHn] //; rewrite binS bin_small. Qed.

(* Multiply to move diagonally down and right in the Pascal triangle. *)
Lemma mul_bin_diag n m : n * 'C(n.-1, m) = m.+1 * 'C(n, m.+1).
Proof.
rewrite [RHS]mulnC; elim: n m => [|[|n] IHn] [|m] //=; first by rewrite bin1.
by rewrite mulSn [in _ * _]binS mulnDr addnCA !IHn -mulnS -mulnDl -binS.
Qed.

Lemma bin_fact n m : m <= n -> 'C(n, m) * (m`! * (n - m)`!) = n`!.
Proof.
elim: n m => [|n IHn] [|m] // le_m_n; first by rewrite bin0 !mul1n.
by rewrite !factS -!mulnA mulnCA mulnA -mul_bin_diag -mulnA IHn.
Qed.

(* In fact the only exception for bin_factd is n = 0 and m = 1 *)
Lemma bin_factd n m : 0 < n -> 'C(n, m) = n`! %/ (m`! * (n - m)`!).
Proof.
have [/bin_fact<-|*] := leqP m n; first by rewrite mulnK ?muln_gt0 ?fact_gt0.
by rewrite divnMA bin_small ?divn_small ?fact_gt0 ?ltn_fact.
Qed.

Lemma bin_ffact n m : 'C(n, m) * m`! = n ^_ m.
Proof.
have [lt_n_m | le_m_n] := ltnP n m; first by rewrite bin_small ?ffact_small.
by rewrite ffact_factd // -(bin_fact le_m_n) mulnA mulnK ?fact_gt0.
Qed.

Lemma bin_ffactd n m : 'C(n, m) = n ^_ m %/ m`!.
Proof. by rewrite -bin_ffact mulnK ?fact_gt0. Qed.

Lemma bin_sub n m : m <= n -> 'C(n, n - m) = 'C(n, m).
Proof.
by move=> le_m_n; rewrite !bin_ffactd !ffact_factd ?leq_subr // divnAC subKn.
Qed.

(* Multiply to move down in the Pascal triangle. *)
Lemma mul_bin_down n m : n * 'C(n.-1, m) = (n - m) * 'C(n, m).
Proof.
case: n => //= n; have [lt_n_m | le_m_n] := ltnP n m.
  by rewrite (eqnP lt_n_m) mulnC bin_small.
by rewrite -!['C(_, m)]bin_sub ?leqW ?subSn ?mul_bin_diag.
Qed.

(* Multiply to move left in the Pascal triangle. *)
Lemma mul_bin_left n m : m.+1 * 'C(n, m.+1) = (n - m) * 'C(n, m).
Proof. by rewrite -mul_bin_diag mul_bin_down. Qed.

Lemma binSn n : 'C(n.+1, n) = n.+1.
Proof. by rewrite -bin_sub ?leqnSn // subSnn bin1. Qed.

Lemma bin2 n : 'C(n, 2) = (n * n.-1)./2.
Proof. by rewrite -[n.-1]bin1 mul_bin_diag -divn2 mulKn. Qed.

Lemma bin2odd n : odd n -> 'C(n, 2) = n * n.-1./2.
Proof. by case: n => // n oddn; rewrite bin2 -!divn2 muln_divA ?dvdn2. Qed.

Lemma prime_dvd_bin k p : prime p -> 0 < k < p -> p %| 'C(p, k).
Proof.
move=> p_pr /andP[k_gt0 lt_k_p].
suffices /Gauss_dvdr<-: coprime p (p - k) by rewrite -mul_bin_down dvdn_mulr.
by rewrite prime_coprime // dvdn_subr 1?ltnW // gtnNdvd.
Qed.

Lemma bin2_sum n : \sum_(0 <= i < n) i = 'C(n, 2).
Proof.
elim: n => [|n IHn]; first by rewrite big_geq.
by rewrite big_nat_recr // IHn binS bin1.
Qed.

#[deprecated(since="mathcomp 2.3.0", note="Use bin2_sum instead.")]
Notation triangular_sum := bin2_sum (only parsing).

(* textbook proof of `bin2_sum`. Should be moved out of the main
  library, to a dedicated "showcase" library.
Lemma textbook_triangular_sum n : \sum_(0 <= i < n) i = 'C(n, 2).
Proof.
rewrite bin2; apply: canRL half_double _.
rewrite -addnn {1}big_nat_rev -big_split big_mkord /= ?add0n.
rewrite (eq_bigr (fun _ => n.-1)); first by rewrite sum_nat_const card_ord.
by case: n => [|n] [i le_i_n] //=; rewrite subSS subnK.
Qed. *)

Theorem expnDn a b n :
  (a + b) ^ n = \sum_(i < n.+1) 'C(n, i) * (a ^ (n - i) * b ^ i).
Proof.
elim: n => [|n IHn]; rewrite big_ord_recl muln1 ?big_ord0 //.
rewrite expnS {}IHn /= mulnDl !big_distrr /= big_ord_recl muln1 subn0.
rewrite !big_ord_recr /= !binn !subnn bin0 !subn0 !mul1n -!expnS -addnA.
congr (_ + _); rewrite addnA -big_split /=; congr (_ + _).
apply: eq_bigr => i _; rewrite mulnCA (mulnA a) -expnS subnSK //=.
by rewrite (mulnC b) -2!mulnA -expnSr -mulnDl.
Qed.

#[deprecated(since="mathcomp 2.3.0", note="Use expnDn instead.")]
Definition Pascal := expnDn.

Lemma Vandermonde k l i :
  \sum_(j < i.+1) 'C(k, j) * 'C(l, i - j) = 'C(k + l , i).
Proof.
pose f k i := \sum_(j < i.+1) 'C(k, j) * 'C(l, i - j).
suffices{k i} fxx k i: f k.+1 i.+1 = f k i.+1 + f k i.
  elim: k i => [i | k IHk [|i]]; last by rewrite -/(f _ _) fxx /f !IHk -binS.
    by rewrite big_ord_recl big1_eq addn0 mul1n subn0.
  by rewrite big_ord_recl big_ord0 addn0 !bin0 muln1.
rewrite {}/f big_ord_recl (big_ord_recl (i.+1)) !bin0 !mul1n.
rewrite -addnA -big_split /=; congr (_ + _).
by apply: eq_bigr => j _; rewrite -mulnDl.
Qed.

Lemma subn_exp m n k :
  m ^ k - n ^ k = (m - n) * (\sum_(i < k) m ^ (k.-1 -i) * n ^ i).
Proof.
case: k => [|k]; first by rewrite big_ord0 muln0.
rewrite mulnBl !big_distrr big_ord_recl big_ord_recr /= subn0 muln1.
rewrite subnn mul1n -!expnS subnDA; congr (_ - _); apply: canRL (addnK _) _.
congr (_ + _); apply: eq_bigr => i _.
by rewrite (mulnCA n) -expnS mulnA -expnS subnSK /=.
Qed.

Lemma predn_exp m k : (m ^ k).-1 = m.-1 * (\sum_(i < k) m ^ i).
Proof.
rewrite -!subn1 -[in LHS](exp1n k) subn_exp; congr (_ * _).
symmetry; rewrite (reindex_inj rev_ord_inj); apply: eq_bigr => i _ /=.
by rewrite -subn1 -subnDA exp1n muln1.
Qed.

Lemma dvdn_pred_predX n e : (n.-1 %| (n ^ e).-1)%N.
Proof. by rewrite predn_exp dvdn_mulr. Qed.

Lemma modn_summ I r (P : pred I) F d :
  \sum_(i <- r | P i) F i %% d = \sum_(i <- r | P i) F i %[mod d].
Proof.
by apply/eqP; elim/big_rec2: _ => // i m n _; rewrite modnDml eqn_modDl.
Qed.

Lemma prime_modn_expSn p n : prime p -> n.+1 ^ p = (n ^ p).+1 %[mod p].
Proof.
case: p => // p pP.
rewrite -[(_ ^ _).+1]addn0 (expnDn 1) big_ord_recr big_ord_recl /=.
rewrite subnn binn exp1n !mul1n addnAC -modnDmr; congr ((_ + _) %% _).
apply/eqP/dvdn_sum => -[i ?] _; exact/dvdn_mulr/prime_dvd_bin.
Qed.

Lemma fermat_little a p : prime p -> a ^ p = a %[mod p].
Proof.
move=> pP.
elim: a => [|a IH]; first by rewrite exp0n // prime_gt0.
by rewrite prime_modn_expSn // -addn1 -modnDml IH modnDml addn1.
Qed.

(* Combinatorial characterizations. *)

Section Combinations.

Implicit Types T D : finType.

Lemma card_uniq_tuples T n (A : pred T) :
  #|[set t : n.-tuple T | all A t & uniq t]| = #|A| ^_ n.
Proof.
elim: n A => [|n IHn] A.
  by rewrite (@eq_card1 _ [tuple]) // => t; rewrite [t]tuple0 inE.
rewrite -sum1dep_card (partition_big (@thead _ _) A) /= => [|t]; last first.
  by case/tupleP: t => x t; do 2!case/andP.
rewrite ffactnS -sum_nat_const; apply: eq_bigr => x Ax.
rewrite (cardD1 x) [x \in A]Ax /= -(IHn [predD1 A & x]) -sum1dep_card.
rewrite (reindex (fun t : n.-tuple T => [tuple of x :: t])) /=; last first.
  pose ttail (t : n.+1.-tuple T) := [tuple of behead t].
  exists ttail => [t _ | t /andP[_ /eqP <-]]; first exact: val_inj.
  by rewrite -tuple_eta.
apply: eq_bigl=> t; rewrite Ax theadE eqxx andbT /= andbA; congr (_ && _).
by rewrite all_predI all_predC has_pred1 andbC.
Qed.

Lemma card_inj_ffuns_on D T (R : pred T) :
  #|[set f : {ffun D -> T} in ffun_on R | injectiveb f]| = #|R| ^_ #|D|.
Proof.
rewrite -card_uniq_tuples.
have bijFF: {on (_ : pred _), bijective (@Finfun D T)}.
  by exists fgraph => x _; [apply: FinfunK | apply: fgraphK].
rewrite -(on_card_preimset (bijFF _)); apply: eq_card => /= t.
rewrite !inE -(big_andE predT) -big_image /= big_all.
by rewrite -[t in RHS]FinfunK -codom_ffun.
Qed.

Lemma card_inj_ffuns D T :
  #|[set f : {ffun D -> T} | injectiveb f]| = #|T| ^_ #|D|.
Proof.
rewrite -card_inj_ffuns_on; apply: eq_card => f.
by rewrite 2!inE; case: ffun_onP.
Qed.

Lemma cards_draws T (B : {set T}) k :
  #|[set A : {set T} | A \subset B & #|A| == k]| = 'C(#|B|, k).
Proof.
have [ltTk | lekT] := ltnP #|B| k.
  rewrite bin_small // eq_card0 // => A.
  rewrite inE eqn_leq [k <= _]leqNgt.
  have [AsubB /=|//] := boolP (A \subset B).
  by rewrite (leq_ltn_trans (subset_leq_card AsubB)) ?andbF.
apply/eqP; rewrite -(eqn_pmul2r (fact_gt0 k)) bin_ffact // eq_sym.
rewrite -sum_nat_cond_const -{1 3}(card_ord k).
rewrite -card_inj_ffuns_on -sum1dep_card.
pose imIk (f : {ffun 'I_k -> T}) := f @: 'I_k.
rewrite (partition_big imIk (fun A => (A \subset B) && (#|A| == k))) /=
  => [|f]; last first.
  move=> /andP [/ffun_onP f_ffun /injectiveP inj_f].
  rewrite card_imset ?card_ord // eqxx andbT.
  by apply/subsetP => x /imsetP [i _ ->]; rewrite f_ffun.
apply/eqP; apply: eq_bigr => A /andP [AsubB /eqP cardAk].
have [f0 inj_f0 im_f0]: exists2 f, injective f & f @: 'I_k = A.
  rewrite -cardAk; exists enum_val; first exact: enum_val_inj.
  apply/setP=> a; apply/imsetP/idP=> [[i _ ->] | Aa]; first exact: enum_valP.
  by exists (enum_rank_in Aa a); rewrite ?enum_rankK_in.
rewrite (reindex (fun p : {ffun _} => [ffun i => f0 (p i)])) /=; last first.
  pose ff0' f i := odflt i [pick j | f i == f0 j].
  exists (fun f => [ffun i => ff0' f i]) => [p _ | f].
    apply/ffunP=> i; rewrite ffunE /ff0'; case: pickP => [j | /(_ (p i))].
      by rewrite ffunE (inj_eq inj_f0) => /eqP.
    by rewrite ffunE eqxx.
  rewrite -im_f0 => /andP[/andP[/ffun_onP f_ffun /injectiveP injf] /eqP im_f].
  apply/ffunP=> i; rewrite !ffunE /ff0'; case: pickP => [y /eqP //|].
  have /imsetP[j _ eq_f0j_fi]: f i \in f0 @: 'I_k by rewrite -im_f imset_f.
  by move/(_ j)/eqP.
rewrite -ffactnn -card_inj_ffuns -sum1dep_card; apply: eq_bigl => p.
rewrite -andbA.
apply/and3P/injectiveP=> [[_ /injectiveP inj_f0p _] i j eq_pij | inj_p].
  by apply: inj_f0p; rewrite !ffunE eq_pij.
set f := finfun _.
have injf: injective f by move=> i j /[!ffunE] /inj_f0; apply: inj_p.
have imIkf : imIk f == A.
  rewrite eqEcard card_imset // cardAk card_ord leqnn andbT -im_f0.
  by apply/subsetP=> x /imsetP[i _ ->]; rewrite ffunE imset_f.
split; [|exact/injectiveP|exact: imIkf].
by apply/ffun_onP => x; apply: (subsetP AsubB); rewrite -(eqP imIkf) imset_f.
Qed.

Lemma card_draws T k : #|[set A : {set T} | #|A| == k]| = 'C(#|T|, k).
Proof.
by rewrite -cardsT -cards_draws; apply: eq_card => A; rewrite !inE subsetT.
Qed.

Lemma card_ltn_sorted_tuples m n :
  #|[set t : m.-tuple 'I_n | sorted ltn (map val t)]| = 'C(n, m).
Proof.
have [-> | n_gt0] := posnP n; last pose i0 := Ordinal n_gt0.
  case: m => [|m]; last by apply: eq_card0; case/tupleP=> [[]].
  by apply: (@eq_card1 _ [tuple]) => t; rewrite [t]tuple0 inE.
rewrite -[n in RHS]card_ord -card_draws.
pose f_t (t : m.-tuple 'I_n) := [set i in t].
pose f_A (A : {set 'I_n}) := [tuple of mkseq (nth i0 (enum A)) m].
have val_fA (A : {set 'I_n}) : #|A| = m -> val (f_A A) = enum A.
  by move=> Am; rewrite -[enum _](mkseq_nth i0) -cardE Am.
have inc_A (A : {set 'I_n}) : sorted ltn (map val (enum A)).
  rewrite -[enum _](eq_filter (mem_enum _)).
  rewrite -(eq_filter (mem_map val_inj _)) -filter_map.
  by rewrite (sorted_filter ltn_trans) // unlock val_ord_enum iota_ltn_sorted.
rewrite -!sum1dep_card (reindex_onto f_t f_A) /= => [|A]; last first.
  by move/eqP=> cardAm; apply/setP=> x; rewrite inE -(mem_enum A) -val_fA.
apply: eq_bigl => t.
apply/idP/idP => [inc_t|/andP [/eqP t_m /eqP <-]]; last by rewrite val_fA.
have ft_m: #|f_t t| = m.
  rewrite cardsE (card_uniqP _) ?size_tuple // -(map_inj_uniq val_inj).
  exact: (sorted_uniq ltn_trans ltnn).
rewrite ft_m eqxx -val_eqE val_fA // -(inj_eq (inj_map val_inj)) /=.
apply/eqP/(irr_sorted_eq ltn_trans ltnn) => // y.
by apply/mapP/mapP=> [] [x t_x ->]; exists x; rewrite // mem_enum inE in t_x *.
Qed.

Lemma card_sorted_tuples m n :
  #|[set t : m.-tuple 'I_n.+1 | sorted leq (map val t)]| = 'C(m + n, m).
Proof.
set In1 := 'I_n.+1; pose x0 : In1 := ord0.
have add_mnP (i : 'I_m) (x : In1) : i + x < m + n.
  by rewrite -ltnS -addSn -!addnS leq_add.
pose add_mn t i := Ordinal (add_mnP i (tnth t i)).
pose add_mn_nat (t : m.-tuple In1) i := i + nth x0 t i.
have add_mnC t: val \o add_mn t =1 add_mn_nat t \o val.
  by move=> i; rewrite /= (tnth_nth x0).
pose f_add t := [tuple of map (add_mn t) (ord_tuple m)].
rewrite -card_ltn_sorted_tuples -!sum1dep_card (reindex f_add) /=.
  apply: eq_bigl => t; rewrite -map_comp (eq_map (add_mnC t)) map_comp.
  rewrite enumT unlock val_ord_enum -[in LHS](drop0 t).
  have [m0 | m_gt0] := posnP m.
    by rewrite {2}m0 /= drop_oversize // size_tuple m0.
  have def_m := subnK m_gt0; rewrite -{2}def_m addn1 /= {1}/add_mn_nat.
  move: 0 (m - 1) def_m => i k; rewrite -[in RHS](size_tuple t) => def_m.
  rewrite (drop_nth x0) /=; last by rewrite -def_m leq_addl.
  elim: k i (nth x0 t i) def_m => [|k IHk] i x /=.
    by rewrite add0n => ->; rewrite drop_size.
  rewrite addSnnS => def_m; rewrite -addSn leq_add2l -IHk //.
  by rewrite (drop_nth x0) // -def_m leq_addl.
pose sub_mn (t : m.-tuple 'I_(m + n)) i : In1 := inord (tnth t i - i).
exists (fun t => [tuple of map (sub_mn t) (ord_tuple m)]) => [t _ | t].
  apply: eq_from_tnth => i; apply: val_inj.
  by rewrite /sub_mn !(tnth_ord_tuple, tnth_map) addKn inord_val.
rewrite inE /= => inc_t; apply: eq_from_tnth => i; apply: val_inj.
rewrite tnth_map tnth_ord_tuple /= tnth_map tnth_ord_tuple.
suffices [le_i_ti le_ti_ni]: i <= tnth t i /\ tnth t i <= i + n.
  by rewrite /sub_mn inordK ?subnKC // ltnS leq_subLR.
pose y0 := tnth t i; rewrite (tnth_nth y0) -(nth_map _ (val i)) ?size_tuple //.
case def_e: (map _ _) => [|x e] /=; first by rewrite nth_nil ?leq_addr.
set nth_i := nth (i : nat); rewrite def_e in inc_t; split.
  have: i < size (x :: e) by rewrite -def_e size_map size_tuple ltn_ord.
  elim: (val i) => //= j IHj lt_j_e.
  by apply: leq_trans (pathP (val i) inc_t _ lt_j_e); rewrite ltnS IHj 1?ltnW.
move: (_ - _) (subnK (valP i)) => k /=.
elim: k (val i) => /= [|k IHk] j; rewrite -ltnS -addSn ?add0n => def_m.
  by rewrite def_m -def_e /nth_i (nth_map y0) ?ltn_ord // size_tuple -def_m.
rewrite (leq_trans _ (IHk _ _)) -1?addSnnS //; apply: (pathP _ inc_t).
rewrite -ltnS (leq_trans (leq_addl k _)) // -addSnnS def_m.
by rewrite -(size_tuple t) -(size_map val) def_e.
Qed.

Lemma card_partial_ord_partitions m n :
  #|[set t : m.-tuple 'I_n.+1 | \sum_(i <- t) i <= n]| = 'C(m + n, m).
Proof.
symmetry; set In1 := 'I_n.+1; pose x0 : In1 := ord0.
pose add_mn (i j : In1) : In1 := inord (i + j).
pose f_add (t : m.-tuple In1) := [tuple of scanl add_mn x0 t].
rewrite -card_sorted_tuples -!sum1dep_card (reindex f_add) /=.
  apply: eq_bigl => t; rewrite -[\sum_(i <- t) i]add0n.
  transitivity (path leq x0 (map val (f_add t))) => /=; first by case: map.
  rewrite -{1 2}[0]/(val x0); elim: {t}(val t) (x0) => /= [|x t IHt] s.
    by rewrite big_nil addn0 -ltnS ltn_ord.
  rewrite big_cons addnA IHt /= val_insubd ltnS.
  have [_ | ltn_n_sx] := leqP (s + x) n; first by rewrite leq_addr.
  rewrite -(leq_add2r x) leqNgt (leq_trans (valP x)) //=.
  by rewrite leqNgt (leq_trans ltn_n_sx) ?leq_addr.
pose sub_mn (i j : In1) := Ordinal (leq_ltn_trans (leq_subr i j) (valP j)).
exists (fun t : m.-tuple In1 => [tuple of pairmap sub_mn x0 t]) => /= t inc_t.
  apply: val_inj => /=; have{inc_t}: path leq x0 (map val (f_add t)).
    by move: inc_t; rewrite inE /=; case: map.
  rewrite [map _ _]/=; elim: {t}(val t) (x0) => //= x t IHt s.
  case/andP=> le_s_sx /IHt->; congr (_ :: _); apply: val_inj => /=.
  move: le_s_sx; rewrite val_insubd.
  case le_sx_n: (_ < n.+1); first by rewrite addKn.
  by case: (val s) le_sx_n; rewrite ?ltn_ord.
apply: val_inj => /=; have{inc_t}: path leq x0 (map val t).
  by move: inc_t; rewrite inE /=; case: map.
elim: {t}(val t) (x0) => //= x t IHt s /andP[le_s_sx inc_t].
suffices ->: add_mn s (sub_mn s x) = x by rewrite IHt.
by apply: val_inj; rewrite /add_mn /= subnKC ?inord_val.
Qed.

Lemma card_ord_partitions m n :
  #|[set t : m.+1.-tuple 'I_n.+1 | \sum_(i <- t) i == n]| = 'C(m + n, m).
Proof.
symmetry; set In1 := 'I_n.+1; pose x0 : In1 := ord0.
pose f_add (t : m.-tuple In1) := [tuple of sub_ord (\sum_(x <- t) x) :: t].
rewrite -card_partial_ord_partitions -!sum1dep_card (reindex f_add) /=.
  by apply: eq_bigl => t; rewrite big_cons /= addnC (sameP maxn_idPr eqP) maxnE.
exists (fun t : m.+1.-tuple In1 => [tuple of behead t]) => [t _|].
  exact: val_inj.
case/tupleP=> x t /[!(inE, big_cons)] /eqP def_n.
by apply: val_inj; congr (_ :: _); apply: val_inj; rewrite /= -{1}def_n addnK.
Qed.

End Combinations.